Check for
Updates

When Literacies Collide

The Role of Translation in Music+Coding Activities

Cameron L. Roberts

Michael S. Horn

Northwestern University, Computer Science and Learning Northwestern University, Computer Science and Learning

Sciences
cameronroberts2020@u.northwestern.edu

ABSTRACT

The integration of computer programming and music-making has
a rich history dating back to the 1950s. While there has been sub-
stantial prior work on the creative and cognitive affordances of
programming languages for engaging in musical tasks, there is less
work that attempts to understand the theoretical implications of
music and code as literacies in collision. In this paper, we report on
a study in which five undergraduate students with experience in
both music and coding completed two creative musical tasks: one
using conventional instruments and tools and one using Python
code in an online music-coding environment. In combining rep-
resentational infrastructures from music and code, both undergo
transformations. We introduce semiotic theories of translation and
transcription to make sense of the music-coding process and de-
scribe strategies that participants devised in their creative process.

CCS CONCEPTS

« Human-centered computing; « Human computer interac-
tion (HCI); - Collaborative and social computing;

KEYWORDS
Computer Science Education, Music, Computational Literacy

ACM Reference Format:

Cameron L. Roberts and Michael S. Horn. 2023. When Literacies Collide:
The Role of Translation in Music+Coding Activities. In Learning, Design
and Technology (LDT ’23), June 23, 2023, Evanston, IL, USA. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3594781.3594795

1 INTRODUCTION

Since the 1950s, researchers and artists have sought to harness
the creative potential that exists at the intersection of music and
computer programming languages [20, 34]. Advances in computa-
tional technology and programming language design have helped
support thriving communities interested in the affordances of com-
puter languages for expressing musical ideas and supporting cre-
ative expression. Examples include explorations of live coding [1],
functional programming paradigms for representing musical struc-
ture [1], tools for modular synthesis [34], and data-flow languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

LDT °23, June 23, 2023, Evanston, IL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0736-0/23/06...$15.00
https://doi.org/10.1145/3594781.3594795

21

Sciences
michael-horn@northwestern.edu

[28]. Other research has focused on educational questions: Can the
intersection of music and code help students learn about music-
making? Or computer programming? Can this intersection change
students’ relationships with both domains in terms of identity and
self-expression?

While there is a growing body of research exploring these ques-
tions, the field is still in need of theoretical foundations that help
conceptualize music and coding as bidirectional and mutually in-
fluencing. In this paper, we report on a study in which five un-
dergraduate students with experience in both music and coding
completed two creative musical tasks—one using traditional mu-
sical tools, instruments, and representations and one using the
Python programming language and an online learning platform
called TunePad [17]. Using a constructivist grounded theory ap-
proach [9], we observe the critical role of translation [11] between
representational systems in the music-coding process and the po-
tential for computation to serve as a restructuration of musical
knowledge.

2 RELATED WORK

Of the many technical domains in which coding interacts, music
is a fascinating case. Many of the domains that researchers have
investigated rely on formal representational systems. Examples
include physics [30], chemistry [21], and the life sciences [37]. Due
to the technical nature of these domains, researchers are able to
ask if code can supplement, augment, or even replace conventional
representational systems, and, in the process, restructure learners’
cognitive engagement with the concepts themselves [10, 30, 36].
While music involves formal and technical representational sys-
tems, it is also a sociocultural phenomenon that cannot be separated
from existing encultured knowledge. Music-making, or musicking
[31], is a natural human activity. We are surrounded by music from
birth in countless different forms. Through this process of encul-
turation, individuals acquire “basic musical competencies through
everyday exposure to music” [15]. This manifests itself as an in-
creased affinity and intuition for music from one’s own culture
through culture-specific cognitive representations. This contrasts
with formal musical training, which gives individuals explicit power
over this musical intuition by introducing new categories, abstrac-
tions, and processes. Research has also shown that individuals with
musical training have improved cognitive abilities related to sound—
such as pitch discrimination and tonal pattern recognition—which
correlates with levels of expertise [7]. In other words, formal music
instruction directly changes how we process and encode sound
information. Therefore, in introducing code as a form of represen-
tation of music, this new computational literacy must come into

https://doi.org/10.1145/3594781.3594795
https://doi.org/10.1145/3594781.3594795
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3594781.3594795&domain=pdf&date_stamp=2023-06-23

LDT ’23, June 23, 2023, Evanston, IL, USA

contact with both encultured and formal aspects of an individual’s
musical literacy.

Prior work at the intersection of music and coding has either
tended to emphasize the technical aspects of computer language
design; or it has thought about music as a motivational context
within which to learn computer science concepts and potentially
broaden participation in computing fields. What’s missing is work
that considers the cognitive implications of music and computa-
tion colliding as literacies. How do these two rich domains act on
one another, and what implications does this have for designing
learning environments that utilize both? In our view, when litera-
cies collide, transformative spaces can be opened in which both
domains are reimagined. Combining coding and arts education—as
music-coding systems such as TunePad, EarSketch, and SonicPi
seek to do—can alter a learner’s experience with both domains. On
the one hand, we are given new tools for understanding the algo-
rithmic, mathematical, and structural aspects of music. But what
is less often considered is that music might also change how we
think about code.

The use of music and code to enhance learning has a long his-
tory. Work from Jeanne Bamberger laid the foundation with projects
such as MusicLOGO and Impromptu [2, 6]. Many general-purpose
learning environments such as Scratch [29] have music creation ca-
pabilities, even if they are not optimized for musical expression [26].
Tools like Web Audio, SuperCollider, and Max/MSP are designed
for professionals or advanced learners and may not be suitable
for beginners. On the other hand, more recent domain-specific
projects like Sonic Pi [1, 27], Jython Music [24], EarSketch [12], and
TunePad [18] have gained worldwide popularity among hundreds
of thousands of students. These platforms make use of text-based
programming languages such as Python or JavaScript and are tai-
lored specifically towards music creation.

2.1 Literacies

There have been many attempts to define musical literacy, both in
connection with traditional language literacy [14, 16] and domain-
specific conceptions [8, 35]. We conceive of musical literacy as
the skills and competencies needed to negotiate and interact with
musical texts in a culturally defined, substantive manner. These
interactions may include conventional musical activities such as
creating (composing or improvising), interpreting (listening or ana-
lyzing), and performing. They may also include interacting with
music in participatory ways such as remixing, covering, satirizing,
or sampling [32]. A musical literacy is necessarily specific to a musi-
cal culture rather than universal, although there may be overlap of
competencies. We consider the ability to think abstractly in sound,
or audiation, as the core competency of our concept of musical
literacy rather than privileging symbolic forms. Audiation is the
process of hearing and comprehending sound in one’s mind when
the sound is not present. This is separate from the concept of aural
perception, which occurs when sound is present [13]. Audiation
may be engaged for a range of musical activities: imagining the
resulting sound while reading sheet music, improvising, or writ-
ing music. Those who are skilled readers of musical notation also
show a link between the notation and sound. That is, they can
audiate or subvocalize the imagined sound of a piece without any

22

Cameron Roberts and Michael Horn

intermediary representation. In contrast, more novice readers may
link notation not with a sound result, but with a kinesthetic means
of sound production—that is, for example, they may associate a
note on the staff with a key on a piano or a specific fingering on
the flute [25]. Other supporting competencies include (but are not
limited to) working with theoretical and notational systems as well
as instrumental proficiency and collaboration.

Our view of computational literacy derives from the work of
diSessa [10, 22] who thinks of coding (and computing more broadly)
as a sort of technical literacy with cognitive, social, and cultural
dimensions. On a cognitive level, calling computation a literacy
implies fluency with technical representation systems; however,
that fluency also reflects back on us, shaping how we think about
the world, how we solve problems, and how we engage in creative
tasks. As a person becomes more computationally literate, they
may be able to think more abstractly in terms of tools, design
patterns, or approaches to solving a problem without worrying
about language-specific syntax or formalisms. On a social level
there is an aspect of communication and sharing of ideas that is
facilitated through technical inscriptions. The shared understanding
of technical inscriptions supports communities of people engaged in
avariety of endeavors (e.g. a team of software engineers or an online
community such as Stack Overflow). Finally, on a cultural level,
diSessa argues that literacies should have society-wide implications
that transcend any one domain or discipline. For this last point,
diSessa might expect different genres of computational literacy to
emerge when applied to specialized tasks such as music creation.

Our notion of musical literacy overlaps with computation in
several ways. For instance, both require working with abstrac-
tions. In music, this may involve recognizing chord progressions or
melodic motifs, while in computation, it may involve recognizing
common programming structures such as loops or functions. Both
may involve a specialized symbolic language as well as iterative
problem-solving routines (i.e. practicing and debugging).

2.2 Translation

To mediate between the two representational systems associated
with these forms of literacy, we chose the analogy of translation,
building on the work of Umberto Eco [11]. This choice is due in part
to the ambiguities that are inherent in making a translation. To use
language as an example, this is to say that meaning is fundamentally
altered in translating from one language to another, both due to
cultural differences and the abstractions that are available in each
language. Through the process of translation, meaning—which may
or may not accurately reflect the meaning of the original text—is
transmuted and reconstructed in the new language.

Eco’s model of translation builds on the work of Jakobson [19]
and expands his model of translation to encompass translation
both between as well as within languages and other sign systems.
Intrasemiotic translation (or intralinguistic in the case of language)
is a reformulation within a single sign system. In language, this
may manifest as rewording of a thought. Intersemiotic translation
(interlinguistic in language) encompasses translation between sign
systems. This may manifest as a change of media, such as adapting
a novel to the stage. Both forms of translation can be contrasted
with transcription, which Eco describes as being able to be carried

When Literacies Collide

out by “automatic substitution”, such as moving from a natural
language to morse code [11].

In the context of this paper, we are taking the set of musical and
computational signs to be our two principal systems of interest—
that is, the set of signs and relations that convey musical and com-
putational meanings. Because we are considering the set of signs,
an intrasemiotic translation in this context could be considered
moving from one computational representation to another within
a single system—for instance, refactoring code or moving from one
coding language to another. We consider intersemiotic translation
to be the transfer of knowledge from one system to another. Again,
using computation as an example, this could manifest as the im-
plementation of a computer program (i.e. moving from a list of
requirements to code) [23].

3 METHODS

The next subsections provide an overview of our participants, data
collection, and analysis methods.

3.1 Participants

All five of our participants were advanced undergraduate students
participating in a two-week training program to prepare coaches
for teaching summer programs with TunePad. Each coach had some
amount of experience with both coding and music. Each had at
least one STEM major and some level of formal Computer Science
background. Four participants were involved in informal musical
activities (e.g. a cappella or songwriting), and one participant was
studying viola performance as a second major. Two of the partic-
ipants had been TunePad coaches the previous summer and had
prior experience with TunePad.

3.2 Data Collection

The five coaches participated in two sessions, each around 45 min-
utes long and on separate days. For both sessions, participants
were given approximately 20 minutes to compose a short original
melody and then reflected on their compositional process through
a semi-structured interview. For the first session, participants were
instructed to bring any non-coding tools of their choice to aid their
composition. For the second, participants were instructed to code
their melody in TunePad. Participants were not informed of the
specific musical task they were to complete ahead of each session
to avoid any potential preparation. While composing, participants
were instructed to think aloud about their musical process as well as
to vocalize musical ideas by humming or singing. Every participant
provided signed informed consent as well as verbal consent to be
video recorded.

In the reflection portion of the interview, participants were asked
to describe their musical process in greater detail. They were asked
questions such as: Why did you choose your specific musical tool?
How did you structure your musical composition? What strategies
did you use to write your musical ideas as code? How do your coding
skills transfer into music-coding? How do your music-coding strategies
differ from your regular coding strategies?

Interviews were audio and video recorded and then transcribed
for analysis.

23

LDT ’23, June 23, 2023, Evanston, IL, USA

3.3 Research Questions

The purpose of this study was to investigate how computation
affected the musical creative process and how music affected the
coding process. The following questions guided the analysis:

1. How did participants engage in both the musical and com-
putational aspects of the task?

2. How did processes and artifacts between the trials differ?

3. What are the limitations and affordances of code as a form
of musical representation?

4. How did the nature of the musical task affect the code that
participants created?

34

To make sense of our data we applied a constructivist grounded the-
ory approach [9], looking at both interviews as well as the musical
artifacts created. Transcripts were inductively coded sentence-by-
sentence. After initial coding, transcript data was edited for clarity
and conciseness, removing filler words and redundancy. Then ini-
tial codes were grouped into larger emergent themes which were
refined and abstracted through constant comparison. These cat-
egories included representation (e.g. notational or instrumental),
musical literacy (both formal and informal), computational literacy,
compositional process, and knowledge transfer. Individual data
were segmented and aggregated into the major thematic areas and
once again refined. A key component of this approach is acknowl-
edging the researcher’s own subjectivity in building a theory. CR is
a software developer who has contributed to the TunePad as a cur-
riculum developer, software developer, and coach. MH is a professor
of computer science and learning science and created the TunePad
platform. MH was conducting the coach training workshop. Both
MH and CR have training in Western musical traditions.

Analysis and Positionality

3.5 TunePad

In this study we used TunePad, a free, online music+code envi-
ronment that was developed as a complement to EarSketch [17].
TunePad projects take the form of specialized computational note-
books called playbooks that consist of an arbitrary number of cells
containing Python code, multimedia content, and text. Code in
TunePad can represent individual musical elements such as notes,
rests, chords, or percussion sounds. This research could also have
been conducted using similar music+code environments that make
use of text-based programming languages.

4 FINDINGS

For the first task, the participants created a variety of different
musical compositions. Jan (pseudonym), a singer-songwriter and
musician, created a country-western inspired verse using Garage-
Band, MIDI keyboard, and her voice. Ian, a classically trained violist,
composed a simple classical melody using his viola. Lewis, an a
capella singer and arranger, created an indie-pop inspired song
with two contrasting sections using a MIDI keyboard and voice.
Sal, an amateur guitarist and saxophonist, wrote a full verse-chorus
song using guitar and voice. Morgan, who participated in high
school band and college a capella has no formal training in music
theory. Morgan used online reference material as well as a MIDI

LDT ’23, June 23, 2023, Evanston, IL, USA

keyboard, notation software, and whistling to compose a short
melodic fragment.

For the second task, participants used TunePad and Python code
to compose an entirely new composition. Jan started by creating
drum and bass accompaniment and then composed an eight mea-
sure pop piano melody over that accompaniment. Ian wrote three
separate motifs inspired by EDM but struggled to line up the differ-
ent cells rhythmically. Like Ian, Lewis created short motifs rather
than developing a longer melody; he wrote four different motifs
which were two measures in duration. Sal wrote a two measure
piano motif outlining two chords and a drum beat and then com-
posed a four measure piano melody over this texture; like Ian, Sal
also struggled to rhythmically align the different cells. Morgan was
the fastest to complete his melody; he first developed a short eight
measure chord progression and then composed a piano melody on
top of this.

4.1 Translation and the Creative Process

In our analysis, we began to see the role that translation—both con-
scious and automatic—played in negotiating representations of both
music and code. In both the first and second task, we found that par-
ticipants had to negotiate a variety of constraints, representations,
and sensory-perceptual resources including:

e Sound: the aural feedback a participant receives

o Theoretical knowledge: both the intuitive and formalized
means participants have of structuring musical knowledge

e Cultural knowledge: the aesthetics and values encultured
both by specific genres/subcultures and of larger Western
culture

o Instrumental: the link between the sensorimotor network
and perception

o Notational: written systems for representing music, such
as standard music notation and tablature

Even in the non-coding task, participants had to translate be-
tween different musical texts and representations. This is to say,
they were “reading” or interpreting musical texts and negotiating
musical meaning across related representational forms. We see
this negotiation as an intrasemiotic translation, or a reformulation
within a single sign system—in this case, music.

This translation manifests in many different ways depending on
the representations in play. For instance, for some participants the
physical instruments (e.g. guitar or viola) afford for automaticity
in which there is no conscious translation between thought and
action. This automaticity is of course predicated on some degree of
virtuosity, otherwise there must be an additional translational step.
In the reflection after her second task, Jan remarked how this extra
step could serve as a barrier to creative expression:

‘T feel like I have so much control over my voice. When
I was playing the saxophone, if I was trying to do a
saxophone solo, I would have to think what I want to
hear and how [to] translate that to my fingers and
actually play it. If I really practiced my scales and got
to that point, like if you’re like an insane saxophone
player, you kind of just think it and play. You don’t do
it in two steps; you just do that one step. That’s how I
feel a little bit with guitar and piano.”

24

Cameron Roberts and Michael Horn

The music-coding process in the second task involved moving from
a variety of musical forms—notational, instrumental, cultural, and
others—to the language of computation through what we saw as a
recursive process of refining towards higher fidelity representations.
As in the first task, translation was also present in how participants
negotiated non-coding constraints and representations; in this in-
stance, however, the participants demonstrated an intersemiotic
form of translation: that is, movement from one sign system to an-
other. We observed that in their compositional processes, none of
the participants formulated musical ideas in code, but instead con-
verged on their musical ideas through a combination of audiating
and vocalizing. They also leveraged musical representations in the
TunePad platform—including standard music notation, piano roll,
and track instruments (keyboard, guitar, and drums). Participants
then engaged in an active process in which semi-formed musical
ideas were transformed from cognitive auditory structures (which
may also leverage the appropriation of other forms of musical rep-
resentations) into computer code. In other words, they enacted an
informal process in which they transformed their musical idea into
code.

As part of their creative process, the output of the code itself
(i.e. the sound produced by TunePad) was evaluated and compared
to the original musical idea of the participant. If necessary, the
participant engaged in debugging and refining this code. This step
was predicated on the participant being able to discern an incon-
gruity or dissonance between their initial idea and the audio output
of the code (related to musical literacy) as well as their ability to
understand and debug the code they wrote (related to computa-
tional literacy). The translational process continued iteratively until
the participant was able to find coherence between their mental
representation of the sound and the musical artifact.

Computational and musical literacies work in tandem in a music-
coding setting, but the ability to make the translational step into
computer code serves as a major pain point in music-coding en-
vironments. Similar to the example of instrumental proficiency
serving as a barrier to creative expression, coding fluidity has ob-
vious implications for the success of a music-coding task, as one
participant remarked:

“[There’s] a clear difference between the interns who
had CS experience and [those] who didn’t. The ones who
had experience could make a lot cooler stuff, but I think
that’s just because we could do it faster and didn’t have
to be like, T want this thing to happen; how do I do it?’
For me, it’s Twant something to happen. I kind of know
how to do it because I know how coding works.”

In the example above, the participant reflected on how one’s de-
gree of computational knowledge can act as a constraint on musical
expression; this can certainly work in reverse as well. Morgan, who
was one of the most adept coders, lamented that his lack of music
theory knowledge was his primary challenge in both tasks. His mu-
sical strategy involved a large degree of trial-and-error (divergent
thinking), testing out many ideas without clear direction. This was
time-consuming and caused frustration:

“Because all the aural skills that I had are gone, when
I hear what would sound right in my head, there’s no
translation from that sound into a chord, or a knowledge

When Literacies Collide

LDT ’23, June 23, 2023, Evanston, IL, USA

playNote (G3, beats=2)

Code without variables Equivalent code with variables for With variables for notes and duration
notes

playNote (48, beats=1) from ceonstants import * from constants import *

playNote (48, beats=1) playNote (C3, beats=1) QUARTER = 1.0

playNote (55, beats=1) playNote (C3, beats=1) HALF = 2.0

playNote (55, beats=1) playNote (G3, beats=1) playNote (C3, beats=QUARTER)

playNote (57, beats=1) playNote (G3, beats=1) playlNote (C3, beats=QUARTER)

playlNote (57, beats=1) playlNote (A3, beats=l) playNote (G3, beats=QUARTER)

playlNote (55, beats=2) playNote (A3, beats=1) playNote (G3, beats=QUARTER)

playNote (A3, beats=QUARTER)
playNote (A3, beats=QUARTER)
playNote (G3, beats=HALF)

Figure 1: Use of variables as a translational aid.

of what comes next. So, there are things where I'm like,
T wish that sounded like something else.’ I would’ve
either spent more time playing around with stuff, but
in the time I had, playing around didn’t work.”

The process of translating to code also at times diverged from the
intended outcome, generating new creative possibilities. The act
of searching for coherence (and sometimes failing) often revealed
new ideas:

“Very [little] of what I wrote down is what I was hear-
ing [in my head]. It’s more like, ‘oh, this sounds good
anyway.’ I didn’t mean to mis-translate that, but I think
in the end, I was able to make more efficient decisions
where I was making more intelligent guesses.”

4.2 Translational Strategies

Beyond coding or musical competencies, the ability to make trans-
lational steps is dependent on building conceptual links across
representation systems and domains. Some participants took ad-
vantage of the abstractions and representational affordances of code
to help with this process. In our programming with K-12 students,
understanding the mathematical and fractional nature of music
rhythms has often been a pain point. For example, a quarter note in
musical notation translates into 1 beat in TunePad Python code. An
eighth note translates into 0.5 beats, and so on. Even the concept
that beats are conventionally subdivided by powers of 2 (%, %, %) is
a difficult concept that is far from immediately obvious to begin-
ners. Even an experienced music-coding participant struggled to
make the link between music notation and beats without use of a
translational aid. Speaking about this particular pain point, Ivan
says:

“You have to really focus on the math side of music in

terms of the length of the notes and the articulation

you want. [...] In terms of just straight up note length,

that’s a lot easier to do as a musician. [...] Coming

from a music background, I have the intuition that a

25

quarter of a beat is a 16th note, and a half a beat is
an eighth note. But all that kind of gets thrown out the
window.”

One such strategy that other participants used for this particular
pain point was through use of the built-in constants library—which
defines variables for notes and rhythmic values—or by defining their
own variables (see figure 1). One participant remarked that code
written in this way “looked like music” even though he understood
that it was functionally the same. Another, that using variables in
this way allowed them to leverage their knowledge of sheet music
to better visualize the end product. This is not to mention the added
bonus in terms of readability and explainability.

The organizational affordances that participants took advantage
of were not limited to variables. Comments allowed them to leave
notes and reminders for things such as the notes which are a part of
the harmony. Participants also added line breaks and whitespace as
a kind of equivalent to musical barlines by adding them in between
measures. Morgan said,

‘I like being able to separate what each measure looks
like and write little notes to myself. It’s nice and helpful.
I kind of wanted this [in task #1] but writing out the
notes of the chords would have been a nice tool.”

The parameterized nature of coding allowed participants to de-
compose the problem of translation into two separate problems:
translating pitches and translating rhythmic values. One partici-
pant described how they filled in placeholder values for rhythmic
values to denote relative length before they figured out the exact
value:

“Generally I get the notes first and then deal with the
rhythms after. .. Sometimes if I know that one note is
shorter than the next one, I will just put like 0.5 instead.
It’s like I’'m doing little annotations and then going back
and editing.”

LDT ’23, June 23, 2023, Evanston, IL, USA

4.3 Transforming Coding Practices

4.3.1 Debugging and Multiple Hearings. We observed that music-
coding as a process altered typical computational practices. In the
process of translation, participants used multiple forms of debug-
ging. On one level, they practiced conventional debugging: both
syntactic and semantic [33]. For this, they were able to use the
Python interpreter and their computational knowledge. In the eval-
uation of the correctness of their code (i.e. the output matching
their musical ideas), they had to employ an entirely different form
of debugging through musical aural skills. They had to find errors
in the program through sound, first identifying the incongruity in
sound and then mapping that to code. One participant remarked
on the difference between this sound debugging and conventional
debugging:

“The way that I'm testing is by listening; it’s more of
an interactive way. How I would normally debug is
[through] test code or maybe a print statement or [with]
an output. It’s kind of like this is the output except
instead of visually seeing an output, I'm hearing it and
processing myself. [Instead of | the computer telling me
what’s wrong, I'm telling me what’s wrong.”

In the debugging process, listeners must manage and remedy
multiple incongruent hearings of a musical idea in order to find
coherence as well as contend with the ephemeral nature of musical
memory. Bamberger characterizes musical development in terms
of this sort of disequilibrium among representations [4]:

“Musical development is enhanced by continuously
evolving interactions among multiple organizing con-
straints along with the disequilibrium and sensitivity
to growing complexity that these entanglements en-
train [...] Rather than being a uni-directional process,
musical development is a spiraling, endlessly recur-
sive process in which organizing constraints such
as those above are concurrently present creating an
essential, generative tension as they play a transfor-
mational dance with one another” (page 4)

This process has the capacity to engage both musical and com-
putational literacies and also to reinforce both. The dissonance
between the mental idea and its computational form can highlight
the ambiguities in a listener’s mental representation and results in
a spiraling process in which both are refined.

4.3.2 Refactoring as Restructuration. Key to our concept of trans-
lation is the fact that coding is itself a creative process in which
there are multiple “correct” solutions; that is, there are multiple
ways to formulate code which have the same musical output. Un-
like canonical musical notations, the difference between these code
representations is not syntactical but structural—although we have
also described strategies employed on the level of syntax (i.e. com-
ments, variables). There are heuristics for evaluating and choosing
between different viable solutions—such as readability, modularity,
and conciseness—and we saw participants actively employing these
heuristics in the refinement of their code. There are certainly trans-
lations which obscure the musical structure in the exact same way as

26

Cameron Roberts and Michael Horn

musical notation (see figure 2 below). Sequential representations—
essentially a list of notes and rhythmic values—are arguably in-
distinguishable in form from standard musical notation (but are
nonetheless an important stage towards thinking programmatically
about music). These are arguably more akin to a transcription rather
than a translation [11].

Although the time constraints of the task discouraged some
participants from refining their code, more advanced coders were
able to encapsulate elements of musical structure using coding
abstractions such as loops and functions. Morgan describes this as
a matter of convenience:

“..as soon as I find a pattern—which is very, very com-
mon in popular music—my code starts to look much
more modular because it’s easy to break things up and
make my life easier.”

Another participant echoed this preference for convenience and
conveyed that they were evaluating their code based on metrics of
readability and conciseness:

“T defined two little functions—my A and B functions—
so I don’t have to write these over and over again. Even
though I'll only use the B function once—I wouldn’t need
to create a function because I'm not using it again—
it’s nice to have it more organized. I think it’s pretty
important when you’re writing music in TunePad being
able to use variables, comments, functions because it
really does clean it up and make it tidier and easier.”

As this shows, the translational process does not end when partici-
pants reach a “correct” answer—and in fact, as we have seen, it may
stop before then—it ends when they reach coherence between the
musical idea and its representation. We view computer code as a re-
structuration of musical knowledge [36]. As Bamberger and diSessa
[5] proposed with music and mathematics, this encapsulation has
the capacity to reveal the underlying formal and mathematical
structure of music—what Bamberger might call “units of percep-
tion” [3]—in a way that other forms of notation obscure. This is to
say that the translational process serves as a form of musical analy-
sis. We argue that the goal of music-coding education must be the
continuous refinement of the translations, which in turn spurs the
development of both musical and computational literacies. Musical
literacy, through the illumination of these larger structural compo-
nents; computational literacy, through the utilization of principles
of encapsulation, abstraction, and decomposition.

5 DISCUSSION AND FUTURE WORK

In this paper, we have begun to outline the role of translation as a
key process in music-coding. In doing so, we propose that music-
coding introduces shifts in both forms of literacy and begins to
emerge as something new. We observed changes, spurred by the
specific considerations of the new domain, which operated on the
levels of procedure, structure, and aesthetics. On the level of aes-
thetics, participants sought to make their code “look more musical”
through imposing additional organizational constraints. On the
level of procedure, participants leveraged language and platform
affordances to aid in the translational process. On the level of struc-
ture, participants encapsulated elements of musical structure into
loops and functions. Our findings suggest that prior music and

When Literacies Collide

LDT ’23, June 23, 2023, Evanston, IL, USA

Refactored code to encapsulate repeating sections

TunePad code for Hot Crossed Buns
playNote (52, beats=1)
playNote (50, beats=1)
playNote (48, beats=2)
playNote (52, beats=1)
playNote (50, beats=1)
playNote (48, beats=2)
playNote (48, beats=0.5)
playNote (48, beats=0.5)
playNote (48, beats=0.5)
playNote (48, beats=0.5)
playNote (50, beats=0.5)
playNote (50, beats=0.5)
playNote (50, beats=0.5)
playNote (50, beats=0.5)
playNote (52, beats=1)
playNote (50, beats=1)
playNote (48, beats=2)

def phrase a:

def phrase b:

phrase af()
phrase_al()
phrase_b ()
phrase a()

playNote (52,
playNote (50,
playNote (48,

beats=1)
beats=1)
beats=2)

beats=0.
beats=0.
beats=0.
beats=0.
beats=0.
beats=0.
beats=0.
beats=0.

playNote (48,
playNote (48,
playNote (48,
playNote (48,
playNote (50,
playNote (50,
playNote (50,
playNote (50,

(SRS R) RS 2 R & B) B R]

Figure 2: Use of encapsulation to illuminate musical structure.

coding training did not directly transfer to the music-coding con-
text, even in participants experienced with both music and coding.
Rather, musical experiences—both formal and informal—develop
a toolset of musical skills which may (or may not) aid in adapting
to new representational forms. As is implied by our definition of
musical literacy, musical skills are not necessarily transferable to
different contexts, meaning that there is no generalized or univer-
sal form of music literacy that applies to all musical genres and
cultures. Musical knowledge and familiarity with a particular mu-
sical representation are culturally specific and are often acquired
through enculturation, which means that skills and knowledge
that are specific to one context may not be directly transferable to
another context.

In music-coding, this cultural specificity means that it is not
enough simply to drop music into coding. This involves recogniz-
ing that music-coding is not an amalgamation of the two content
areas, but rather a unique domain that requires specialized skills.
In our music-coding task, musical thinking formed the foundation
of creative expression, but this was highly interconnected with
the coding process—with translation serving as mediation. The
back-and-forth between musical and computational knowledge
allowed for new divergent creative possibilities, as we observed
with Morgan. The refinement of both musical and computational
representations that was achieved through the translational process
suggests promising pedagogical implications to both domains. In a
future paper, we will take a closer look at how these three processes
intertwine and present a more complete model of the music-coding
process.

The implications of our findings suggest that curricula should
focus on actively cultivating this translational linkage between
musical knowledge and coding. Educators should aim to equip

27

students with the necessary tools to navigate the complexities of
musical representation in the coding context. This involves devel-
oping a deep understanding of musical concepts such as rhythm,
melody, harmony, and timbre through coding and non-coding mu-
sical activities, as well as the ability to translate these concepts into
code.

6 LIMITATIONS

A limitation of this study was sample size and participant demo-
graphics. In future studies, we would like to expand our dataset
to include participants from more diverse musical backgrounds
and a wider set of ages and abilities as well as to compare multiple
music-coding platforms. In future papers, we plan to describe the
implications of these findings on the design of our interfaces and
curricula. We also note that the task used in this research design
was artificially constrained and may not resemble how people use
similar platforms to make music in real life. As such we lack thick
descriptions that could be gained from an ethnographic immersion
within creative communities.

ACKNOWLEDGMENTS

This research was supported by grants DRL-1612619, DRL-1451762,
DRL-1837661, and DRL-2119701 from the National Science Founda-
tion. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not neces-
sarily reflect the views of the NSF. The second author is co-owner
of a commercial entity established to generate revenue to support
the ability to continue to offer TunePad as a free platform available
for anyone to use.

LDT ’23, June 23, 2023, Evanston, IL, USA Cameron Roberts and Michael Horn

REFERENCES //doi.org/10.1080/09298215.2013.778890

[21] Sharona T. Levy and Uri Wilensky. 2009. Students’ Learning with the Connected
Chemistry (CC1) Curriculum: Navigating the Complexities of the Particulate
World. § Sci Educ Technol 18, 3 (June 2009), 243-254. DOLhttps://doi.org/10.1007/

[1] Samuel Aaron and Alan F. Blackwell. 2013. From sonic Pi to overtone: creative mu-
sical experiences with domain-specific and functional languages. In Proceedings of
the first ACM SIGPLAN workshop on Functional art, music, modeling & design, ACM,
Boston Massachusetts USA, 35-46. DOLhttps://doi.org/10.1145/2505341.2505346 §10956-009-9145-7) i
Jeanne Bamberger. 1979. Logo Music projects: Experiments in musical perception [22] Yeping Li, Alan H. Sphoenfel@, Andrea A. diSessa, Arthur C. Graesser, Lisa C.
and design. LOGO Memo 52 (1979). Retrieved from http://hdL.handle.net/1721.1/ Benson, Lyn D. Epgl{sh, and Richard A Duschl. 2020. Computational Thmkmg
5796 Is More about Thinking than Computing. Journal for STEM Educ Res 3, 1 (April
[3] Jeanne Bamberger. 1996. Turning music theory on its ear Do we hear what we 2020), 1-18. DOLhttps://doi.org/10.1007/541979-020-00030-2

see; Do we see what we say? Int J Comput Math Learning 1, 1 (1996). DOLhttps: [23] Olimpia Giuliana Loddo, Andrea Addis, and Giuseppe Lorini. 2022. Intersemiotic
/ /dc’)Lorg /10.1007/BF00191471 ’ translation of contracts into digital environments. Front. Artif. Intell. 5, (October

2022), 963692. DOL:https://doi.org/10.3389/frai.2022.963692

Bill Manaris, Blake Stevens, and Andrew R. Brown. 2016. JythonMusic: An en-
vironment for teaching algorithmic music composition, dynamic coding and
musical performativity. journal of music, technology and educat 9, 1 (May 2016),
33-56. DOLhttps://doi.org/10.1386/jmte.9.1.33_1

Janet Mills and Gary E. McPherson. 2006. Musical Literacy. In The Child as

Musician, Gary McPherson (ed.). Oxford University Press, 155-172. DOLhttps:
//doi.org/10.1093/acprof:0s0/9780198530329.003.0008

William Payne and S Alex Ruthmann. 2019. Music Making in Scratch: High
Floors, Low Ceilings, and Narrow Walls. Journal of Interactive Technology and
Pedagogy 15, (2019), 2019.

Christopher Petrie. 2022. Programming music with Sonic Pi promotes posi-
tive attitudes for beginners. Computers & Education 179, (April 2022), 104409.
DOLhttps://doi.org/10.1016/j.compedu.2021.104409

Miller Puckette and others. 1996. Pure Data: another integrated computer music
environment. Proceedings of the second intercollege computer music concerts (1996),
37-41.

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: programming for all. Commun. ACM
52, 11 (November 2009), 60-67. DOLhttps://doi.org/10.1145/1592761.1592779
Bruce L. Sherin. 2001. A Comparison of Programming Languages and Algebraic
Notation as Expressive Languages for Physics. International Journal of Comput-
ers for Mathematical Learning 6, 1 (2001), 1-61. DOLhttps://doi.org/10.1023/A:
1011434026437

Christopher Small. 1998. Musicking: the meanings of performing and listening.
University Press of New England, Hanover.

Evan S. Tobias. 2013. Toward Convergence: Adapting Music Education to Con-
temporary Society and Participatory Culture. Music Educators Journal 99, 4 (June
2013), 29-36. DOL:https://doi.org/10.1177/0027432113483318

Iris Vessey. 1986. Expertise in Debugging Computer Programs: An Analysis of the
Content of Verbal Protocols. IEEE Transactions on Systems, Man, and Cybernetics
16, 5 (1986), 621-637. DOLhttps://doi.org/10.1109/TSMC.1986.289308

[34] Ge Wang. 2017. A history of programming and music. In The Cambridge Com-
panion to Electronic Music (Second edition), Nick Collins and Julio d’Escrivan
(eds.). Cambridge University Press, Cambridge, United Kingdom; New York, NY,
55-71.

A

[4] Jeanne Bamberger. 2006. What develops in musical development? A view of
development as learning. The Child (2006), 69-92. (24

[5] Jeanne Bamberger and Andrea diSessa. 2003. Music as Embodied Mathematics:

A Study of a Mutually Informing Affinity. International Journal of Computers
for Mathematical Learning 8, 2 (2003), 123-160. DOLhttps://doi.org/10.1023/B:
1JC0.0000003872.84260.96 [25

[6] Jeanne Bamberger and Armando Hernandez. 2000. Developing musical intuitions:
a project-based introduction to making and understanding music. Oxford University
Press, New York.

[7] Karen Chan Barrett, Richard Ashley, Dana L. Strait, and Nina Kraus. 2013. Art
and science: how musical training shapes the brain. Front. Psychol. 4, (2013).
DOI:https://doi.org/10.3389/fpsyg.2013.00713

[8] Paul Broomhead. 2021. A New Definition of Music Literacy: What, Why, and

How? Music Educators Journal 107, 3 (March 2021), 15-21. DOLhttps://doi.org/

10.1177/0027432121991644

Kathy Charmaz. 2006. Constructing grounded theory. Sage Publications, London;

Thousand Oaks, Calif.

[10] Andrea A. diSessa. 2018. Computational Literacy and “The Big Picture” Concern-

ing Computers in Mathematics Education. Mathematical Thinking and Learning

20, 1 (January 2018), 3-31. DOLhttps://doi.org/10.1080/10986065.2018.1403544

U. Eco. 2008. Experiences in Translation. University of Toronto Press. Retrieved

from https://books.google.com/books?id$=$0dVYaP9VukIC

[12] Jason Freeman, Brian Magerko, Doug Edwards, Tom Mcklin, Taneisha Lee, and

Roxanne Moore. 2019. EarSketch: engaging broad populations in computing
through music. Commun. ACM 62, 9 (August 2019), 78—85. DOLhttps://doi.org/
10.1145/3333613

[13] E. Gordon. 2012. Learning Sequences in Music: A Contemporary Music Learning

Theory. GIA Publications. Retrieved from https://books.google.com/books?id$=

$WPjRMgEACAA]

Suzanne N. Hall and Nicole R. Robinson. 2012. Music and Reading: Finding

Connections From Within. General Music Today 26, 1 (October 2012), 11-18.

DOL:https://doi.org/10.1177/1048371311432005

[15] Erin E. Hannon and Laurel J. Trainor. 2007. Music acquisition: effects of encul-

turation and formal training on development. Trends in Cognitive Sciences 11, 11
(November 2007), 466—-472. DOLhttps://doi.org/10.1016/j.tics.2007.08.008

[16] Dee Hansen, Elaine D. Bernstorf, and Gayle M. Stuber. 2007. The music and

literacy connection. Rowman & Littlefield Education, Lanham, Maryland.

[26

[27

[28

=

[29

[11

[30

[31

(32

[14

[33

[17] Michael Horn, Amartya Banerjee, Melanie West, Nichole Pinkard, Amy Pratt, [35] BrianN. ngdner. 2018. Cont.ent Area Literacy in Ensemble Mpsic Education: T_he
F Brian Magerko. and Tom McKlin. 2020. TunePad: Enagin Before-During-After Instructional Framework Journal of Music Teacher Education

{:Zf:er ;Zf’;i“i’ntersecmngofm’usic and code. (2000) gaging 27, 3 (June 2018), 10-23. DOL:https://doi.org/10.1177/1057083717732512
. ’ [36] Uri Wilensky and Seymour Papert. 2010. Restructurations: Reformulations of

[18] Mike Horn, Amartya Banerjee, and Matthew Brucker. 2022. TunePad Playbooks:

Designing Computational Notebooks for Creative Music Coding. In CHI Confer-

ence on Human Factors in Computing Systems, ACM, New Orleans LA USA, 1-12.

DOL:https://doi.org/10.1145/3491102.3502021

Roman Jakobson. 1959. On linguistic aspects of translation. In On translation.

Harvard University Press, 232-239.

[20] Victor Lazzarini. 2013. The Development of Computer Music Programming Sys-
tems. Journal of New Music Research 42, 1 (March 2013), 97-110. DOLhttps:

knowledge disciplines through new representational forms. Constructionism 17,
(2010), 1-15.

Uri Wilensky and Kenneth Reisman. 2006. Thinking Like a Wolf, a Sheep, or
a Firefly: Learning Biology Through Constructing and Testing Computational
Theories—An Embodied Modeling Approach. Cognition and Instruction 24, 2
(June 2006), 171-209. DOLhttps://doi.org/10.1207/s1532690xci2402_1

[37

[19

28

https://doi.org/10.1145/2505341.2505346
http://hdl.handle.net/1721.1/5726
http://hdl.handle.net/1721.1/5726
https://doi.org/10.1007/BF00191471
https://doi.org/10.1007/BF00191471
https://doi.org/10.1023/B:IJCO.0000003872.84260.96
https://doi.org/10.1023/B:IJCO.0000003872.84260.96
https://doi.org/10.3389/fpsyg.2013.00713
https://doi.org/10.1177/0027432121991644
https://doi.org/10.1177/0027432121991644
https://doi.org/10.1080/10986065.2018.1403544
https://books.google.com/books?id$=$0dVYaP9VukIC
https://doi.org/10.1145/3333613
https://doi.org/10.1145/3333613
https://books.google.com/books?id$=$wPjRMgEACAAJ
https://books.google.com/books?id$=$wPjRMgEACAAJ
https://doi.org/10.1177/1048371311432005
https://doi.org/10.1016/j.tics.2007.08.008
https://doi.org/10.1145/3491102.3502021
https://doi.org/10.1080/09298215.2013.778890
https://doi.org/10.1080/09298215.2013.778890
https://doi.org/10.1007/s10956-009-9145-7
https://doi.org/10.1007/s10956-009-9145-7
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.3389/frai.2022.963692
https://doi.org/10.1386/jmte.9.1.33_1
https://doi.org/10.1093/acprof:oso/9780198530329.003.0008
https://doi.org/10.1093/acprof:oso/9780198530329.003.0008
https://doi.org/10.1016/j.compedu.2021.104409
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1023/A:1011434026437
https://doi.org/10.1023/A:1011434026437
https://doi.org/10.1177/0027432113483318
https://doi.org/10.1109/TSMC.1986.289308
https://doi.org/10.1177/1057083717732512
https://doi.org/10.1207/s1532690xci2402_1

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Literacies
	2.2 Translation

	3 METHODS
	3.1 Participants
	3.2 Data Collection
	3.3 Research Questions
	3.4 Analysis and Positionality
	3.5 TunePad

	4 FINDINGS
	4.1 Translation and the Creative Process
	4.2 Translational Strategies
	4.3 Transforming Coding Practices

	5 DISCUSSION AND FUTURE WORK
	6 LIMITATIONS
	Acknowledgments
	References

