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The mainstream theory for high-dimensional regression assumes that the under-
lying true model is a low-dimensional linear regression model. On the other hand,
a standard technique in regression analysis, even in the traditional low-dimensional
setting, is to employ the Box-Cox transformation for reducing anomalies such as non-
additivity and heteroscedasticity in linear regression. In this paper, we propose a new
high-dimensional regression method based on a nonparametric Box-Cox model with
an unspecified monotone transformation function. Model fitting and computation
become much more challenging than the usual penalized regression method, and a
two-step method is proposed for the estimation of this model in high-dimensional set-
tings. First, we propose a novel technique called composite probit regression (CPR)
and use the folded concave penalized CPR for estimating the regression parameters.
The strong oracle property of the estimator is established without knowing the non-
parametric transformation function. Next, the nonparametric function is estimated
by conducting univariate monotone regression. The computation is done efficiently
by using a coordinate-majorization-descent algorithm. Extensive simulation studies
show that the proposed method performs well in various settings. Our analysis of the
supermarket data demonstrates the superior performance of the proposed method

over the standard high-dimensional regression method.
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1 Introduction

In a regression problem, let ¥ be the response variable and (x1,...,x,)T be the vector of covari-
ates. When p diverges with the sample size or even exceeds the sample size, sparse estimation
stands at the center of the stage of high-dimensional linear regression. The LASSO (Tibshirani,
1996) and the concave penalization (Fan and Li, 2001) are two mainstream penalization meth-
ods. The key idea is that sparse penalization encourages a sparse estimator and also reduces
the estimation variability. A large number of papers have been devoted to the numerical and
theoretical study of penalization approaches in sparse estimation. Readers are referred to Fan,
Li, Zhang and Zou (2020) for a comprehensive treatment of this topic. The typical theoretical
setup for modern high-dimensional regression methods begins with the following true model:
Y = Z xjBj+e (1)
jeA
where A represents a small subset of important variables and the error & is assumed to be
independent identically distributed (i.i.d.) with a common variance. The theoretical model
(1) may be insufficient in practice even in the low-dimensional case. The anomalies such as
non-additivity and heteroscedasticity that violate model (1) arise in many situations. As a
remedy, Box and Cox (1964) assumed that a (normal) linear model could be appropriate after a
parametric power transformation has been applied to the response. Specifically, they modified
the family of power transformations introduced by Tukey (1957) and proposed the following
transformed linear model:

Yy« =x"B+¢e, &~N(0,0?), (2)

where the transformation is from the scaled power family,

yo _ (Yt —-1)/a, if 1#0;
log(Y), if A =0;

with A unknown. Box and Cox (1964) discussed the inferences about the transformation param-
eter A4 and about the parameters B of the linear model by maximum likelihood and Bayesian
analysis. The Box-Cox model was further developed by Draper and Cox (1969), Bickel and
Doksum (1981), Carroll and Ruppert (1981), and Carroll (1982), among others. Since that



time, the Box-Cox transformation technique has enjoyed wide practical use and considerable
success. Nowadays, it is a standard technique covered in most applied regression textbooks
(Draper and Smith, 1998; Weisberg, 2005).

It is interesting and desirable to develop the high-dimensional version of the Box-Cox regres-
sion model for applications. In this paper, we consider the following non-parametric transformed
linear model:

g¥)=x"B+e, &~N(0,1), (3)

where g(-) is an unspecified monotone increasing function. Because a scaling parameter can
be absorbed into the monotone function g(-), we assume that the error variance is one. Notice
that the essential idea of the classical Box-Cox model (2) is to achieve additivity, normality
and homoscedasticity via data transformation. Our model does the same but avoids using a
parametric transformation. Thus, we name (3) the nonparametric Boz-Cox regression model. In
the high-dimensional case, B is assumed to be sparse and x7B = )’ ;¢ # x;8;, where A represents
the unknown subset of important variables. We avoid the parametric Box-Cox transformation
in our model for some good reasons. First, despite the popularity of Box-Cox transformation,
often we are not certain about the correct form of the right transformation. Any pre-chosen
parametric form can suffer from mis-specification for a given application. Therefore, it is more
desirable to use a data-driven transformation. Second, previous theoretical studies on the Box-
Cox model suggested that assuming a parametric transformation does not offer any theoretical
advantage. In the usual low-dimensional settings, Bickel and Doksum (1981) pointed out that
the cost of estimating A in the Box-Cox model could be very high. We can only expect this
issue becomes more severe in high dimensions.

It is worth pointing out that many researchers have considered more flexible forms of the
Box-Cox model in the literature. Han (1987) considered a general transformation model: ¥ =
D-F(x7B,u), where the composite transformation D-F is only specified that D is non-degenerate
monotonic and F is strictly monotonic in each of its variables. For the low-dimensional case, Han
(1987) proposed the maximum rank correlation (MRC) estimator for estimating the direction
vector of B, i.e., B/l|Bll2. The MRC estimator is shown to be root-n consistent and has an
asymptotic normal distribution (Sherman, 1993). The model considered in Chen (2002) assumes
g(Y) =x7B+¢ but the distribution of ¢ is also unspecified. Chen (2002) proposed a rank based
estimator for B under a normalizing assumption 8; = 1. Our model assumes the error is N(0,1)

so that we can also directly estimate B and then make prediction about Y. Note that the



optimal prediction function for Y under the squared error loss is the conditional expectation of
Y given x which depends on the distribution of €. More importantly, our model can be well
estimated under the ultra-high dimension setting, while it remains an open question how to
extend the methodology and theory for these more flexible models (Chen, 2002; Han, 1987;
Sherman, 1993) to the ultra-high-dimensional setting. Only recently, the rate of convergence
of MRC under diverging dimensions was established (Fan, Han, Li and Zhou, 2020) where p is
still assumed to be much less than n. The theoretical property of MRC is still unknown when
p > n. Moreover, the computation of MRC is very challenging when p is high, which would
be a practical concern. For high-dimensional regression analysis, the non-parametric Box-Cox
model is a viable choice and ready to be applied in applications.

We now elaborate more on our model-fitting procedure for the nonparametric Box-Cox model
when p is large. Consider an idealized setting where the true B is given, then the estimation
of g function becomes a univariate monontone regression problem which has been fully studied
in the literature. Thus, the most challenging part of model-fitting, especially when p is large,
is how to estimate B optimally and select the right subset of variables. The classical Box-Cox
model is fitted via maximum likelihood in which the transformation parameter and B are jointly
estimated. Bickel and Doksum (1981) analyzed the maximum likelihood approach and pointed
out that the estimation of the regression parameter is unstable and the cost of not knowing A
could be enormous since the inference relies on the estimated transformation parameter. In the
high-dimensional setting, this issue cannot be resolved by using a sparse penalization technique
in the maximum likelihood approach, because this issue remains even we knew the true support
of B. This motivates us to consider a new approach to estimating .

Our solution is a new two-step method for the estimation of the non-parametric Box-Cox
regression model (3). This method separates the estimation of the regression parameters and
the estimation of the transformation function into two steps. Firstly, we focus on the regression
parameter which is the most important and crucial part in high-dimensional regression. Note
that we have to deal with a sparse estimation problem with a nonparametric g(-) function in the
response. Our estimator of B is based on the fact that a probit regression model is obtained from
(3) after turning the response variable into a dichotomous variable. Then, a sparse penalized
probit regression estimator is derived for estimating 8. As multiple probit regression models can
be made from (3), we further combine those estimators via a novel technique called the composite

probit regression (CPR). We prove the optimality of our estimator by establishing the strong



oracle property of the folded concave penalized CPR. Moreover, the proposed estimator can
be computed efficiently by using the a coordinate-majorization-descent algorithm. Once B is
well-estimated, the estimation of transformation function g(-) is a univariate regression problem

n

which can be solved by conducting monotone regression on the working data {(x/ ﬁ, vi)}i, where

B is the estimated parameter. There are plenty of mature methods in the literature devoted
to conducting monotone regression (Dette et al., 2006; Hall and Huang, 2001; Mammen, 1991;
Ramsay, 1998). In this work, we apply the monotone smoother proposed by Dette et al. (2006)
which has nice asymptotical properties and is implemented in a public R package.

The rest of the paper is organized as follows. In section 2, the model-fitting methodology is
discussed with greater details. In section 3, we discuss the folded concave penalized composite
probit regression, including its computational as well as theoretical properties. Simulation
results are presented in section 4, and in section 5 we apply this new model to analyze the

supermarket data. We conclude the paper with a discussion section. All proofs are relegated to

an appendix.

2 The Two-Step Methodology

2.1 Estimation of 8

Consider estimating the parameter 8 in our model (3) based on 7 i.i.d. observations {(x;, y;)},.

Given a user-chosen threshold yg, we have

P(Y > yolx) =P(g(¥Y) = g(yo)lx) = P(e = g(yo) — xTBlx) = ®(-g(yo) +x7 ),

where @(-) is the cumulative density function (CDF) of standard normal distribution. This
is a direct consequence of the non-parametric Box-Cox model. Thus, we create new response
variables y; = Iy, »y,) and then {(y;,x;)}, follow a probit regression model with intercept
—g(yo) and regression coefficient . We can consider multiple threshold levels and then obtain
several probit regression models. Note that the choice of threshold values only affects the
intercept term in the corresponding probit model but not the regression coefficient. In order to
borrow strengths from those probit regression models, we propose to simultancously consider
multiple probit regression models and aggregate their results. Let {y(()k), k=1,---,K} be the

sequence of threshold values, yi; = 1 and by = (b1g,- -+ ,bko)T. The penalized composite

k
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probit regression estimator chpr is defined as the solution to the following optimization problem:
K 1 n p

min » wi{= ) |=Vkih(x] B —bko) —log(1 - ®(x[B - bko)) |+ ) pallBjD), 4

B.bo ; {I’l 1:21 [ L i i ] JZ_; J ( )

where the first term is the weighted summation of K negative log-likelihood functions with

composite weights wy’s and h(n) = log (1%()’(73])). The penalized composite probit regression

shares the spirit of the penalized composite quantile regression (Zou and Yuan, 2008) in which

the loss function is the weighted sum of loss functions for several quantile regression models.
The folded concave penalization (Fan and Li, 2001) is used in (4). The local linear approxi-

mation algorithm (Zou and Li, 2008) is applied to obtain an estimator with the strong oracle

property. See details in section 3.3.

2.2 Estimation of g(-)

If we define Z = x7 B, then our model (3) becomes
Z=g(Y)+¢&',&'=-e~N(0,1), (5)

Once parameter B is estimated, the monotone function g(-) can be estimated by conducting
monotone regression on the working data {(x] ﬁ, yi)}’,. Univariate monotone regression has
been extensively studied in the literature (Dette et al., 2006; Hall and Huang, 2001; Mammen,
1991; Ramsay, 1998). To fix idea, we adopt the monotone smoother proposed by Dette et al.
(2006) whichi is constructed in a three-step procedure.

Denote z; = x] ,l§, fori =1,---,n. It starts with an unconstrained estimate of the regression

function, say the classical Nadaraya-Watson estimate g(-):

?:1 Ky ((zi —2)/hr)yi
;L:l K, ((zi —2)/hy) '

In a second step, a density estimate of the observations (¢71) (U;) is calculated, which is inte-

§(2) = (6)

grated to obtain an estimate of the inverse of the regression function:

1 Y 5(i/N) — u

~—1 8

t) = — E Ky|=—=——]du, 7
g1 (1) th[“’i:l d( Iy (7)
where K, and K4 denote symmetric kernels with compact support and finite second moment,
and h,, hg are the corresponding bandwidths converging to 0 with increasing sample size n.

The estimate gf,‘l is isotonic when the kernel K, is positive. So an isotonic estimate of the

regression function g; is simply obtained by reflection of the function g;l in the line y = x. The



asymptotic normality of this monotone smoother is also established in Dette et al. (2006). The
R package monreg is used for the implementation of this method (https://CRAN.R-project.

org/package=monreg).

3 Penalized Composite Probit Regression

Our major theoretical contribution is to show that the regression parameter in the non-parametric
Box-Cox model can be optimally estimated by the penalized composite probit regression esti-
mator defined in (4) in section 2.1. In this section, we give a full account of the penalized CPR.
We first reformulate the probit regression problem as a large margin classifier. Then we develop
an efficient algorithm for solving the penalized CPR estimator. Finally, we show the strong

oracle property of the estimator.

3.1 Probit regression as a large margin classifier

In a binary classification problem, we are given n pairs of training data {(x;,y;)}?; where
x; € RP are predictors with the first being identity predictor, and y; € {-1,1} denotes class
labels. A large margin classifier uses a margin-based loss function L(Y, f(x)) = L(Y - f(x)).
By using {-1,1} to code the class label as opposed to {0,1} we can reformulate the logistic
regression model as a large margin classifier with the loss function being L(z) = log(1 + ™).
We show that the same can be done for the probit regression which is typically introduced as a
maximum likelihood estimator.

Note that the probit regression model assumes that P(Y; = 1|x;) = ®(x/ ) and P(Y; = —1|x;) =
®(-(x]B)), where @(-) is the CDF of standard norm distribution. Equivalently, we can use a
unified formula

P(Y; = yilx;) = ©(5i(x] B)). (8)

The negative log-likelihood function (scaled by n) of the probit regression model then becomes

(B = 3 L), ©)
i=1

where L(t) = —log(®(r)) is the loss function induced by the probit model, named as probit
regression loss function, and t; = y;(x B) is the margin of the i-th pair of data.
The graph of probit regression loss function L(t) = —log(®(¢)) is illustrated in the left panel

of Figure 1. Its second derivative is shown in the right panel. It can be seen that the probit loss



function is strongly convex and its second derivative is bounded below 1. These two properties

of the probit loss function are formally established in the following lemma.

Lemma 1. The probit regression loss function L(t) = —log(®(t)) has the following property:

_ e (W)

2
= o0 + —) € (0,1).

L)
N0}

0.25-

Figure 1: First panel: Plot of probit regression loss function L(t) = —log(®(t)). Second panel: Plot of

second derivative of probit loss funcion L (t).

By using the probit loss function, we can rewrite the penalized composite probit regression

estimator ,épCpr as the solution to the following equivalent optimization problem:

K n P
. 1 .
m},nz Wk {— Z L(yri(x[B - bko))} +ZP/1(|ﬁj|) =: F(B,bo) (10)
Bbo i = =1
My, (B.bo)
where yi; = =1 if y3; = 0 and yi; = 1 if y§; = 1. The reformulation of the objective function

makes it easier for us to derive the following computing algorithm.

3.2 Computing algorithm: LLA-CMD

To solve the folded concave penalized composite probit regression problem (10), we consider
combining the local linear approximation (LLA) algorithm (Fan et al., 2014; Zou and Li, 2008)
and the coordinate-majorization-descent (CMD) algorithm (Yang and Zou, 2013). Details of

the computing algorithm are discussed below.

Outer loop: local linear approximation The local linear approximation (LLA) algorithm

(Zou and Li, 2008) takes advantage of the special folded concave structure and utilizes the



majorization-minimization (MM) principle to turn a concave regularization problem into a se-
quence of weighted ¢; penalized problems. Let (ﬁ,l;o) be the current estimate. The folded

concave penalty could be majorized by a local linear approximation function:
D paUBi) < D" paBi) +pi (B DB - 1B, (11)
J J

which is the best convex majorization of the concave penalty function (Theorem 2 of Zou and
Li 2008). Then the objective function of (10) could be majorized by a weighted ¢; penalized

problem:

My (B.bo) + Y pallBiD) + po (BN (181 = 1B;1). (12)
J

The details of the LLA algorithm are summarized in Algorithm 1.

Inner loop: coordinate-majorization-descent For our weighted ¢; penalized composite pro-
bit regression problem (19) within each LLA iteration, we may also apply the coordinate de-
scent algorithm (Friedman et al., 2010) which has been successfully used in solving some high-
dimensional models. In the case of probit regression, we need to pay attention to computer
overflow errors that may occur during the computation of the CDF ®(-). Standard algorithms
like Newton-Raphson are very sensitive to large values of the linear predictor (Demidenko, 2001).

We prefer to use a numerically stable and efficient algorithm to solve (19). Due to the good
property of probit regression loss given in Lemma 1, that is, the second derivative of the probit
regression loss function can be bounded by 1, we can fix the computer overflow error issue by
using the coordinate-majorization-descent algorithm (Yang and Zou, 2013) which only uses the
gradient information of the composite probit loss function.

Let (,l},l;o) be the current estimate. Define the current margin ry; = )’)ki(xiT,[} - Eko) for
k=1,---,K,i=1,---,n and current {; weights w; = p§(|ﬂ~,|) for j =1,---,p. To update the
s-th coordinate of B, define the F function:

- K 18 .
F(BslB,bo) = )" wi {; D L(Grixis(Bs = By) + rk,->} + @Bl (13)
k=1 i=1

By Lemme 1 and j}ii = 1, this F function can be majorized by a penalized quadratic function

defined as

+wslBsl. (14)

o K 1 n ~ 1 ~
Q(BslB.bo) =2 ) wic-~ > [L(rm + L' (rii) Veixis (Bs = Bs) + %55 (Bs = Bs)°
k=1 i=1



We can easily solve the minimizer of the majorization function by a simple soft thresholding

rule: K
- - = Y Wik 2 L (ki) Yrixi Vs
?QWZS Bo+ Zk_l kZ,;,l 2( ki) Vki ts’ . (;)s = if &g # 0; (15)
Zi:l Xis n Zi=1 Xis
where S(z,t) = (|z] — t)+sgn(z) and
K n ’ N4
5 - =D Wi oy LN(rei) Yrix;
?ew :ﬁs + Zk—l k 21_1 ( kl))kl lS’ if & = 0. (16)

2?:1 XL'QS
We then set B, = ﬁ?ew as the new estimate.
We use the same trick to update the k-th intercept byo. Similar to (14), we consider mini-

mizing the quadratic majorization:

n

ONIANEEDY {L(m) # L (k) (=30 (ko = bxo) + 5 (bro ~ Bko>2} . an

i=1
which has a minimizer

- - 1 & , }
big" = bro + - Z L' (rii)yki- (18)
=1

To sum up, the CMD algorithm for solving the weighted ¢;-penalized CPR is given in Al-
gorithm 2. We have implemented both Algorithms 1 and 2 in an R package copor which is

available from the authors upon request.

Algorithm 1: The LLA Algorithm
1: Initialize B© = gnitial and compute the adaptive weight

N ~(0 ~(0)\T 1 1400 IO
60 = (0", 0)" = (pR(B"D, - . p31BD)
2: Form=1,2,---, repeat the LLA iteration till convergence

(2.a) Obtain (8™, I;ém) ) by solving the following optimization problem
(B b™) = axgmin My (B, bo) + 3 0" - 181, (19)

(2.b) Update the adaptive weight vector @™ with (Z);.m) = p;(lﬁf-'") .

3.3 Strong oracle property

Throughout this paper, we follow the definition given by Fan et al. (2014) and assume that the

penalty p(]t]) is a general folded concave penalty function defined on t € (—co, c0) satisfying

10



Algorithm 2: The CMD algorithm for solving (19).
1: Input the weight vector w.

2. Initialize (B, bo).

3: Iterate 3(a)-3(b) until convergence:
(3(a) Cyeclic coordinate descent for coefficients: for s = 1,2, -, p,
(3.a.1) Compute the current margin ry; = j}k,-(xiTﬁ - bro).

(3.a.2) Compute

5 T W S L () iXis o -
S (BS + ;11 x2 > 1 Zn £ 2 > lf U)S '-'é 07
=1 Nis 7 i1 X
anew _ (3 = Diee1 Wk Doy L' (rki) YkiXis e~
so=Ps+ — s if &g =0.

i=1 Yis

Qnew _
s =

(3.a.3) Set By = eV,
(3(b) Cyclic coordinate descent for intercepts: for k =1,2,--- , K,
(3.b.1) Recompute the current margin ry; = j)ki(x;ﬁN — bio).

(3.a.2) Compute

- - 1w, 3
bro' =bro+ ;ZlL (rki) Vi
i=

(3.a.3) Set by = 1528“’.

(i) pa(lf]) is increasing and concave in t € [0, c0) with p,(0) = 0;
(ii) pa(lz]) is differentiable in 7 € (0, 00) with p’,(0) := p/(04) > a14;
(iii) p/;(#) = a1 for t € (0, azA];
(iv) p/(t) =0 for t € [aA, o) with the pre-specified constant a > as;

where a; and ag are two fixed positive constants. The above definition extends previous works
on the SCAD and the MCP (Fan and Li, 2001; Fan and Lv, 2011; Zhang, 2010). The derivative
of the SCAD penalty is defined as

A—t
%I{,M}, for some a > 2, (20)

pot) =A<y + P

with a; = as = 1, and the derivative of the MCP is p/ () = (1 —t/a)s, for some a > 1, with

ai=1-a'tand ay = 1.

11



For ease of analysis of strong oracle property, we now consider the composite probit regression

model based on observations {(x;, y1;,- -, Vki)}i—;, where yx; € {0,1}, and define
(xkyr Y1k
B bg e RK*P, xf:(_ek), xk=| | k=] : |,
Xi k N
(2,7 Ynk

where e; € RK with the k-th element 1 and all others 0. Then the negative composite probit

regression likelihood function can be written as

K n
Mo(B) = ) wi {% D [FFuh((x)T8) — log(1 —cb<<xf>TB>)]}, (21)
k=1 i=1

@
where h(n) = log (]_(1()7(77)])).
In high-dimensional data analysis, the dimension p of the parameter B is assumed to be larger
than the sample size n. Its support set is defined as A = {j : B; # 0} with cardinality s assumed

to be much smaller than p: s < p. The oracle estimator is then defined as the minimizer that

knows in advance the true support set:
Boracle = (Bgace 0y = arg min M, (8B). (22)
B:Bﬂr=0

The oracle estimator is unique due to the strong convexity of composite probit regression. The
oracle estimator is not a genuine estimator, but it can be used as a theoretic benchmark for
other estimators. An estimator is said to have the strong oracle property if the estimator equals
the oracle estimator with overwhelming probability (Fan and Lv, 2011). Theorem 1 and 2
in Fan et al. (2014) state that as long as the problem is localizable and regular, we can find
the oracle estimator by using the one-step local linear approximation and the LLA algorithm
actually converges after two iterations. These conditions can be established for the composite
probit regression model.

Define H* (8) = diag {#%l =1, ), P (B) = (@), - @), and 54(B) =
diag {y,-kL”(nf.‘) +(1- yik)L”(—nl’.‘),i =1,--- ,n}, where nf‘ = (xf.‘)TB. We also define four useful
quantities: Q1 = maxy; max;ea dmax (%(X;)Tdiag{lej)l}X;), where diag{lej)l} is a diagonal

matrix with elements {|xl].‘j|}lf’:1,

K 1 -1
0> = (Z Wk;(X;)TE"(B*)X;) :
k=1

lo

12



where B* is the true parameter,

K -1
wi(X5)TEN(87) XY, :
k=1

Q3=

K
D wr(X5)TENB) XY,
k=1

loo

P((x5)T8")
B ((xf)78) (1-0((xF)T57)

and Q4 = max; i { }, where 8* is the true parameter.

Theorem 1. Suppose the minimal signal strength satisfies (Ao) : [|Bgllmin > (a +1)A. Given a

folded concavs penalty pa(-) satisfying (i)-(iv), let ag = min{1,as}. Under the event
& = (18" ~ B"[lmax < aod} O (| Vot Ma(B ) lnax < a1} 0 {IBF* " [lmin > ad},

the LLA algorithm initialized by @initial converges to Boracle after two iterations. Therefore,

cpr_ sepr

under the composite probit regression model assumption, with probability at least 1—50—0, 9 s

the LLA algorithm initialized by @initial converges to Boracle after two iterations, where &y =

P(”Bim’tial - B*Hmax > Cl()/l),

M 4

2n a%/lQ)

5T =2 21 i G ! +2(K+p—s)
=2sexp |- min s —s)exp|—
1 P\7o2m M 1205+ 1P 16r2020352 u P

2
with M = max;ea {% i1 (25:1 wk|xl{‘j ) }; T = maxyer |L"”'(7)|(x 0.3) and

or 2n . 1 1 2
O = 2sexp | - min , —= (IB% || min — ad .
2 ( oM {16T2Q2{Q§s2 4Q§< llin = a2)

Under fairly weak assumptions, 6?” and 6§pr go to zero very quickly. The remaining challenge
is to bound 6y = P (Ilf?initial - B*|lmax > ao/l). We consider using the ¢;-penalized M-estimator

as the initial estimator, that is,
fglasso = arg mzi;n Mn (B) + /hasso”ﬁ”ﬁ . (23)

Theorem 2. Let m = max; max;_ |xl{‘j| and define the simple general invertibility factor (GIF):

TV2M,(8B*
(O): Kepr = min WV Mn(B)u € (0, ), (24)
u#0: [uznc (B)lley <3llua(B)lley+llu@o) e, [|ulle, ulle,
if the Lasso parameter Ajgsso satifies
. (GIB* 1) +m=2 = §1IB*|le, 25)
lasso < ,
asso 5ch,,,
then with probability at least 1 — 2p exp (—@ﬂ?ﬂsso), we have
”élasso - B*”max < 5KZ;T/11¢1550- (26)

13



The condition (C) on the simple GIF is the generalization of the restricted eiganvalue con-
dition (Bickel et al., 2009). In light of Theorem 2, we can obtain the following corollary that

bounds g, 61 and d2 simultaneously.

Corollary 1. Under assumptions (Ao) : |B4llmin > (a +1)A and (C), if 1 = 5diasse ype LLA

aOchr,
algorithm initialized by Blasso converges to Boracle after two iterations with probability at least

2 cpr cpr
L= 2p exp (_QQEM/llasso) - CSl - 62 .

Corollary 1 suggests that sometimes it is good to use zero to initialize the LLA algorithm. If
@initial — 0, the first LLA iteration gives a £1-penalized composite probit regression estimator
with Alasso = p/(0). For both SCAD and MCP, p/,(0) = A. If Adjasso = 4 satisfies requirements

in Corollary 1, then after two more LLA iterations, the LLA algorithm converges to the oracle

estimator with the high probability. To be more specific, we have the following corollary.

Corollary 2. Consider the SCAD/MAP penalized probit regression. Under assumption (Ag) and
(C), if aokepr = 5 holds, the LLA algorithm initialized by zero converges to the oracle estimator

/12) — 5T 5T

after three iterations with probability at least 1 — 2p exp (— 1 5

_n__
202 M

The folded concave penalized CPR is rate optimal adaptive to the unknown transformation
function. This can be seen based on the following argument. If we knew the true g function,
then we could define a double oracle estimator by considering the least squares on (g(y:),X;)i;.
This double oracle estimator is more efficient than the oracle estimator in (22), but the two
have the same rate of convergence. By the strong oracle property, the folded concave penalized

CPR is rate optimal.

4 Numerical Studies

In this section we use simulations to examine the performance of the proposed methodology
under various settings. To fix idea, we use the equal weights in composite probit regression.

The settings of the simulation studies are given below. We consider the monotone trans-

exp((1=2)/3)
1+0.5((1-2)/3)2"

parameter B* is set to be B8] = (3,1.5,0,0,2,0,-5)/2 with support set A; = {1,2,5}, and
B = (0.85,0.85,0.85,0.85,0.85,0,,_5)/\/5 with support set As = {1,2,3,4,5}. The covariates

formation function: g;l(t) = %(2t -3 4 % and g;l(t) = The true regression

are generated from x ~ N,(0,X) with covariance matrix having the first-order autoregressive

structure X = (p'i'j|)pxp or the compound symmetry structure £ = (p’ti#/1) ., with parameter
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p = 0.5 or 0.8. The number of observations and predictors (n, p) are set to be (200, 1000) and
(400, 2000). For each combination of the above options, 100 replications are done.
We include the usual penalized least squares without regarding to the transformation func-

tion (abbreviated as LS), an oracle-assisted estimator that fits a penalized least squares on

{(xi,g(yi)}, (abbreviated as OA):
- 1 & ) L
0a _ . N T .
B —argng%;(g(y,) x/B) +;m(lﬂjl), (27)

and an double-oracle-assisted estimator that fits a least squares on {(x;)a, g(y:)}/; (abbreviated

as DOA):

R 1 &
doa : T R\2
= ar m = i) —X. . 28
B g, min_ o ;:1 (&(yi) —x[B) (28)

For the composite probit regression, we use the 25%, 50% and 75% empirical percentiles of the
responses to dichotomize the response variable and combine the three probit regression models
by using the equal weights (abbreviated as NBC). We use the SCAD penalty with a = 3.7 as the
folded concave penalization for sparse estimation of B8. The penalization parameter A is tuned
from 5-fold cross-validation. When applying the LLA-CMD algorithm for obtaining chpr7 we
compute the three-step LLA solution initialized by 0.

The bandwidths h, and hg for estimating the monotone function g(-) in the second step are

chosen as h, = (6%/n)'/?, hy = h3, where

1 n—1 )
P~ 2 - — . —_— .
TP ;(Zmu z11)” s

here z[1], -+, z[a] denote the observations ordered with respect to their corresponding y-values,
as suggested by Dette et al. (2006).

The optimal prediction function for ¥ under the squared error loss is E[Y|x], which equals
Een(0,1) [¢7'(xTB" + )] under the nonparametric Box-Cox model. Our prediction of Y is

obtained by Monte Carlo method:

ch
E[Y|x] = Nl Z g_l(xTﬁ+ss), (29)
me o—1

where {g; }é\/:“l‘c is a Monte Carlo sample from N(0, 1), Ny is set to be sufficiently large. The

M.S.E between y;’s and E[y,-|x,-]’s on an independent validation set is used to measure the pre-
diction performance of our model. For the oracle-assisted and double-oracle-assisted estimator,

the prediction is given by Ez-n (0,1 [ (xT ,l§+é)] where £ is independent of the training set, thus
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independent of ,é The prediction errors of oracle-assisted and double-oracle-assisted estimators

can be served as the benchmark for our method.

Composite Probit Loss

Figure 2:

1.5

1.0

0.0

-0.5

Figure 3:

43 38 35 27 16 8 4 3 3 3 3 33322210 34 15 3 3 2 1
© 4
. ©@ A
.
< .
Tq e
.
.
~ . o~
= . s 2
. td 2
. & °
. &
o o ©
m A o
| .f ]
o
“ ..“
«© .
o . ;
3 -
. .‘
. o
© | % ny o
(=} A\
\ *

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -3.5 -3.0 =25 -2.0 -1.5 -1.0

log(Lambda) Log Lambda

Left panel: the cross-validation curve for chosing A. Right panel: Solution path of each coeffi-
cient w.r.t. 1. Setting: g1(-), B, = (O.5|i—j|)pxp, (n, p) = (200, 1000).
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Left panel: the oracle observations {(x] B*,y;)} (blue points) and the estimated observations
{(x]B,y)} (red points). Right panel: the estimated monotone function §~'(-) (red curve) is
compared with the true function g7*(-) (blue curve). Setting: gi(-), Bi, T = (0.5,
(n, p) = (400, 2000).
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Table 1: Comparing the performance of estimating the regression parameter vectors of penalized least
squares (LS), nonparametric Box-Cox with composite probit (NBC), oracle-assisted estimator
(OA, defined in (27)) & double-oracle-assisted estimator (DOA, defined in (28)) under different
settings. FEstimation accuracy is measured by the €s-loss. FEach metric is averaged over 100

replications with its standard error shown in the parenthesis.

(g1,p47,n =200, p = 1000) (g2, p7,n =200, p = 1000)
Method | AR(0.5) AR(0.8) (CS(0.5) CS(0.8) | AR(0.5) AR(0.8) CS(0.5) (CS(0.8)
LS 1.410 1.450 1.470 1.550 1.580 1.580 1.600 1.630
0.023)  (0.029)  (0.037)  (0.089) | (0.021)  (0.030)  (0.029)  0.069
NBC 0.238 0.337 0.304 0.896 0.238 0.337 0.304 0.896
(0.127)  (0.233)  (0.194)  (0.349) | (0.127)  (0.233)  (0.194)  (0.349)
OA 0.177 0.278 0.181 0.314 0.177 0.278 0.181 0.314
(0.072)  (0.242)  (0.097)  (0.246) | (0.072)  (0.242)  (0.097)  (0.246)
DOA 0.129 0.181 0.136 0.203 0.129 0.181 0.136 0.203
(0.053)  (0.096)  (0.065)  (0.099) | (0.053)  (0.096)  (0.065)  (0.099)
(g1, 7,1 =400, p = 2000) (g2, 67,1 =400, p = 2000)
AR(0.5) AR(0.8) (CS(0.5) CS(0.8) | AR(0.5) AR(0.8) (CS(0.5) (CS(0.8)
LS 1.410 1.450 1.450 1.510 1.580 1.590 1.590 1.600
(0.016)  (0.023)  (0.020)  (0.046) | (0.013)  (0.020)  (0.018)  (0.024)
NBC 0.166 0.222 0.190 0.488 0.166 0.222 0.190 0.488
(0.075)  (0.116)  (0.100)  (0.288) | (0.075)  (0.116)  (0.100)  (0.288)
OA 0.109 0.141 0.113 0.175 0.109 0.141 0.113 0.175
(0.053)  (0.069)  (0.058) (0.112) | (0.053)  (0.069)  (0.058)  (0.112)
DOA 0.096 0.131 0.093 0.161 0.096 0.131 0.093 0.161
(0.048)  (0.068)  (0.041)  (0.083) | (0.048)  (0.068) (0.041)  (0.083)
(gl,ﬁ;,n =200, p = 1000) (gg,ﬁ;,n =200, p = 1000)
AR(0.5) AR(0.8) CS(0.5) CS(0.8) | AR(0.5) AR(0.8) (CS(0.5) CS(0.8)
LS 1.000 1.070 1.090 1.250 1.100 1.130 1.140 1.260
(0.046)  (0.037)  (0.081)  (0.074) | (0.021)  (0.024)  (0.051)  (0.064)
NBC 0.340 0.736 0.705 1.540 0.340 0.736 0.705 1.540
(0.177)  (297)  (0.277)  (0.291) | (0.177)  (0.297)  (0.277)  (.291)
OA 0.337 0.639 0.384 0.928 0.337 0.639 0.384 0.928
(0.119)  (0.356)  (0.146)  (0.301) | (0.119)  (0.356)  (0.146)  (0.301)
DOA 0.191 0.285 0.204 0.305 0.191 0.285 0.204 0.305
(0.070)  (0.120)  (0.065)  (0.095) | (0.070)  (0.120)  (0.065)  (0.095)
(g1, 85, n =400, p = 2000) (g2, B85, n = 400, p = 2000)
AR(0.5) AR(0.8) (CS(0.5) CS(0.8) | AR(0.5) AR(0.8) (CS(0.5) CS(0.8)
LS 0.957 1.030 0.997 1.170 1.080 1.100 1.100 1.190
(0.022)  (0.033)  (0.039)  (0.091) | (0.013)  (0.017)  (0.023)  (0.067)
NBC 0.193 0.348 0.257 0.990 0.193 0.348 0.257 0.990
(0.078)  (0.180)  (0.137)  (0.270) | (0.078)  (0.180)  (0.137)  (0.270)
OA 0.163 0.335 0.171 0.371 0.163 0.335 0.171 0.371
(0.063) (0.234) (0.061) (0.238) (0.063) (0.234) (0.061) (0.238)
DOA 0.129 0.212 0.142 0.207 0.129 0.212 0.142 0.207
(0.049)  (0.087)  (0.045)  (0.078) | (0.049)  (0.087)  (0.045)  (0.078)
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Table 2: Comparing the prediction performance of penalized least squares (LS), nonparametric Boz-Coz

with composite probit (NBC), oracle-assisted estimator (OA)& double-oracle-assisted estimator

(DOA) under different settings. The prediction accuracy is measured by the M.S.E. between the

response and the prediction on an independent validation set. Each metric is averaged M.S.E.

over 100 replications with its standard error shown in the parenthesis.

(g1, 55,1 = 200, p = 1000)

(g2.B5,n = 200, p = 1000)

Method | AR(0.5) AR(0.8) (CS(0.5) CS(0.8) | AR(0.5) AR(0.8) CS(0.5) (CS(0.8)
LS .168 176 173 .190 .070 .094 .080 .098
(.010)  (.012)  (.015)  (.017) | (.005)  (.007)  (.007)  (.009)
NBC 122 .107 121 128 .050 .058 .056 .066
(.005) (007)  (.006)  (.012) | (.006) (007)  (.016)  (.013)
OA 119 .105 118 112 .041 .048 .046 .047
(.002) (007)  (.002)  (.005) | (.001) (002)  (.001)  (.002)
DOA 118 .102 117 110 .040 .047 .045 .046
(.002)  (.002)  (.001)  (.001) | (.000)  (.001)  (.001)  (.000)
(g1, 57,1 =400, p = 2000) (g2, 67,1 =400, p = 2000)
AR(0.5) AR(0.8) CS(0.5) CS(0.8) | AR(0.5) AR(0.8) CS(0.5) CS(0.8)
LS .168 171 .163 167 .074 .088 .080 .094
(.007) (.008)  (.005)  (.008) | (.003) (.004)  (.003)  (.005)
NBC 126 112 116 .109 .056 .054 .056 .056
(.003) (002)  (.002)  (.006) | (.003) (.004)  (.004)  (.005)
OA 122 A11 114 .102 .045 .047 .048 .044
(001)  (.001)  (.001)  (.001) | (.001)  (.001)  (.000)  (.001)
DOA 122 .110 114 .102 .045 .047 .048 .044
(001)  (.001)  (.000)  (.001) | (.000)  (.000)  (.000)  (.001)
(g1, 85, n = 200, p = 1000) (g2, B85, n = 200, p = 1000)
AR(0.5) AR(0.8) CS(0.5) CS(0.8) | AR(0.5) AR(0.8) (CS(0.5) CS(0.8)
LS 215 .206 .202 .209 .075 .102 .083 .095
(017)  (016)  (.016)  (.012) | (007)  (.010)  (.010)  (.006)
NBC .164 137 137 165 .063 .063 .069 .079
(012)  (.008)  (.009)  (.021) | (006)  (.006)  (.013)  (.014)
OA .161 135 .130 .136 .053 .056 .050 .055
(.006) (007)  (.008)  (.010) | (.002) (.004)  (.003)  (.005)
DOA 154 126 124 122 .050 .051 .047 .048
(.002) (002)  (002)  (.002) | (.001) (001)  (.001)  (.001)
(g1, 85, n =400, p = 2000) (g2, B85, n = 400, p = 2000)
AR(0.5) AR(0.8) (CS(0.5) CS(0.8) | AR(0.5) AR(0.8) (CS(0.5) CS(0.8)
LS .170 183 175 177 .066 .081 075 .091
(.010) (.010)  (.007)  (.008) | (.004) (.005)  (.004)  (.006)
NBC 128 122 135 129 .054 .058 .057 .068
(.003) (004)  (.005)  (.010) | (.006) (006)  (.004)  (.006)
OA 125 121 131 113 .045 .049 .047 .048
(.002) (.004) (.001) (.003) (.001) (.002) (.001) (.002)
DOA 124 118 130 A11 .044 .048 .047 .047
(001)  (.001)  (.001)  (.001) | (.001)  (.001)  (.000)  (.000)
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Figure 2 gives the illustration of estimating B using penalized composite probit regression
under one setting within one replication. The left panel shows the cross-validation curve for
choosing penalization parameter A. The right panel shows the solution paths of each coefficient
in terms of A. Figure 3 gives the illustration of estimating the monotone function g(-) within
the same replication. The left panel shows the estimated observations {(x] ,é, v;)} for monotone
regression and the true observations {(x; 8", y;)}. The right panel shows the estimated monotone
function and the true function. The quantitative results are summarized in Table 1 and Table 2.
In Table 1, we compare the accuracy of estimating the regression parameter of different methods
by presenting the average fs-loss || ﬁ— B*lle, under different g functions and covariance structures.
In Table 2, we compare the prediction performance of different methods by presenting the M.S.E.
between response and prediction on an independent validation set. We can see that LS performs
the worst as expected, because it has an intrinsic bias. Our estimator is slightly worse than the
OA and the DOA and is much better LS. The prediction performance of our method could be

really close to the prediction performance of the OA under many circumstances.

5 Analysis of the Supermarket Data

In our empirical study, we use the supermarket data in Lan et al. (2016). This data set contains
a total of n = 464 daily records. For each record, the response is the number of customers and
the predictors are the sales volumes of p = 6398 products. Both the response and predictors
are standardized so that they have zero mean and unit variance. The purpose of this study is
to identify the products that attract the most customers and to evaluate the impact of those
products on the customers.

We apply the SCAD-penalized least squares (LS), which is the current standard practice for
high-dimensional regression, and our non-parametric Box-Cox (NBC) method to this dataset.
For a fair comparison, we randomly split the data set into two subsets: one for training (232
observations) and one for testing (232 observations). We used the Spearman rank correlation (Li
et al., 2012) to do a variable screening to reduce the dimension to 1000, that is, we picked the top
1000 predictors with the largest Spearman rank correlation with the response. There are many
other variable screening methods in the literature. We chose to use the rank correlation screening
because it is coherent with the nonparametric Box-Cox model. Five-fold cross-validation was use

to select the penalization parameter. It is worth pointing out that we did the variable screening
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Figure 4: Supermarket data. Left panel: The estimated observations {(yi,xiT/;)} (blue points) and the
estimated monotone function g(-) (red curve). Right panel: normal Q-Q plot of the residuals

{&(yi) —x] B}.

within cross-validation to avoid any bias, that is, we used four of the five folds to screen variables
and then fit the model before computing the prediction M.S.E. on the fifth fold. This process
is repeated for each of the five folds. After cross-validation, we again used Spearman rank
correlation screening to pick the top 1000 covariates on the whole training set and fit the sparse
regression models using the chosen penalization parameters. Then, we computed the prediction
M.S.E. between the response and the predicted value on the test set The whole procedure was
repeated 20 times.

The prediction errors of LS and NBC have mean 0.1227 with standard error 0.0125 and
mean 0.1029 with standard error 0.0117, respectively. Compared with the least-squares based
regression model, the nonparamatrix Box-Cox model reduces the prediction error by about 16%.
Left panel of Figure 4 shows the estimated monotone function in our NBC method under one
replication in which the nonlinear trend is very clear. Right panel of Figure 4 shows the normal
Q-Q plot by which we can see that the normal assumption in our nonparametric Box-Cox model

is sufficient.
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6 Discussion

In this article, we have studied the use of a nonparametric Box-Cox regression model as an
alternative to the typically linear regression model for high-dimensional regression. The non-
parametric Box-Cox regression model is less prone to model mis-specification than the typical
linear regression model but also presents greater challenges in model-fitting. We have shown
that we can separate the estimation of regression parameter (which is responsible for variable
selection) and the estimation of the nonparametric monotone transformation function. A rate-
optimal estimator of the regression parameter has been proposed based on a novel penalized
composite probit regression estimator. We have also developed an efficient and stable algorithm
to compute the proposed estimator. Our numerical experiments have confirmed the promising
performance of the new method.

There are several worthy discussion points. We have shown the results of using three probit
regression models in composite probit regression. We have also tried a single probit regression
model and it generally performs worse than the composite one. For sake of space, those results
are not shown in the paper. If we combine more probit regression models, the results may
get further improved, although the computation time is longer. To fix idea, we have used the
equal weights in composite probit regression in the numerical studies. Though the results are
encouraging, it is interesting to study the optimal weights for a given problem. A possible
approach is to check the asymptotic efficiency of the oracle estimator given the composite
weights and then optimize the efficiency with respect to the weights. This approach was studied
in Bradic et al. (2011) for penalized composite quasi-likelihood estimators. We leave it in a

future paper.

Appendix: technical Proofs

Proof of Lemma 1.

Proof. The second derivative of the probit loss function is

L0 =30 o0

(30)

To show that L”(¢) > 0, it is equivalent to show that f(¢) := t®(¢) + ¢(t) > 0. We notice that

f(t) is a strictly increasing function because f’(t) = ®(¢t) > 0. Then it remains to show that
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f(t) > 0 ast — —co. Since 0 > rd(1) > /_too sp(s)ds — 0 as t = —oo by dominated convergence
theorem, then lim;_,_ t®(t) = 0. Therefore, lim;_,_ (t®(¢) + ¢(¢)) = 0.

To show that L”(¢) < 1, it is equivalent to show that G (1) = ®%(r) — ¢%(¢) — te(t)®(t) > 0.
Since lim;—_c G(¢) = 0, then it suffices to show that G’(r) = ¢(¢) [tgo(t) +®(r)(1 +t2)] > 0,
or equivalently, G(7) := to(r) + ®(t)(1 + %) > 0. This can be derived from the facts that
limy - G(¢) = 0 and G’(1) = 2(p(¢) + 1D (1)) = 2£(r) > 0. o

Proof of Theorem 1.
Proof. By Theorem 1 of Fan et al. (2014), we have that under the event
&1 = (18" = B llmax < apd} 0 {[IVi7e Ma(B) inax < a1},

the LLA algorithm initialized by 8™l finds Boracle after one iteration. And by Theorem 2 of

Fan et al. (2014), we have under the event
&2 = {1V M(B7) lmax < a1d} O {IBZ* " lwin > ad},

if Boracle jg obtained, the LLA algorithm will find @oracle again in the next iteration, that is,

@oracle

it converges to in the next iteration and is a fixed point. Therefore, under the event

& = {|IB8M! — B|| nax < agA} N {[IVire Mu (8°729) I max < @14} N {[|IBL2 || min > ad}, the LLA

algorithm initialized by @initial converges to Boracle after two iterations. It remains to bound

01=P (”VﬂcMn(BoraCle)”maX 2 al/l) and 62 =P (“B;{ade“min < Ll/l).
By the definition (22) of the oracle estimator of this probit regression model, the first-order

optimality condition for Boracle jg

i Wi (X;)T HE (Boracley (_yk +pk(1§orac1C)) -0 (31)
k=1

We now use this to bound 62 = P (II@%aCleHmm < a/l).
Let
r = 2Q2 .

k)

K
S wer (X THNB) (7 - pt(87)
k=1

max

and B(r) = {AERK”’,HAﬂﬂmaX <r,Age :0}. Define a map F : B(r) ¢ RK+*P — RK+P,

F(A) = (Fa(Az)T7,07)T with
Fa(Aa) :=

K -1 rk
D wi(xb)TER B x| - [Z wi(XE)TH (8" + 8) (7 - pH(8" + 8)) | +Aa
k=1 k=1
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Our aim is to show

F(B(r)) c B(r), (32)

when
1

< —.
4701055

If (32) holds, by the Brouwer’s fixed-point theorem, there always exists a fixed point A € B(r)

(33)

Zwk (X5)TH (B (5 - p(8Y)

max

such that F(A) = A. It immediately follows that Zk 1 wk(X )THk(B*+A) (y - pk(B* + A))
and Aye = 0, which implies that 8* + A = goracle by uniqueness of the solution to (31). Thus

Hgﬁoracle - B*”max = ”A”max <r. (34)
If further
1 1
D owie (X THEBY) (7%= p58)|| = 55 (1B lhnin — ad) (35)
k=1 " max 2Q

we have r < (IlBj,qllmin - a/l), and then ||1§;1{a°19||min > aAd. Therefore, we have do can be upper

bounded by the following probability:

. 1
( m>mm{4 50T ,2Q (A a@}).

By the Union bound and Hoeffding’s bound, we have

2 . 1 cpr
o ™" {1672Q 20352 4Q2 (185 ”’mn_aﬂ)Q}) o o
4

Zwk (X5 TH (") (5 - p(8Y)

0y < 2sexp|—

We now derive (32). Using Taylor expansion around 0, VA € B(r), for j € A,
Zwk(x( DTHNB +A) (7 + pH(8" +A))
K ~
Zwux(])m"(s ) (-5 + 8 + Zw(x’gj)wz"(B*)kaR,-(Am),
k=1

where Rj(&(j)) = Zle wk(x’(‘j))T (Ek(B* +A(‘,-)) - Ek(B*)) XA with &(j) on the line segment
between 0 and A. Since A zc = 0, we have X*A = X%Ag{. By the mean value theorem, we have
} K
ma R} (A)| < ;wk ma AT, (X Tding { f; | o |(2)'(B(;))I| XA

for Bk being on the line segment joining 8* and B* + A. Using the fact that |(Z*)’ (B(]))I <7,
we have

max|Rj(&(j))| < Z:wk‘ranuAg(H?2 < tnQsr. (37)
JjeA =1

23



Notice that Fg(A#) can be written as

-1 K
: [Z wk(X5)THE (B +4) (7 = pH (8" + )| [ + A

K
[Z wi(X5)TZNB) XY)
k=1 k=1

’

-1 K
- lz wi(X5)THE(BY) (7 - pX(8")) - Ra(A)
k=1

K
D wk(X5)TENBY XY
k=1

where R (A) = (Rj (A(j)),j € ﬂ)T. Then using the triangle inequality to obtain

1 ~
+ —R_';zq (A) )
h max
max

By (37) and the definition of r, we have ||Fa(Aa)|lmax < 5+ Q1Q27sr? < r when the event (33)

K
IFA(AR) o < s - ( 3w (X THAB) (7 - pt(87)
k=1

holds. This established the desired contraction (32).
Next, we prove the upper bound for 6, = P(||V.ze £, (8°72<)||, > a11). By Taylor expansion,
for all j,

K
s % N Y * 1 N 1 Y
VM,(B7+A) = VM (B") + D wilxf ) TER(B) X A+ ~R;(A(p)
k=1
where Rj(&(j)) = Zszl wk(xi‘j))T (Zk(B* + &(j)) - Zk(B*))) X*A and E(j) being on the line seg-
ment between 0 and A. Denote
Ra(A) = (Rj(Aj).j € A)T, Rac(A) = (Rj(A¢j),j € A)T.
Then we obtain
N . - 1 & .1 _
V(8" +A) = Vably(87) + = 3 wi(X5)TZH(B) X5Ax + ~Ra(d),
n n
k=1

and

K
- o N 1 . 1 _
Voo My(B" +4) = Ve My (B°) + Z wi (X )TER (B XE A g + “Rae ().
k=1
Since V4 M, (B8* +A) = 0, we have

Ve My (B +A)
-1

K K
Dk (5TEH B | | S BT B, | [Tkt (8) - TRa(8)
=1 k=
+V 7 M, (B%) + %Rﬂc (A). (38)

Recall that we have proved that (34) holds under the condition (33). Now under the condition
(33) and the additional event

al/l ~ Lll/l
— N VaM, (B* ,

{Hvﬂcm(s*)
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we can follow the same lines of proof as in (37) to show that
IR(A) lmax < TnQ1lIAall7, < TnQysr”.
Noticing that under condition (33),
Q5% = 471010351V AMn(B) 0 < 11V AMn (Bl
which implies that [|R(A)|lmax < 7|VaM,(8*)|lmax. Under the same event and by (38), we have
1V 1 M (B + A) v
< 01+ (IVAM (B s+ [Ren B 11,5 s+ [ )]
< (203 +1) - IVaMn(B") llmax + IVt M (B7)|max < @14

Thus,

ad 1

1 611/1
403 +2 41010325

}) +P (”V.ﬂcMn(B*)”max > _) .

01 <P (”VﬂMn(g*)”max > min{ B
By the Union bound and Hoeffding’s inequality, we have that 6; < 6", where

o aid?
oM 4

~———

232
5P =2 L a1 ! +2(K+p—s)
=z5exp | — min , p—Ss)exp|—
! 0m 4203+ 1)?7 1672020352

This completes the proof of Theorem 1. O
Proof of Theorem 2.
Proof. By definition of Lasso, it obviously holds that
My (B"5°) + Nasso 1B lley, < My (B%) + dtassoll B¢,
Use the convexity of £,, we obtain
M, (B'555°) > M, (8%) + VM, (8T (B> — B*).

Thus,
VM, (B*)T(B%5%° - 8%) < Dasso (18716, = 11B8l¢,)-

This entails that on the event

~ . 1
{”VMn(B )”max < 5/11asso} P (39)
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we have
- %/llasso(”A(ﬂ)”fl +1A(bo)ll,) < Atasso(1Bialley, = 1B+ Aa(B)lle, = 1Az (B)le,),
where A(B) = % — B*, A(bg) = b2 — b, A = B25%° — $* which implies that
IAze (B)lley < 3IAa(B)lle, + 1ADO) s, -
In what follows, our aim is to derive the upper bound
812550 — B*||, < 5k Atasso
under the event (39). Then along with the Hoeffding’s inequality,
. 1 2n (1 2
P (194208 e 2 G| < 206+ p) ex0 (_QE—M ] )

one shows the desired probability bound.

Now we consider a map F : RK*? — R satisfying

F(A) = MH(B* + A) - Mn(B*) + /llasso(”ﬁ* + A(ﬁ)”fl - ”ﬂ*”fl)

(40)

(42)

Then A = argming F(A). Since F(0) = 0, F(A) < 0, by Lemma 4 of Negahban et al. (2012), it

suffices to show that F(A) > 0 for any A € D, where
D ={A e RF*  |[Agc (B)lley < 3lIAa(Blley + 1A(bo)lle, and [|Allz, = 5k Alasso} -
To this end, we first obtain a lower bound for ||8* + A(B)ll¢, — I187|I:

18"+ AB)ley = IB"ller = 1B + Aa(Blle, + 1Az (B)lley = [1Bzlle;
2 |Azc (B)lle, = 1A (B)lley

(44)

(45)

Next, we derive a lower bound for M, (8* + A) — M,,(8*). To simplify notation, we define

G(u) = M, (8" +uA), u € [0,1]. Then
K 1 n 2
Gy =Y wis D T(B" +ud) (()7A)
k=1 i=1

K n
GLOEDY wk}l (S5 (B +uh) ((xf)m)?’ .
k=1 i=1

For all i € {1,--- ,n},
ks k k
0 <1(=5)(B)] < max (Ic)781,1) - K ().
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Then we have
K 1 n 3
G ()| < > wi= > max (|(xf)T(B* +uh)|, 1) 5K (B uh) [(x5)TAl
= iE
< max {m”||Alle, - (1B"[le, + IAlle,). ml|Alle, } G” (w).
Let zo = max {m>*||All¢, - (IB"|le, + |Alle,), mllAllg, }, we have
|G (w)| < 20G"(u), Vu € [0,1].
Then by integral, we obtain
G(1) = G(0) - G"(0) = G”(0)é(z0). (46)
where £(z) = z72(exp(=z) + z — 1). It is guaranteed that zo < 1 as long as

m|[Alle, - (IB%[le, + [1Alle,) <1 and  ml|Allg, <1

2
1 1 1 .
lAlle, < \/(§||B*||51) o3 §||B‘ lle, -

Since ||All¢, = 5K;plr/l]asso and ||Allg, < ||Allg,, we have

or equivalently,

1@« \2 . 1 1
VI8 16) + & - L8l

1
SKepr

Alasso < (47)

By simple calculation, it can be shown that h(z) is a decreasing function in z > 0. Given that

z < 1 holds by assumption (47) on Ajugso, we have £(z) = £(1) > 1/3. Thus, we re-write (46) as
- - - 1 .
M, (B* +A) — M, (B*) > VM, (B*)TA + §ATV2M,,(B*)A
1 1
> _i/llaSSO”A”[l + §chr”A”é’l : ”A“fm (48)

which holds under event (39) and by definition of general invertability factor kcpr. Now under

the same event, we combine (45) and (48) to obtain

1 1
F(A) = gkcpr”A”G : ”A”&q - _/llassonA”[l + Alasso (”Aﬂ" (ﬁ)”fl - ”Aﬂ(ﬂ)”&)

2
5 3 1 1
= gﬂlasso”A”é’l - §/llassollAﬂ (B)”fl - §/llasso||A(b0)”€1 + §/lla,sso||A&Zl“ (ﬂ)”fl
1 7 13
= Alasso EHAﬂ(ﬂ)”ﬁ + EHA(bO)”ﬁ + g/llaSSOHAﬂ” (ﬂ)”[l
> 0.

This completes the proof of Theorem 2.
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