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Abstract: Canonical correlation analysis (CCA) is widely applied in statistical
analysis of multivariate data to find associations between two sets of multidi-
mensional variables. However, we often cannot use CCA directly for survival
data or their monotone transformations, owing to right-censoring in the data.
In this paper, we propose a new robust rank CCA (RRCCA) method based on
Kendall’s 7 correlation, and adjust it to deal with multivariate survival data,
without requiring any model assumptions. Owing to the nature of rank correla-
tion, the RRCCA is invariant against monotone transformations of the data. We
establish the estimation consistency of the RRCCA approach under weak condi-
tions. Simulation studies demonstrate the superior performance of the RRCCA
in terms of estimation accuracy and empirical power. Lastly, we demonstrate the

proposed method by applying it to Stanford heart transplant data.
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1. Introduction

Canonical correlation analysis (CCA), introduced by Hotelling (1936),
is a well-known statistical technique for finding associations between two
sets of multidimensional variables. It searches for linear projections of each
set of variables, such that the projected variables are maximally correlated.
Extensions of the classical CCA have been proposed for particular kinds
of practical data sets. For example, Akaho (2001) developed a kernel C-
CA for discovering nonlinear correlations among variables, Va et al. (2007)
proposed a generalization of the CCA that can handle several data sets. S-
parse CCAs (Witten et al., 2009; Hardoon and Shawe-Taylor, 2011; Mai and
Zhang, 2019; Chen et al., 2020) have been proposed for high-dimensional
data sets, and supervised CCAs (Witten and Tibshirani, 2009; Golugula
et al., 2011) are used when the two sets of variables are associated with the
outcomes.

In medicine, demography, economics, and other fields, available data on
the time to some event are not always exact and complete. These survival
times, such as time to death, divorce, or the acceptance of a job offer, are
subject to right-censoring. Here, it is important that we be able to measure
the correlation between survival times, such as the times to blindness of

the two eyes, and some works have been done for bivariate survival times
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(Oakes, 1982; Newton and Rudel, 2007; Schemper et al., 2013; Kang et al.,
2015). However, to the best of our knowledge, no works have focused on
the canonical correlation between random vectors of multivariate survival
data, even though such data arise naturally in many contexts. Typical ex-
amples include recurrent events data, for instance, repeated occurrences of
ear infections for each individual, and clustered survival data, for instance,
the possible failure of several dental fillings for an individual, or the life-
times of related individuals in family groups (Aalen et al., 2008). Treating
right-censored data as regular data in a CCA can lead to substantial bias
and inaccuracy.

In this study, we address this gap in the literature by developing a new
CCA method under multivariate survival data, where right-censoring can
occur.First, we handle the censoring by using the inverse probability of cen-
soring weighting technique. Next, we construct the proposed robust rank
CCA (RRCCA) method based on Kendall’s 7 correlation, and adjust it to
deal with multivariate survival data, without requiring any model assump-
tions. Owing to the nature of a rank correlation, the RRCCA is invariant
against monotone transformations of any of the variables. This is a nice
property, because survival times are often modeled using accelerated fail-

ure time models with a logarithmic transformation, or using transformation
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models with an unknown increasing function. In addition, we establish the
estimation consistency of the RRCCA approach under weak conditions.
The rest of the paper is organized as follows. Section 2 gives a brief
review of the classical CCA. In Section 3, we present the RRCCA approach,
and establish its estimation consistency is in Section 4. In Section 5, we
use simulation studies to examine the estimation accuracy and empirical
power of the proposed approach, and demonstrate it using Stanford heart
transplant data in Section 6. Section 7 concludes the paper.
2. A Brief Review of CCA
For two random vectors X = (X;,...,X,) e RP and Y = (V3,...,Y,) €

R?, denote the covariance matrix of (X, YT)T as

Yxx Yxy
=
Yyx vy
Note that we remove the tilde symbol from the subscript for simplicity of

notation throughout the remainder of the paper. A CCA seeks vectors

a € R? and b € R that maximize p¢ = Cor(aT)N(, bTﬁ?); that is

p° = max a >xvb

: 2.1
ab \/GTEXXa\/bTxyyb ( )

The correlation p° is called the first canonical correlation, and the vectors a

and b are the first pair of canonical vectors. If 3¥xx and Xy~ are invertible,
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p° is equal to the square root of the largest eigenvalue of the matrices
Ei&zxyzQKKEYX and E}@nyﬁikilxy, (22)

and a and b are the respective eigenvectors of (2.2) corresponding to the
largest eigenvalue.
In practice, the sample covariance matrices of the observed data (X(l), ?(1)),
..,(}N((”),?(")) € RP x RY are computed, and the canonical vectors and
correlations are obtained based on the eigenvectors and the eigenvalues of

the sample covariance matrices
Yk ExvEyyZyx  and Iy, ByxIxk Exy- (2.3)

3. Methodology

In practice, in addition to covariates, some or all of the components
of X and Y may be survival times, or some monotone transformations
of survival times, such as logarithmic survival times. Hence, in general,
we assume each component varies from —oco to oo. We show later that
our proposed method is unaffected by monotone transformations. Because
the survival times are subject to right-censoring, without loss of generality,
we denote C}, as the censoring variable corresponding to )?k, and D; as
the censoring variable of )N/l, for k =1,...,pand [ = 1,...,q. Let the

censoring variable be positive infinity if there exists no censoring for some
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)?k or 37} We assume both C} and D, are independent of )Z'k and 372
For simplicity, we further assume that Cj and D, are independent, as are
C and Cy and D; and Dyp. Let Xlgi) = min()?lgi),C’]gi)),cS,(f) = I()?,ii) <
C’,gi)); Yg(i) = min(?l(i),Dl(i)),@(z) I(Y(Z) < D )), for i = 1,...,n. Then,
the independent and identically distributed (i.i.d.) sample we observe is
(XD, Y0 50 ¢ where XO = (X7, ..., X7), YD = (v, ..., v,
80 = (6", 0), 0% = (¢, ..., 0.
3.1 Inverse probability of censoring weighting

Let S, (t) = Pr(Cy > t) and Sp,(t) = Pr(D; > t) be the survival
functions of C} and D, respectively. We obtain the following unbiased

variances and covariances in (2.2):

O XY} — Bf ol

-~ ol
Cov (X, V) = {Sck (X4) Sy (V1) ka}E{ Sp, (Y1)

Yi},

1

9 Ot ) [
B sz (5 5, (0 A6 Xn b = Bl ey Xe Bty X

By X2} — (Bl ey Xl

COV()A(:k, )A(:k/) =

{SDlYl SD,(Yz YYZ/} E{S , () Y}E{SD )Yl/} 1 #1;

\ E{SDléYl)YIQ} - [E{WYZ}] ; 1=1.

Cov(Y},Yy) =

Their sample versions can be estimated using corresponding moment esti-

mators. For example, Cov()N(k, SN/Z) can be estimated by

(@) ) ) 1 & 5(1') i)
_Z s o = X,S‘)Y}(Z)—{— k o }{ Z @
Sck X )SDZ(YZ ) i=1 SCk(X ) SDZ

>}’
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where Sg, (t) and Sp,(t) are Kaplan-Meier estimators of Sg, and Sp,, re-
spectively. Specifically, §Ck(t) = Hsgt(l—Ach(S)/G_k(S)), where N¢, (t) =
iy NG (1), with NE)(8) = 1(X," < 1,67 = 0), and Gi(1) = X1, G (0),
with GS) (t) = I(X,ii) > 1); ‘§Dz (t) is defined similarly. Hence, a CCA can
still use the sample estimators of the above adjusted variances and covari-
ances in (2.3). For simplicity of presentation, we refer to the CCA with

inverse probability of censoring weighting approach as CCA-IPCW.

Remark 1. The CCA-IPCW approach may not be robust for survival
data, because the sample covariance matrices are used in solving the eigen-
problem. This procedure is optimal for the classical CCA under a multi-
variate normal distribution, but is less efficient with heavier-tailed model
distributions. As shown by (Romanazzi, 1992), the sample covariance ma-
trices are highly sensitive to outliers, and a canonical analysis based on these
matrices will yield unreliable results. The CCA-IPCW is also not invariant
against a monotone transformation. We demonstrate these drawbacks in
our simulation results in Section 5. Moreover, though some versions of the
CCA are robust, for example, using the minimum covariance determinant
estimator (Rousseeuw, 1985; Croux and Dehon, 2002) or the robust alter-
nating regressions method (Filzmoser et al., 2000; Branco et al., 2005), they

cannot be applied directly to right-censored survival data.
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3.2 RRCCA

In survival analysis, a common approach to assess the effects of co-
variates on survival is to use a semiparametric regression model, such as
the transformation model. The transformation model, which includes the
proportional hazards model and the proportional odds model as special cas-
es, assumes that an unknown monotone transformation of the underlying
failure time is linearly related to the covariates with various error distri-
butions. When multivariate survival data are available, the analysis model
becomes more complicated, such as the multivariate frailty model (Aalen
et al., 2008). Therefore, we need a simpler statistical tool that is both
robust and invariant against monotone data transformations.

We propose a new RRCCA based on Kendall’s 7 correlation, without
needing any model assumptions. Because (2.1) is scale free, the problem
is equivalent if we replace the covariance matrices with their corresponding
correlation matrices. Hence, in this case, the solution (2.2) is no different.
We then replace the Pearson correlations of every pair of random variables
in the correlation matrices with Kendall’s 7 correlations, which are more
robust. When right-censoring occurs, it is necessary to adjust these rank
correlations to avoid severe bias. Specifically, using the inverse probabil-

ity of censoring weighting technique, we construct the following unbiased
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Kendall’s 7 correlations for the survival data:

. i: o W>IQ?>XﬁﬂM@>W%—1
kYl = SN - )
n(n —1) i#j S%k (Xlgj)) S%Z(YE(]))
4 53 o o) O o xO\(x® < xO
Py = OO (x> x x> x@) -1,
Conln =1 258, (X)) 8, (X))
PR ) S
vy = l L1 > Yy > v - 1.

n(n — 1) oy ’S%Z(YE(J)) S%ll(}/EI(J))
In this way, we can perform an RRCCA by solving the eigenvalues and

eigenvectors of the following matrices:
SxxSxvSyy Syx, (3.1)
where

Sxx = (Fxux, Jpxps Sxy = (Fxuvi)pxas and Syy = vy Jaxa  (3.2)

are sample versions of Kendall’s 7 correlation matrices. We denote the
maximum canonical correlation obtained this way as 7¢. A similar inverse
probability of censoring weighting technique for Kendall’s 7 correlation is
used in Song et al. (2014), who consider the correlation measure between a
right-censored response and a regular covariate, both univariate, in the vari-
able screening problem. The RRCCA is invariant under any coordinatewise
monotone data transformations, unlike the CCA-IPCW. We discuss the

benefits of using a robust rank correlation in our numerical experiments.
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4. Theory

In this section, we prove the estimation consistency of the RRCCA un-
der general conditions. For two random variables U and V from a join-
t distribution, let ([71,‘71) and ([72,%) be two independent realization-
s without censoring. Then, the population Kendall’s rank correlation is

v = Cov {Sgn(ﬁl — Us),sgn(V; — ‘72)}7 and
Sxx = (Tx,x Joxps SxY = (Tx,v)pxes  a0d Syy = (Tviv} )gxq

are the population Kendall’s rank correlation matrices that (3.2) estimates
for. We denote the matrix spectral norm ||A|| = sup{||AX] : [| X]| =1} =
)\}I{aQX(ATA) for any matrix A, which for symmetric matrices reduces to

[A[] = max; [Ai(A)].

The following conditions are required:

(C1) There exist positive constants x and w, such that min{ A (Sxx), Amin(Syy)} >

K, A}Il/a?x( xySxy) < 1/w.

(C2) There exist positive constants uy and v, for every k = 1,...,p and
[l =1,...,q, such that Pr(Cy, = ug) > 0, Pr(D;, = v;) > 0, and

Pl"(C’k > Uk) = PI‘(D[ > Ul) = 0.

Condition (C1) ensures that the rank-based correlation matrices are

well conditioned; similar conditions can be found in Bickel and Levina
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(2008). Condition (C2) is common in the survival literature (Peng and
Fine, 2009; Song et al., 2014) for asymptotic analysis, and is satisfied in
many clinical settings. Note that both p and ¢ can vary with the sample

size n in the theorem.

Theorem 1. Under Conditions (C1) and (C2), there exists a positive con-
stant M, where, for any 0 < € < 1, when n > 4Me2, p?lognp® = o(n),

q*logng® = o(n), and pqlognpq = o(n) hold, then we have

ISxkSxvSyy Syx — SxxSxySyySyx| = 0,(1).

Theorem 1 confirms the consistency of the product of rank-based sam-
ple correlation matrices, and hence the canonical correlations and vectors
obtained thereafter are also consistent. The technical proofs are relegated
to the Appendix.

5. Simulation
5.1 Estimation accuracy

In this section, we use simulations to examine the estimation accuracy
of CCA-IPCW and RRCCA. We consider two sample sizes, n = 100 and
200, and the number of replications is M = 1000. We set the same censoring

rates for all components of the two random vectors in our simulation, and
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10% and 30% censoring rates are considered.

The data-generating model is similar to those in Branco et al. (2005)
and Taskinen et al. (2006), although we add a censoring mechanism. First,
the following sampling distributions of (X Y) are considered: (i) a normal
distribution: N,.,(0,3X); (ii) a multivariate ¢ distribution with three de-
grees of freedom and scatter parameter X; (iii) a normal distribution with
contamination: 0.95N,.,(0,3) + 0.05N,1,(0,9%); and (iv) a lognormal
distribution: logfi and log? are generated from N,,,(0,X). We take the

covariance matrices of (X,Y) ((logX, log Y) for case (iv)) as

R I,

where R = diag(ps,...,pp). Our choices are (a) p; = 0.8,p3 = 0.2, (b)
p1 =0.6,p2 = 0.4, and (c) p1 = 0.9, p; = 0.6, p5 = 0.3.

Next, we independently generate the censoring variables C} and D
as Cy = log Gy and D; = log H, for distributions (i)—(iii), and Cx = Gy
and D; = H; for distribution (iv). Here, Gy and H, are uniform random
variables, defined on the intervals (0, gx) and (0, k;), respectively, where g
and h; are chosen to achieve the desired censoring ratio. Finally, X ,gi) =
min()N(,g),C',gi))ﬁ,(:) = ]()N(,g) < C’,gi)) and Yl(i) = mln(Y D(Z) gbl =

1Y < DY),
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We need to find the population target of estimation in order to check
the estimation accuracy.

The population canonical correlations: We use p§ and 77 to de-
note the population canonical correlations for CCA-IPCW and RRCCA,
respectively. For (i) the normal distribution or (iii) the contaminated nor-
mal case, by (2.2), p§ is just p;. Furthermore, using 7 = 27~ " arcsin p, the
well-known relations for the bivariate normal distribution with linear cor-
relation p, we have that 77 is 2m L arcsin p;. Under (ii) the multivariate ¢
distribution, pf is still p;, and 7} remains 27—t arcsin p;, because the relation
between Kendall’s 7 and the linear correlation p holds more generally for
all elliptical distributions with continuous marginals, including the bivari-
ate Student t distribution (Lindskog et al., 2003). For (iv) the lognormal
distribution, the invariance property against monotone transformations of

rank correlations means that ch is still the same as that under the normal

distribution. It can be shown that the variance matrix of Z = (ei, e?) is

Var(Z) = {E(Z)E(Z)"} o {€® — 1(p4q)x(pt+q) }» Where o represents element-
wise multiplication. Hence, a simple calculation shows that p is equal to
(efi —1)/(e —1).

The population canonical vectors: In most cases, the canonical

vectors for an RRCCA differ from those for a CCA-IPCW, because they
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have different population covariance matrices. However, in this example, it
is easy to see that these matrices are all diagonal, by the above argument,
and that the canonical vectors are the same unit vectors.

To assess the estimation accuracy, we adopt the following two criteria.
Criterion 1. The mean squared error (MSE) when estimating the
direction of a canonical vector (Branco et al., 2005). For the jth
canonical vector for X, the MSE is measured by

o jaga;”™)
MSE(CLj)ZMZaI‘CCOS ﬁ :

= a1}

) is the es-

where a; is the jth population canonical vector for X, and a§m
timate obtained from the mth generated sample. Using angles makes the
MSE invariant to whether we choose the standardized or unstandardized
canonical vectors. Because the results of M SE(Bj) for Y are similar in
our example, we omit them to conserve space. Criterion 2. The mean
squared relative error (MSRE) when estimating the magnitude
of a canonical correlation (Kudraszow and Maronna, 2011). For the
jth canonical correlation, the MSRE compares the jth canonical correla-

tion estimate with its corresponding theoretical one. Note that the two

approaches estimate different population quantities of the canonical corre-
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lation. Therefore, we compute

1 o [ (7 m)—pc- i

MSRE(p%) = — AU L
SR MmZ:l ,
1 M m)_Tg 2

~J7 T
MSRE(7) M;{ } ,

where (ﬁ;)(m) and (7¢)(™ are the corresponding estimates computed from

j
the mth replication.
The results of the simulation are presented in Tables 1 and 2, and show
that the RRCCA outperforms the CCA-IPCW in all cases. The advantage
of using the RRCCA is most evident under the lognormal distribution. The
RRCCA performs similarly under different distributions.
5.2 Empirical power of permutation test based on maximum CCA
A classical application of a CCA is to test the independence of two
sets of variables. If X is independent of ?, then Xxvy is 0, and all orders
of canonical correlations are consequently zero. For the multivariate nor-
mal distribution, the independence and the maximum canonical correlation
being zero are equivalent. For other distributions, the conclusion of depen-
dence can be drawn if the maximum canonical correlation is not zero, but
independence cannot be inferred, even if the latter is zero. Therefore, to

some extent, the maximum canonical correlation can be used to test the

independence of X and Y. We propose using the maximum RRCCA as the
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Table 1: The mean squared error (MSE) of estimating the direction of the

jth canonical vector

Case (a) Case (b) Case (c)
n censoring  distribution methods j=1 7=2|j=1 j=2|j=1 j=2 j=3
100 10% normal CCA-IPCW  0.12 0.14| 037 039| 022 034 0.31
RRCCA 0.07 0.10| 0.27 028 | 0.10 0.23 0.23
£(3) CCA-IPCW 016 021 | 046 049 | 029 052 047
RRCCA 0.08 0.11| 030 0.32| 0.11 027 0.27
contaminated normal CCA-IPCW  0.13 0.16 | 040 042 | 023 040 0.36
RRCCA 0.08 0.11| 027 029| 0.10 024 0.24
lognormal CCA-IPCW 036 0.36| 0.62 0.60| 0.65 085 0.70
RRCCA 0.07 0.10| 026 028| 0.10 0.23 0.23
30% normal CCA-IPCW 021 0.21| 047 0.48| 043 059 0.48
RRCCA 011 0.13| 034 036| 018 0.33 031
t(3) CCA-IPCW  0.19 0.24| 050 0.54| 034 0.60 0.52
RRCCA 012 0.15| 037 039 | 017 0.36 0.35
contaminated normal CCA-IPCW 020 0.22| 050 0.51| 037 0.56 0.49
RRCCA 0.11 0.14| 035 036| 017 034 0.32
lognormal CCA-IPCW 0.71 0.70| 074 0.73| 092 096 0.93
RRCCA 011 0.14| 035 036 017 0.34 0.32
200 10% normal CCA-IPCW  0.08 0.10| 0.26 027| 0.15 025 0.22
RRCCA 0.05 0.07| 0.18 0.19| 0.06 0.16 0.16
t(3) CCA-IPCW  0.12 0.16| 038 0.41| 020 040 0.37
RRCCA 0.06 0.08| 0.20 0.22| 0.07 0.18 0.18
contaminated normal CCA-IPCW  0.09 0.12| 031 033 | 017 0.30 0.27
RRCCA 0.05 0.07| 019 021| 0.07 0.16 0.16
lognormal CCA-IPCW 029 0.29| 057 0.57| 0.62 080 0.58
RRCCA 0.05 0.07| 017 0.19| 0.07 0.16 0.16
30% normal CCA-IPCW  0.15 0.16 | 040 041 ] 032 044 0.36
RRCCA 0.07 0.09| 024 026 011 021 0.21
t(3) CCA-IPCW  0.15 0.21| 044 049| 026 048 045
RRCCA 0.08 0.11| 026 028] 0.12 025 0.24
contaminated normal CCA-IPCW  0.15 0.16 | 042 044 | 029 044 0.38
RRCCA 0.07 0.10| 024 026]| 0.11 023 0.22
lognormal CCA-IPCW  0.67 064 | 076 0.76 | 0.88 097 0.91
RRCCA 0.07 0.09| 023 024] 011 022 021
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Table 2: The mean squared relative error (MSRE) of estimating the mag-

nitude of the jth canonical correlation

Case (a) Case (b) Case (c)
n censoring  distribution methods j=1 7=2|j=1 j=2|j=1 j=2 j=3
100 10% normal CCA-IPCW 0.01 0.30| 0.03 0.08| 0.01 003 0.15
RRCCA 0.01 0.26| 0.02 0.06| 0.00 0.02 0.11
t(3) CCA-IPCW  0.02 054 | 0.04 0.14| 0.01 004 0.23
RRCCA 0.01 0.28| 0.02 0.08| 0.00 0.02 0.15
contaminated normal CCA-IPCW  0.01 035 | 003 0.10| 0.01 0.03 0.17
RRCCA 0.01 0.26| 0.02 0.06| 000 0.02 0.13
lognormal CCA-IPCW  0.12 1.27| 032 0.40| 0.06 0.19 0.44
RRCCA 0.01 0.25| 0.02 0.06| 000 0.02 012
30% normal CCA-IPCW  0.03 048 | 0.07 0.20| 0.02 0.06 0.25
RRCCA 0.02 034| 003 0.12] 0.01 0.03 0.18
t(3) CCA-IPCW  0.02 0.64| 006 0.19| 0.01 005 0.25
RRCCA 0.02 0.35| 0.03 015| 0.01 0.04 023
contaminated normal CCA-IPCW  0.03 048 | 0.06 0.18| 0.02 0.05 0.24
RRCCA 0.02 0.34| 0.03 0.12] 0.01 0.03 020
lognormal CCA-IPCW  0.18 3.32| 067 051| 017 045 0.64
RRCCA 0.02 0.33| 0.03 0.12] 0.01 0.03 020
200 10% normal CCA-IPCW  0.01 0.20| 0.02 0.05| 0.00 0.01 0.08
RRCCA 0.00 0.14| 0.01 0.03| 0.00 0.01 0.06
t(3) CCA-IPCW  0.01 0.38| 0.03 0.10| 0.01 0.03 0.15
RRCCA 0.00 0.17| 0.01 0.04| 0.00 0.01 0.07
contaminated normal CCA-IPCW  0.01 024 | 0.02 0.06 | 000 0.02 0.11
RRCCA 0.00 0.15| 0.01 0.04| 0.00 0.01 0.07
lognormal CCA-IPCW  0.11 121 023 033] 006 0.16 041
RRCCA 0.00 0.14| 0.01 0.03] 0.00 0.01 0.06
30% normal CCA-IPCW  0.02 0.35| 005 0.14| 0.02 0.04 0.20
RRCCA 0.01 0.21| 0.02 006| 001 0.02 0.10
t(3) CCA-IPCW  0.02 049| 004 0.12| 0.01 0.03 0.18
RRCCA 0.01 0.25| 0.02 0.08]| 0.01 0.02 0.15
contaminated normal CCA-IPCW  0.02 034 | 004 0.12| 001 0.04 0.18
RRCCA 0.01 0.21 0.02 0.07] 0.01 0.02 0.12
lognormal CCA-IPCW  0.17 2.07| 050 043] 0.13 032 0.50
RRCCA 0.01 0.22| 0.02 0.06| 001 0.02 0.10
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test statistic, and using the permutation test procedure to set the critical
value. We consider a simulation design to check the type-I error rate and
the power of the test with a significance level of 0.05, based on 2000 Monte
Carlo replications.

We generate the data from the same model as in the previous subsection,
except with a different R = diag(p1, p2). We use p; = ps = 0,0.1,0.3, and
0.5.

When p; = p; = 0, X and Y are independent for distributions (i), (iii),
and (iv), but not for the ¢ distribution. Thus, we leave the ¢ distribution
out of this simulation study. The type-I error rates are given in Table 3.
When p; and p, are not zero, X and Y are correlated and dependent; the
power is given in Table 4.

Table 3 shows that the CCA-IPCW has the correct type-I error under
the normal distribution and the lognormal distribution with a low censoring
rate, but that this error becomes inflated for the contaminated normal
distribution, and is incorrect for the lognormal distribution with a higher
censoring rate. Thus, its power becomes meaningless under the latter two
distributions. In contrast, the RRCCA has the correct type-I error under
all scenarios. Moreover, the RRCCA has better power than that of the

CCA-TIPCW in all cases. Not surprisingly, the power is monotone with
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Table 3: Type-I error rate of the permutation test based on maximum CCA

Distribution

n censoring method normal contaminated normal lognormal
100 10% CCA-TPCW  0.052 0.130 0.050
RRCCA 0.051 0.062 0.054

30% CCA-IPCW  0.046 0.091 0.004
RRCCA 0.044 0.069 0.050

200 10% CCA-IPCW  0.051 0.151 0.048
RRCCA 0.047 0.078 0.046

30% CCA-IPCW  0.044 0.098 0.007
RRCCA 0.042 0.060 0.050

respect to p. When p = 0.5, the RRCCA has near perfect power, even with
n = 100 and a 30% censoring rate. When p = 0.1, the power is much lower,
indicating the difficulty of the testing problem, even under a sample size of
n = 200. The more interesting case is p = 0.3, where the RRCCA still has
relatively high power for n = 100 and a censoring rate of 10%.
6. Real-Data Analysis

Here, we demonstrate the proposed method by using it to analyze Stan-
ford heart transplant data. The original data set can be found in Crowley
and Hu (1977), and is reproduced by Kalbfleisch and Prentice (1980). We
focus on the data of 69 patients who waited for a donor heart and received a
transplantation. Denote the waiting time, in days, for these patients as Y7,

and their post-transplant survival as Y5. The waiting times are all uncen-
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Table 4: Power of the permutation test based on maximum CCA

Distribution
n censoring p  method normal contaminated normal lognormal
100 10% 0.1 CCA-TPCW  0.100 0.225 0.062
RRCCA 0.126 0.156 0.122
0.3 CCA-IPCW  0.621 0.676 0.160
RRCCA 0.826 0.838 0.814
0.5 CCA-IPCW  0.984 0.980 0.360
RRCCA 1.000 1.000 1.000
30% 0.1 CCA-IPCW  0.068 0.133 0.006
RRCCA 0.060 0.068 0.064
0.3 CCA-IPCW  0.207 0.334 0.007
RRCCA 0.470 0.475 0.462
0.5 CCA-IPCW  0.564 0.659 0.007
RRCCA 0.962 0.967 0.969
200 10% 0.1 CCA-IPCW  0.172 0.334 0.092
RRCCA 0.248 0.261 0.225
0.3 CCA-IPCW  0.923 0.929 0.237
RRCCA 0.994 0.990 0.994
0.5 CCA-IPCW  1.000 1.000 0.487
RRCCA 1.000 1.000 1.000
30% 0.1 CCA-IPCW  0.077 0.165 0.007
RRCCA 0.097 0.114 0.101
0.3 CCA-IPCW  0.340 0.528 0.013
RRCCA 0.875 0.832 0.854
0.5 CCA-IPCW  0.782 0.872 0.014
RRCCA 1.000 1.000 1.000
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sored among these patients, and 24 are censored for their post-transplant
survival times. We include two covariates in the analysis: age at accep-
tance into the program (X;), and the mismatch score (X5). The latter is
one of three measures of the degree to which a donor and a recipient are
mismatched for tissue type, and is the only one found to be useful in pre-
vious analyses (Aitkin et al., 1983). Four of the transplanted patients have
incomplete data on mismatch score, and so are not used in our analysis.

We first test the independence between (Xi, X3) and (Y7,Y5). A per-
mutation test of the CCA-IPCW with a significance level of 0.05 does not
reject the hypothesis of independence. However, the corresponding RRC-
CA with the same significance level rejects the hypothesis of independence,
which partially coincides with the dependence conclusion between Y; and
Y, in Shih and Louis (1996). The histograms in Figure 1 show that the
two survival times are heavy-tailed, and that the CCA-IPCW may not be
robust. Even if we apply a log transformation to Y; and Y5, the results of
the permutation tests remain the same.

Next, we conduct a canonical analysis. The first and second canonical
correlations for the RRCCA approach are 0.34 and 0.08, respectively. The
coefficients of the canonical vectors, often used to interpret the canonical

variates, are given in Table 5. It can be seen that Y5 has a mild association
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Figure 1: Histograms of Y7 and Y5 in the real-data example.

with X; and X,, where a; is determined mainly by X;, and to a lesser
extent, by Xs. Thus an older age and a greater mismatch score of tissue

type may result in a shorter post-transplant survival.

Table 5: Canonical vectors of RRCCA in the real-data example

a;: 0.893 0.450 Blz 0.025 -1.000

ay: -0.521 0.854 52: -0.984  0.178

7. Conclusion
We have used the inverse probability of censoring weighting and K-
endall’s rank correlation to construct an RRCCA for survival data with

right-censoring. We have demonstrated the benefits of using the rank cor-
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relation by means of simulations. We could also consider a version of the
RRCCA approach based on Spearman’s rank correlation, where we replace
the unbiased Kendall’s rank correlations in (3.1) with adjusted Spearman’s

rank correlations. Specifically, Tx,y, is replaced with

n

XY = n( Z { zn: a2
=1 56, (

i n (@)

and Ty, x; and ?ylyl/ are replaced similarly with rx, x; and ?ylyl/, respective-

ly. Using a numerical study, we also analyzed this Spearman’s correlation
version of the RRCCA, finding that it performs similarly to, but slightly
worse than Kendall’s version. For the full results, see the online Supplemen-
tary Material. Therefore, we have presented only the Kendall’s 7 version
to conserve space.

Our theory assumes that the censoring variables are uncorrelated, and
so it would be interesting to consider the case when they are correlated.
Here, we would need to modify the probability of the censoring weight
using a bivariate survival function. Estimating bivariate survival functions
is well studied in the literature, yielding, for example, the bivariate Kaplan—
Meier estimate (Dabrowska, 1988). The formulation of the corresponding

RRCCA would be much more complicated, and thus we leave it for future
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research.

Another possible avenue for future work is to extend the proposed
method to include complex data types. The key idea is to construct an
unbiased estimator of the rank correlation for the pairwise underlying pop-
ulation. For instance, we can cope with multivariate interval-censored data
by using a modified Kendall’s 7 statistic (Kim et al., 2015) in our formu-
lation. To handle multivariate missing data with some auxiliary informa-
tion under a missing-at-random assumption, we can apply a similar inverse
probability weighted complete-case estimator (Tsiatis, 2006) to the rank
correlation. These are interesting research topics for future investigation.
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A. Appendix

To simplify the notations, we denote §Ck (X ,Ef)) as §,(j) and S Dl(ifl(i)) as
§l(i), i=1,....nvk=1,....p;l =1,...,q. Let ||-|lcoc be the maximum
absolute value of all elements in a vector. Denote the i.i.d. sample as
WO = (X0 ¥©O §0) @) For any matrix A € RP*9, define Frobenius

norm as [|Allp = (7, 30, [A;H)Y? = {tr(ATA)}Y2, and maximum

norm as ||Al|max = max; ; |A;;|. We have

Al = A% (ATA) < {Z A(ATA I = [|Alle < (00) (| Al max
(7.1)
where s < min(p, q) is the rank of A. We use the capital letter C' and M

to denote generic constants that could vary from line to line.

To prove Theorem 1, we need the following lemmas.

Lemma 1 (Bitouzé et al. (1999), Theorem 1). Let {)?,S)}g;l and {C’,gi)

be independent sequences of independently identically distributed nonnega-
tive random variables with distribution functions F' and G, respectively. Let
ﬁn be the Kaplan—Meier estimator of the distribution function F'. There ex-

i1sts a positive constant M, such that for any positive constant X,

Pr {n1/2||(1 - G)(ﬁn — F)|ls > )\} < 2.5exp(—2M\% + M)).



Robust Rank Canonical Correlation Analysis for Multivariate Survival Data 27

Lemma 2 (Hoeffding (1963)). Let h = h(xy, ..., z,,) be a symmetric kernel
of the U-statistic, U, with a < h(zy,...,2,) < b. For any t > 0 and

n > m, we have

Pr{lU—-EU)| >t} < Qexp{—M}.

Lemma 3. Under Condition (C2), there exists a positive constant M, for

—2

any € > 0, when n > M(75)™*, we have

S(i) S(i)
Pr { max ’<§]zi))2(§l(i))2 _ 1’ > e < Cnexp{—Cn(
k !

€
e+ 1

)’}

(2

foreveryk=1,....p;l=1,....,q.

Moreover, for any 0 < € < 1, when n > 4Me 2, we have

Pr {max ‘(ﬁ)Z(ﬁ)2 — 1‘ > e} < Cnexp(—Cne?)
i 1'g®’ g == P -
k !

Proof of Lemma 3. Let Gy(t) = Pr(X; < t), Gy(t) = Pr(Y; < t), by Condi-
tion (C2), there exist & > 0,7, > 0, such that & < S,ii) <l,n< Sl(i) <1,
G<1-G(V) <Ly <1-G() <Land0< 5 <1,0< 57 < 1.
Denote v = by Dmin q{gk, m}t

If A and B are two positive constants, it can be shown that for € > 0,

|A' — B7!'| > eB™! implies |A — B| > eB/(1 + ¢). Combine this fact
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with Lemma 1, we have
S(i) S(i)
Pr{‘(%y( l(z) _1’ > €
Sy S,

<pre [ (SOREOP (SR> sl s

300) (0 vie QN2 _ (gl o Ve
G = 1> g b+ Pr{ IG5 > g )

~Gi i vie at i v'e
1S9 — 51| > }+Pr{|Sl()—Sl()]> }

4(1+€)

{

<Pr{ GOPUSPR - (SOP1+ (SOPIED - (821> 1}
{
{ 4(1+¢)

5 5

Ve v anE o Ve
4<1+€)}+pr{n 10 =G, = Sl > n 4(1+6>}

SPI {n1/2||(1 — Gk)(gkn — Sk)”oo > n1/2

1/56 ~ V5€
<5 _2 2 M 1/2—
=9 exXP { n{4(1—|—6)} + A 41+¢€) ]’

for some constant M. When Mn'/? (’ﬁf) < n{

4(1+E }2, that is, n >

16M2019(—)"2 = M(=-)"2, we have

T+e 1+e)_ ’

() () (@) (@)
Pr{mlax’(%)?(g(l 1] > e} < npr{((i )2 @“ - 1( > e} < C’nexp{—C’n(Eily}.
k

€

P , hence the second inequality holds. O]

Lemma 4. Under Condition (C2), there exists a positive constant M, for
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any 0 < e < 1, when n > 4Me=2, we have

Pr(|7Tx,y — Txov| > €) < Cnexp(—Cne?),
Pr(|7x,x; — Tx,x;| > €) < Cn exp(—Cne?),

Pf(ﬁ'\mf/ - TYlY/| >e€) < C’nexp(—C’neQ).

Proof of Lemma 4. Rewrite Tx,y, = 4(2)71 Dic hi(W® W) — 1, where

(4) ()
h1(W(i), W(j)) :1 { (gé))Q (g(li))QI(Xlgj) > X}gi))](}/}(j) > Yi(i))
k l
5}(5) (bl(j)

(glgj))z (gwl(j))2

1) > X1y > YM}

is the symmetric kernel of (7x,y;+1)/4. Hence, (Tx,v,+1)/4 is a U-statistic.

Let Up[f] = (Z)_l S A (@D, 20) 4+ f(2D, 2)} /2 denote the empir-
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ical function for this U-statistics. We have

TX, Y~ TXY
4
1 1 1 1

(D)2 (502 (502 (52

=U, [{

5(1) (4) ] ; ] ;
4 (Un o E) (ki) gb(li) [<XIE:]) > X}i ))[(YE(J) > Y}( ))i|
(5% )2 (5,7)?

b 1(xY) > X1 > )]

‘(§£Z)>2 (Sl(li))2 - 1‘ ‘ ‘U [ 5}(;’) ¢li)

< max ! [ A1) s x> v
i (S](CZ))Z (Sl(l))Z (SIE:’L))Q (SZ(Z))Q k k ! l :|
(4) ()
+ (U, — E)[ 5(’1) (li) [<XIE:J) > XIEZ))[<}/l(j) > Yl(i))]
(Sp )2 (5,7)?

PICI0 | R
<$ max [ 2R 00D | 41y (U, — B) |- L (X7 > X1y > v©)
<o (S (517 Al [<s,i’>2 <s§’>2 I
(D)2 ( (2 (i) 4 .
tO(S)P(S)? (Sy)2 (8,72

Under Condition (C2) and the constant v we denoted in the proof of

@ 40 ; , ; ;
Lemma 3, we have 0 < %{(5](;))2 (;:(zi))Q[(X]gﬂ) > Xé@))[(y;(y) N Yl(z)) i

50 gD
(S(J)) (S(J))2

I(Xigi) > Xéj))I(Yl(i) > Y}(j))} < 1/v*. By Lemma 2, for any

e > 0, we have

Pr{ (U, —E)[ o o I(X(j>>X("))I(YU)>Y“’>)” >e}<2€xp(—0n62)
B R |

B B[54 1(x 5 x> vO)|| < 1, therefore, b
ecause (s“))? Sy (X > X)) 1YY > YY) || <1, therefore, by
Lemma 3, there exists a positive constant M, for any 0 < ¢ < 1, when

n > 4Me 2, we have

Pr(|Tx,v;, — Tx, ;| > €) < Cnexp(—Cne?).
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The other two inequalities can be shown in the same way. O]

Lemma 5. Under Condition (C2), there exists a positive constant M, for

any 0 < € < 1, when n > 4Me=2, we have
~ n
Pr(||[Sxy — Sxv| =€) < Cnpq exp(—C’p—qe2),
Pr(||Sxx — Sxx|| > €) < Cnp® exp(—C—€?),
p

Pr(|[Syy — Syvl|| > €) < Cng? exp(—C—¢?),
q

which means,

~ logn
[Sxx = Sxvll = 0,(4/ H=),
~ 2log np?
[Sxx = Sxx| = 01/ =),
~ 2log ng?
ISyy = Syv| = Op(y/ %)-

Proof of Lemma 5. By Inequality 7.1, the subadditivity of probability and

Lemma 4 , we have

Pr(|[Sxy — Sxv |l > €) < Pr{[Sxy — Sxyllmax > €(pg) "/}
< paPr{|Tx,y; — Tl > e(pa)?}
n o
< Cnpgexp(—C—e”).
pq

Let € = O(\/%), we have the desired conclusion. The other two

inequalities can be shown in the same way. O
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Lemma 6. Under Condition(C1) and (C2), there exists a positive constant

M, for any 0 < e < 1, when n > 4Me2, we have

a [ pqlognpgq 1
1Sxy || = Op( T) + Op(;)-

If further pqlognpg = o(n) holds, then
[Sxxll = 0,(1).
Proof of Lemma 6. Since
ISxxll < ISxy — Sxvl| + [Sxx.
it is a direct result from Lemma 5. O

Lemma 7. Under Condition(C1) and (C2), there exists a positive constant

M, for any 0 < e < 1, when n > 4Me2, we have
Pr1 [Sxxl > L < Cnp? exp(—C’ﬁez)
o= gy = a
Prd STl > ——— b < Ongexp(—C2e).
TRl ) T ¢?
If further p? lognp® = o(n) and ¢*logng® = o(n) hold, then

ISxxll = O, (1),

ISY4 1l = O,(1).
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Proof of Lemma 7. For any symmetric matrix H, we have the fact that

A_l

min

(H) = Apax(H™1). If A and B are two positive constants, it is shown

in the proof of Lemma 5 of Fan et al. (2011) that for € € (0,1),

1
1—¢

A7t — B > ( —1)B™!  implies |A— B| > €B.

Combine these two facts, we have

~_ 1 ~_ 1 _
Pr{ 18251 2 g | = P18k = I8

K — €

o~ _ 1 _
< Pr{ | IS5l - IIS3ll| = (7— — DIISz I}

< Pr{Amin (Sxx) — Amin(Sxx)| > €Amin(Sxx)}
S PI‘(||§XX — SXXH Z IiE)

< Cnp? exp(—C%eQ).
p
The fourth inequality follows from the fact that
[Amin (A) = Amin(B)] < max{|Amin (A — B)[, [Amin(B — A)|},

for any symmetric matrices A and B, which is also proved in the Lemma 5
of Fan et al. (2011). And the fifth inequality follows from Lemma 5.

For a fixed ¢, if lognp? — CI%EQ — —00, we have
ISxxll = Op(1).

The result for ||/S\§1Y|| can be shown in the same way. O
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Lemma 8. Under Condition(C1) and (C2), there exists a positive con-
stant M, for any 0 < € < 1, when n > 4Me 2, if p*lognp* = o(n) and

q?log ng® = o(n) hold, we have

1S3k — Sxkll = 0,(1),

1ISvy — Syl = 0,p(1).

Proof of Lemma 8. By the submultiplicativity of matrix norm, Lemma 5

and Lemma 7, we have
1Sxx—Sxx |l < ISxx[I-Sxx—Sxx|-[Sxxl = 0p(1)0,(1)O,(1/K) = 0,(1).
The second equation can be proved in the same way. O

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Combine triangle inequality with Lemma 5, Lemma
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6, Lemma 7 and Lemma 8, we have

1S3 Sxy Sy Syx — SxxSxvSyySvx||
<[ISx%Sxv Sy Syx — SxkSxvSyy Syx|
+ 1S3k SxySyySvyx — SxxSxySyySvx|
<1183 Sxvll (1854 — S I - ISkv | + ST 1l - [Sky — Sk |l)
+ (1183 — Skl - Sxv | + ISkl - 18xv — Sxv ) 1S4 Sk |
<[ISxk - ISxx [ - 1S5y — Syvll + 1S9y I - ISxv [l - Sxv |l - Sxk — Sxkl
+ (IS5l ISxv |l + 1S3kl - ISxv ) IS5 - 18y — Sy

0,10, (1)F0,(1) + O, )0(2)O,(1)0, (1)

+{0,000,1) + 0,110, } O, oy
=0,(1).
O
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