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Density-Convoluted Support Vector Machines

for High-Dimensional Classification

LE ZHOU, BOXIANG WANG, YUWEN GU AND HUI Zou

Abstract

The support vector machine (SVM) is a popular classification method which enjoys good performance in many
real applications. The SVM can be viewed as a penalized minimization problem in which the objective function is
the expectation of hinge loss function with respect to the standard non-smooth empirical measure corresponding to
the true underlying measure. We further extend this viewpoint and propose a smoothed SVM by substituting a kernel
density estimator for the measure in the expectation calculation. The resulting method is called density convoluted
support vector machine (DCSVM). We argue that the DCSVM is particularly more interesting than the standard SVM
in the context of high-dimensional classification. We systematically study the rate of convergence of the elastic-net
penalized DCSVM and prove it has order Op(4/ SIO%) under general random design setting. We further develop
novel efficient algorithm for computing elastic-net penalized DCSVM. Simulation studies and 8 benchmark datasets
are used to demonstrate the superior classification performance of elastic-net DCSVM over other competitors, and it
is demonstrated in these numerical studies that the computation of DCSVM can be more than 100 times faster than
that of the SVM.

Index Terms

Classification, ultra-high dimension, DCSVM, support vector machines, kernel density smoother.

I. INTRODUCTION

Due to the advanced technology for data collection over the past decades, there has been a surge of data complexity
in many research fields such as genomics, genetics, and finance, among others. Consequently, it is very common
for the number of predictors in the dataset to be far larger than the number of observations (Donoho et al., 2000).
For example, in genomics it is crucial to build a classifier for the purpose of disease diagnosis, with thousands

of candidate genes at hand but only tens of instances available for study. Such high dimensionality in data makes
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traditional classification methods infeasible and poses new challenges from both theoretical and computational
perspectives.

One method for performing high dimensional classification is the penalized large margin classifier. The standard
support vector machine (SVM), initially proposed and investigated in Boser et al. (1992) and Vapnik (1995), has an
objective equal to hinge loss plus an /5 penalty. It is also referred to as ¢5-norm SVM. When the dimension greatly
exceeds the sample size and there are many noisy features in the predictor set, it has been shown that it is more
beneficial to use a sparse penalty such as the /; norm penalty (a.k.a. the lasso) to replace the /> norm penalty in
order to perform classification and variable selection simultaneously in high dimensional setting (Zhu et al., 2003).
Consider the ¢; norm SVM for example. It can be written as

1 n
min = > L(yi(xiB+ Bo) + MBI, (LD
O i=1

where L(u) = (1 — u)4 is the hinge loss. Just like in lasso regression, the ¢; penalty induces sparsity in the
solution and is thus capable of removing irrelevant features. More recently, Peng et al. (2016) investigated the rate
of convergence of the ¢;-norm SVM and an error bound of O(\/@ ) was established in their paper.

The sparse penalized SVM can be computationally intensive especially when the number of predictors is huge in
the dataset, owing to the non-differentiable loss function part. It is known that penalized problem in high dimensions
with a smooth loss function can be efficiently computed by cyclical coordinate descent algorithm (Friedman et al.,
2010). Nevertheless, the SVM is based on the non-differentiable hinge loss, which means that there is no convergence
guarantee if one uses cyclical coordinate descent to solve the SVM. In principle, coordinate descent may not give
the right solution due to the non-differentiability of the objective function (Luo and Tseng, 1992; Tseng, 2001). A
similar problem under regression context is the quantile regression, in which the check loss is not differentiable
(Fan et al., 2020). The typical method of solving quantile regression is the interior point algorithm. Since ¢;-norm
SVM can be transformed into linear programming, one may also consider interior point algorithm for solving it.
However, interior point algorithm may not scale well with high dimensional input and thus is not suitable for
solving SVM in high dimensions.

Recently, Fernandes et al. (2021) studied an interesting smoothing technique for solving quantile regression
with statistical guarantees. Later, Tan et al. (2021) further studied the smoothing quantile regression under high
dimensional settings and showed that the statistical property of quantile regression is maintained after smoothing.
Motivated by their work, we develop a smooth version of SVM from statistical perspective, as opposed to trying

to solve it exactly. Consider the first term in (I.1)
1 n
~ > L(wi(xiB + Fo)), (1.2)
i=1

which is non-smooth. If we could replace it by some smooth loss such that the resulting estimator has nice theoretical
properties, then we should focus on solving the smooth problem instead of the original problem. In fact, one may

view (1.2) as the expectation of the hinge loss function with respect to the empirical measure assigning % probability
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mass to each y;(x]3+ 5o),i = 1,...,n. The empirical measure is viewed as an estimator for the true distribution
of the random variable y(x"3+ fy). Clearly, if we estimate the true distribution by using a smoothed kernel density
estimator, then we can take the expectation of the hinge loss function with respect to the distribution determined

by the smoothed kernel density estimator. This leads us to a new objective function
I .
=S I8+ Bo). 13)
i=1

which we use to replace (I.2). Here h is the bandwidth of kernel density estimator and is used to index the new
classifier. The resulting estimator is named as density convoluted support vector machine (DCSVM), since the kernel
density estimator has a convolution interpretation. We study the following general form of penalized DCSVM in

high dimensions,

=3 Ea(sI8 + 50)) + Mol 81 + AlBI.
i=1

The resulting estimator is called elastic-net DCSVM, which involves both ¢;-DCSVM and ¢5-DCSVM as special
cases. By its convexity and smoothness, elastic-net DCSVM can be efficiently solved by using the generalized
coordinate descent algorithm (Yang and Zou, 2013).

In this paper, we first study the theoretical properties of the elastic-net DCSVM. We show that the convergence
rate of the elastic-net DCSVM is Op(\/@) under the general random design setting. Furthermore, we develop
novel efficient algorithm for computing elastic-net DCSVM. We use simulation studies and 8 benchmark datasets
to demonstrate that elastic-net DCSVM delivers superior classification performance over its competitors, and the

computational speed of DCSVM can be two orders of magnitude faster than that of SVM.

II. DENSITY-CONVOLUTED SVM
A. Notation and definitions

We first introduce some notation that is used throughout the paper. For an arbitrary index set A C {1,...,p},
any vector ¢ = (¢1,...,¢p) and any n x p matrix U, let ca = (¢;,7 € A), and let Up be the submatrix with
columns of U whose indices are in A. The complement of an index set A is denoted as A° = {1,...,p} \ A.
For any finite set B, let |B| be the number of elements in B. For a vector ¢ € R? and ¢ € [1,00), let |[c||q =
(>h |cj|q)% be its £, norm, let |[c||oc (Or [|c||max) = max; |c;| be its {o norm, and let ||c||min = min; |¢;|
be its minimum absolute value. For a matrix M, let Apin(M) and Apax(M) be its eigenvalue with smallest
absolute value and largest absolute value, respectively. This is the common notation for eigenvalues of a matrix,
and Apin, Amax should not be confused with the penalization parameter used in a penalty function. For any matrix
G, let |G| = \/Amax(GTG) be its spectral norm. In particular, for a vector ¢, |c|| = [|c||ls. For a,b € R, let
aAb=min{a, b} and a V b = max{a,b}. For a sequence {a,,} and another nonnegative sequence {b,,}, we write
a, = O(by,) if there exists a constant ¢ > 0 such that |a,| < cb, for all n > 1. Also, we use a,, = o(b,), or

an < by, to represent lim,, o, 7= = 0. We write b, > a,, if a, < by,. Let (©,G,P) be a probability space on
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which all the random variables that appear in this paper are defined. Let E[-] be the expectation corresponding to
the probability measure P. Let ¢ : [0, 00) — [0, 00] be a nondecreasing, convex function with ¢(0) = 0, then we
denote ||Z]|y = inf{t > 0: E[w(‘%)] < 1} as th 9-Orlicz norm for any random variable Z. In particular, if p > 1,
let ¢, () := " — 1 which is a nondecreasing convex function with v,(0) = 0, then we denote its corresponding

|zP . .
w | < 2} where Z is any random variable. For a sequence of random

Orlicz norm as || Z||, = inf{t > 0 : E[e
variables {Z, },>1, we write Z,, = Op(1) if limps_ o0 limsup,,_,o P(|Z,] > M) = 0, and we write Z,, = 0,(1)
if lim,,—, o P(|Z,] > €) = 0,Ve > 0. For two sequences of random variables Z,, and Z,, we write Z,, = O,(Z}))

if g—z = 0p(1), and we write Z,, = 0,(Z],) if % = o0,(1).

B. Density-Convoluted SVM

Suppose the training data consists of n observations {(y;, x;) }7q, where x; = (xi1, ..., Z;p)" € RP are predictors
and y; € {—1,1} is the class label for the ith subject. We use X = (Xy,...,X,) to denote the design matrix,
where X; = (21,,...,%,;)" contains observations for the jth variable, and use y = (y1,...,¥)" to represent the
response vector. We focus on the general case where the observed data {(y;,x;)}7, are i.i.d. samples from the
distribution of a random vector (y,x). Let the jth component of the random vector x be denoted as x;. Meanwhile,
let x = (1,x")" and %x; = (1,x})", ¢ = 1,...,n. To perform the classification task, the support vector machine

(SVM, Vapnik, 1995) seeks a separating hyperplane {x : 5y + x*3 = 0} where
. 1, e
min =
i, 58l
n (IL1)
subject to  ; (Bo+xB) >1-6,6>0,> & <c.

i=1
It is well known that the above problem can be equivalently formulated as a penalized empirical risk minimization

problem:

1 n
min > L(yi(xi8 + o) + dollBIE, (11.2)
o i=1

where L(u) = (1 — u); = max{l — u,0} is known as the SVM hinge loss and A\g > 0 is a tuning parameter that
is one-to-one correspondent to the constant ¢ in problem (IL.1).

Let us consider the population version of risk appearing in (I1.2), E[L (y(XT,@ + ﬂo))]. If we define new random
variable U = y(x"8 + Bo) and let F(u;3, ) be its cumulative distribution function (cdf), then the population
risk is written as ffooo L(t)dF(t; 3, Bo). The unpenalized objective function in (IL.2) can be further viewed as
ffcoo L(t)dﬁ’(t; 3, Bo), where F(t; B, 60) = 717 S iy, (x1B+p,)<t} is the empirical cdf based on i.i.d. realizations
of U. The usage of the discontinuous empirical cdf here makes the objective in (I.2) to have the same degree
of smoothness as the hinge loss L(-), i,e. continuous but nondifferentiable. This has motivated us to consider an
alternative estimator for the cdf. If we use an estimator F(-; 3, ) that is smooth enough, the ffooo L(t)dF(t; B, Bo)

shall lead us towards a new objective which is differentiable to certain degrees.
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In particular, we consider the cdf from the kernel density estimator

F(t; 8, Bo) = /too nth:K(“ - yi(X}Ilﬂ-l- 60))du,

where K : R — [0,00) is a smooth kernel function satisfying K(—u) = K(u),Vu € R, [*_ K(t)dt = 1 and
ffcoo |t| K (t)dt < oo, and h > 0 is the bandwidth parameter to be tuned. Replacing F' by F gives the new objective

function,

| warss.s0
1 e [> 1t —y (X8 + bo)
DM I G e &

£ S In(u(xIB + o)

i=1

where Ly (t) = [7 (1 —u)4+K (%) du. Note that Ly(-) is a convex function that is at least second order
differentiable. Also, it satisfies the relation Lj, = L * K where Kj(u) = +K (%) and “+” stands for convolution.
As such, with the penalty term \ol|3]|3, we obtain
n
min >~ L (yi (%} 8 + Bo)) + Aol BI3- (IL.3)

Bo,B Pt

We treat the classifier arisen from the above problem as a new classifier and coin it the density-convoluted SVM
(DCSVM).

As discussed above, DCSVM originates from a statistical view of the SVM, while it shows merit from the
computational perspective as it overcomes the non-differentiability of the original SVM problem. Smoothing a
non-differentiable problem through convolution can be traced back to the idea of mollification (Friedrichs, 1944)
and has also been studied in the optimization community, for example, Bertsekas (1973) and Rubinstein (1983).
The method was recently adopted to smooth the quantile regression by He et al. (2021), Fernandes et al. (2021)
and Tan et al. (2021).

In this work, we focus on two most popular kernel functions, Gaussian kernel and Epanechnikov kernel in

DCSVM, and we denote the corresponding convoluted loss function by L (v) and LE(v), respectively.

For the Gaussian kernel K (u) = \/% exp{—u?/2}, one can show that
1—w h (1 —v)?
Gl —
Lh(’l])—(].*'l))q) (h)+\/%eXp{2h? y

where ®(-) is the cumulative distribution function of the standard normal distribution.
For the Epanechnikov kernel K (u) = 2(1 — u?)I(—1 < w < 1), where I(-) is the indicator function,

1—v, v<1—h,
(1—v+h)3(Bh - (1—2))
16h3
0, v>1+h.

Ly (v) =

, 1—h<v<l+h,
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Fig. 1. Top row: plots of LE (v) and LE (v), the density-convoluted SVM loss functions with Gaussian kernel (left) and
Epanechnikov kernels (right). Bottom row: plots of the first-order derivatives, L' (v) and L¥' (v).

The top row of Figure 1 depicts the DCSVM losses with Gaussian kernel and Epanechnikov kernel.
Intuitively, h should be small such that the DCSVM is very close to the SVM. According to density estimator, the optimal rate for A is
O(n=1/5). So, we adopt h = Cn~1/% in our implementation, where C' is some numerical constant within the range (0.25,3). The actual

value of C in practice can be determined by cross-validation.

C. Sparse density-convoluted SVM

Define (85, 8") = argmin s g cpxre E[Ln(y(x' B+ B0))]. In high dimensions, we consider designing the estimator under
a sparsity assumption that 3* has many zero components. Let A = {j : 57 # 0,1 < j < p} be the support set of 3%, i.e., the
set of indices of the important covariates. Let s = |A|. Throughout this paper, we allow p = p,, and s = s,, to diverge with n,
and we assume s, > 1 and p, goes to infinity as n goes to infinity. For convenience, we still use p and s to represent these
quantities since no confusion is caused. In ultra-high dimensions, the dimension p is allowed to increase exponentially with the
sample size n. We also assume that s is relatively of smaller order compared to n, which is necessary for the existence of a
consistent estimator.

To perform the classification for high-dimensional data, we present sparse DCSVM with an additional ¢;-penalty term

(Bo.B) = argmin ~ 3 L(wa(x1B+ Bo)) + MollBI3 + A8 (IL4)

(Bo.B)eRXRP TV 7
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The ¢1-penalty is used to induce sparsity in the estimator. We also consider the following version of sparse DCSVM with only

an {;-penalty term:

(o, B) = argmin ~ > Li(y:(xIB + o)) + MBI (IL3)

(Bo,B)ERXRP n i=1

Borrowing the commonly used terminologies for different penalties in high dimensional literature, we refer to the estimator in
(IL.4) as elastic-net DCSVM, and refer to the estimator in (IL.5) as lasso DCSVM. Note that the lasso DCSVM is a special
case of elastic-net DCSVM with A\g = 0. In the statistics literature it is well-known than the elastic-net often yields much
improved prediction than the lasso owing to the additional ¢ regularization that can well handle the correlated covariates which
occurs often in high-dimensional data. For example, in the case of the SVM Wang et al. (2006) showed that the elastic-net
regularized SVM is more accurate than the ¢;-norm SVM. Therefore, we focus on the elastic-net penalized DCSVM in theory

and in applications.

III. THEORETICAL STUDIES

We now state the assumptions needed to establish our theoretical results. We first impose the following conditions on the

random design.

Assumption 1. {(y;,x:)}iv1, (y,X) are independent and identically distributed on R x RP. x is a zero-mean sub-exponential

random vector, i.e. E[x] = 0, and there exists a constant mo > 0 such that

sup la"x||p, < mo.
a€RP:|lall2<1

By definition of Orlicz norm and Markov’s inequality, this further implies

ot
sup  P(la"x| > t) <2 ™o, V¢t > 0.
ackP:|al2<1

For any index set A C {1,...,p}, consider the cone Sa = {(J,u) € RxRP : [Juac|l1 < 3||uall1+]d|}. Such type of cone
has been widely considered in literature on high dimensional statistics. Meanwhile, let I(8o,8) = E[L}, (y(80 + x'8))xx"]

be Hessian matrix of the population loss, or information matrix. We impose the following condition on the information.

Assumption 2. There exists a constant p > 0 such that

min )\min (I(/BS + 67 ﬁ* + u)) 2 P
(8,u)€8,:62+||u|2=0(21ezP)

for large enough n.
Assumption 1 is a general setting in the random design, which relaxes the classical condition that the components of x are
bounded random variables (Peng et al., 2016). Assumption 2, which is a restricted eigenvalue type of condition, is needed to

establish ¢2-type error bound for ¢;-penalized type of estimator. Similar conditions have been widely adopted in the literature
(Biihlmann and Van De Geer, 2011; Fan et al., 2020).

Theorem 1. Assume assumptions 1-2 hold, and slogp = o(n). Choose the tuning parameters such that 8o || ||max < A

Then there exists a large enough constant co > 0 such that with the choice A\ = coy/ 105 P the elastic-net DCSVM estimator

(Bo, fi) satisfies

1B~ B3 +118 — 81 = 0p (282).
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Theorem 1 shows that the sparse DCSVM estimator can achieve the same rate of convergence as the ¢1-SVM (Peng et al.,
2016). Meanwhile, the sparse DCSVM has better computational efficiency than penalized SVM due to the smoothness of its

loss function, as shown in the next section.

IV. COMPUTATION

In this section, we develop an efficient algorithm for computing the solution path of DCSVM.
At the outset, we present the first-order derivative of the density-convoluted SVM loss and show they are Lipschitz continuous

L‘?(v)z—@(l;”),

in Lemma 1:

-1, v<1-—h,
1-— 2(2h — (1 —
LP() = Ao EWTCR = =0) oy,
4h3
0, v>1+h.

Lemma 1. Let Lg(v) and LE (v) be the DCSVM loss using Gaussian kernel and Epanechnikov kernel, respectively. For vi < va,

L (v1) = L§ (v2)| < cff[or — w2, av.1
ILE (v1) = L (v2)| < cf |v1 — val, (IvV.2)
where the Lipschitz constants are given as cf = ﬁ and CE = %,

The bottom row of Figure 1 depicts LG’ (v) and LE/(v).

Lemma 1 gives rise to the following quadratic majorization condition for the DCSVM:
c
Li(v1) < Lp (va) + L} (v2) (v1 — v2) + ?h(m — )2, (1V.3)

where Ly, is exemplified by Lf and Lf and ¢y, is the corresponding Lipschitz constant.
Based on the Lipschitz condition, we develop a generalized coordinate descent (GCD) algorithm (Yang and Zou, 2013) to solve those sparse
penalized DCSVMs. We first consider the adaptive lasso penalty. The algorithm can be easily adjusted to handle lasso and elastic net.
Without loss of generality, we assume each X; has zero mean and unit length. In a coordinate-wise manner, suppose the coordinate
B1,B2,...,B;—1 have been updated and we now update $3;. Denote by Bo and B by the current solution and let v; = yi(BO + XIB) To

update [3;, instead of solving the coordinate-wise update function,

F(B;) = %Zn:Lh (Ui + YiTij (6j - Bj)) + dw; |84l

i=1

we solve its majorization function
1 n 1 " f ~ ch ~\2
QB) = > L (vi) + - > L, (vi) yiwsy </3j - /Bj> +o (Bj - 5;') + Aw; | B
i=1 i=1

that is obtained through the quadratic majorization condition. The minimizer of Q (8;) is

~ 1 i Aw
(3.7’ - > Llh,(w)yz‘zm‘> L I
ChM i ‘Chﬁj — o it Ly, (wi)yizig +

n i=1

Likewise, 3o is updated to be Bo — c}%n oy Ly (vi)ys.
In the appendix we provide theoretical analysis of the convergence of the generalized coordinate descent algorithm which is not in Yang
and Zou (2013). In our implementation, we further apply the strong rule (Tibshirani et al., 2010), warm start, and active set strategy (Friedman

et al., 2010) to further accelerate the algorithm.
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TABLE 1. Comparison of prediction error (in percentage) and run time (in second) of elastic-net density-convoluted SVM with
Gaussian and Epanechnikov kernels, elastic-net SVM, and elastic-net logistc regression. Under each simulation setting, the
method with the lowest prediction error is marked by a black box. All the quantities are averaged over 50 independent runs
and the standard errors of the prediction error are given in parentheses.

DCSVM-Gaussian DCSVM-Epanechnikov SVM logistic
P p err (%) time err (%) time err (%) time err (%) time
Example 1
500 6.83 0.14) 267.89 0.14)  29.67 9.76  (1.51) 1362.44 6.98 (0.15) 49.78
5000 0.13) 771.87 729  (0.16) 139.07 790 (0.87) 28323.47 733 (0.17) 417.54
Example 2
500 0.2 13.52  (0.19) 305.95 (0.17)  33.42 16.02 (1.26) 1687.62 13.88 (0.22) 5244

N[ =
N
TS
S||>

0.7 2265 (025) 385.08
0.9 2476 (0.24) 467.40
5000 0.2 1378 (0.18) 806.36
0.7 22.66] (0.21) 890.84

(027) 4139 2575 (121) 1585.23 2288 (0.28) 59.99
(0.24) 4878 2742 (1.16) 1510.98 2482 (031)  69.52
(021) 142.09 1632 (1.25) 30170.44 14.12  (0.26) 420.09
(024) 15044  24.15 (0.79) 31865.01 23.03  (0.23) 435.63

N
.
tn
N

N |
S |@
(=]
SN

0.9 24.70| (0.25) 975.34 24776 (0.24) 15473 26.88 (1.00) 32132.55 25.03 (0.24) 450.30
Example 3
500 0.2 1030  (0.15) 290.41 10.13| (0.16) 31.53 12.04 (1.14) 1476.20 10.69 (0.24) 51.16
0.7 19.48  (0.18) 368.74 (0.18)  39.71 2290 (1.34) 1726.07 19.80 (0.25) 60.53
0.9 (0.22) 43555 2354 (0.22) 4492 26.55 (1.19)  1625.15 2393 (0.28) 66.23
5000 0.2 10.51  (0.20) 793.67 (0.18) 141.23 13.02 (1.35) 34555.70 10.74  (0.21) 418.58
0.7 19.70| (0.21) 877.54 19.89  (0.22) 146.99 2254  (1.18) 34574.72 20.09 (0.25) 433.84
0.9 2385 (0.23) 944.63 23.81| (0.24) 152.78 26.55 (1.11) 36732.99 2390 (0.24) 445.60

V. NUMERICAL STUDIES

A. Simulation

In this section, we use several simulation examples to demonstrate the performance of DCSVM.
The response variables of all the simulated data are binary and the two classes are balanced, i.e., P(Y = 1) = P(Y = —1) = 0.5. In each

example, define the p-dimensional mean vectors u, = (0.7,0.7,0.7,0.7,0.7,0,0,...,0) and p_

—p 4, where p = 500 or 5000 in our
experiments. Each observation from the positive class is drawn from N(g, ,3) and each observation from the negative class is drawn from
N(p_,X). We consider three different choices of X. In example 1, 3 = I, %, so the variables are independent. In both examples 2 and 3,

5 25ss 05 (p—5)

Op—s5)x5  Lp—5)x(p-5)

where 3. - have all diagonal elements of 1 and off-diagonal elements of p in example 2, and (X3, 5),; = pl=3l in example 3. We use
p=0.2,0.7, and 0.9.

We first compared elastic-net DCSVM with Gaussian kernel and Epanechnikov kernel with elastic-net SVM (Wang et al., 2006) and elastic-
net logistic regression that is fitted using the R package gcdnet (Yang and Zou, 2013). For each example, the training size is 200 and
we use five-fold cross-validation to select the best tuple of (h, Ao, A\) where h is chosen from 0.1,0.25,0.5, and 1, Ao is selected from
0.5 % (10*47 1073,1072,1071,1,5), and X is searched along the solution path; for the SVM and logistic regression, we select Ag and X in
the same manner.

We record the prediction error and run time in Table I. The run time include all the time spent on tuning and training the models. We
observe the DCSVM with Epanechnikov kernel has slightly better performance than DCSVM with Gaussian kernel, and both of them have
better prediction accuracy than the other two methods. DCSVM with Epanechnikov kernel is the fastest while the elastic-net SVM is the slowest.

All the methods exhibited in Table I use elastic-net penalty. We now study the performance when using other sparse penalities. Due to the
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TABLE I1. Comparison of prediction error (in percentage) and variable selection of density-convoluted SVM with Epanechnikov
kernels using lasso and elastic-net (enet) penalties. Denote by C and IC the number of correctly and incorrectly selected
variables, respectively. Under each simulation setting, the method with the lowest prediction error is marked by a black box. All
the quantities are averaged over 50 independent runs and the standard errors of the prediction error are given in parentheses.

lasso-DCSVM enet-DCSVM

p p err (%) c IC err (%) c IC

Example 1

500 6.88  (0.14) (0.14)

5000 731 (019 5 0 0.16) 5 0

Example 2

500 02 1389 (0.23) 5 0 0.17) 5 0
07 2286 (0200 3 0 ©027) 5 0
09 2453 (0.19) 2 0 2451 (023) 4 0

5000 02 1455 (025 5 O 1372] ©021) 5 0
07 2341 (023) 3 0 23.05| (025 4 0
09 2536 (035 2 0 2476] (026) 3 0

Example 3

500 0.2 1047 (022) 5 0 015 5 0
07 1990 (022) 3 0 0.19) 4 0
09 2374 (020) 3 O 022) 4 0

5000 0.2 1078 (023) 5 0 0.18) 5 0
0.7 2012 (022) 3 0 022) 4 0
09 2434 (031) 2 0 2381] (024) 3 0

overall best performance, we stay with DCSVM with Epanechnikov kernel and we compare the prediction accuracy and variable selection when
using lasso and elastic-net penalties. We present the results in Table II. In general, we find the elastic-net has the best performance in both

prediction error and variable selection.

B. Benchmark data applications

In this section, we demonstrate the performance of DCSVM using several benchmark data, which are available from UCI machine learning
repository. We randomly split each data set into a training set and a test set with a 1:1 ratio. On the training set, we fit elastic-net DCSVM,
elastic-net logistic regression, and elastic-net SVM, and tune each method using five-fold cross-validation. The prediction accuracy is computed
based on the test set.

We present the result in Table III. We observe the elastic-net DCSVM has the best performance in general.

APPENDIX A

PROOF OF THEOREM 1

We first give some general formula regarding the loss function Ly, and its derivatives. Recall Ly, (u) = [ _(1— u+v)+%K (3)dv,u € R.

A direct calculation gives

L l—u _t—u
L = [ R,
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TABLE IIlI. Comparison of prediction error (in percentage) and run time (in second) of elastic-net density-convoluted SVM
with Epanechnikov kernel, elastic-net SVM, and elastic-net logistc regression. For each benchmark data, the method with the
lowest prediction error is marked by a black box. All the quantities are averaged over 50 independent runs and the standard
errors of the prediction error are given in parentheses.

enet-DCSVM enet-SVM enet-logistic

data n P err (%) time err (%) time err (%) time

arcene 100 9920 32.24| (1.46) 53.26 37.09  (1.59) 8912.87 35.82  (1.65) 219.30
breast 42 22283 2590 (1.64) 51.33 30.38 (2.05) 1946.98 30.76  (2.14) 227.88
colon 62 2000 (1.03) 1022 18.90 (1.55) 722.48 23.87  (1.51) 27.33
leuk 72 7128 047) 2298 3.89  (0.51) 1863.23 433  (0.61) 115.00
LSVT 126 309 16.01  (0.73) 6.25 16.20  (0.68) 74.20 (0.68)  9.05

malaria 71 22283 (0.68) 85.52 7.60 (1.21) 12046.09 6.80  (0.98) 483.20
ovarian 253 15154 (0.12) 189.22 4.87 (1.23) 1444287 087  (0.14) 964.16
prostate 102 6033 9.25 0.67) 29.34 (0.50) 2421.20 10.24  (0.61) 116.50

L) = — LT K (w)du,
1-

L) = skt

- by, vt eR. (A0.1)

h

It is important to note that |L} (-)| < 1, since K(t) > 0,Vt and [*7 K(u)du = 1.

Proof of Theorem 1. By definition of the ¢1-penalized CRR estimator and triangle inequality, we have

= ZLh yi(x!B + Bo)) — %ZLh(yz‘(xm* +53))
i=1

i=1

+2o(l18113 — 187113)

<A(I18%11 = 118l1)
< MIBE = Ballr + 1Ball = 1Bl = 1Bac — Bielln)
= A(JJupllr = [uaell1), (A.0.2)

where we denote u = ,é — (3. On the other hand, by convexity of Ly (-), we have
1 & P 1 &
-~ Z Ly (yi(x;B + Bo)) — - Z L (vi(xi8* + 85))
i=1 i=1
+ (118113 — 187113)

1_2 (s (<8 + 53))wi (Bo — B3)

3

+ (22087 + — ZL’ vi(xIB" + 63)yixt) (B - B")

171

2| 3 (8" + )
=1

1 n
- H2>\05* + - Z Ly (yi(x1 8% + B3)) yix
i=1

Ulaafly + fugell), (A.0.3)
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where § = fo — f3. Define event & = {|1 S0 | L} (ys(xIB* + B5))wil < 3} and & = {||2x08* + L 307, L}, (vs(xIB* +
B))yiXilloo < %} Note that E[L} (y(x"8* + 8g))y] =0, and |L}, (y(x"8* + B3))y| < 1. So by Hoeffding’s inequality,

Z A
P(En) = P(| - 0 1 (nixI8" + 6w > 5)
i=1
< 2exp{ - 7";2 . (A.0.4)

Meanwhile, we have E[L} (y(x"8* 4+ B%))yx] = 0 by the definition of 3* and optimality condition. By the choice of tuning parameters we

have

1 < / T g% * )‘
P(&) = P(H”\Oﬁ* + - ZLh(yi(xlﬂ + Bo))lﬁxi”oo > 5)
=1

- A
<P (1530 5 (8" + 58w, > )
=1

1 S / T % * A
< P(15 X LB + B wiwss| > 7)- (A0.5)
j=1 i=1

Notice that by assumption 1 and |L’h()| <1,

lz;51

E[e|L;1,(yi(x’{B*+BS))yiwij\/mo] < E[e ™o ] <2

This implies that || L}, (y;(x]8* + B3))vizijlly, < mo, Vi € {1,...,n},Vj € {1,...,p}. By Theorem 1.4 in Gotze et al. (2021), there

exists an absolute constant 779 > O such that

Lo A
P(’ﬁ D Lh (w38 + B5))wiwij| > Z)

i=1

_1 2 bY

A )n
p PRAYTY
S %2 no 167TL0 mo

1.2 A

(=5 A g
So following (A.0.5) we have P(£5) < 2pe "0 '®™0 4mo
Now, under £1 N £2, combining (A.0.2) and (A.0.3) we have

m

A
=5 (01 + lually + fluaelln) < Allually = lluacliy),
which implies ||ugc|[1 < 3||uall1 + |9], or (6, u) € Sa.

Define F(Bo,3) = %Z?:l Ly (yi(xIB + Bo)) for any (Bo,3) € R x RP. Also, define C(r) = {(w,w) € Sa: lw?+||w|3 =
7’2510%} for any r > 0. Let G(Bo, 3) = F(Bo,8) — F(85,B"), and let H(r) = SUD(g,,8)€ (85 ,8*)+C(r) |G(BO,B) - E[G(BO,B)”.

We give an upper bound for E[H (r)]. Let o1,. .., opn be i.i.d. Rademacher random variables (i.e. P(o; = 1) = P(o; = —1) = %), which
is independent from all the other random elements. By the symmetrization inequality (see for instance, Lemma 2.3.1 in Van Der Vaart and
Wellner (1996)) and contraction inequality (see for instance, Theorem 4.12 in Ledoux and Talagrand (1991)), | L} (-)| < 1 and Cauchy-Schwarz

inequality, we have
E[H (r)]

1 Z Ui{Lh (yi(xiB + Bo))

< ZE[
L

sup
(Bo,B)E(Bg,B*)+C(r)

— Ln(vi(x; 8" + ﬁéj))}u

LS i (1B - B°) + Bo — )

< 4E[ sup
n 4
i=1

(Bo,B)E(Bg,B*)+C(r)

|
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4 = lo lo,
< —E[ S o1, xD)" }(4\/5.7»‘/5 8P | opy/ 2 gp). (A.0.6)
n ‘ n n
i=1 R
By assumption 1 and definition of Orlicz norm, we know |lo;ys2sj|ly, = llzijlly, < mo. Vi € {1,...,n},Vj € {1,...,p}. Also, it is
straightforward to see |lo;y;lly, = @. By Proposition 2.7.1 in Vershynin (2018), there exists a constant c¢; > 0 such that E[e!7:¥i%ij] <

et and Eletoivi] < et for all It] < i, vie{1,...,n},Vj € {1,...,p}. By Jensen’s inequality, we have for any 0 < ¢t < i,
etElmax{maxi <<, | 37 osvimij|| i osvil}]
< E[el max{max; <j<p | 7=y oivizijl,| 225=y Uiyzz\}]
< IE[ max (ef Zi=19i¥i%ij 4 ot iy TiYiTij)
- lisis<e

Fet Xm0y 4 et i Uiyi]

P n n
< Z(H E[et?i¥i%ii] + HE[e_”iyixU])
i=1

j=1 i=1
n n
+ H E[et7i%] + H E[e~ %74
i=1 i=1
< 2pecft2n + 260%75211 < 4pec§t2n.

Consequently, for any 0 < t < i,

" INT logp + log4 2
IE[H S oiyi(1,x)) ] < BPT 0BT | 2tn. (A0.7)
; oo t
i=1
By the condition of Theorem 1, we know 7”051“;%4 = o(1), so for large enough n, 7vl°flp+71log4 < % Thus, choosing t = 7”0?11’“%4

in (A.0.7) we obtain

n
E[H Zo’iyi(l,x{)T ] < 2c1+v/(logp + log4)n (A.0.8)
i=1 e
for large enough n. Thus, combining (A.0.6) and (A.0.8) we get

E[H (r)]

4 ! 1
— - 2c1+/(logp + log4)n - (4\/;7“\/@4_27»\/%)
n n

IN

n
< 96¢17s logp_
n
This implies that H(r) = Op(m%). Define event G := {H(r) < T”Tlogp} for any T' > 0, then we have limp_, o limsup,, , ., P(G5) =
0.
Next, for any (B0, 8) € (85,8%)+C(r), we derive a lower bound for E[G(Bo, 3)]. For large enough n, for any (50, 8) € (8, 8%)+C(r),

by Taylor’s theorem and assumption 2, there exists a € [0, 1] such that
E[G(Bo,B)] = E[Ln (y(x"B + Bo)) ] = E[Ln (y(x"B* + 55))]
= 5 (50— 66, (8 — BT (55 + alfo — ), 6° +a(B - B"))
(Bo — Bg, (B—B")")"
1
7°((Bo = 85)* + 18 = B713)
1
2

[\

1
pr2 208 (A.0.9)
n

%
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On the other hand, by our choice for tuning parameters, for any (8o, 3) € (8f,8*) + C(r) we have

A8l = 1811
SANB =B )alli + A(B = B ) sellr

<AN(B = B%)allr + AlBo — 6]

< ANVEI(B — B7)alla + Ary) S EL

1 It
< i [T 5, T2
n

n

)

1
< 5egsr—2P (A.0.10)
n
and we also have, by convexity of ¢ norm,

Mo(IBI3 = 18¥113) > 2208 (B — B*) > —2X0|8" | max/|B — B*|11

A * *
> 248 - B)alls + 180 - i)
1 1
Z—A\/Er\/s ogp_ir\/s ogp
n 4 n
_QCgsrlogp (A0.L1)
—_ n . U,

Thus, combining (A.0.9), (A.0.10) and (A.0.11), under G, we have for any (8o, 3) € (85, 8") + C(r),

F(Bo, B) + MolIBII + MBIl = F(85,8%) = XllB"[13 = AlIB" 1

> G(po, B) — TLED
7 !
> E[G(Bo, B) - H(r) - <2 =EF
Trslogp log p
> E[G(ﬁo,ﬁ)] - = 70037”T

1 1
> (*pr - T — 7co> rs ng.
2 n

Now, choose r = %, we have that under G,

inf F(Bo,B) + A 242
(BoB)e(Bh 3y +(r) (Bos B) + AolIBlz + AllBlI1

> F(B5,8%) + XollB*113 + MIB* |1 (A.0.12)

Recall that under £1 N &2, (Bo, B) € (Bo, B*) + Sa. We next claim that under £ N E2 NGy, |Bo — B2 + 1B — B*|12 < r281°%. In

fact, if [Bo — B3I + 1B — B*||3 > r2 =8P et to = N - sll:gf{n 2 then 0 < to < 1. Further define (8}, 8") = to(Bo,B) +
Bo—B§I2+IIB—B*5

(1 — t0)(Bg,B*), then we have |Bh — 5|2 + |18 — B*||2 = TQSIO%A Moreover, since (8o, 3) — (80, /8%) € Si under £ N & and Sy

is a cone, we know (8}, 8') — (85,8%) = to((,é’o,ﬁ) — (8%, B*)) € Sa. This means that under £1 N &2, (B}, B') € (85, B*) + C(r). By

convexity of F'(-) and norm functions and by (A.0.12), we further have

to (P (o, B) + ollBI3 + MBIl )
+ (1= t0) (F(85,8°) + MolIB" I3 + NIB" 1)
> F(8.8) + 2oll8'l13 + A8

> inf F(Bo,B) + A 24
2 omedtian e (Bo, B) + AollBllz + AllBII
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> F(B5,8%) + Xl B*I13 + AlIB* |11

under €1 NE2NG. The above inequality implies F (5o, B) 4+ Xol|B]12+ A|18]1 > F(Bg,B*)+Xo|lB*[13+ Al|B*||1, which is a contradiction

with the definition of (Bo, ﬁ) So the claim is proved. By union bound, previous results and choice of tuning parameters, we have

P((&1 N & NGr)°) < P(E5) + P(E35) + P(GT)

22 %(LA%M
<2exp{— "o f2pe OO 4 P(GE)

1 A2p i

2 -

p _ 1 an
<2p7F 42pe " 1O 4 2pe” M0 Tmo 4 P(GS)

2
2 _(L%_l)
S 2]77 ] +2p no 167n0

*\/W(i co _ [logp

+ % no Amg =2) + P(G%).

Since k’% = 0(1), as long as c¢o is large enough (for instance co > 4+/2m0mg), we have

lim lim supP((Sl N&nN gT)C) =0.

T—00 n—oo

Combining this result and the previous claim, the proof of Theorem 1 is finished. O

APPENDIX B

PROOF OF LEMMA 1

It is seen that LE (v) is twice differentiable with

P 1 (1-wv)? } 1
LG = 7 < . B.0.1
h ) V2rh eXp{ 2h2 = V2rh ®0.1

Thus inequality (IV.1) is obtained due to the mean value theorem.
We then prove inequality (IV.2). The inequality is trivial when v1 <wvg <1 —horwvg >wv; > 1+ h. Whenl —h <wv1 <wv2 <1l+4h,
since LE is twice differentiable between 1 — h and 1 + h, we see

1Ly (01) = Ly (w2)] < sup |13 (v)[[on — 2],
ve(l—h,1+h)

o 3(h2— (1-w?)| _ 3
—(1-u
sup |[LE" (v)| = sup —_— —.
ve(1—h,14h) ve(1—h,14h) 4h 4h
When v1 <1 —hand v > 1+ h,
3 3
LE"(vy) — LE' <1< —(2h) < —|v1 — 2.
[Ly (v1) — Ly (v2)] 4h( ) < 4h\vl v2
Whenvi <1—hand1—-—h<wve <1+h,

(1 —wva + h)2(2h — 1 + v2)
4h3

L3 (v1) = L (v2)| = |1 —
3
<E|1 —h— 1)2‘

3
<—|v1 — w2,
_4h| 1 — va|

where the second to the last inequality is due to

(1 —wva+h)2(2h — 1 +wv2)

' 4h3 9 3
sup < — < —.
va€(1—h,1+h) [1—h—vs| 16h  4h
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When1—h <wvi <1l4+handwve >1+h,

(1 —v1+h)2(2h —1+wv1)
4h3

L3 (v1) = L (v2)| =
<i |v (1+h)|
an'
3
< lv1 — v,
where the second to the last inequality is due to

(1 —v1+h)22h—1+wv1)

4h3 9 3
sup <—<—. O
va€(1—h,1+h) |1 —wv1 + Al 16h 4h
APPENDIX C

ITERATION COMPLEXITY ANALYSIS OF THE GCD ALGORITHM

a) Notation: For a vector v = (v1,...,v4)" € R? and a univariate function u(-), we write u(v) = (u(v1),...,u(vg))". Also,
denote the subvector of v with its kth component removed by v_j = (v1,...,05—1,Vk41,---,0q)" and recover v from v_j by v =

[vk, v_g]. We also let Oh be the sub-differential of a nonsmooth convex function h (see e.g., Bertsekas, 1999).

b) Iteration Complexity Analysis: Without loss of generality, we focus solely on the GCD algorithm for solving the weighted
lasso penalized DCSVM

n P
i %!
Anin, E 1 Lp(yix;8) + ,; 1 w|Brl, (Co.n
1= =

where wy > 0 are the weights of the penalty. Indeed, this formulation covers all the sparsity patterns in Section II-C. Also, the intercept term

o can be absorbed into the formulation by setting ;7 = 1 for ¢ = 1,...,n and w1 = 0. For ease of exposition, let us rewrite (C.0.1) as the
following unconstrained optimization problem
P
i F(B) = g(B) + > hi(Br), (€0.2)
k=1
where g(8) = Y1, Ly (ysx}3) is smooth convex in 3 € RP, while hy(8x) = wg|Bx| is nonsmooth convex in B, for each k =1,...,p.
Let h(B) = Z:l hi(Bk). Note that Vg(B) = > 7 yi L}, (vix} B)x; with Vig(B) = > i, i), (yix|B)xy, for k = 1,...,p. Let

pmax = Amax(XTX) = Amax(XXT) and £(8) = (£1(B),...,£n(B))" with £;(8) = L} (y;x}B) for i = 1,...,n. Denote by o the
Hadamard product. It follows that

IVa(B) — Va(B)l = X [y o (£(B) — (B8]l

< putacc[€(8) = £(8)]

< pataxcn| X(B = B)| < chpmaxl|B — 81l
which implies that the gradient of g(-) is uniformly Lipschitz continuous with Lipschitz constant L = c¢ppmax. When restricted to each
coordinate, we have

IVig(1Br, B_k]) — Veg([Br: B_iD)| < enlXill?18k — Brl, k=1,...,p,

which implies that the gradient of g(-) is coordinate-wise uniformly Lipschitz continuous with Lipschitz constants Ly = c3||Xg||%, k =
1,...,p.
In the GCD (cyclic coordinate descent) algorithm, let 3" be the update of 3 after the rth cycle, » > 0. For ease of notation, denote
1 1 1
bZJr = ( ’{‘+ 9 7ﬁ£t17ﬁ£7/8}’2+17' . 75;)T7 k = 17 By 2

1 1 1
bT_J;; = (ﬁ;+ 7"'7B£t17/3£+17"-7ﬁg)T7 k= 17-'~7p'
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Clearly, we have b;*l = 3" and b;jﬂ = @711, Note that in the proximal gradient update,

Bt = prox o1, (81— Ly Vig ([, DT))

is equivalent to

Bt = argmin g (B; [85, b)) + hie(Br),

Bk

where the proximity operator prox does the soft-thresholding (Parikh and Boyd, 2013) and
ur(Be; 185, T3 = g (185, BT + Vg (8%, T (B — BR)
L
+ ?k(ﬁk - B7)?

is a quadratic majorization function of §(Sy; bT'H) = g([Bk, bH,;l}) at 3. It is easy to see that uy (Bk; [0, bT_'Zl]) is strongly convex in
B By the optimality of ﬁ""'H there exists CT'H € Ohy, (57"'“) such that

(Vur (B, [BE, D7 D) + ¢ (Be — BT > 0, VB (C.0.3)

Our analysis will be divided into three parts: the sufficient descent step, the cost-to-go estimate step, and the local error bound step. Similar
techniques can be found in Luo and Tseng (1992), Luo and Tseng (1993), Zhang et al. (2013) and Hong et al. (2013).
c) Sufficient Descent: Consider the proximal gradient method applied to solving the following problem

Jnin, F([Brs BTHD) = g[8y bR + M (B),
we have by (C.0.3)

oY — fbp D) = F(1BE, BT — F(B T BTN
> ug(By; (B, b3 — w (BT [BE, D)) + hie(BE) — hue (BT

= Viue (B, [B5, b (B — BT + hie(BR) — ki (BT

+ L; (B — B2 (C.0.4)
> (Viur (B 87, b7 + G (81 — By
+ 2R g - a2
> =& (57 - Bt
It follows that »
fB) - fB ) = ;;1 Foh = f(bp D] > f\\ﬂr—ﬁr“llz, (C0.5)

where L = minlgkgp Lk = Cp minlgkgp kaH2
d) Cost-to-go Estimate: Let Z* := {B*|f(8*) = ming f(8)} be the optimal solution set of problem (C.0.2). Let 3" € &*
be the point in 2™ such that d g+ (8") := minge -« |8 — 87| = ||B" — B"||. By optimality of
B = argminug (B; (B, bTR) + hie(Be),
BreR

one has

(B = h(BE) + Vig(1BE DT D(B = BY) < %@E - B

By the mean value theorem, there exists A € [0,1] and £&" = AB3" 1 + (1 — \)B" such that

9B —g(B") = (Vg(€"), 8" = B").
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It follows that

P
S8BT~ SBT) = o7 — o B) + 3 [ (8 = b (B)]

[
M=

(Vo€ B+ = B) + (B ) — ha(Bp)|

b
Il
—

[
M=

[Vig (8%, b5 DB = B + hic (B ™) = huo(BF)

ES
Il
iR

+ (Vig(€") = Vig((B, 67D (B = Br)]

Ly -
[ (8%~ BR)?

M=

<
k

+ (Vrg(€") = Vig([B, 4 D) (BT = BR)].-

Il
-

By the fact that Vg(-) is Lipschitz continuous, it is implied that

P

3 (Vo(e") ~ Va3 b)) 6 m)

/\

IVo(€) ~ Valla b DI (ZW“ ?)

2IABTH =BT + (1 -0 (B - B")

P
<(x!
o ]
(Z 2 — /sk,brfklnP) 187 — B2
!
(2w
e [6£,bi*,;1}||2)
2(I8" T =BT+ 118" - BI1?)
<12(p+ VLA™ - 8712 + 18" - B")1)?
< 25pL2[||B7 ! — B7(|? + d%-. (87)] .

It follows that
FBY) = F(B) < GLyB+ DI = BT + d%. (87)], (€00

where L = maxi<g<p Lk = ¢, maxi<p<p [|x |2

e) Local Error Bound: Letd g «(8) = ming=¢ 2+ ||3* —B)|. Here we handle the Gaussian and Epanechnikov kernels separately.
For the Gaussian kernel, that is, when L, (-) = Lf(-)7 according to (C.0.4) and (C.0.5), the GCD algorithm is descending along its iterations.
We can thus restrict the domain of 3 to the sublevel set Lo = {8 : f(B8) < f(0)}. Let n; = x[8 for i = 1,...,n. It follows that the
set Co = {n = (mi,1 < i < n)": B € Lo} is convex compact. Therefore, for all 3 € Lo, n; is bounded by 7max, Where Nmax =
maxi<i<n SUPgez, M| < 0o. Note that the function p(z) = > 7, LG (y;z;) is strongly convex in z € Co by (B.0.1). We can see that
9(B8) = p(XB3). It follows from Zhang et al. (2013) that for any £ > ming f(3), there exist x,e > 0 such that

da = (B) < k|8 — prox, (B — Vg(B))ll, (C.0.7)

for all 3 such that |3 — prox, (8 — Vg(8))|| < e and f(B) <E&.
For the Epanechnikov kernel, that is, when Ly, (-) = LZ(-), one needs to add an additional ridge penalty 1||3||? for some small ;1 > 0 in
order to achieve strong optimality. Thus, when the Epanechnikov kernel is used, we instead consider the following problem

n P
min > Ly (yix;8) + Y wel|Bel + ullBl?
k=1

RP
Be i=1
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and solve it using the GCD algorithm.

As a summary, we show in the following theorem that the GCD algorithm converges at least linearly.
Theorem 2. The GCD algorithm converges at least linearly to a solution in Z*.

Proof. We first show that there exists some o > 0 such that

18" — prox, (8" — Vg(B")|| < ol|B"F! = B7|, vr > 1. (C08)

For any » > 1 and any 1 < k < p, by the optimality of

gt = argﬁmin ug (Br; (B, b H 1) + his(Br),

we have

Bt =prox v, (BT — L Vu (B 18R BT
Let L = max(1, Ly) and L = max(1, L} "). It follows from Lemma 4.3 of Kadkhodaie et al. (2014) that

|8 = prox;,, (B = Vrg(B")| < Le|Bf — prox; 1, (8] = L' Vig(8"))]
< Li[IByH = prox; 1y, (8% — L' Vig(B7) + 18 — BE]
< Lyflprox, v, (B = L Vur (B 18, PT)))
—prox; 1, (B; — Ly Vig(8")| + 157" = 6]
<20y B = BRI+ L Ly HVur (B (85, bR — Vig(B7))
<BLelB Y = Bl + LellVa (87, ™31 — Va(B7)|
< 3Lk + LL)[BLT - Bill-
It follows that

8" — prox, (8" — Vg(8")|| < (3L + LL) /3|8, — Bl

where L = max(1, L) and L = max(1, L™"). Therefore, when we take o = (3IA1+LI~1)\/13, we get the desired result in (C.0.8). Note that the
sufficient descent property (C.0.5) implies that |37 — 37| — 0 as r — oo. It follows from (C.0.8) that ||3" — prox, (8" — Vg(8™))| — 0
as 7 — oo. Thus, by (C.0.7) we have d -« (8") — 0 as 7 — oo. Consequently, from (C.0.6) it implies that f(3") — f* := ming f(8),
which shows that the GCD algorithm converges to the global minimum.

Now let ¢; = L(2B)™ 1, ¢ = 5L\/p+ L, and A = f(B") — f*. By the local error bound (C.0.7) and the cost-to-go estimate (C.0.6),

we obtain
AT < ep[dBe (BT) + 187 = B7I7]
< e2r?||B” — prox, (B" — Vg(B")|I” + c2[|B7T — 87|17
< (c2r®0® +ea)|IB™ = BT
< (e2w?0” + e2)er ' [F(B7) = F(B™H)]
= (car?0? + 62)01—1(A7‘ — AT,

which implies that

_B AT

ATTL < AT, (C.0.9)

“ 1+4c3

where c3 = (cak?0? + cz)cl_l. We can see from (C.0.9) that f(3") approaches f* with at least linear rate of convergence. From (C.0.5)

again, this further implies that the sequence {3"} converges at least linearly. d
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APPENDIX D

ADDITIONAL NUMERIC RESULTS WITH GAUSSIAN KERNEL

Under the same settings introduced in our simulation section, we compared the performance of lasso DCSVM and elastic-net DCSVM,
using Gaussian kernel. The result is shown in Table S.1. Again, we can see that the elastic-net DCSVM outperforms lasso DCSVM. We also
conducted elastic-net DCSVM with Gaussian kernel on the same real datasets that we introduced in our real data section, and compared its
performance with the performance of elastic-net SVM and elastic-net logistic regression. The result is displayed in Table S.2. Overall, DCSVM

still achieves the best performance.

TABLE S.1. Comparison of prediction error (in percentage) and variable selection of density-convoluted SVM with Gaussian
kernels using lasso and elastic-net (enet) penalties. Denote by C and IC the number of correctly and incorrectly selected
variables, respectively. Under each simulation setting, the method with the lowest prediction error is marked by a black box. All
the quantities are averaged over 50 independent runs and the standard errors of the prediction error are given in parentheses.

lasso-DCSVM enet-DCSVM

p p err (%) C IC err (%) C IC

Example 1

Example 1

500 6.92  (0.14) 0 (0.14)

5000 722 (019 5 0 0.13) 5 0

Example 2

500 0.2 1396 (021) 5 0 1352] (019 5 1
0.7 2318 (026) 3 0 025 4 0
0.9 2483 (024) 2 0 023) 4 0

5000 0.2 1446 (0.23) 5 0 ©.18) 5 0
07 2357 (026) 3 0 ©21) 4 0
0.9 2525 (025) 2 0 025 3 0

Example 3

500 0.2 1058 (021) 5 0 1027] (0.15) 5 1
07 1978 (021) 4 O 0.18) 4 0
0.9 2397 (022) 2 0 ©021) 4 0

5000 0.2 1070 (0200 5 0O 0200 5 0
07 2013 (024) 3 0 ©21) 4 0
09 2434 (030) 2 O 23.85] (023) 4 0
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TABLE S.2. Comparison of prediction error (in percentage) and run time (in second) of elastic-net density-convoluted SVM

21

with Gaussian kernel, elastic-net SVM, and elastic-net logistc regression. For each benchmark data, the method with the lowest
prediction error is marked by a black box. All the quantities are averaged over 50 independent runs and the standard errors of
the prediction error are given in parentheses.

enet-DCSVM enet-SVM enet-logistic

data n P err (%) time err (%) time err (%) time

arcene 100 9920 (1.42) 454.36 37.09 (1.59) 8912.87 35.82  (1.65) 219.30
breast 42 22283 (1.79) 243.13 30.38  (2.05) 1946.98 30.76  (2.14) 227.88
colon 62 2000 (1.11)  91.70 1890 (1.55)  722.48 23.87 (1.51) 27.33
leuk 72 7128 394  (0.51) 21595 (0.51) 1863.23 433 (0.61) 115.00
LSVT 126 309 15.74| (0.62) 73.04 16.20  (0.68) 74.20 15.87 (0.68)  9.05

malaria 71 22283 (0.63) 818.98 7.60  (1.21) 12046.09 6.80 (0.98) 483.20
ovarian 253 15154 0.67 (0.13) 1491.25 487 (1.23) 14442.87 0.87 (0.14) 964.16
prostate 102 6033 9.69 (0.68) 199.85 (0.50) 2421.20 10.24 (0.61) 116.50
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