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1. Introduction

The purpose of this note is to give a characterization of “finite étale morphisms” in tensor triangular
geometry. We follow the notation, terminology, and perspective of [BDS16]. In particular, we will work in the
context of rigidly-compactly generated tensor-triangulated categories [BDS16, Definition 2.7]. The kind of
characterization we have in mind is analogous to the following well-known characterization of smashing
localizations:

Theorem 1.1. Smashing localizations of a rigidly-compactly generated tensor-triangulated category T are precisely

those geometric functors f ∗ : T→ S between rigidly-compactly generated tensor-triangulated categories whose right

adjoint f∗ is fully faithful.

We will recall a proof in Remark 3.10 below. Smashing localizations include, for example, restriction to
a quasi-compact open subset of the Balmer spectrum. More generally, the tensor-triangular analogue of
an étale morphism is extension-of-scalars with respect to a commutative separable algebra (with smashing
localizations being the special case of idempotent algebras). Finite étale morphisms are, by definition,
extension-of-scalars with respect to a compact commutative separable algebra (see Definition 4.2). Most
smashing localizations are not finite étale morphisms, just as most open immersions are not proper. We will
prove:

Theorem 1.2. Finite étale extensions of a rigidly-compactly generated tensor-triangulated category T are precisely

those geometric functors f ∗ : T→ S between rigidly-compactly generated tensor-triangulated categories which satisfy

the following three properties:

(a) f ∗ satisfies Grothendieck–Neeman duality;

(b) the right adjoint f∗ is conservative;

(c) the canonical map 1S→ ωf is an isomorphism.

The terminology and notation will be explained in Section 4. We just remark that under hypothesis (a),
the algebra f∗(1S) is rigid (a.k.a. dualizable) and hence has an associated trace map. This corresponds by
adjunction to a canonical map 1S→ ωf from the unit to the relative dualizing object, which hypothesis (c)
asserts is an isomorphism.

The keys to the theorem are the robust monadicity theorems which hold for triangulated categories
and a deeper understanding of strongly separable algebras. Indeed, we begin the paper in Section 2 with
a treatment of strongly separable algebras in arbitrary symmetric monoidal categories which may be of
independent interest. We prove, in particular, that a rigid commutative algebra is separable if and only if
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it is strongly separable if and only if its canonically-defined trace form is nondegenerate (Corollary 2.38).
We then turn in Section 3 to tensor-triangulated categories and the role separable algebras play in that
setting. A key tool is a strengthened version of separable monadicity (Proposition 3.8). We define finite
étale morphisms and prove the main theorem (Theorem 4.8) in Section 4. We also show that if the target
category is locally monogenic, then the conservativity condition (b) is implied by the other two conditions
(Corollary 4.20). In Section 5, we illustrate the theorem by giving some examples and non-examples of finite
étale morphisms in equivariant homotopy theory, algebraic geometry, and derived algebra.
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2. Strongly separable algebras

We begin with a discussion of separable algebras in an arbitrary symmetric monoidal category. Although
separable algebras are well-understood at this level of generality, we would like to clarify the notion of
strongly separable algebra. Our main goal is to show that the equivalent characterizations of classical
strongly separable algebras over fields established by [Agu00] have suitable generalizations to arbitrary
symmetric monoidal categories. The main punch line is that a rigid commutative algebra is separable if and
only if it is strongly separable if and only if its trace form is nondegenerate (see Corollary 2.38). Moreover,
this is the case if and only if it has the (necessarily unique) structure of a special symmetric Frobenius
algebra.

Terminology 2.1. Throughout this section, we work in a fixed symmetric monoidal category (C,⊗,1). The
symmetry isomorphism will be denoted τ : A⊗B ∼−→ B⊗A. An object A in C is rigid (a.k.a. dualizable) if
there exists an object DA and morphisms η : 1→DA⊗A and ǫ : A⊗DA→ 1 such that the composites

A
1⊗η
−−−→ A⊗DA⊗A

ǫ⊗1
−−−→ A and DA

η⊗1
−−−→DA⊗A⊗DA

1⊗ǫ
−−−→DA

are the identity morphisms. It follows that the functor DA⊗− : C→ C is right adjoint to A⊗− : C→ C.
An algebra A is an associative unital monoid in C. The multiplication and unit maps will be denoted
µ : A⊗A→ A and u : 1→ A.

Definition 2.2. An algebra (A,µ,u) is separable if there exists a map σ : A→ A⊗A such that

(σ1) µ ◦σ = idA and
(σ2) (1⊗µ) ◦ (σ ⊗ 1) = σ ◦µ = (µ⊗ 1) ◦ (1⊗σ) as maps A⊗A→ A⊗A.

In other words, A is separable if the multiplication map µ : A⊗A→ A admits an (A,A)-bilinear section.

Remark 2.3. If we precompose such a section σ with the unit u : 1→ A, we obtain a map

κ≔ σ ◦u : 1→ A⊗A

which satisfies

(κ1) µ ◦κ = u, and
(κ2) (1⊗µ) ◦ (κ⊗ 1) = (µ⊗ 1) ◦ (1⊗κ) as maps A→ A⊗A.

Conversely, given such a κ, the map A→ A⊗A displayed in (κ2) satisfies axioms (σ1) and (σ2). Thus, an
algebra A is separable if and only if it admits a map κ : 1→ A⊗A satisfying (κ1) and (κ2). Such a map κ

is called a separability idempotent.
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Remark 2.4. We refer the reader to [AG60, CHR65, KO74], [Pie82, Chapter 10], and [For17] for further
information about separable algebras and their role in classical representation theory and algebraic geometry.
The following notion of a strongly separable algebra was originally studied by Kanzaki and Hattori [Hat65,
Kan62]:

Definition 2.5. An algebra A is strongly separable if there exists a map κ : 1→ A⊗A satisfying (κ1), (κ2),
and

(κ3) κ = τ ◦κ.

In other words, A is strongly separable if it admits a symmetric separability idempotent.

Remark 2.6. For classical algebras over a field, [Agu00] provides several equivalent characterizations of
strongly separable algebras. Our present goal is to clarify the extent to which these characterizations hold in
an arbitrary symmetric monoidal category. For this purpose, the graphical calculus of string diagrams will
be very convenient. We refer the reader to [Sel11, Sections 3–4] and [PS13, Section 2] for more information
concerning these diagrams and suffice ourselves to remark that it is a routine exercise to convert a proof
involving string diagrams into a detailed proof using commutative diagrams.

Notation 2.7. We will read our string diagrams from bottom to top. The multiplication map µ : A⊗A→ A

and the map κ : 1→ A⊗A will be represented by

µ and
κ

while the unit u : 1→ A and the identity id : A→ A will be represented by

u = and idA =

Thus, for example, axiom (κ2) reads

(2.8) =

Proposition 2.9. An algebra (A,µ,u) is strongly separable if and only if there exists a morphism κ : 1→ A⊗A

satisfying (κ2) and

(κ4) µ ◦ τ ◦κ = u.

Proof. By definition, an algebra is strongly separable if it admits a morphism κ satisfying (κ1), (κ2), and
(κ3). It is immediate that (κ1) and (κ3) together imply (κ4). It is also immediate that (κ3) and (κ4) together
imply (κ1). Thus, the claim will be established if we can prove that (κ2) and (κ4) together imply (κ3).
Using Notation 2.7, observe:

(2.10) =
(unital)

=
(κ4)

=
(assoc)

=
(κ2)
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We can then rearrange the last diagram by pulling the left-hand multiplication to the right-hand side and
continue:

(2.11) =
(κ2)

=
(assoc)

=
(κ4)

=
(unital)

This establishes κ = τ ◦κ, which is axiom (κ3). �

Corollary 2.12. Any commutative separable algebra is strongly separable.

Proof. This follows from Proposition 2.9 since axiom (κ4) coincides with axiom (κ1) when the algebra is
commutative. �

Remark 2.13. For string diagrams involving a rigid object A, we will use the direction of a string to indicate
whether it represents A or its dual DA. For example, the unit 1→ DA⊗A and counit A⊗DA→ 1 are
represented by

and

respectively, and the unit-counit relations are given by

= and =

Definition 2.14. Let A be a rigid algebra in the symmetric monoidal category C. Its trace map tr : A→ 1 is
given by

(2.15) A ≃ A⊗1
1⊗η
−−−→ A⊗DA⊗A

1⊗τ
−−−→ A⊗A⊗DA

µ⊗1
−−−→ A⊗DA

ǫ
−→ 1.

Remark 2.16. To explain this definition, recall that every endomorphism f : A→ A of the rigid object A has
an associated “trace” Tr(f ) : 1→ 1 given as

1
η
−→DA⊗A

1⊗f
−−−→DA⊗A

τ
−→ A⊗DA

ǫ
−→ 1.

Moreover, post-composition by the map

(2.17) DA⊗A
τ
−→ A⊗DA

ǫ
−→ 1

induces a function

C(A,A) ≃ C(1,DA⊗A)→ C(1,1)

which sends f to Tr(f ). On the other hand, the multiplication map µ : A⊗A→ A corresponds (by pulling
the second A to the other side) to a morphism A→DA⊗A given by

(2.18) A ≃ 1⊗A
η⊗1
−−−→DA⊗A⊗A

1⊗τ
−−−→DA⊗A⊗A

1⊗µ
−−−→DA⊗A.

Post-composition by this map provides a function

C(1,A)→ C(1,DA⊗A) ≃ C(A,A)

which sends a morphism a : 1→ A to “left multiplication by a”:

La : A ≃ A⊗1
1⊗a
−−−→ A⊗A

τ
−→ A⊗A

µ
−→ A.
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The map (2.15) defining the trace map tr : A→ 1 is readily checked to equal the composite of (2.18) and (2.17).
Post-composition by the trace map thus provides the function

C(1,A)
tr∗
−−→ C(1,1)

a 7−→ Tr(La).

Thus tr : A→ 1 is morally the map which sends an “element” of A to the trace of left multiplication by that
element.

Definition 2.19. The trace form of a rigid algebra A is the map t : A⊗A→ 1 defined as the composite

A⊗A
µ
−→ A

tr
−→ 1.

Remark 2.20. The trace map and trace form of a rigid algebra are given by the following string diagrams:

tr = and t =

Remark 2.21. A map f : A⊗A→ 1 is said to be an “associative” form (also called an “invariant” form) if
f ◦ (µ ⊗ 1) = f ◦ (1⊗ µ). Note that any form which factors through µ (such as the trace form of a rigid
algebra) is necessarily associative by the associativity of the multiplication. The converse is also true: A form
A⊗A→ 1 is associative if and only if it factors through µ. In fact, we obtain a bijection

{
maps A→ 1

}
∼−→

{
associative forms A⊗A→ 1

}

given by θ 7→ θ ◦µ with inverse f 7→ f ◦ (u ⊗ 1) = f ◦ (1⊗u).

Remark 2.22. A map f : A ⊗A → 1 is said to be a “symmetric” form if f = f ◦ τ. Note that if A is a
commutative algebra, then every associative form is automatically symmetric.

Proposition 2.23. The trace form of a rigid algebra is symmetric.

Proof. First note that we can rewrite the trace form as

(2.24) =

as has already been mentioned in Remark 2.16. Next we establish

(2.25) =
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which is an equality of morphisms A⊗A→DA⊗A. By adjunction, this can be checked after applying A⊗−

and post-composing with A⊗DA⊗A
ǫ⊗1
−−−→ A:

= = = = = =

Next note that

(2.26) = =

Then

=
(2.24)

=
(2.25)

= =
(2.26)

=
(2.25)

=
(2.24)

establishes that the trace form is symmetric. �

Remark 2.27. Intuition for why the trace form is symmetric comes from the fact that for any two endomor-
phisms f ,g : A→ A, we have Tr(f ◦ g) = Tr(g ◦ f ). Hence, at least morally, t(a,b) = Tr(Lab) = Tr(La ◦Lb) =

Tr(Lb ◦La) = Tr(Lba) = t(b,a).

Definition 2.28. If A is a rigid object in a symmetric monoidal category, then every map f : A⊗A→ 1

gives rise to two morphisms A→DA by adjunction (moving each copy of A to the right-hand side). These
two maps A→DA coincide when f is symmetric and are given by

(2.29) f ∗ : A ≃ 1⊗A
η⊗1
−−−→DA⊗A⊗A

1⊗f
−−−→DA⊗1 ≃DA.

We say that a symmetric form f : A⊗A→ 1 is nondegenerate if f ∗ : A→DA is an isomorphism.

Proposition 2.30. The trace form of a strongly separable rigid algebra is nondegenerate. Moreover, a strongly

separable rigid algebra has a unique symmetric separability idempotent, which is given by

(2.31) 1
η
−→DA⊗A

(t∗)−1⊗1
−−−−−−−→ A⊗A.

Proof. Let κ be a symmetric separability idempotent. We will start by showing that the composite

(2.32) A ≃ 1⊗A
κ⊗1
−−−→ A⊗A⊗A

1⊗t
−−−→ A⊗1 ≃ A

is the identity, where t denotes the trace form (Definition 2.19). First note:

(2.33) = =
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Then observe that

=
(κ2)

=
(κ2)

=

and

= =
(2.33)

=
(κ4)

=

which shows that (2.32) is the identity map. Now κ is symmetric by assumption and the trace form t is
symmetric by Proposition 2.23. Hence

t

κ

=

t

κ

=

t

κ

=

t

κ

In other words, the composite (2.32) coincides with the other composite

A ≃ A⊗1
1⊗κ
−−−→ A⊗A⊗A

t⊗1
−−−→ 1⊗A ≃ A.

It follows that the map κ∗ : DA→ A given by

DA ≃ 1⊗DA
κ⊗1
−−−→ A⊗A⊗DA

1⊗ǫ
−−−→ A⊗1 ≃ A

is an inverse to t∗ : A→DA. Indeed:

t∗

κ∗

=

t

κ

= and
κ∗

t∗

=

t

κ

=

In particular, the trace form is nondegenerate. Moreover, one can readily check that (t∗ ⊗ 1) ◦κ = η, from
which it follows that κ is given by (2.31). �

Theorem 2.34. A rigid algebra is strongly separable if and only if its trace form is nondegenerate.

Proof. The “only if” part is provided by Proposition 2.30. Conversely, suppose A is a rigid algebra whose
trace form t : A⊗A→ 1 is nondegenerate. Write θ : A ∼−→DA for the associated isomorphism (that is, θ = t∗

in the notation of Definition 2.28), and define κ : 1→ A⊗A by

(2.35) 1
η
−→DA⊗A

θ−1⊗1
−−−−−→ A⊗A.
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First we check that t and κ form a self-duality in the sense that

(2.36)
t

κ

=
(2.35)

tθ−1

=
(2.29)

θ−1

θ

=

and

(2.37)
t

κ

=
(2.35)

θ−1

t

=
(2.29)

θ

θ−1

=

Armed with this relationship between t and κ, the fact that t is symmetric (by Proposition 2.23) implies that
κ is also symmetric:

κ

=
(2.36)

t

κ

κ =
(2.23)

t

κ

κ =
t

κκ

=
(2.36)

κ

=

κ

This establishes axiom (κ3). Next we establish (κ2), visualized in string diagrams in (2.8). It suffices to
check equality after post-composition by the isomorphism θ ⊗ idA. Then by adjunction, it suffices to check

equality after applying A⊗− and post-composing by A⊗DA⊗A
ǫ⊗1
−−−→ A. Indeed,

θ

κ

=
(2.35)

θ

θ−1
= =

(2.37)

κ

t

=
(†)

κ

t

=
(2.29)

κ

θ
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where the equality (†) is the fact that the trace form is an associative form (Remark 2.21). Finally, we
establish (κ1). Observe that

= t

κ

=

κ

=
(‡)

κ

=

κ

=

κ

and note that we showed (‡) was a consequence of (κ2) in the proof of Proposition 2.30. Precomposing with
the unit, we obtain

=

κ

=

κ

which is (κ1). �

Corollary 2.38. A rigid commutative algebra is separable if and only if it is strongly separable if and only if its

trace form is nondegenerate.

Proof. Every commutative separable algebra is strongly separable (Corollary 2.12); hence the claim follows
from Theorem 2.34. �

Remark 2.39. A rigid strongly separable algebra A is automatically self-dual since the nondegeneracy of the
trace form provides an isomorphism A �DA.

Example 2.40. Consider the case where C = R -Mod is the category of R-modules for R a commutative ring.
An R-algebra A is rigid precisely when it is finitely generated and projective (equivalently, finitely presented
and flat) as an R-module. The trace map A→ R is a 7→ Tr(La), where La : A→ A denotes left multiplication
by a, and the trace form t : A ⊗A→ R is given by t(a ⊗ b) = Tr(Lab). In this example, the argument in
Remark 2.27 shows immediately that the trace form is symmetric. It turns out that over a field R = k, a
separable algebra is automatically rigid (that is, finite-dimensional), as shown by [VZ66, Proposition 1.1].
It was partly to clarify such finiteness assumptions that led the author to write this section on strongly
separable algebras in arbitrary symmetric monoidal categories.

Example 2.41. An idempotent algebra in a symmetric monoidal category is an algebra (A,µ,u) whose
multiplication map µ : A ⊗A→ A is an isomorphism. This is equivalent to the equality u ⊗A = A ⊗ u

of morphisms A→ A ⊗A (which then serve as an inverse to µ). It is also equivalent to the switch map
τ : A⊗A→ A⊗A being equal to the identity map A⊗A→ A⊗A. Idempotent algebras are thus examples
of commutative (strongly) separable algebras. They have a (unique) separability idempotent given by
µ−1◦u : 1→ A⊗A. However, they are usually not rigid. For example, take C = R -Mod for R a commutative
ring. The idempotent R-algebra R[1/s] is rarely finitely generated as an R-module. Indeed, this would imply
that the principal open D(s) ⊂ Spec(R) is both an open and closed subset of Spec(R); see the argument in
[San19, Example 7.4], for example.

Remark 2.42. A discussion of separable algebras would not be complete without saying something about
their relationship with Frobenius algebras:

Definition 2.43. A Frobenius algebra in a symmetric monoidal category is an object A equipped with both
an algebra structure (A,µ,u) and a coalgebra structure (A,∆, c) such that the Frobenius law holds:

(1⊗µ) ◦ (∆⊗ 1) = ∆ ◦µ = (µ⊗ 1) ◦ (1⊗∆).
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See, for example, [Koc04, 3.6.8]. We say that A is a symmetric Frobenius algebra if the associative form

A⊗A
µ
−→ A

c
−→ 1

is symmetric. Thus, every commutative Frobenius algebra is symmetric. A special Frobenius algebra is a
Frobenius algebra such that µ ◦∆ = idA.

Remark 2.44. If (A,µ,u,∆, c) is a Frobenius algebra, then the underlying object A is necessarily self-dual
(cf. Remark 2.39). Indeed, the two maps c ◦µ : A⊗A→ 1 and ∆ ◦u : 1→ A⊗A provide a self-duality.

Remark 2.45. The following relationship between strongly separable algebras and special symmetric Frobenius
algebras is well-known classically; we include a proof for precision and completeness. The interested reader
will find more concerning these ideas in [LP07, Section 2.5], [FRS02, Section 3.3], and [Fau13], among other
sources.

Proposition 2.46. An algebra admits the structure of a special symmetric Frobenius algebra if and only if it is

rigid and strongly separable. In this case, the special symmetric Frobenius structure is unique: The counit A→ 1 is

the trace map (Definition 2.14 ), and the comultiplication A→ A⊗A is the map corresponding (Remark 2.3 ) to

the unique symmetric separability idempotent (Proposition 2.30 ).

Proof. If A is a strongly separable rigid algebra with (unique) symmetric separability idempotent κ : 1→ A⊗A,
then the corresponding map A→ A⊗A is coassociative. Indeed, using both descriptions provided by (κ2),
we have

=
(κ2)

=
(κ2)

= =
(κ2)

=
(κ2)

This provides A with the structure of a coalgebra with counit A→ 1 given by the trace map. For the counital
axiom, just observe that

=
(κ2)

= =
(†)

and =
(κ2)

= =
(†)

where the last equalities (†) were established in the proof of Proposition 2.30. Alternatively, one can
use the description (2.31) of the unique separability idempotent and check the counital diagrams after
post-composition by the isomorphism t∗ : A ∼−→DA. This establishes that a strongly separable rigid algebra
admits the structure of a special symmetric Frobenius algebra.

Now suppose that (A,µ,u,∆, c) is a special symmetric Frobenius algebra. Every Frobenius algebra is
self-dual (Remark 2.44), and the comultiplication ∆ : A→ A⊗A satisfies (σ2). In our case, it also satisfies
(σ1) since A is assumed to be special. Symmetry of the associated separability idempotent ∆◦u : 1→ A⊗A

then follows from the assumed symmetry of c ◦µ : A⊗A→ 1 via the self-duality (as in the beginning of the
proof of Theorem 2.34). Thus A is strongly separable with symmetric separability idempotent ∆ ◦u.

To establish uniqueness, first observe that the commutative diagram

A A⊗A A⊗A⊗A

A⊗A A⊗A⊗A A⊗A

∆

u⊗1

1⊗∆

∆⊗1

1⊗µ

id

u⊗1⊗1 µ⊗1

shows that the comultiplication ∆ of a Frobenius algebra is determined by ∆ ◦ u and µ. If (A,µ,u,∆1, c1)

and (A,µ,u,∆2, c2) are two special symmetric Frobenius structures on the (rigid strongly separable) algebra
(A,µ,u), then ∆1 ◦u = ∆2 ◦u by the uniqueness of symmetric separability idempotents (Proposition 2.30),
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and hence ∆1 = ∆2. Moreover, since ci ◦µ : A⊗A→ 1 and ∆i ◦u : 1→ A⊗A form a self-duality for each
i = 1,2, we have:

1

=

1 2

1 = 2

=

2

.

That is, c1 ◦µ = c2 ◦µ. Precomposing by the unit, we conclude that c1 = c2. This establishes that an algebra
admits at most one special symmetric Frobenius structure. Finally, we have already proved that if A admits a
special symmetric Frobenius structure then it is rigid and strongly separable and consequently the trace map
and the symmetric separability idempotent provide it with a special symmetric Frobenius structure. These
thus provide the unique such structure. �

3. Separable algebras and triangulated categories

In this section, we recall the relationship between separable algebras and tensor-triangulated categories
established in [Bal11].

Remark 3.1. Recall from [Bal11, Section 5] that for each 2 ≤N ≤∞, there is the notion of an N -triangulated
category (or triangulated category of order N ) which includes as part of the structure a distinguished
class of n-triangles for each n ≤N which are required to satisfy suitable higher octahedral axioms. A
2-triangulated category is precisely the same thing as a pre-triangulated category, while the usual notion of
triangulated category (in the sense of Verdier) lies between the notion of 2-triangulated and 3-triangulated.
An N -triangulated functor is a functor which commutes with the suspension and preserves distinguished
N -triangles (equivalently, preserves distinguished n-triangles for all n ≤N ).

Example 3.2. The homotopy category Ho(C) of a stable ∞-category has the structure of an ∞-triangulated
category.

Remark 3.3. A tensor-triangulated category is a triangulated category equipped with a closed symmetric
monoidal structure which is compatible with the triangulation in the sense of [HPS97, Definition A.2.1]. For
2 ≤N ≤∞, we similarly have the notion of an N -tensor-triangulated category by replacing all instances of
“triangulated” in the definition with “N -triangulated.” By an (N -)tensor-triangulated functor, we mean an
(N -)triangulated functor which is also a strong symmetric monoidal functor.

Example 3.4. The homotopy category Ho(C) of a presentably symmetric monoidal [NS17, Definition 2.1]
stable ∞-category is an ∞-tensor-triangulated category.

Example 3.5. If A is a commutative separable algebra in an N -tensor-triangulated category T (2 ≤N ≤∞),
then the Eilenberg–Moore category A -ModT inherits the structure of an N -tensor-triangulated category
such that the extension-of-scalars functor FA : T → A -ModT is an N -tensor-triangulated functor. The
distinguished n-triangles in A -ModT (n ≤N ) are precisely those which are created by the forgetful functor
UA : A -ModT→ T. This is established by [Bal11, Theorem 5.17] and [Bal14, Section 1].

Remark 3.6. The main theorem of [DS18] states that if T is an idempotent complete triangulated category,
then any triangulated adjunction F : T⇄ S : G is essentially monadic (that is, monadic up to idempotent
completion and killing the kernel of G) whenever the Eilenberg–Moore category inherits a triangulation
from T:

(3.7) (S/ kerG)♮ � GF -ModT .

This theorem also holds (with the same proof) in the 2-category of N -triangulated categories for any
2 ≤N ≤∞. In this case, the equivalence (3.7) is an equivalence of N -triangulated categories. To be clear,
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this is under the hypothesis that the Eilenberg–Moore category GF -ModT inherits an N -triangulation from
the N -triangulation of T (see [DS18, Remark 1.8]). This is a strong hypothesis on the adjunction but, as
established by Balmer (Example 3.5), does hold in the separable case. The following proposition clarifies the
situation with the tensor:

Proposition 3.8. Let F : T→ S be an (N -)tensor-triangulated functor with T idempotent complete. Suppose F

admits a right adjoint G whose kernel is closed under the tensor product, and that the F ⊣ G adjunction satisfies

the right projection formula [BDS15, Definition 2.7]. If the commutative algebra G(1) ∈ T is separable then we

have an induced equivalence

(S/ kerG)♮ � G(1) -ModT

of (N -)tensor-triangulated categories.

Proof. By [BDS15, Lemma 2.8], the projection formula implies that the monad of the adjunction is the
monad associated to the algebra G(1). Since G(1) is separable, the Eilenberg–Moore category inherits a
triangulation from T (Example 3.5); hence by [DS18] and Remark 3.6, we have equivalences

(3.9) (G(1) -FreeT)
♮ ∼−→ (S/ kerG)♮ ∼−→ G(1) -ModT .

We next prove that kerG is a tensor-ideal. To this end, let q : S→ S/ kerG denote the Verdier quotient
and G : S/ kerG → T the induced functor. The induced adjunction q ◦ F ⊣ G realizes the same monad
as the F ⊣ G adjunction. Since the comparison functor K : S/ kerG→ G(1) -ModT is fully faithful (hence
separable), the functor G = U ◦K is separable, being the composite of such (cf. [Che15, Proposition 3.5]).
Hence, the counit of the q◦F ⊣ G adjunction splits. Thus, for any s ∈ S, the morphism α in the exact triangle

FGs
ǫs
−−→ s

α
−→ x→ ΣFGs satisfies q(α) = 0. This means that β ◦α = 0 for some morphism β : x→ y with

cone(β) ∈ kerG. It follows that s ∈ thick〈FGs,kerG〉. We conclude that kerG is a tensor-ideal since the
thick subcategory {a ∈ S | a⊗kerG ⊆ kerG} contains kerG by the hypothesis that kerG is closed under the
tensor product, and it contains the image of F by the projection formula.

We have established that the thick subcategory kerG is a tensor-ideal. Thus S/ kerG and its idempotent
completion (S/ kerG)♮ inherit tensor structures from S. On the other hand, the Kleisli category G(1) -FreeT
inherits a tensor structure from T such that the canonical functor T→ G(1) -FreeT is a strict symmetric
monoidal functor. The canonical functor G(1) -FreeT→ S then inherits the structure of a strong symmetric
monoidal functor from the corresponding structure on F. The first functor in (3.9) is a strong symmetric
monoidal equivalence. It follows that the second functor is also a symmetric monoidal equivalence since the
tensor structure on G(1) -ModT � (G(1) -FreeT)

♮ is the idempotent completion of the tensor structure on
the Kleisli category (see [Pau15, Section 1.1] and [Bal14, Section 1]). �

Remark 3.10. As an application of the proposition, we can provide a proof of Theorem 1.1 stated in the
Introduction which characterizes smashing localizations of rigidly-compactly generated categories.

Proof of Theorem 1.1. The (⇒) direction is well-known: Any smashing localization of a rigidly-compactly
generated category is a geometric functor to a rigidly-compactly generated category (whose right adjoint is
fully faithful); see [HPS97, Section 3.3]. For the (⇐) direction, recall that smashing localizations are nothing
but extension-of-scalars with respect to idempotent algebras. Suppose f ∗ : D→ C is a geometric functor
whose right adjoint f∗ is fully faithful. The multiplication map f∗(1C)⊗ f∗(1C)→ f∗(1C) becomes, under
the projection formula, the counit f∗(ǫ) : f∗f

∗f∗(1C) ≃ f∗(1D ⊗ f
∗f∗(1C)) ≃ f∗(1C)⊗ f∗(1C)→ f∗(1C). This is

an isomorphism since f∗ is fully faithful. Thus f∗(1C) is an idempotent algebra. Idempotent algebras are
separable, so Proposition 3.8 gives the result. �

Remark 3.11. Note that we assume in Proposition 3.8 that the kernel of the right adjoint G is closed under
the tensor product and show, under the other hypotheses, that it is then necessarily a tensor-ideal. The next
example clarifies that this hypothesis on the kernel of G is not forced by the other assumptions.
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Example 3.12. Let T be a rigidly-compactly generated tensor-triangulated category. Then L≔ Loc(1) is
a tensor-triangulated subcategory of T. It is also rigidly-compactly generated, and the inclusion functor
F : L →֒ T is a coproduct-preserving tensor-triangulated functor. Hence it has a right adjoint G and the
projection formula holds. Moreover, since the left adjoint F is fully faithful, G(1) ≃ 1 is just the trivial ring,
which is certainly separable. Since the inclusion L →֒ T has a right adjoint, L is the kernel of a Bousfield
localization on T. The image of this Bousfield localization is L⊥ = kerG. Hence L = ⊥(L⊥) = ⊥(kerG). If
kerG were a tensor-ideal, then L would be forced to be a tensor-ideal. Indeed, the localizing subcategory
L ⊆ T is a tensor-ideal if and only if it is closed under tensoring with compact(=rigid) objects, and the
left orthogonal of a tensor-ideal is certainly closed under tensoring with rigid objects. Thus, if kerG is a
tensor-ideal, then Loc(1) is a tensor-ideal, and this is the case if and only if Loc(1) = T. Thus, if we take T

to be any non-monogenic rigidly-compactly generated tensor-triangulated category, we conclude that kerG
is not a tensor-ideal, and in fact not closed under the tensor product.

4. Finite étale morphisms

The idea that extension-of-scalars with respect to a commutative separable algebra provides tensor
triangular geometry with an analogue of an étale extension goes back to the work of Balmer [Bal15, Bal16a,
Bal16b]. Here we focus on finite étale extensions of rigidly-compactly generated categories.

Terminology 4.1. A coproduct-preserving (N -)tensor-triangulated functor between rigidly-compactly gener-
ated (N -)tensor-triangulated categories is called a geometric functor.

Definition 4.2. A geometric functor f ∗ : D → C between rigidly-compactly generated (N -)tensor-
triangulated categories is finite étale if there exists a compact commutative separable algebra A in D and an
(N -)tensor-triangulated equivalence(1) C � A -ModD such that the functor f ∗ becomes isomorphic to the
extension-of-scalars functor FA : D→ A -ModD.

Remark 4.3. It follows from [Bal16a, Theorem 4.2] that if D is rigidly-compactly generated, then A -ModD is
also rigidly-compactly generated (for A a commutative separable algebra in D). Thus, there is no loss of
generality in considering only geometric functors between rigidly-compactly generated categories.

Remark 4.4. Recall from [BDS16] that a geometric functor f ∗ : D→ C between rigidly-compactly generated
tensor-triangulated categories has a right adjoint f∗ : C→D which itself has a right adjoint f ! : D→ C. The
relative dualizing object of f ∗ is the object ωf ≔ f !(1D) ∈ C. Recall that f

∗ is said to satisfy Grothendieck–
Neeman duality if the right adjoint f∗ preserves compact objects. (A number of equivalent definitions are
provided by [BDS16, Theorem 3.3].) In this case, the commutative algebra f∗(1C) is compact(=rigid). Hence
it has a trace map f∗(1C)→ 1D (Definition 2.14), which corresponds to a map 1C→ ωf .

Remark 4.5. In general, morphisms 1C→ ωf can be identified with morphisms f∗(1C)→ 1D by adjunction,
and these can be identified as in Remark 2.21 with the associative forms on the algebra f∗(1C):

{
1C→ ωf

}
∼−→

{
f∗(1C)→ 1D

}
∼−→

{
associative forms f∗(1C)⊗ f∗(1C)→ 1D

}
.

Also recall (Definition 2.28) that an associative form f∗(1C)⊗ f∗(1C)→ 1D is nondegenerate if the adjoint
morphism f∗(1C) → Df∗(1C) is an isomorphism. (Note that these associative forms are automatically
symmetric since the algebra f∗(1C) is commutative.) On the other hand, recall from [BDS16, (2.18)] that we
have an isomorphism f∗(ωf ) ≃Df∗(1C).

(1) For tensor-triangulated categories in the usual sense of Verdier, the category of modules A -ModD is a priori only a
pre-tensor-triangulated category, but this does not cause any trouble for the definition. Since C is tensor-triangulated by assumption,
the equivalence C � A -ModD just forces A -ModD to be tensor-triangulated as well. This technicality doesn’t arise when working
in the 2-category of N -tensor-triangulated categories for any 2 ≤N ≤∞.
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Lemma 4.6. Let θ : 1C→ ωf be any morphism. The map f∗(1C)→Df∗(1C) which is adjoint to the associative

form on f∗(1C) corresponding to θ coincides with the map

(4.7) f∗(1C)
f∗(θ)
−−−−→ f∗(ωf ) ≃Df∗(1C).

Consequently, the associative form associated to θ is nondegenerate if and only if f∗(θ) is an isomorphism.

Proof. This is a straightforward verification. From the definition of the isomorphism f∗(ωf ) ≃ Df∗(1C) =

[f∗(1C),1D] in [BDS16, (2.18)], one sees that the morphism (4.7) is obtained by going along the top of the
following commutative diagram

f∗(ωf ) [f∗(1C), f∗(ωf )⊗ f∗(1C)] [f∗(1C), f∗(ωf )] [f∗(1C),1D]

f∗(1C) [f∗(1C), f∗(1C)⊗ f∗(1C)] [f∗(1C), f∗(1C)]

coev [1,lax] [1,ǫ]

f∗(θ)

coev [1,lax]

[1,f∗(θ)]

while the adjoint of the corresponding associative form is obtained by going along the bottom. �

Theorem 4.8. Let f ∗ : D→ C be a geometric functor between rigidly-compactly generated tensor-triangulated

categories. Then f ∗ is a finite étale morphism (Definition 4.2 ) if and only if the following three conditions hold:

(a) f ∗ satisfies Grothendieck–Neeman duality;

(b) the right adjoint f∗ is conservative;

(c) the map 1C→ ωf adjoint to the trace map is an isomorphism.

Proof. (⇒) If f ∗ is finite étale, then it is extension-of-scalars with respect to the compact separable com-
mutative algebra f∗(1). By the separable Neeman–Thomason Localization Theorem established by Balmer
[Bal16a, Theorem 4.2], the compact objects in C are precisely the thick subcategory generated by the image
f ∗(Dc) of the compact objects in D. Thus, by the projection formula, the fact that f∗(1) is compact ensures
that f∗(c) is compact for all c ∈ Cc. Thus, f ∗ satisfies Grothendieck–Neeman duality. The right adjoint f∗
is certainly conservative (in fact faithful). Moreover, by Corollary 2.38, the commutative rigid separable
algebra f∗(1) is strongly separable, so that its trace form is nondegenerate. By Lemma 4.6, this means that
the canonical map 1C→ ωf becomes an isomorphism after applying f∗. But this means the canonical map
is an isomorphism since f∗ is conservative.

(⇐) If f ∗ satisfies Grothendieck–Neeman duality, then the commutative algebra f∗(1C) is rigid, hence has
a trace map (so that part (c) makes sense). Moreover, by Lemma 4.6, if the map 1→ ωf adjoint to the
trace map is an isomorphism, then the trace form is nondegenerate; hence by Corollary 2.38, f∗(1C) is a
(strongly) separable algebra. By Proposition 3.8, we have a tensor-triangulated equivalence C→ f∗(1) -ModD
compatible with the two adjunctions. Here we use the assumption that f∗ is conservative and the fact that C
is idempotent complete (since it has small coproducts). Therefore, f ∗ is finite étale. �

Remark 4.9. Although in part (b) of Theorem 4.8 we just assume f∗ is conservative, it follows from the
other hypotheses that it is actually faithful. It also follows from (a) and (c) that f ∗ has the full Wirthmüller
isomorphism of [BDS16, Theorem 1.9].

Remark 4.10. The conservativity condition (b) of Theorem 4.8 can be removed if we assume instead an
additional hypothesis on the category C. The remainder of this section is devoted to explaining this
modification; see Corollary 4.20 below.

Definition 4.11. We say that a rigidly-compactly generated tensor-triangulated category T is monogenic if it
is generated by its unit: T = Loc〈1〉. We say that T is locally monogenic if the local category TP ≔ T/ Loc〈P〉

is monogenic for each P ∈ Spc(Tc).
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Example 4.12. The derived category D(A) of any commutative ring A is monogenic. For any quasi-
compact and quasi-separated scheme X , the derived category Dqc(X) is locally monogenic. Indeed, under
the identification Spc(Dqc(X)c) � X , prime ideals P ∈ Spc(Dqc(X)c) correspond to points x ∈ X , and
Dqc(X)P � D(OX,x) is the derived category of the local ring at x. (See [Bal20, Section 4] for further
discussion.)

Remark 4.13. A geometric functor f ∗ : D→ C is fully faithful if and only if the unit map 1D→ f∗(1C) is
an isomorphism. Indeed, a left adjoint is fully faithful if and only if the unit of the adjunction is a natural
isomorphism, and one readily checks that the unit ηd : d→ f∗f

∗(d) coincides with the composite

d ≃ d ⊗1D→ d ⊗ f∗(1C) ≃ f∗(f
∗(d)⊗1C) ≃ f∗f

∗(d).

Moreover, note that in this case an object c ∈ C is in the essential image of f ∗ if and only if the counit
ǫc : f

∗f∗(c)→ c is an isomorphism.

Lemma 4.14. If f ∗ : D→ C is a fully faithful geometric functor, then the map θ : 1C→ ωf adjoint to the trace

map is an isomorphism if and only if the counit ǫωf
: f ∗f∗(ωf )→ ωf is an isomorphism.

Proof. This follows from the commutative diagram

f ∗f∗(1C) f ∗f∗(ωf )

1C ωf .

ǫ≃

f ∗f∗(θ)

≃

ǫ

θ

The left-hand counit is an isomorphism since 1C ≃ f ∗(1D) is in the essential image of f ∗ and f∗(θ) is
an isomorphism (by Lemma 4.6 and Corollary 2.38) since f∗(1C) ≃ 1D is a rigid separable commutative
algebra. �

Proposition 4.15. Let f ∗ : D→ C be a geometric functor between rigidly-compactly generated tensor-triangulated

categories. Suppose that the following conditions hold:

(a) the unit map 1D→ f∗(1C) is an isomorphism;

(b) f ∗ satisfies Grothendieck–Neeman duality;

(c) the map 1C→ ωf adjoint to the trace map is an isomorphism.

If C is locally monogenic (Definition 4.11 ), then f ∗ is an equivalence.

Proof. For any t ∈ C, consider an exact triangle

(4.16) f ∗f∗(t)
ǫt
−→ t→ cone(ǫt)→ Σf ∗f∗(t).

Hypothesis (a) asserts that f ∗ is fully faithful (Remark 4.13). Hence f∗(cone(ǫt)) = 0. Hypotheses (b) and
(c) imply (by [BDS16, Theorem 3.3]) that there is a natural isomorphism f ∗ ≃ f ! where f ! denotes the right
adjoint to f∗. Hence the last map in (4.16) vanishes and we have a splitting

(4.17) t ≃ f ∗f∗(t)⊕ cone(ǫt)

for any t ∈ C. Now let P ∈ Spc(Cc) and let LP : C→ CP denote the localization to the local category at P
(see, e.g., [BHS21, Remark 1.22–Definition 1.25]). This localization has an associated idempotent triangle

eP→ 1C→ fP→ ΣeP

in C. The kernel of f∗ does not contain any nonzero ring object (since if f∗(R) = 0 then the unit 1C→ R

would vanish by an argument similar to the proof of Lemma 4.14). Since the right idempotent fP is a
ring object, we conclude that f ∗f∗(fP) , 0. Now the local category CP is local in the sense of [BHS21,
Terminology 1.11]. Hence by [Bal10, Theorem 4.5], the endomorphism ring EndCP

(1CP
) is local. The

identifications EndCP
(1CP

) ≃HomC(1C, fP) ≃ EndC(fP) are isomorphisms of rings, and we conclude that
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EndC(fP) has no nontrivial idempotents. Hence the fact that f ∗f∗(fP) , 0 implies that the splitting (4.17) is
trivial: fP ≃ f ∗f∗(fP).

We have thus established that fP (and all its shifts Σ∗fP) is contained in the essential image of f ∗. By
invoking f ∗ ≃ f ! again, we conclude that if f∗(t) = 0 then Hom∗

C
(t, fP) = 0 for all P ∈ Spc(Cc). In particular,

if x ∈ Cc is a compact(=rigid) object with f∗(x) = 0 then

(4.18) Hom∗
CP
(LP(x),1CP

) ≃Hom∗
C
(x, fP) = 0.

Since CP is monogenic (by hypothesis) and LP(x) is compact, (4.18) implies that LP(x) = 0, so that x ∈ P. This
is true for all P (i.e. supp(x) = ∅), so x = 0. Thus, the kernel of f∗ does not contain any nonzero compact
objects. Hence (4.16) shows that f ∗f∗(x) ≃ x for every compact x ∈ Cc. It follows that f∗ is conservative.
Indeed, if f∗(t) = 0, then HomC(x, t) ≃HomC(f

∗f∗(x), t) ≃HomD(f∗(x), f∗(t)) = 0 for every compact x ∈ Cc

and hence t = 0. Thus, since the kernel of f∗ is trivial, the exact triangle (4.16) shows that f ∗f∗(t) ≃ t for
every t ∈ C. Hence f ∗ is essentially surjective, and the proof is complete. �

Example 4.19. Hypothesis (c) in Proposition 4.15 does not follow from the other hypotheses. Indeed, consider
the projective line P

1 over the field k. The structure map f : P
1→ Spec(k) induces a fully faithful geometric

functor f ∗ : D(k)→Dqc(P
1) which satisfies Grothendieck–Neeman duality (see [BDS16, Example 6.14] or

[LN07]). Moreover, the target category is locally monogenic (see Example 4.12). However, 1 ; ωf . Indeed,
ωf ≃ ΣOP1(−2) but

Hom(ΣOP1(−2),OP1) = Hom(OP1 ,Σ−1OP1(2)) =H−1(P1,OP1(2)) = 0

while Hom(OP1 ,OP1) = k. On the other hand, since f∗(1) ≃ H∗(P1,OP1) = k = 1 is a rigid separable
commutative algebra, we know from Lemma 4.6 that f∗(1) ≃ f∗(ωf ). Indeed, f∗(ωf ) ≃H∗+1(P1,OP1(−2)) = k

(see, e.g., [Har77, Theorem 5.1]). Note that this example is the T = Dqc(P
1) case of Example 3.12.

Corollary 4.20. Let f ∗ : D→ C be a geometric functor between rigidly-compactly generated tensor-triangulated

categories. Suppose C is locally monogenic (Definition 4.11). Then f ∗ is a finite étale morphism if and only if the

following two conditions hold:

(a) f ∗ satisfies Grothendieck–Neeman duality;

(b) the map 1C→ ωf adjoint to the trace map is an isomorphism.

Proof. The (⇒) direction is provided by Theorem 4.8. We need to prove that a geometric functor f ∗ : D→ C

satisfying (a) and (b) is finite étale provided that C is locally monogenic. As explained in the proof of
Theorem 4.8, hypotheses (a) and (b) imply that f∗(1C) is a rigid separable commutative algebra. Thus
D′ ≔ (f∗(1C) -FreeD)

♮
� f∗(1C) -ModD is a rigidly-compactly generated tensor-triangulated category (Exam-

ple 3.5 and Remark 4.3), and we can factor f ∗ as a composite

D
g∗

−−→D′
h∗
−−→ C,

where g∗ is finite étale and h∗ is a geometric functor with the property that 1D′ → h∗(1C) is an isomorphism.
(One can verify that the functor h∗ preserves coproducts in a routine manner using the basic properties of
the Kleisli adjunction and idempotent completion. That these are symmetric monoidal functors is explained
in the proof of Proposition 3.8.) Now consider a compact object x ∈ Cc . Since g∗ is finite étale, the counit of
the g∗ ⊣ g∗ adjunction has a section (cf. [Bal11, Proposition 3.11] and [Raf90, Theorem 1.2]). Thus h∗(x) is a
direct summand of g∗g∗h∗(x) = g∗f∗(x) and hence is compact since f∗ and g∗ preserve compactness. Thus, h∗

satisfies Grothendieck–Neeman duality. Moreover,

ωh = h!(1D′ ) ≃ h!(ωg ) = h!(g !(1D)) ≃ f !(1D) = ωf ≃ 1C ≃ h∗(1D′ ),

so Lemma 4.14 implies that the map 1C→ ωh adjoint to the trace form on h∗(1C) is an isomorphism. Thus h∗

satisfies all the hypotheses of Proposition 4.15. This establishes that h∗ is an equivalence, and the proof is
complete. �
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Remark 4.21. It follows from Example 5.12 below that if f ∗ : D→ C is finite étale and D is locally monogenic,
then C is locally monogenic; see Corollary 5.13. Thus, when studying the finite étale extensions of a locally
monogenic category D, there is no loss of generality in using the criterion provided by Corollary 4.20.

Remark 4.22. We now provide an example which shows that Proposition 4.15 and Corollary 4.20 do not hold
(in general) without the locally monogenic hypothesis.

Example 4.23. Let T be a nonzero rigidly-compactly generated tensor-triangulated category. The product
category T ×T can be triangulated by defining the suspension and exact triangles coordinate-wise, and we
have fully faithful triangulated functors

T →֒ T ×T ←֓ T

given by a 7→ (a,0) and b 7→ (0, b), respectively. We can turn T ×T into a tensor-triangulated category by
defining the tensor product in a Z/2-graded fashion,

(a0, a1)⊗ (b0, b1) := ((a0 ⊗ b0)⊕ (a1 ⊗ b1), (a0 ⊗ b1)⊕ (a1 ⊗ b0)),

which can be interpreted as a Day convolution on the functor category T ×T = Fun(Z/2,T). If G is a set of
rigid-compact generators of T, then (G×0)∪ (0×G) is a set of rigid-compact generators for T×T. Moreover,
the unit (1,0) of T ×T is compact. In summary, T ×T is a rigidly-compactly generated tensor-triangulated
category, and the inclusion a 7→ (a,0) is a fully faithful coproduct-preserving tensor-triangulated functor
f ∗ : T →֒ T × T. The projection T × T→ T onto the 0th coordinate is both left and right adjoint to f ∗. It
follows that f ∗ is a geometric functor which is not an equivalence and yet satisfies the hypotheses (a), (b),
and (c) of Proposition 4.15. Also note that the right adjoint f∗ is not conservative (so f ∗ is not finite étale)
and yet f ∗ satisfies hypotheses (a) and (b) of Corollary 4.20.

Remark 4.24. The product category T ×T from Example 4.23 is never locally monogenic (for T nonzero).
This follows from our abstract theorems as noted above, but of course can be seen directly. Choose any
prime P ∈ Spc(Tc). Then P×P ∈ Spc((T ×T)c). If the local category (T ×T)P×P at P×P were monogenic,
then the composite

T T ×T (T ×T)P×P

TP (TP)× (TP)

�

would have a conservative right adjoint, which is a contradiction since TP , 0.

Remark 4.25. Example 4.23 also demonstrates that hypothesis (b) of Theorem 4.8 does not follow (in general)
from the other two hypotheses (a) and (c).

5. Examples

We will now discuss some examples of finite étale morphisms with an eye to future applications.

Example 5.1. Let G be a compact Lie group. It was proved in [BDS15, Theorem 1.1] that for any finite index
subgroup H ≤ G, the restriction functor SH(G)→ SH(H) between equivariant stable homotopy categories
is finite étale. We can use Theorem 4.8 to improve this to an “if and only if” statement:

Theorem 5.2. Let G be a compact Lie group and let H ≤ G be a closed subgroup. The restriction functor

resGH : SH(G)→ SH(H) is finite étale if and only if H has finite index in G.

Proof. As already mentioned, the “if” part is [BDS15, Theorem 1.1]. For the “only if” part, recall that the
relative dualizing object for resGH is the representation sphere SL(H ;G) for the tangent H-representation at
the coset eH ∈ G/H (see [May03] and [San19, Remark 2.16]). By Theorem 4.8, if resGH is finite étale, the
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canonical morphism 1SH(H)→ SL(H ;G) is an isomorphism. Restricting to the trivial subgroup, we obtain an

isomorphism S0→ Sdim(G/H) in the nonequivariant stable homotopy category SH. The dimension of (the
suspension spectrum of) a sphere is recovered by rational cohomology. Hence dim(G/H) = 0. The compact
0-dimensional manifold G/H is just a finite collection of points. That is, H has finite index in G. �

Example 5.3. Let pn : S
1→ S1 denote the degree n map z 7→ zn on the unit circle. The induced functor

p∗n : SH(S1)→ SH(S1) is not finite étale (for n ≥ 2). Indeed, this amounts to the question of whether the
quotient S1→ S1/Cn by the subgroup of nth roots of unity induces a finite étale morphism SH(S1/Cn)→

SH(S1). But [San19, Proposition 3.2] establishes that inflation inflG
G/N : SH(G/N )→ SH(G) never satisfies

Grothendieck–Neeman duality except when N = 1 is the trivial subgroup.

Remark 5.4. Another way of appreciating why Example 5.3 is not finite étale is to look at its behaviour on
the Balmer spectrum, which we know due to [BGH20, BS17]. The points of Spc(SH(S1)c) are of the form
P(H,C) for H a closed subgroup of S1 and C ∈ Spc(SHc). The closed subgroups of S1 are, in addition
to S1 itself, the finite cyclic groups Cm (m ≥ 1) realized as the roots of unity in S1. Consider the map on the
Balmer spectrum

ϕ ≔ Spc(p∗n) : Spc(SH(S1)c)→ Spc(SH(S1)c)

induced by the degree n map pn : S
1 → S1. One can show that ϕ(P(Cm,C)) = P(Clcm(m,n)/n,C). For

example, taking n = 2 and fixing the nonequivariant prime C, it maps

m 7→


m/2 if 2 |m,

m if 2 ∤m.

In particular, we find that the fibers have cardinality

|ϕ−1({P(CN ,C)})| =


1 if 2 |N,

2 if 2 ∤N.

For example, the fiber over P(C1,C) consists of two points:
{
P(C1,C),P(C2,C)

}
. Moreover, if the nonequivari-

ant prime C≔ C2,∞ is the 2-local prime at chromatic height∞, then P(C1,C2,∞) ⊆ P(C2,C2,∞) is a nontrivial
inclusion in the fiber over P(C1,C2,∞). This implies that the basic theorems of Balmer [Bal16b, Theorem 1.5]
on the behaviour of finite étale morphisms do not hold for the morphisms p∗n : SH(S1)→ SH(S1).

Lemma 5.5. Consider a diagram of coproduct-preserving (N -)tensor-triangulated functors between rigidly-

compactly generated (N -)tensor-triangulated categories

C D

C′ D′

g∗

h∗ k∗

f ∗

which commutes up to natural isomorphism of symmetric monoidal functors. Denote the right adjoints by f ∗ ⊣ f∗
and g∗ ⊣ g∗, and suppose that the Beck–Chevalley comparison map

h∗g∗→ f∗k
∗

is a natural isomorphism. If g∗ is finite étale and f∗ is conservative, then f ∗ is finite étale.

Proof. The Beck–Chevalley comparison map h∗g∗ → f∗k
∗ is a monoidal natural transformation between

lax symmetric monoidal functors; hence the natural isomorphism h∗g∗
∼−→ f∗k

∗ provides an isomorphism
of commutative algebras h∗g∗(1D) ≃ f∗(1D′ ). By assumption, g∗(1D) is a compact commutative separable
algebra in C; hence f∗(1D′ ) is a compact commutative separable algebra in C′ . The f ∗ ⊣ f∗ adjunction
satisfies the projection formula (see [BDS16, Proposition 2.15]), and f∗ is conservative by hypothesis. Hence,
Proposition 3.8 provides the result. �
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Example 5.6. If C is a presentably symmetric monoidal stable∞-category and A ∈ CAlg(C) is a commutative
algebra in C, then we can consider the presentably symmetric monoidal stable ∞-category A -ModC of
A-modules. If C is rigidly-compactly generated, then so is A -ModC (see [PSW22, Remark 3.11], for example).
At the level of homotopy categories, the extension-of-scalars Ho(C)→Ho(A -ModC) is then a geometric
functor of rigidly-compactly generated ∞-tensor-triangulated categories whose right adjoint is conservative.

Example 5.7. Let C be a presentably symmetric monoidal stable ∞-category, and let A,B ∈ CAlg(C) be
commutative algebras in C. We then have

C B -ModC

A -ModC (A⊗B) -ModC ,

where all four functors are extension-of-scalars. This is an example where the Beck–Chevalley property
holds (at the level of the underlying stable ∞-categories). In particular, the induced diagram of ∞-tensor-
triangulated categories

Ho(C) Ho(B -ModC)

Ho(A -ModC) Ho((A⊗B) -ModC)

satisfies the first hypothesis of Lemma 5.5. Moreover, the right adjoints are all conservative (Example 5.6).
Thus, if the top horizontal functor is finite étale (i.e. if B is a compact separable commutative algebra in
Ho(C)), then the bottom horizontal functor is also finite étale.

Example 5.8. Let G be a compact Lie group and let SpG denote the symmetric monoidal stable∞-category of
G-spectra (see [GM20, Appendix C]). Let trivG : Sp→ SpG denote the unique colimit-preserving symmetric
monoidal functor from the ∞-category of spectra. Since resGH ◦ trivG ≃ trivH for any H ≤ G, we have a
commutative diagram

Ho(SpG) Ho(SpH )

Ho(trivG(E) -ModSpG
) Ho(trivH (E) -ModSpH

)

for any E ∈ CAlg(Sp). If H ≤ G has finite index, then the top horizontal functor is finite étale (Example 5.1),
and hence the bottom horizontal functor is finite étale. Taking E = HZ, we obtain that the restriction functor

D(HZG)→D(HZH )

between categories of derived Mackey functors studied in [PSW22] is finite étale. This will be utilized in the
forthcoming [BHS21] which will classify the localizing tensor-ideals of these categories.

Example 5.9. A version of Example 5.7 holds purely at the level of triangulated categories if one assumes the
two algebras are separable. More precisely, let A and B be two commutative separable algebras in a rigidly-
compactly generated N -tensor-triangulated category T. Iterated extension-of-scalars behaves as one expects
(see [Pau17, Proposition 1.14]) and we have a diagram of rigidly-compactly generated N -tensor-triangulated
categories

T A -ModT

B -ModT (A⊗B) -ModT

FA

FB
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which commutes up to isomorphism. Lemma 5.5 implies that if the top functor is finite étale, then so is the
bottom functor.

Remark 5.10. Let F : D → C be a geometric functor of rigidly-compactly generated tensor-triangulated
categories and let ϕ : Spc(Cc) → Spc(Dc) be the induced map on spectra. For any Thomason subset
Y ⊆ Spc(Dc) with V ≔ Spc(Dc) \ Y , we have an induced functor F |V : D(V ) → C(ϕ−1(V )) on finite
localizations such that

(5.11)

D C

D(V ) C(ϕ−1(V ))

F

F |V

commutes up to isomorphism. Moreover, on spectra,

ϕ−1(V ) � Spc(C(ϕ−1(V )))
Spc(F |V )
−−−−−−−→ Spc(D(V )) � V

is just the restriction ϕ|V : ϕ−1(V )→ V .

Example 5.12 (Restriction in the target). If F : D→ C is finite étale, then the induced “restriction” functor

F |V : D(V )→ C(ϕ−1(V ))

of Remark 5.10 is also finite étale. Here V ⊆ Spc(Dc) is the complement of a Thomason subset. For
example, V could be a quasi-compact open subset. Indeed, this is just a special case of Example 5.9 with
B = fV c the idempotent algebra for the finite localization D→D(V ).

Corollary 5.13. Let F : D→ C be finite étale. If D is locally monogenic, then C is locally monogenic.

Proof. We use the notation of Remark 5.10. Let P ∈ Spc(Cc) and consider its image ϕ(P) ∈ Spc(Dc). Let
V ≔ gen(ϕ(P)) be the subset of Spc(Dc) consisting of all generalizations of the point ϕ(P). It is the
complement of a Thomason subset, and restriction to V is localization at the point ϕ(P); see [BHS21,
Remark 1.21 and Definition 1.25]. Note that gen(P) ⊆ ϕ−1(V ). Then consider the composition

Dϕ(P) =D(V )→ C(ϕ−1(V ))→ C(gen(P)) = CP,

where the first functor is finite étale (Example 5.12) and the second functor is a localization. Since the right
adjoints are conservative, any set of compact generators of Dϕ(P) is mapped to a set of compact generators
of CP. Thus, Dϕ(P) monogenic implies CP monogenic. �

Remark 5.14. Additional equivariant examples are featured in the work of Balmer and Dell’Ambrogio on
Mackey 2-motives [BD20, Del21]. On the other hand, the following basic example relates the tensor-triangular
notion of finite étale with the ordinary scheme-theoretic notion:

Theorem 5.15 (Balmer). If f : X→ Y is a finite étale morphism of quasi-compact and quasi-separated schemes,

then the derived functor Lf ∗ : Dqc(Y )→Dqc(X) is a finite étale morphism in the sense of Definition 4.2.

Proof. This is provided by [Bal16a, Theorem 3.5]; see also [Nee18, Example 0.3]. �

Remark 5.16. The proof of the above theorem works verbatim for other tensor-triangulated categories T(X)

fibered over a category of schemes, provided the pseudofunctor X 7→ T(X) satisfies flat base change. Many
motivic examples of such pseudofunctors are discussed in [CD19]. We just mention:

Example 5.17. Let L/K be a finite separable extension of fields whose characteristic (if positive) is invertible
in the ring R. The induced functor SH(K;R)→ SH(L;R) between motivic stable homotopy categories (with
coefficients in R) is a finite étale morphism in the sense of Definition 4.2. The same is true of the induced
functor DM(K;R)→DM(L;R) between derived categories of motives. See [CD19, Ayo07a, Ayo07b, Tot18]
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for more information about these categories. The assumption on the characteristic ensures that these
categories are rigidly-compactly generated. To see this, first recall that SH(K;R) is compactly generated by
the twists of smooth K-schemes of finite type (see [Rio05, Corollary 1.3] and [Ayo07b, Theorem 4.5.67]) and,
similarly, DM(K;R) is compactly generated by the twists of smooth separated K-schemes of finite type (see
[CD19, Section 11.1] and [Tot16, Lemma 5.4]). It is nontrivial that these generators are dualizable. For the
motivic stable homotopy category, see [EK20, Theorem 3.2.1], which builds on [LYZ+19, Appendix B]; for
the derived category of motives, see [Tot16, Lemma 5.5], which extends [Kel12, Theorem 5.5.14] and [Voe00,
Theorem. 4.3.7]. Since the unit object is compact and there is a generating set of dualizable objects, it follows
that the compact and dualizable objects coincide. This follows from [HPS97, Theorem A.2.5.(a)] and [Nee92,
Lemma 2.2] (which is also proved in [Ayo07a, Proposition 2.1.24]).

Remark 5.18. The author thinks it is interesting to have an “intrinsic” characterization of finite étale
morphisms in tensor triangular geometry as expressed in Theorem 4.8. Nevertheless, actually classifying the
finite étale extensions of a given category T amounts to classifying the rigid (strongly) separable commutative
algebras in T. For the equivariant stable homotopy category T = SH(G), this classification will be studied in
forthcoming work with Balmer. The analogous problem for the stable module category T = StMod(kG) has
been studied in [BC18] and is surprisingly subtle. It is currently only understood when G is cyclic.

Remark 5.19. For the derived category T = Dqc(X) of a noetherian scheme, Neeman [Nee18] has obtained a
very satisfactory classification of the (not necessarily compact) commutative separable algebras. His work
shows that the tensor-triangular analogue of étale morphism (a.k.a. extension by a commutative separable
algebra) lies somewhere between the classical étale morphisms of schemes and the pro-étale morphisms of
Bhatt–Scholze [BS15]. His results also show that there are no exotic étale extensions of derived categories of
schemes: An étale extension of a derived category of a scheme is another derived category of a scheme. We
will state this result precisely in the case of finite étale extensions:

Theorem 5.20 (Neeman). Let X be a noetherian scheme. If F : Dqc(X) → S is a finite étale morphism

(Definition 4.2), then there exist a finite étale morphism of schemes f : U → X and a tensor-triangulated

equivalence S �Dqc(U ). With this identification, F is naturally isomorphic to Lf ∗ : Dqc(X)→Dqc(U ).

Proof. Let G denote the right adjoint of F . By definition, F is extension-of-scalars with respect to the compact
commutative separable algebra G(1) ∈Dqc(X). Neeman [Nee18, Theorem 7.10] establishes that there is a
separated finite-type étale map of schemes g : V → X and a generalization-closed subset U ⊂ V such that

G(1) � Rf∗(OU ), where f : U → X denotes the composite U →֒ V
g
−→ X . It then follows from Proposition 3.8

that S �Dqc(U ) with F � Lf ∗. Now, since G(1) is compact, the argument in [Nee18, Remark 0.6] shows that

U ⊂ V is actually an open subset. (Take L≔ 0, K̃ ≔ f∗f
∗(K) and the identity map K̃ → f∗f

∗K in loc. cit.)
Thus, f : U → X is a separated finite-type étale map. It is also proper since Lf ∗ � F satisfies GN-duality (by
[LN07]; see also [San19, Section 7] and [Lip09, Section 4.3]). This completes the proof since an étale map is
proper if and only if it is finite. �

Remark 5.21. For the purpose of classifying the finite étale extensions of a given tensor-triangulated category,
the results of Section 2 are worth keeping in mind. They clarify that the compact/rigid commutative
separable algebras that provide finite étale extensions are necessarily self-dual. This puts limits on the role
finite étale morphisms can play in equivariant contexts over non-finite groups. Stated differently, Theorem 4.8
shows that the relative dualizing object ωf for a finite étale morphism f ∗ must be trivial. It is natural to
wonder if there is a reasonable generalization of “finite étale” in tensor triangular geometry which shares
some of its good properties (e.g., the results of [Bal16a, Bal16b]) and yet covers examples having non-trivial
dualizing objects (e.g., the examples which arise in [Rog08]).
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