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Abstract
Isotope shifts (ISs) of atomic energy levels are sensitive probes of nuclear structure and new physics
beyond the standard model. We present an analysis of the ISs of the cadmium atom (Cd I) and
singly charged cadmium ion (Cd II). ISs of the 229 nm, 326 nm, 361 nm and 480 nm lines of Cd I
are measured with a variety of techniques; buffer–gas-cooled beam spectroscopy, capturing atoms
in a magneto-optic-trap, and optical pumping. IS constants for the D1 and D2 lines of Cd II are
calculated with high accuracy by employing analytical response relativistic coupled-cluster theory
in the singles, doubles and triples approximations. Combining the calculations for Cd II with
experiments, we infer IS constants for all low-lying transitions in Cd I. We benchmark existing
calculations via different many-body methods against these constants. Our calculations for Cd II
enable nuclear charge radii of Cd isotopes to be extracted with unprecedented accuracy. The
combination of our precise calculations and measurements shows that King plots for Cd I can
improve the state-of-the-art sensitivity to a new heavy boson by up to two orders of magnitude.

1. Introduction

The most accurately determined quantities are transition frequencies of optical clocks [1], which are
measured to better than 10−18. This superb spectroscopic precision enables stringent searches for new
physics [2–5]. One approach compares the isotope shifts (ISs) of two or more transitions as in a King plot
(KP) [6], in which a deviation from a linear behaviour [7–10] can be a signature for beyond standard model
(BSM) physics, such as a new boson mediating a force between electrons and neutrons. KP searches are
applicable to systems possessing narrow optical transitions for which ISs can be measured with high
precision, even with extraordinary sub-Hz accuracy using common-mode noise rejection [11, 12]. Searches
for deviations from linearity with KPs require a minimum of four stable (or long-lived) even–even isotopes,
which severely restricts the number of candidate elements.

BSM searches through KP non-linearity were performed for two elements in different regimes. On the
low atomic number (Z) side are measurements in calcium (Z= 20); the lightest element with more than
three stable even–even isotopes. A KP comprised of two transitions with different relativistic effects for Ca II,
with a characteristic precision of 20Hz, shows no non-linearity, translating directly to limits on several BSM
scenarios [13]. As experimental precision improves, the potential for new physics searches using KPs in light
elements such as Ca is expected to be limited by the difficulty of calculating the standard model (SM)
contribution to the KP non-linearity resulting from high-order recoil effects in a light many-electron system
[14, 15].
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Figure 1. (a): low-lying energy levels of Cd I. The isotope shifts of the indicated transitions are discussed in this work. Broken
lines represent transitions whose ISs are deduced from combinations of the ISs of measured ISs. (b): magnitudes of the difference
of field shift constants. The top boxes corresponds to the 69% confidence interval. The transitions are ordered for clarity, with the
narrow transitions in bold, and the 214 nm transition is for Cd II.

In the high Z regime, the effects of a new massive boson are more pronounced [7, 15], while recoil effects
are heavily suppressed. However, other sources of SM non-linearity become dominant making the
interpretation of an observed non-linearity more involved. For Yb (Z= 70), ISs in several ionic and atomic
lines were measured with high-precision [16–19]. A recent analysis encompassing all of the experimental
data indicates a strong non-linearity attributed to nuclear deformation [19], which currently cannot be
calculated ab initio with sufficient precision. This behaviour is particularly pronounced and follows from Yb
isotopes being amongst the most deformed in the stable region of the nuclear chart [20]. A non-linearity
from an additional source was identified, whose origin is currently being studied [17, 19]. Considering the
cases above, once a non-linearity is observed, it is not straightforward to interpret it as a signature of new
physics. Pronounced non-linearities in several systems will add clarity. Moreover, there is a trade-off between
lower values of Z, where both the non-linearities arising from the SM and those that come from new physics
effects are less pronounced; and higher values of Z, where several sources of non-linearity may be difficult to
disentangle due theoretical intractability.

Cadmium (Z= 48) sits in between these two limits. Having a relatively simple atomic structure and
narrow transitions [21, 22], it is a prime candidate for new physics searches via KP non-linearities. Being
close to the Z= 50 proton shell closure makes Cd nuclei much less deformed than e.g. Yb, suppressing a
major source of SM non-linearity. Cd possesses six stable even–even isotopes, which could allow up to three
different sources of non-linearity to be identified. In this work, we present measurements of ISs in the neutral
cadmium atom (Cd I). We combine these measurements with literature values and highly accurate
calculations of IS constants for transitions in the singly charged cadmium ion (Cd II). This enables us to map
out all of the IS constants of the low-lying transitions in Cd I shown in figure 1, and identify the promising
combinations for BSM searches. We compare the obtained IS constants with recent calculations and discuss
the current state of the art in calculating these constants for two-valence systems. Such calculations are
needed to assess the sensitivity of KPs to specific new physics models. We also combine calculated IS
constants with measurements in a long chain of short-lived isotopes to yield highly accurate charge radii
differences, which are needed to determine the nuclear contributions to KP non-linearities [17, 23]. Finally,
we discuss the prospects for searches for BSM physics via KPs in Cd in light of our analysis.

2. Theory

The IS δνA,A
′

i between isotopes with mass numbers A,A ′, at the precision of the measurements analysed
here, can be written as [24]

δνA,A
′

i = Fiδλ
A,A ′

+Kiµ
A,A ′

. (1)
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Here µA,A ′
= 1/MA − 1/MA ′ the inverse nuclear mass difference, i denotes a particular atomic transition,

and δλA,A ′
=ΣkS2k(δr2kc )

A,A ′
is the nuclear parameter [25], which is expanded in a series of even charge

moments

rkc =

´
rkρ(r)r2dr´
ρ(r)r2dr

. (2)

For brevity, we denote the root mean square (RMS) charge radius
√
r2c here as rc. The constants Fi and K i are

the field shift and mass shift, which depend only on the transition in question at this level. To calculate these
constants, the nuclear charge distribution can be approximated using a Fermi distribution

ρ(r) =
ρ0

1+ e(r−b)/a
, (3)

where ρ0 is a normalization constant, and b and a are determined from electron scattering experiments
[26, 27].

The operator for the field shift is given by

F=−
∑
e

δVnuc(rc, re)

δλ
≈−

∑
e

δVnuc(rc, re)

δ⟨r2c ⟩
(1+ fλ) (4)

where the electrostatic potential Vnuc is a function of rc, the radial distance of an electron is re, and the sum is
over all electrons of the system. The contribution from higher nuclear moments f λ is estimated as

fλ ≈−S4
r4c
r2c

− S6
r6c
r2c

= 2.8(3)%, (5)

where the Seltzer coefficients S4 and S6 are estimated for the 5S levels of Cd II [25], and the ratio of moments
is taken from two parameterizations of electron scattering experiments [26, 27]. The uncertainty of f λ is
estimated from the model-dependence of the charge distribution of equation (3), and its variation between
isotopes.

The mass shift constant can further be split into a normal mass shift (NMS) and specific mass shift (SMS).
The operators to determine the NMS and SMS constants are defined in a relativistic framework as [28, 29]

KNMS =
1

2

∑
i

(
p⃗ 2
i − αZ

ri
α⃗D
i · p⃗i −

αZ

ri
(α⃗D

i · C⃗1
i )C⃗

1
i · p⃗i

)
(6)

and

KSMS =
1

2

∑
i̸=j

(
p⃗i · p⃗j −

αZ

ri
α⃗D
i · p⃗j −

αZ

ri
(α⃗D

i · C⃗1
i )(⃗pj · C⃗1

j )

)
, (7)

where the pi’s are the components of the momentum operator, αD is the Dirac matrix, and C1 is the Racah
operator. We note that there are slight modifications in the definitions of the F, KNMS and KSMS operators if
we include quantum electrodynamics (QED) interactions. These contributions are expected to be smaller
than our reported uncertainties.

A linear relation results after applying equation (1) to the measured ISs of two transitions (i, j):

δν̄A,A
′

i = Fijδν̄
A,A ′

j +Kij (8)

with the modified ISs δν̄A,A
′

i = δνA,A
′

i /µA,A ′
, the slope Fij = Fi/Fj, and the offset Kij = Ki − FijKj. In this

work we find that the linear relation of equation (8) holds at the∼MHz-level for all Cd transition pairs. It
may therefore be used to project IS constants from one transition to another. We calculate IS constants for
transitions in Cd II using the analytical response (AR) relativistic coupled-cluster (RCC) method, and
project them using equation (8) to atomic transitions.
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3. The AR-RCCmethod

We begin with the Dirac–Coulomb (DC) Hamiltonian:

HDC =
∑
i

[
cα⃗D

i · p⃗i +(βi − 1)c2 +Vnuc(ri)
]
+
∑
i,j>i

1

rij
, (9)

where c is the speed of light, α⃗D and β are the Dirac matrices, p⃗ is the single particle momentum operator.∑
i,j

1
rij
represents the Coulomb potential between the electrons located at the ith and jth positions.

Corrections from the Breit and QED interactions are estimated by adding the corresponding potential terms
as in [30], yielding the atomic Hamiltonian H0.

We consider the nuclear charge distribution of equation (3) to define the potential Vnuc [31]

Vnuc(r) =− Z

N r

{
1
b (

3
2 +

a2π2

2b2 − r2

2b2 +
3a2

b2 P
+
2

6a3

b2r (S3 − P+3 )) for ri ⩽ b

1
ri
(1+ a62π2

b2 − 3a2r
b3 P−2 + 6a3

b3 (S3 − P−3 )) for ri > b,
(10)

with

N = 1+
a2π2

b2
+

6a3

b3
S3, Sk =

∞∑
l=1

(−1)l−1

lk
e−lb/a, P±k =

∞∑
l=1

(−1)l−1

lk
e±l(r−b)/a. (11)

We determine these constants for the ground state, [4d10]5s, and the first two excited states, [4d10]5p1/2 and
[4d10]5p3/2 of Cd II to study the ISs of its D1 and D2 lines.

In the RCC theory ansatz, the wave function of the above atomic states are constructed as [32–34]

|Ψv⟩= eT{1+ Sv}|Φv⟩, (12)

where |Φv⟩ is a mean-field wave function from a Dirac-Hartree–Fock (DHF) treatment, and T and Sv are the
excitation operators that account for electron correlations from the core orbitals and valence orbital,
respectively. The subscript v denotes the valence orbital associated with the respective state. It is introduced
to uniquely identify the states having the common closed-shell configuration [4d10]. Considering the IS
operators, F, KNMS and KSMS, denoted as O in the total Hamiltonian as H=H0 + ηO, we express the above
wave function in the AR-RCC formulation as

|Ψv⟩= |Ψ(0)
v ⟩+ η|Ψ(1)

v ⟩+O(η2), (13)

with an energy

Ev = E(0)v + ηE(1)v +O(η2). (14)

Here η is nominally equal to one and is introduced for the perturbation expansion in orders of O, denoted by

the superscripts. E(0)v corresponds to the contribution from H0 and E
(1)
v includes first-order contributions

from O and electron correlations. The above can be implemented in the RCC theory by expanding the RCC
operators as

T= T(0) + ηT(1) +O(η2) (15)

and

Sv = S(0)v + ηS(1)v +O(η2). (16)

TheO(η2) contributions are usually small and neglected in IS calculations. However, these non-linear
contributions can be significant when probing BSM physics. The zeroth-order RCC operator amplitudes
follow from

⟨Φ∗
0 |H̄0|Φ0⟩= 0 (17)

and

⟨Φ∗
v |{(H̄0 − E(0)v )S(0)v }+ H̄0|Φv⟩= 0, (18)

4
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where ⟨Φ∗
0,v| denotes for all possible excited Slater determinants and H̄0 =

(
H0eT

(0)
)
conn

, where the subscript

conn denotes for only connected terms in the expansion. With these amplitudes of the RCC operators, we
calculate the zeroth-order energies as

E(0)0 = ⟨Φ0|H̄0|Φ0⟩ (19)

and

E(0)v = ⟨Φv|H̄0{1+ S(0)v }|Φv⟩, (20)

where E(0)0 is the energy of the common closed-core of the considered atomic states, [4d10] for Cd II. In the

actual calculations, we consider a normal-ordered Hamiltonian defined with respect to [4d10]. Therefore, E(0)v

corresponds to the electron affinity, E(0)v − E(0)0 , of the valence orbital relative to the [4d10] configuration. We
note that equations (18) and (20) are coupled.

In the AR-RCC theory, we calculate the desired FS, NMS and SMS constants as the first-order energy

corrections E(1)v ≡ ⟨Ψ(0)
v |O|Ψ(0)

v ⟩ using the following expression [30, 35]

E(1)v = ⟨Φv|H0S
(1)

v +(H0T
(1) +O){1+ S

(0)

v }|Φv⟩, (21)

where O= (OeT
(0)
)conn. Here, the normal-ordered form of operators again yield calculated values relative to

the contributions from the [4d10] configuration. The amplitudes of the first-order perturbed RCC operators
are given by

⟨Φ∗
0 |H0T

(1) +O|Φ0⟩= 0. (22)

and

⟨Φ∗
v |(H0 − E(0)v )S(1)v +

(
H0T

(1) +O
)
{1+ S(0)v }|Φv⟩= 0. (23)

We use Gaussian type orbitals (GTOs) [36] to construct the single particle DHF wave functions. The large
and small radial components of the DHF orbitals, P(r) and Q(r), are expressed using these GTOs as

P(r) =
Nk∑
k=1

cLk ζLr
le−η0γ

kr2 (24)

and

Q(r) =
Nk∑
k=1

cSk ζLζS

(
d

dr
+

κ

r

)
rle−η0γ

kr2 , (25)

where l is the orbital quantum number, κ is the relativistic angular momentum quantum number, cL(S)
k are

the expansion coefficients, ζL(S) are the normalization factors of GTOs, η0 and γ are optimized GTO
parameters for a given orbital, and Nk represents the number of GTOs. To construct the GTOs, we use
η0 = 0.00715,0.0057,0.0072,0.0052 and 0.0072 for s, p, d, f and g orbitals, respectively, with corresponding
γ values 1.92,2.04,1.97,2.07 and 2.54. Since our orbitals are not bounded, we integrate to an upper radial
limit of r= 500 a.u. on a grid using a 10-point Newton-Cotes Gaussian quadrature method. Our numerical
calculations use exponential grids with a step-size of 0.016 a.u. and 1200 grid points, and the coefficients are
determined by the Roothan equation in the relativistic framework. To reduce the required computational
resources, we have limited the virtual space by considering all possible single and double excitations in the
AR-RCC theory (AR-RCCSD method) for the 1−20s, 2−20p, 3−20d, 4−17f, and 5−14g orbitals. The
AR-RCCSDT method adds triple excitations to the above single and double excitations only for the 16s, 16p,
14d, 10f, and 5g orbitals.

5
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Table 1. Cd II Energies and IS constants for the ground and first two excited states, and their transitions for the D1 (226.5 nm) and D2

(214.4 nm) lines.

(a) Electron affinities and transition energies (cm−1)

Method E5S E5P1/2 E5P3/2 ED1 ED2

DHF 124 568 84 903 82 871 39 666 41 698
RCCSD 13 6013 91 858 89 357 44 155 46 657
RCCSDT 136 717 92 401 98 974 44 316 46 843
+∆Breit −83 −83 −50 0. −33
+∆QED −100 −4 −6 −97 −94
SUM 136 533(200) 92 314(150) 89 818(150) 44 218(97) 46 715(104)
Exp [37, 38] 136 374.7(1) 92 238.7(1) 89 756.2(1) 44 136.1(1) 46 618.6(1)

(b) Normal mass shift (GHz u)

Method KNMS,5S KNMS,5P1/2 KNMS,5P3/2 KNMS,D1 KNMS,D2

DHF 5952 3374 3163 2578 2789
AR-RCCSD 2113 1381 1339 732 774
AR-RCCSDT 2204(20) 1470(15) 1426(15) 734(7) 778(8)
+∆Breit −4 −4 −2 0. −2
+∆QED −7(2) 0. 0. −7(2) −7(2)
SUM 2194(20) 1466(15) 1424(15) 727(8) 769(8)
Scaling 2243 1517 1476 726 767

(c) Specific mass shift (GHz u)

Method KSMS,5S KSMS,5P1/2 KSMS,5P3/2 KSMS,D1 KSMS,D2

DHF −2775 −1753 −1488 −1022 −1287
AR-RCCSD 1288 123 256 1165 1032
AR-RCCSDT 1343(15) 129(5) 260(7) 1214(16) 1083(17)
+∆Breit 12 5 4 7 8
+∆QED 4(1) −2(0.) −2(0.) 6(1) 5(1)
SUM 1359(15) 132(5) 263(7) 1226(16) 1096(17)

(d) Total mass shift (GHz u)

Method K5S K5P1/2 K5P3/2 KD1 KD2

KSMS+KNMS 3552(25) 1598(16) 1686(17) 1954(18) 1866(19)
CI-MBPT [39] 1770(300) 1667(300)
CKP [39] 2199(507)

(e) Field shift (MHz fm−2)

Method F5S F5P1/2 F5P3/2 FD1 FD2

DHF −4778 −59 −0. −4719 −4778
AR-RCCSD −6140 −177 −100 −5963 −6040
AR-RCCSDT −6227(20) −232(5) −152(5) −5995(21) −6075(21)
+∆Breit 22 1 1 21 21
+∆QED 147(37) 4(1) 3(1) 143(36) 144(36)
−fλ −172(17) 0 0 −172(17) −172(17)
SUM −6230(45) −277(5) −149(5) −6003(45) −6082(45)
CI-MBPT [39] −6067(300) −6144(300)
CKP [39] −6621(530)

4. Calculated IS constants for Cd II

An important test of ab initiomethods to obtain accurate atomic wave functions is to compare the calculated
energies with the measured ones. In table 1(a) we present the calculated electron affinities of the ground and
first two excited states of Cd II. From these values, we determined the excitation energies of the D1 and D2

transitions given in table 1(a). The RCCSDT results show that triple excitations contribute more to the
electron affinities than to the excitations energies, and that the Breit and QED corrections are significant. The
uncertainties of the calculated energies are estimated from the convergence. We reproduce the experimental

6
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transition energies to 0.2%, an order of magnitude of improvement over CI-MBPT calculations for these
transitions [39]. The high accuracy with which experimental energies are reproduced using the RCC method
validates the accuracy of our wave functions for the following IS constants calculation. However, accurate
wavefunctions are a necessary but insufficient condition for obtaining accurate IS constants. Various
many-body methods for calculating the operators produce significantly different results for the IS constants;
the AR method performs well against stringent benchmarks [30, 40].

We present IS constants using the DHF, AR-RCCSD and AR-RCCSDT methods in table 1. Uncertainties
from HDC and Breit interactions to the AR-RCCSDT results are estimated by determining contributions
from the h, i and j higher angular momentum orbitals, as well as quadruple excitations from the s, p and d
lower angular momentum orbitals through a perturbative analyses by using amplitudes of the valence

correlation operators S(0)v and S(1)v . These comes out to be 10%–20% of the different properties compared to
the contributions from the triples effects alone (differences between the RCCSD and RCCSDT results). Since
the QED effects are estimated using a model potential and neglecting their effects in the definitions of the IS
operators, higher uncertainties (25% compared with their total values) are assigned.

Focusing first on the NMS constants, they can be obtained in the nonrelativistic limit by invoking the
Virial theorem [41]. This results in the scaling law KNMS ≈ E ·me, where E is the experimental energy andme

the electron mass in atomic units. However, for a medium mass system such as Cd II, it is not a prioi clear
how applicable this method is. Table 1(b) gives our results for KNMS calculated using the corresponding
relativistic operator in equation (6). We see that for the D1 and D2 transitions, the scaling law agrees with our
calculation within the 1% numerical accuracy. This behaviour is attributed to strong cancellations of
relativistic contributions to the NMS in transitions with the same principal quantum number [42]. For the
ground state the scaling law is accurate to 2%–3%. Triple excitations contribute significantly to the NMS
constants for the electron affinities, even though these quantities are evaluated with a one-body operator. We
thus expect that for similar transitions in lighter systems, for which the contribution of electron correlations
to the NMS is more pronounced, using the scaling-law could be preferable to a fully relativistic calculation.

The SMS is associated with the two-body operator of equation (7) and thus strongly affected by
high-order electron correlations, which are challenging to estimate [43]. Even in modern calculations, an
uncertainty of 10%–20% in KSMS is usually given (see e.g. [35, 39, 44–46]). Our results in table 1(c) are
quoted with an a accuracy of 1%–2%, attributed to higher-order electron correlations, which we estimate
perturbatively. This is in contrast to KNMS and the energies, whose uncertainties follow from numerical
convergence. We see that the sign of KSMS changes between the DHF and AR-RCCSD calculations. This
points to the importance of strong electron correlations in KSMS, with a 10% difference coming from triple
excitations. Owing to the two-body nature of the SMS operator, triple excitations in the AR-RCC method
take several months to calculate at a typical high-performance computing facility. The total mass shift
constant K= KNMS +KSMS in table 1(d) agrees well with, and is an order of magnitude more precise than, a
recent CI-MBPT calculation for both ionic transitions [39], as well as a calibrated King plot (CKP)
estimation combining muonic x-ray and electron scattering measurements with precise ISs for the D2

transition [39]. The contributions of the Breit and QED interaction to K are found to be negligible at the
current level of precision.

The calculation of the field shift operator is considered robust for a number of systems. Various methods
typically agree at the few percent level [16, 30, 40, 47–52]. In Cd II, F convergences quickly, with triple
excitations contributing only 0.6%. This yields an 0.35% uncertainty of F at the AR-RCCSDT level, which
could be reduced further with more computational resources. However, we find that QED effects, which are
often not taken into account in such calculations, are not negligible. In fact, our final uncertainty for F is
dominated by the systematic uncertainty associated with QED correction only being present at the
Hamiltonian level. This is expected to be even more pronounced in heavier systems such as Yb, where
calculations of F are given with sub-percent numerical precision [53]. Our results in table 1(e) agree with the
CI-MBPT and a CKP results of [39]. To our knowledge, this is the first calculation of F with sub-percent
accuracy (computational and systematic) for a system with more than 19 electrons.

5. IS measurements in the Cd atom

In this section we describe our IS measurements of four transitions of Cd I for all stable bosonic isotopes.
Measurements are done with two experimental systems employing different frequency calibration
procedures. A more detailed description of the experimental systems, as well as results for the fermionic
isotopes and absolute wavenumbers, will be given in upcoming publications [54]. Our results are given in
table 2, along with available previous measurements, which disagree significantly in several cases. The two
independent experimental results at 326 nm agree to within 0.5–1.6 combined standard errors, whereas the
disagreements with these previous measurements are as large as four combined errors.

7
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Table 2. Isotope shifts of Cd I in MHz, relative to 114Cd. Derived values are in italics; for the 332 nm clock line, from this work and
previous measurements of 468 nm ISs [55], and similarly for the narrow 314 nm transition using 509 nm ISs [56].

A 229nm 326nm 480nm 361nm 332nm 314nm

106 1818.1(3.5)a 1911.2(3.3)a −798.5(1.0)c −607.6(3.0)b 1911.4(4.7) 1915.5(3.9)
1748(11) [57] 1913.0(1.0)b

1921(26) [58, 59]
108 1336.5(3.4)a 1399.4(3.3)a −586.7(1.0)c −447.4(3.0)b 1404.5(3.7) 1403.9(3.0)

1258(9) [57] 1402.4(1.0)b

1410(40) [59]
110 865.0(3.3)a 909.3(3.3)a −383.4(1.0)c −293.9(1.0)b 914.1(2.1) 913.7(2.1)

826(6) [57] 914.7(1.0)b

906(35) [60] 909(13) [58, 61, 62]
112 407.5(3.3)a 426.3(3.3)a −183.1(1.0)c −142.2(1.0)b 428.9(1.7) 429.7(1.6)

392(5) [57] 429.9(1.0)b

396(30) [60] 403(11) [58, 61, 62]
116 −316.1(3.3)a −326.9(3.3)a 152.7(1.0)c 122.0(1.0)b −320.6(1.7) −320.2(1.7)

−299(4) [57] −321.5(1.0)b

−279(12) [58, 62]
a Beam measurement.
b Blue MOT edge.
c MOT optical pumping rate.

5.1. Atomic beammeasurements of 229 and 326 nm ISs
We carried out laser induced fluorescence spectroscopy with a buffer–gas-cooled beam. A pulsed beam is
produced by laser ablation of a Cd target, which is mounted in a buffer–gas cell. Cryogenic helium gas (3 K)
flows continuously through the cell, cools the hot atoms and extracts them into an atomic beam with a mean
forward velocity of roughly 120m s−1. The laser light intersects the atomic beam perpendicularly, and
fluorescence is collected on a UV-sensitive photomultiplier tube. The transverse velocity of the atoms is
reduced to below about 0.5m s−1 by a slit directly before they enter the fluorescence detector. The resulting
Doppler broadenings are 1.5MHz (326 nm) and 2.1MHz (229 nm).

Due to the large natural linewidth of the 229 nm line, Γ/(2π) = 100(3)MHz [54], a high-precision IS
measurement is hampered by the overlap of the different isotopes in the spectrum. To improve the accuracy,
we use enriched targets to precisely determine the lineshape. A Lorentzian function fits the data well,
suggesting that Doppler broadening is indeed negligible. We then measure the IS of the (110,112) pair, for
which the overlap in the spectrum is most severe. This is done by taking multiple spectra while alternating
two separate enriched ablation targets for 110Cd and 112Cd. This IS is then fixed in a fit to the spectrum
recorded using an ablation target with natural abundance. To resolve the frequencies of the fermionic
isotopes in the spectrum, we vary their amplitude relative to the bosonic isotopes by changing the
polarisation angle of the excitation laser with respect to the detector axis. The weighted means for each
isotope are averaged and the final result is given in table 2 and plotted in figure 3(a). Our results are more
accurate and differ considerably from those of a recent measurement [57]. This discrepancy manifests itself
as a horizontal offset in the fits to the experimental data portrayed in figure 3(a).

The 326 nm intercombination line of Cd has a 69 kHz natural linewidth that enables both cooling to low
temperatures and precise spectroscopy. To measure the ISs of this line in an atomic beam, we use a
frequency-doubled dye laser (Sirah Matisse 2DX with a Spectra Physics Wavetrain doubling module), whose
linewidth is stabilised to better than 100 kHz short term and 1MHz shot-to-shot stability. A typical spectrum
is shown in figure 2, where the larger Doppler broadened linewidth of 5.6(2)MHz (Gaussian FWHM) arises
from inclusion of atoms with higher velocity in the spectrum. The ISs of five independent measurements
have an average standard deviation of 0.8MHz, consistent with the wavemeter (HighFinesse WS8-10)
resolution of 0.4MHz at the fundamental wavelength. This statistical uncertainty is small compared with the
systematic uncertainty in the wavemeter measurement of the laser frequency. To place an upper bound on
this systematic uncertainty, we measure nearby optical transitions of atomic copper in the same beam
machine. The D1 (327.5 nm) and D2 (324.8 nm) lines lie roughly 1.3 nm to either side of the 326 nm line in
Cd. We reproduce the precisely measured ground state hyperfine intervals of 65Cu (12 568.81(1)MHz) and
63Cu (11 733.83(1)MHz) [65] with a mean deviation of 3.1± 2.0MHz for 63Cu and 1.8± 3.7MHz for 65Cu.
By measuring the wavemeter linearity with a temperature and pressure stabilized Zerodur cavity we find a
systematic uncertainty of 3.3MHz. We assign this as our systematic frequency uncertainty for the 326 nm
and 229 nm spectra of Cd I.
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Figure 2. Isotope shifts of the Cd I bosons at 326 nm, measured with a cryogenic helium-cooled atomic beam and a
frequency-doubled dye laser. The fermionic hyperfine transitions are beyond this spectral range.

5.2. Measurements of 326, 480 and 361 nm ISs with magneto-optic traps
We also determine the ISs of the 326 line by measuring the sharp blue-edge of the fluorescence [66] from a
326nm magneto-optic trap (MOT) []. The blue edge, where the cooling and trapping breaks down, is of
order 20kHz wide (90%–10%) and serves as a precise reference for ISs. We directly load a 326 nmMOT of
the abundant isotopes, 110Cd to 116Cd, from an effusive 1.2 cm diameter source of natural Cd that is 2.2 cm
from the MOT. To capture the atoms, we use 60 to 150mW of 326 nm light that is frequency modulated with
a peak-to peak amplitude of 8.6MHz [22] and the three retro-reflected MOT beams have a diameter of
8.5mm. A lower-intensity cooling stage follows the MOT loading, with no applied magnetic field gradient or
frequency modulation, during which fluorescence is measured.

We produce 326 nm light with doubly-resonant sum frequency generation (SFG) of 542 and 820 nm light
in a beta barium borate crystal [21]. The 542 nm light is produced by frequency doubling a fiber-amplified
1083 nm extended cavity diode laser (ECDL). An 820 nm ECDL and a tapered amplifier supply the 820 nm
light. ISs are measured relative to various modes of a temperature-tuned, four-mirror, rectangular reference
cavity. Its free-spectral range is 905.03MHz, its tangential and sagittal transverse mode splittings are
201.04MHz and 140.84MHz, and the cavity linewidth is 350 kHz. The 1083 nm ECDL is locked to the 00, 01
and 10 cavity modes with an adjustable frequency offset provided by a double-passed acousto-optic
modulator (AOM). The frequency of the 820 nm ECDL is measured relative to resonances of the same
reference cavity [21], by slowly frequency modulating a double-passed AOM with a zero-to-peak amplitude
of 1.2MHz or less. Within 1 to 5 min after measuring the 326 nm frequency offset for each isotope, the
absolute frequency of a 1083 nm cavity resonance is checked relative to a molecular iodine line via saturated
absorption at 542 nm. We correct for the cavity drift between the measurements for each isotope, which is
typically of order 1MHz, and had a maximum drift of 4.2MHz. The measurement uncertainty is given by
the less than 1MHz centering precision of the 820 nm light on a cavity resonance.

For 106Cd and 108Cd, with 1.25% and 0.89% natural abundances, we enhance the 326nmMOT loading
rate by capturing atoms on the 23MHz wide 361nm 3P2-3D3 transition, after optical pumping from 3P1 and
3P0 to 3P2 via the 3S1 state (see figure 1(a)). The 361nm light is generated via doubly-resonant SFG of
1083nm and 542nm light, producing 70 to 200mW [21]. To load the 326nmMOT, the 361nmMOT is
inhibited by turning off the 480nm 3P1—3S1 optical pumping light and allowing the atoms to equilibrate in
the 326nmMOT for 57ms before the start of the 326nm cooling and detection phase. Our results for the ISs
for the 326nm line are given in table 2 and figure 3(b). They are more accurate than our measurement of the
same line with a beam, and comprise an order of magnitude of improvement compared with the weighted
average of previous measurements. A disagreement of four combined errors is found for the (114 116) pair,
previously measured with interferometry of fluorescence [58, 62]. This disagreement manifests as different
slopes of the KP portrayed in figure 3(b).

To measure ISs for the 480nm transition, we use all four laser sources to enhance the MOT loading and
then inhibit the 480nm light for 28ms to transfer atoms to the 326nmMOT and cool them. We then turn on
a 4.4ms low intensity pulse of 480nm light and observe the resulting 361nm fluorescence. We generate the
468and 480nm optical pumping light using single-pass SFG of 1083nm light and 823 and 862nm light in
fiber-coupled PPLN waveguides. The 468nm and 480nm light are combined on a beamsplitter and the two

9



New J. Phys. 24 (2022) 123040 B Ohayon et al

Figure 3. King plots of selected Cd transitions. The vertical axis data are the modified isotope shifts of the 214 nm line from [39].
The data for the horizontal axes are given in table 2. Previous experimental data are given for the 229 nm [57] and 326 nm lines
[58, 59, 61–63]. Theoretical predictions shown in blue are the AR-RCCSDT values for the 214 nm line from table 1, CI+MBPT
for 229 nm [39], and MCDHF for 326 and 332 nm [64]. The bands correspond to 68% confidence intervals.

output beams illuminate the atoms on three nearly orthogonal axes before being retro-reflected. The 862nm
laser, and thereby the frequency of the 480nm light, is slowly stabilized with a wavemeter and is monitored
with the same reference cavity, using a number of transverse modes and a zero-to-peak frequency
modulation of 1.2MHz via a double-passed AOM. We determine the center frequency of the 17.5MHz wide
transition with a resolution of 0.8MHz using a slow square wave frequency modulation of the 480nm light
by±4MHz with a double-passed AOM. Our 480nm ISs in table 2 are the first measurements for this
transition. By combining them with our 326nm intercombination line ISs along with previous
measurements for 468nm [55], we determine the ISs for the 332nm clock transition (see figure 3(c)), and
similarly for the narrow 314nm transition using measured 509nm ISs [56].

Finally, we measure the ISs of the 361nm 3P2–3D3 transition. We again use the sharp blue-edge of the
cooling as the reference for the ISs [66]. Here, we use the reference cavity stability to measure frequency
offsets relative to 542nm iodine saturated absorption resonances [67]. The blue edge is determined to better
than 0.4MHz and we estimate that the blue edges for the slower loading 106Cd and 108Cd MOTs may have
systematic errors of order 3MHz, much less than the 23MHz 361nm transition linewidth.

6. Benchmarking IS constants calculations

The constants of equation (8) for the D1 and D2 ionic transitions can be extracted from our calculation
(table 1) with high accuracy because the uncertainties for each transition are highly correlated. We find
FD2,D1 = 1.0131(2) and KD2,D1 =−114(2)GHzu. A Monte-Carlo fit to the available experimental data
[56, 62, 68–70] yields FD2,D1 = 1.02(6) and KD2,D1 =−43(229)GHzu, which agrees with our calculation,
within the large experimental uncertainty. To better test our calculation, recent ion-trap IS measurements for
the D2 transition [39] could be extended to the D1 transition.

To test calculation in Cd I, we transform our constants for the Cd II D2 transition to transitions in Cd I
using equation (8), fitting experimental ISs from this work and the literature [39, 56–59, 62]. Here, we do not
consider fermionic isotopes, for which equation (8) may not be a good approximation at the few MHz level
[64]. The resulting IS constants are given in table 3. Their uncertainty is dominated by that of the measured
ISs of the atomic lines. The IS constants of tables 1 and 3 agree with, and are up to an order of magnitude
more precise than, the CI-MBPT calculations [39] for both F and K for all tested ionic and atomic
transitions. We thus validate both the central values and the uncertainty estimation of CI-MBPT, which is
applicable for calculations of both linear and non-linear IS constants in a variety of atomic systems.

For the intercombination line, our measurements produce a significantly larger KP slope than prior
results, increasing from F214,326 = 0.98(8) to F214,326 = 1.397(17), corresponding to the green solid and red
dashed lines in figure 3(b). Combining the slope with F214 =−6082(45)MHz fm−2 from table 1(e) shifts
F326 from−6180(478)MHz fm−2 to−4354(62)MHz fm−2, closer to the value obtained for the 229nm
transition which is expected as they share an s-state. Our F326 and K326 constants agree with and are more
accurate than CI-MBPT calculations [39] and an empirical CKP determination [71]. However, figure 3(b)
shows a slight disagreement with a recent calculation via MCDHF [64]. As summarized in table 1(e), the
deviation for F326 is two combined standard errors and for K326 by one. A similar deviation is apparent for
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Table 3. IS constants of atomic transitions deduced from our calculations (table 1) projected using King plots with experimental data
from table 2 and the literature [39, 56–59, 62].

i (nm) Fi (MHz fm−2) K i (GHz u) Method

229 −3764(134) 1199(104)
−4024(200) 1428(220) CI-MBPT [39]

332 −4391(86) 1712(43)
−4660(160) 1629(19) MCDHF [64]

326 −4354(62) 1673(43)
−4680(160) 1616(17) MCDHF [64]
−4559(230) 1865(400) CI-MBPT [39]
−4420(340) 1717(330) CKP [71]

314 −4421(86) 1739(61)
468 1150(49) −1(47)
480 1122(40) 30(41)
509 1180(19) −32(24)

1228(60) −63(400) CI-MBPT [39]
361 −654(42) −237(59)

the clock transition at 332nm (figure 3(c)). The changes in F326 and K326 and the updated intercombination
line ISs account for the 20%–50% differences between the ISs calculated in [64] and those summarized in
[71]. Whereas the range of values of Fi is a few percent, we note that the many-body QED corrections are
estimated to contribute 3%. Further improvements in field shift calculations should include these QED
effects, especially for heavier elements.

7. Improved charge radii

High-precision optical isotope and isomer shifts for the Cadmium chain were measured at ISOLDE using
collinear laser spectroscopy [56, 72]. To extract charge radii differences from spectroscopic data, equation (1)
is often calibrated with the radii of stable isotopes extracted from a combination of muonic x-ray energies
and electron scattering data [71]. This commonly used CKP method has several disadvantages: it is currently
applicable only to elements possessing at least three stable or long-lived isotopes; the determined IS constants
are limited by the knowledge of nuclear polarization corrections to muonic levels, as well as their unknown
correlations; the calibration coefficients from electron scattering experiments are in many cases unknown
(e.g. for 106,108,111,113Cd) or nuclear-model-dependent (e.g. for 110,112,114,116Cd); and the resulting IS
constants K and F are highly correlated, leading to diverging uncertainties of extracted radii outside of the
calibrated region.

The advent of high-accuracy many-body calculations of IS constants allows differences of charge radii to
be extracted directly from optical measurements with no input, beyond small higher-moment corrections,
from muonic x-ray or electron scattering experiments. In table 4 and figure 4, we compare
(δr2)A,114 = r2A − r2114 extracted from experimental data [39, 56] and our calculated F214 and K214 to those
determined recently using a CKP method [39]. The radii of odd isotopes and isomers [72] could also be
extracted after calculating off-diagonal hyperfine elements. For 118,120,122Cd, measured only using an atomic
transition at 509nm, we use F509 and K509 given in table 3. Our reported uncertainty is 0.7%–0.9%,
dominated by the calculated F214 uncertainty, in turn stemming from a systematic uncertainty in the QED
correction. For all (δr2)A,114, it is smaller than the uncertainty from the CKP method, especially for
neutron-rich isotopes, for which the uncertainty can be as much as a factor of four smaller. A slight
disagreement is found for mass numbers 112 and lower as seen in figure 4(a), which we ascribe to the
limitations the CKP method listed above. Our improved charge radii increase the disagreement with
state-of-the-art nuclear theory calculations [39, 56] for the most neutron rich isotopes (figure 4(b)), while
improving the agreement for those that are proton-rich (figure 4(a)).

The benefit of extracting radii directly from calculated atomic constants is even more pronounced for the
ladder differences (δr2)A+2,A = r2A+2 − r2A, which are highly sensitive to the uncertainties of muonic x-ray
measurements. Such differences are useful, e.g. for identifying quantum phase transitions in nuclear shapes
[73, 74]. Our results in table 4 are up to 60 times more accurate than those obtained with a CKP method
[71].
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Table 4.Updated differences of charge radii of even–even Cd isotopes in fm2. This work and [39] use measurements for the D2 line from
[39, 56], while the radii extracted using atomic factors from the MCDHF method [64] utilize measurements in the intercombination
line summarized in [71]. The charge radius is obtained by adding (rc)114 = 4.614(3) fm in quadrature.

A (δr2)A,114 CKP [39] MCDHF [64] (δr2)A+2,A [71]

100 −1.466(12) −1.409(19) — 0.2876(23) —
102 −1.178(9) −1.135(14) — 0.2480(20) 0.28(12)
104 −0.930(8) −0.897(10) — 0.2149(18) 0.235(95)
106 −0.714(6) −0.690(8) −0.662(24) 0.1899(15) 0.182(16)
108 −0.524(4) −0.506(6) −0.478(19) 0.1817(15) 0.183(15)
110 −0.343(3) −0.331(4) −0.310(12) 0.1791(14) 0.174(13)
112 −0.164(1) −0.158(2) −0.145(6) 0.1635(13) 0.157(10)
114 0 0 0 0.1360(11) 0.129(10)
116 0.136(1) 0.134(2) 0.115(5) 0.1108(27) 0.083(22)
118 0.248(2) 0.244(6) — 0.1003(25) 0.084(50)
120 0.349(3) 0.344(8) — 0.0892(19) —
122 0.439(4) 0.434(11) — 0.0825(31) —
124 0.520(5) 0.514(14) — 0.0760(9) —
126 0.596(5) 0.590(18) — 0.0755(9) —
128 0.671(6) 0.666(21) — 0.0443(8) —
130 0.716(7) 0.713(24) — — —

Figure 4. Squared RMS charge radii of even–even Cd isotopes relative to 114Cd. (a): proton rich, (b): neutron rich. The data
points correspond to columns 2–4 of table 4. The nuclear theory lines are from the Fayans functional (Fy), extended by
information on the radii of Ca [56], and Skyrme-Hartree–Fock-Bogoliubov mass formula (HFB-24) [39].

8. Towards BSM physics

We can use the above results to assess the requirements for KPs in Cd I ISs to be sensitive to new physics. An
interaction between electrons and neutrons that is mediated by a heavy boson has a short range, less than a
Bohr radius. To leading order, it is a contact interaction, proportional to the wave function overlap with the
nucleus, and therefore proportional to the FS. Such a contribution is absorbed into charge radii differences,
so it does not create deviations of linearity in KPs. In the next order, and in a hydrogenic approximation, the
deviation from linearity turns out to be roughly proportional to the FS [8]. Therefore, a KP for transitions i
and j where |Fi − Fj| is large, can have a high sensitivity to such new physics. In figure 1(b) we plot |Fi − Fj|
for important transition pairs, whose atomic constants are given in table 3. As expected, large differences are
between pairs that do not share the same S state. However, narrow transitions couple the ground S state with
the 5p 3Pj states, enabling exceptional precisions for their measurements. Focusing on the clock and
intercombination line pair, a KP returns F332,326 = 1.008(13), with an uncertainty largely from the 468nm
measurement [55] and our 480nm measurement. Multiplying by F326 =−4354(62)MHz fm−2 from
table 3, we find |F332 − F326|⩽ 100MHz fm−2. For the S−D transitions used in the KP of Ca II,
|F732 − F729|= 0.55(2)MHz fm−2 [13], which is up to two orders of magnitude smaller. We therefore
surmise that when searching for new interactions mediated by a heavy boson, the sensitivity of a KP between
the ISs of the clock and intercombination lines in Cd could be as much as two orders more sensitive than the
current limit set by IS measurements in Ca II. As the accuracy of measurements in the latter are of order
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20Hz, accuracies of at least few kHz would be required for Cd I. Considering that the natural linewidth of
the intercombination line is 69kHz, such an accuracy should be straightforward with trapped samples.

It is difficult to attribute an observed KP non-linearity to new physics without estimating non-linear SM
contributions, such as the quadratic mass shift (QMS). Due to the similarity between nuclear masses and
mass numbers, the deviation pattern of the QMS is nearly indistinguishable from the pattern induced by a
new boson that couples electrons and neutrons, and so it sets a stringent limit on the new physics reach.
The order of magnitude of the QMS can be estimated with a hydrogenic approximation to be
KQMS
ij = Kij(m/MA +m/MA ′) [75], with |K332,326|⩽ 60GHz u from our KP. A linear fit of KQMS

332,326 versus

δν̄A,A+2
326 returns an offset of 0.7MHz u, a slope of 6× 10−10, and, most importantly, isotope-dependent

non-linearities. The largest deviation from the linear fit is 4Hz, for the 106,108Cd pair and the maximum value
of K332,326. It is comparable to the estimated 3Hz QMS-induced non-linearity in Ca II [76].

For the medium mass Cd system, with its small nuclear deformations, the largest expected SM
non-linearity is the quadratic field shift (QFS) [15]. In the notation of equation (8), it takes the form
FQFSij = Gij(δ(r2)AA

′
)2/µAA ′ , where Gij = Gi − FijGj. Gij sets the scale of the non-linearity and is a

transition-dependent and nucleus-independent constant [16, 17]. This scale is difficult to estimate and
different calculations yield a wide range of sensitivities [16]. Assuming that the QFS is approximately
quadratic in |Fi − Fj|, the absence of observed KP non-linearities in this work already indicates that the
non-linearity induced by the QFS of the narrow transition pairs is less than 1kHz. Moreover, the QFS may be
identified from the deviation pattern from linearity [17]. The precisions with which δ(r2) are known set the
limits for this identification, thus emphasizing the need for the improved radii in table 4.

Other sources of non-linearity, such as nuclear polarization and nuclear deformation, could be
non-negligible at the anticipated level of precision [15, 77, 78]. Calculating their magnitude and pattern is
difficult due to our limited understanding of nuclear structure. However, like the QFS, their magnitude
increases with the wave function overlap with the nucleus. By combining the ISs of three or more transitions
with different FSs, these non-linearities can be isolated [10, 79]. Based on the above considerations, the ISs of
the clock and intercombination lines can be measured to the order of∼100Hz, limited by the natural
linewidth of the intercombination line. If no non-linearity is observed, the ultra-narrow 314nm line may
provide higher precision with reasonably controlled tensor light shift. If a non-linearity is present at this
level, the IS of a transition that does not include the ground state can lead to a sensitive multi-dimensional
KP. As suggested by figure 1(b), the |Fi − Fj| for these transitions are at least two orders of magnitude larger
than for ground state transitions. Narrow transitions between excited states, such as from 3P0 to long-lived
low-lying Rydberg states, can thus increase the sensitivity of searches for BSM physics.

9. Summary

The measurements reported here significantly improve the ISs of several low-lying transitions of Cd I,
including the first measurements of two transitions. For the wide 229nm and the narrow 326nm transitions,
we utilize a cryogenic beam with enriched samples, combined with a detection method that distinguishes
between the emission patterns of bosonic and fermionic isotopes. We also measured ISs of the 326 and
361nm transitions using the sharp blue edge of laser-cooling in a magneto-optical trap, and of the 480nm
transition via optical pumping of the trapped atoms. Combining our 480 and 326nm ISs with previous ISs
for the 486 [55] and 509nm [56] transitions, we predict the ISs of the two ultra-narrow transitions in Cd,
which have not yet been measured. Our results are significantly more accurate, often in disagreement with
previous measurements, and highlight the benefits of isotope-selective and cold sources for IS measurements.

We also present high-precision calculations of IS constants of Cd II. By projecting our calculations from
Cd II to Cd I, using KPs with measured ISs, we find the IS constants for all low-lying transitions in Cd I,
including those of the narrow intercombination and ultra-narrow lines. Our resulting IS constants largely
agree with, and are more accurate than those obtained from the CI-MBPT [39] and MCDHF methods [64],
setting stringent benchmarks for improving the theory. Some disagreements are observed with recent
calculations [64], potentially from underestimating the uncertainty of high-order electron correlations as
well as the importance of the QED contributions to the field shift constants.

By combining our calculated IS constants with measurements of a long chain of short-lived ions, we
extract accurate charge radii differences, without the limitations from muonic atom measurements. To our
knowledge, this is the first extraction of charge radii differences for a chain of isotopes with an accuracy
better than 1%, which opens opportunities to improve our knowledge of nuclear sizes far from stability.
Beyond benchmarking nuclear models, these are important to identify the patterns of non-linearities in
future high-precision measurements [23]. This work sets the stage for new physics searches using generalized
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KPs in the Cd system. Our results suggest that precise future Cd IS measurements can improve, by as much
as two orders of magnitude, the current best bounds on new electron–neutron interactions, obtained from a
KP for Ca II transitions.
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