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Density-Convoluted Support Vector Machines

for High-Dimensional Classification
LE ZHOU, BOXIANG WANG, YUWEN GU AND HUI ZOU

Abstract

The support vector machine (SVM) is a popular classification method which enjoys good performance in many

real applications. The SVM can be viewed as a penalized minimization problem in which the objective function is

the expectation of hinge loss function with respect to the standard non-smooth empirical measure corresponding to

the true underlying measure. We further extend this viewpoint and propose a smoothed SVM by substituting a kernel

density estimator for the measure in the expectation calculation. The resulting method is called density convoluted

support vector machine (DCSVM). We argue that the DCSVM is particularly more interesting than the standard SVM

in the context of high-dimensional classification. We systematically study the rate of convergence of the elastic-net

penalized DCSVM and prove it has order Op(
√

s log p
n

) under general random design setting. We further develop

novel efficient algorithm for computing elastic-net penalized DCSVM. Simulation studies and 8 benchmark datasets

are used to demonstrate the superior classification performance of elastic-net DCSVM over other competitors, and it

is demonstrated in these numerical studies that the computation of DCSVM can be more than 100 times faster than

that of the SVM.

Index Terms

Classification, ultra-high dimension, DCSVM, support vector machines, kernel density smoother.

I. INTRODUCTION

Due to the advanced technology for data collection over the past decades, there has been a surge of data complexity

in many research fields such as genomics, genetics, and finance, among others. Consequently, it is very common

for the number of predictors in the dataset to be far larger than the number of observations (Donoho et al., 2000).

For example, in genomics it is crucial to build a classifier for the purpose of disease diagnosis, with thousands

of candidate genes at hand but only tens of instances available for study. Such high dimensionality in data makes
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traditional classification methods infeasible and poses new challenges from both theoretical and computational

perspectives.

One method for performing high dimensional classification is the penalized large margin classifier. The standard

support vector machine (SVM), initially proposed and investigated in Boser et al. (1992) and Vapnik (1995), has an

objective equal to hinge loss plus an `2 penalty. It is also referred to as `2-norm SVM. When the dimension greatly

exceeds the sample size and there are many noisy features in the predictor set, it has been shown that it is more

beneficial to use a sparse penalty such as the `1 norm penalty (a.k.a. the lasso) to replace the `2 norm penalty in

order to perform classification and variable selection simultaneously in high dimensional setting (Zhu et al., 2003).

Consider the `1 norm SVM for example. It can be written as

min
β0,β

1

n

n∑
i=1

L
(
yi(x

T
iβ + β0)

)
+ λ‖β‖1, (I.1)

where L(u) = (1 − u)+ is the hinge loss. Just like in lasso regression, the `1 penalty induces sparsity in the

solution and is thus capable of removing irrelevant features. More recently, Peng et al. (2016) investigated the rate

of convergence of the `1-norm SVM and an error bound of O(
√

s log p
n ) was established in their paper.

The sparse penalized SVM can be computationally intensive especially when the number of predictors is huge in

the dataset, owing to the non-differentiable loss function part. It is known that penalized problem in high dimensions

with a smooth loss function can be efficiently computed by cyclical coordinate descent algorithm (Friedman et al.,

2010). Nevertheless, the SVM is based on the non-differentiable hinge loss, which means that there is no convergence

guarantee if one uses cyclical coordinate descent to solve the SVM. In principle, coordinate descent may not give

the right solution due to the non-differentiability of the objective function (Luo and Tseng, 1992; Tseng, 2001). A

similar problem under regression context is the quantile regression, in which the check loss is not differentiable

(Fan et al., 2020). The typical method of solving quantile regression is the interior point algorithm. Since `1-norm

SVM can be transformed into linear programming, one may also consider interior point algorithm for solving it.

However, interior point algorithm may not scale well with high dimensional input and thus is not suitable for

solving SVM in high dimensions.

Recently, Fernandes et al. (2021) studied an interesting smoothing technique for solving quantile regression

with statistical guarantees. Later, Tan et al. (2021) further studied the smoothing quantile regression under high

dimensional settings and showed that the statistical property of quantile regression is maintained after smoothing.

Motivated by their work, we develop a smooth version of SVM from statistical perspective, as opposed to trying

to solve it exactly. Consider the first term in (I.1)

1

n

n∑
i=1

L
(
yi(x

T
iβ + β0)

)
, (I.2)

which is non-smooth. If we could replace it by some smooth loss such that the resulting estimator has nice theoretical

properties, then we should focus on solving the smooth problem instead of the original problem. In fact, one may

view (I.2) as the expectation of the hinge loss function with respect to the empirical measure assigning 1
n probability
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mass to each yi(xT
iβ + β0), i = 1, . . . , n. The empirical measure is viewed as an estimator for the true distribution

of the random variable y(xTβ+β0). Clearly, if we estimate the true distribution by using a smoothed kernel density

estimator, then we can take the expectation of the hinge loss function with respect to the distribution determined

by the smoothed kernel density estimator. This leads us to a new objective function

1

n

n∑
i=1

Lh
(
yi(x

T
iβ + β0)

)
, (I.3)

which we use to replace (I.2). Here h is the bandwidth of kernel density estimator and is used to index the new

classifier. The resulting estimator is named as density convoluted support vector machine (DCSVM), since the kernel

density estimator has a convolution interpretation. We study the following general form of penalized DCSVM in

high dimensions,

1

n

n∑
i=1

Lh
(
yi(x

T
iβ + β0)

)
+ λ0‖β‖22 + λ‖β‖1.

The resulting estimator is called elastic-net DCSVM, which involves both `1-DCSVM and `2-DCSVM as special

cases. By its convexity and smoothness, elastic-net DCSVM can be efficiently solved by using the generalized

coordinate descent algorithm (Yang and Zou, 2013).

In this paper, we first study the theoretical properties of the elastic-net DCSVM. We show that the convergence

rate of the elastic-net DCSVM is Op(
√

s log p
n ) under the general random design setting. Furthermore, we develop

novel efficient algorithm for computing elastic-net DCSVM. We use simulation studies and 8 benchmark datasets

to demonstrate that elastic-net DCSVM delivers superior classification performance over its competitors, and the

computational speed of DCSVM can be two orders of magnitude faster than that of SVM.

II. DENSITY-CONVOLUTED SVM

A. Notation and definitions

We first introduce some notation that is used throughout the paper. For an arbitrary index set A ⊂ {1, . . . , p},

any vector c = (c1, . . . , cp) and any n × p matrix U, let cA = (ci, i ∈ A), and let UA be the submatrix with

columns of U whose indices are in A. The complement of an index set A is denoted as Ac = {1, . . . , p} \A.

For any finite set B, let |B| be the number of elements in B. For a vector c ∈ Rp and q ∈ [1,∞), let ‖c‖q =

(
∑p
j=1 |cj |q)

1
q be its `q norm, let ‖c‖∞ (or ‖c‖max) = maxj |cj | be its `∞ norm, and let ‖c‖min = minj |cj |

be its minimum absolute value. For a matrix M, let λmin(M) and λmax(M) be its eigenvalue with smallest

absolute value and largest absolute value, respectively. This is the common notation for eigenvalues of a matrix,

and λmin, λmax should not be confused with the penalization parameter used in a penalty function. For any matrix

G, let ‖G‖ =
√
λmax(GTG) be its spectral norm. In particular, for a vector c, ‖c‖ = ‖c‖2. For a, b ∈ R, let

a∧ b = min{a, b} and a∨ b = max{a, b}. For a sequence {an} and another nonnegative sequence {bn}, we write

an = O(bn) if there exists a constant c > 0 such that |an| ≤ cbn for all n ≥ 1. Also, we use an = o(bn), or

an � bn, to represent limn→∞
an
bn

= 0. We write bn � an if an � bn. Let (Ω,G,P) be a probability space on
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which all the random variables that appear in this paper are defined. Let E[·] be the expectation corresponding to

the probability measure P. Let ψ : [0,∞) → [0,∞] be a nondecreasing, convex function with ψ(0) = 0, then we

denote ‖Z‖ψ = inf{t > 0 : E[ψ( |Z|t )] ≤ 1} as th ψ-Orlicz norm for any random variable Z. In particular, if p ≥ 1,

let ψp(x) := ex
p − 1 which is a nondecreasing convex function with ψp(0) = 0, then we denote its corresponding

Orlicz norm as ‖Z‖ψp = inf{t > 0 : E[e
|Z|p
tp ] ≤ 2} where Z is any random variable. For a sequence of random

variables {Zn}n≥1, we write Zn = Op(1) if limM→∞ lim supn→∞ P(|Zn| > M) = 0, and we write Zn = op(1)

if limn→∞ P(|Zn| > ε) = 0, ∀ε > 0. For two sequences of random variables Zn and Z ′n, we write Zn = Op(Z
′
n)

if Zn
Z′n

= Op(1), and we write Zn = op(Z
′
n) if Zn

Z′n
= op(1).

B. Density-Convoluted SVM

Suppose the training data consists of n observations {(yi,xi)}ni=1, where xi = (xi1, . . . , xip)
T ∈ Rp are predictors

and yi ∈ {−1, 1} is the class label for the ith subject. We use X = (X1, . . . ,Xp) to denote the design matrix,

where Xj = (x1j , . . . , xnj)
T contains observations for the jth variable, and use y = (y1, . . . , yn)T to represent the

response vector. We focus on the general case where the observed data {(yi,xi)}ni=1 are i.i.d. samples from the

distribution of a random vector (y,x). Let the jth component of the random vector x be denoted as xj . Meanwhile,

let x̃ = (1,xT)T and x̃i = (1,xT
i)

T, i = 1, . . . , n. To perform the classification task, the support vector machine

(SVM, Vapnik, 1995) seeks a separating hyperplane {x : β0 + xTβ = 0} where

min
β0,β,ξi

1

2
‖β‖22

subject to yi
(
β0 + x>i β

)
≥ 1− ξi, ξi ≥ 0,

n∑
i=1

ξi ≤ c.
(II.1)

It is well known that the above problem can be equivalently formulated as a penalized empirical risk minimization

problem:

min
β0,β

1

n

n∑
i=1

L
(
yi(x

T
iβ + β0)

)
+ λ0‖β‖22, (II.2)

where L(u) = (1− u)+ = max{1− u, 0} is known as the SVM hinge loss and λ0 > 0 is a tuning parameter that

is one-to-one correspondent to the constant c in problem (II.1).

Let us consider the population version of risk appearing in (II.2), E[L
(
y(xTβ + β0)

)
]. If we define new random

variable U = y(xTβ + β0) and let F (u;β, β0) be its cumulative distribution function (cdf), then the population

risk is written as
∫∞
−∞ L(t)dF (t;β, β0). The unpenalized objective function in (II.2) can be further viewed as∫∞

−∞ L(t)dF̂ (t;β, β0), where F̂ (t;β, β0) = 1
n

∑n
i=1 1{yi(xT

iβ+β0)≤t} is the empirical cdf based on i.i.d. realizations

of U . The usage of the discontinuous empirical cdf here makes the objective in (II.2) to have the same degree

of smoothness as the hinge loss L(·), i,e. continuous but nondifferentiable. This has motivated us to consider an

alternative estimator for the cdf. If we use an estimator F̃ (· ;β, β0) that is smooth enough, the
∫∞
−∞ L(t)dF̃ (t;β, β0)

shall lead us towards a new objective which is differentiable to certain degrees.
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In particular, we consider the cdf from the kernel density estimator

F̃ (t;β, β0) =

∫ t

−∞

1

nh

n∑
i=1

K
(u− yi(xT

iβ + β0)

h

)
du,

where K : R → [0,∞) is a smooth kernel function satisfying K(−u) = K(u), ∀u ∈ R,
∫∞
−∞K(t)dt = 1 and∫∞

−∞ |t|K(t)dt <∞, and h > 0 is the bandwidth parameter to be tuned. Replacing F̂ by F̃ gives the new objective

function, ∫ ∞
−∞

L(t)dF̃ (t;β, β0)

=
1

n

n∑
i=1

∫ ∞
−∞

L(t)
1

h
K
( t− yi(xT

iβ + β0)

h

)
dt

,
1

n

n∑
i=1

Lh
(
yi(x

T
iβ + β0)

)
where Lh(t) =

∫∞
−∞(1 − u)+

1
hK

(
u−t
h

)
du. Note that Lh(·) is a convex function that is at least second order

differentiable. Also, it satisfies the relation Lh = L ∗Kh where Kh(u) = 1
hK(uh ) and “∗” stands for convolution.

As such, with the penalty term λ0‖β‖22, we obtain

min
β0,β

n∑
i=1

Lh(yi(x
T
iβ + β0)) + λ0‖β‖22. (II.3)

We treat the classifier arisen from the above problem as a new classifier and coin it the density-convoluted SVM

(DCSVM).

As discussed above, DCSVM originates from a statistical view of the SVM, while it shows merit from the

computational perspective as it overcomes the non-differentiability of the original SVM problem. Smoothing a

non-differentiable problem through convolution can be traced back to the idea of mollification (Friedrichs, 1944)

and has also been studied in the optimization community, for example, Bertsekas (1973) and Rubinstein (1983).

The method was recently adopted to smooth the quantile regression by He et al. (2021), Fernandes et al. (2021)

and Tan et al. (2021).

In this work, we focus on two most popular kernel functions, Gaussian kernel and Epanechnikov kernel in

DCSVM, and we denote the corresponding convoluted loss function by LGh (v) and LEh (v), respectively.

For the Gaussian kernel K(u) = 1√
2π

exp{−u2/2}, one can show that

LGh (v) = (1− v)Φ

(
1− v
h

)
+

h√
2π

exp

{
− (1− v)2

2h2

}
,

where Φ(·) is the cumulative distribution function of the standard normal distribution.
For the Epanechnikov kernel K(u) = 3

4 (1− u2)I(−1 ≤ u ≤ 1), where I(·) is the indicator function,

LEh (v) =


1− v, v ≤ 1− h,
(1− v + h)3(3h− (1− v))

16h3
, 1− h < v ≤ 1 + h,

0, v ≥ 1 + h.
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Fig. 1. Top row: plots of LGh (v) and LEh (v), the density-convoluted SVM loss functions with Gaussian kernel (left) and
Epanechnikov kernels (right). Bottom row: plots of the first-order derivatives, LG′h (v) and LE′h (v).

The top row of Figure 1 depicts the DCSVM losses with Gaussian kernel and Epanechnikov kernel.

Intuitively, h should be small such that the DCSVM is very close to the SVM. According to density estimator, the optimal rate for h is

O(n−1/5). So, we adopt h = Cn−1/5 in our implementation, where C is some numerical constant within the range (0.25, 3). The actual

value of C in practice can be determined by cross-validation.

C. Sparse density-convoluted SVM

Define (β∗0 ,β
∗) = argmin(β0,β)∈R×Rp E

[
Lh
(
y(xTβ+β0)

)]
. In high dimensions, we consider designing the estimator under

a sparsity assumption that β∗ has many zero components. Let A = {j : β∗j 6= 0, 1 ≤ j ≤ p} be the support set of β∗, i.e., the

set of indices of the important covariates. Let s = |A|. Throughout this paper, we allow p = pn and s = sn to diverge with n,

and we assume sn ≥ 1 and pn goes to infinity as n goes to infinity. For convenience, we still use p and s to represent these

quantities since no confusion is caused. In ultra-high dimensions, the dimension p is allowed to increase exponentially with the

sample size n. We also assume that s is relatively of smaller order compared to n, which is necessary for the existence of a

consistent estimator.

To perform the classification for high-dimensional data, we present sparse DCSVM with an additional `1-penalty term

(β̂0, β̂) := argmin
(β0,β)∈R×Rp

1

n

n∑
i=1

Lh(yi(x
T
iβ + β0)) + λ0‖β‖22 + λ‖β‖1. (II.4)
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The `1-penalty is used to induce sparsity in the estimator. We also consider the following version of sparse DCSVM with only

an `1-penalty term:

(β̃0, β̃) := argmin
(β0,β)∈R×Rp

1

n

n∑
i=1

Lh(yi(x
T
iβ + β0)) + λ‖β‖1. (II.5)

Borrowing the commonly used terminologies for different penalties in high dimensional literature, we refer to the estimator in

(II.4) as elastic-net DCSVM, and refer to the estimator in (II.5) as lasso DCSVM. Note that the lasso DCSVM is a special

case of elastic-net DCSVM with λ0 = 0. In the statistics literature it is well-known than the elastic-net often yields much

improved prediction than the lasso owing to the additional `2 regularization that can well handle the correlated covariates which

occurs often in high-dimensional data. For example, in the case of the SVM Wang et al. (2006) showed that the elastic-net

regularized SVM is more accurate than the `1-norm SVM. Therefore, we focus on the elastic-net penalized DCSVM in theory

and in applications.

III. THEORETICAL STUDIES

We now state the assumptions needed to establish our theoretical results. We first impose the following conditions on the

random design.

Assumption 1. {(yi,xi)}ni=1, (y,x) are independent and identically distributed on R×Rp. x is a zero-mean sub-exponential

random vector, i.e. E[x] = 0, and there exists a constant m0 > 0 such that

sup
a∈Rp:‖a‖2≤1

‖aTx‖ψ1 ≤ m0.

By definition of Orlicz norm and Markov’s inequality, this further implies

sup
a∈Rp:‖a‖2≤1

P(|aTx| > t) ≤ 2e
− t
m0 , ∀t ≥ 0.

For any index set A ⊂ {1, . . . , p}, consider the cone SA := {(δ,u) ∈ R×Rp : ‖uAc‖1 ≤ 3‖uA‖1+ |δ|}. Such type of cone

has been widely considered in literature on high dimensional statistics. Meanwhile, let I(β0,β) := E[L′′h
(
y(β0 + xTβ)

)
x̃x̃T]

be Hessian matrix of the population loss, or information matrix. We impose the following condition on the information.

Assumption 2. There exists a constant ρ > 0 such that

min
(δ,u)∈SA:δ2+‖u‖22=O( s log p

n
)

λmin

(
I(β∗0 + δ,β∗ + u)

)
≥ ρ

for large enough n.

Assumption 1 is a general setting in the random design, which relaxes the classical condition that the components of x are

bounded random variables (Peng et al., 2016). Assumption 2, which is a restricted eigenvalue type of condition, is needed to

establish `2-type error bound for `1-penalized type of estimator. Similar conditions have been widely adopted in the literature

(Bühlmann and Van De Geer, 2011; Fan et al., 2020).

Theorem 1. Assume assumptions 1-2 hold, and s log p = o(n). Choose the tuning parameters such that 8λ0‖β∗‖max < λ.

Then there exists a large enough constant c0 > 0 such that with the choice λ = c0

√
log p
n

, the elastic-net DCSVM estimator

(β̂0, β̂) satisfies

|β̂0 − β∗0 |2 + ‖β̂ − β∗‖22 = Op
(s log p

n

)
.
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Theorem 1 shows that the sparse DCSVM estimator can achieve the same rate of convergence as the `1-SVM (Peng et al.,

2016). Meanwhile, the sparse DCSVM has better computational efficiency than penalized SVM due to the smoothness of its

loss function, as shown in the next section.

IV. COMPUTATION

In this section, we develop an efficient algorithm for computing the solution path of DCSVM.
At the outset, we present the first-order derivative of the density-convoluted SVM loss and show they are Lipschitz continuous

in Lemma 1:
LG′h (v) = −Φ

(
1− v
h

)
,

LE′h (v) =


−1, v ≤ 1− h,

−
(1− v + h)2(2h− (1− v))

4h3
, 1− h < v ≤ 1 + h,

0, v ≥ 1 + h.

Lemma 1. Let LGh (v) and LEh (v) be the DCSVM loss using Gaussian kernel and Epanechnikov kernel, respectively. For v1 < v2,

|LG′h (v1)− LG′h (v2)| < cGh |v1 − v2|, (IV.1)

|LE′h (v1)− LE′h (v2)| < cEh |v1 − v2|, (IV.2)

where the Lipschitz constants are given as cGh = 1√
2πh

and cEh = 3
4h

.

The bottom row of Figure 1 depicts LG′h (v) and LE′h (v).

Lemma 1 gives rise to the following quadratic majorization condition for the DCSVM:

Lh(v1) ≤ Lh(v2) + L′h(v2)(v1 − v2) +
ch

2
(v1 − v2)2, (IV.3)

where Lh is exemplified by LGh and LEh and ch is the corresponding Lipschitz constant.

Based on the Lipschitz condition, we develop a generalized coordinate descent (GCD) algorithm (Yang and Zou, 2013) to solve those sparse

penalized DCSVMs. We first consider the adaptive lasso penalty. The algorithm can be easily adjusted to handle lasso and elastic net.

Without loss of generality, we assume each Xj has zero mean and unit length. In a coordinate-wise manner, suppose the coordinate

β1, β2, . . . , βj−1 have been updated and we now update βj . Denote by β̃0 and β̃ by the current solution and let vi = yi(β̃0 + xT
i β̃). To

update βj , instead of solving the coordinate-wise update function,

F (βj) =
1

n

n∑
i=1

Lh

(
vi + yixij

(
βj − β̃j

))
+ λwj |βj |,

we solve its majorization function

Q (βj) =
1

n

n∑
i=1

Lh (vi) +
1

n

n∑
i=1

L′h (vi) yixij

(
βj − β̃j

)
+
ch

2

(
βj − β̃j

)2
+ λwj |βj |

that is obtained through the quadratic majorization condition. The minimizer of Q (βj) is

(
β̃j −

1

chn

n∑
i=1

L
′
h(vi)yixij

)1−
λwj∣∣∣chβ̃j − 1

n

∑n
i=1 L

′
h
(vi)yixij

∣∣∣


+

.

Likewise, β0 is updated to be β̃0 − 1
chn

∑n
i=1 L

′
h(vi)yi.

In the appendix we provide theoretical analysis of the convergence of the generalized coordinate descent algorithm which is not in Yang

and Zou (2013). In our implementation, we further apply the strong rule (Tibshirani et al., 2010), warm start, and active set strategy (Friedman

et al., 2010) to further accelerate the algorithm.
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TABLE I. Comparison of prediction error (in percentage) and run time (in second) of elastic-net density-convoluted SVM with
Gaussian and Epanechnikov kernels, elastic-net SVM, and elastic-net logistc regression. Under each simulation setting, the
method with the lowest prediction error is marked by a black box. All the quantities are averaged over 50 independent runs
and the standard errors of the prediction error are given in parentheses.

DCSVM-Gaussian DCSVM-Epanechnikov SVM logistic

p ρ err (%) time err (%) time err (%) time err (%) time

Example 1

500 6.83 (0.14) 267.89 6.75 (0.14) 29.67 9.76 (1.51) 1362.44 6.98 (0.15) 49.78

5000 7.11 (0.13) 771.87 7.29 (0.16) 139.07 7.90 (0.87) 28323.47 7.33 (0.17) 417.54

Example 2

500 0.2 13.52 (0.19) 305.95 13.48 (0.17) 33.42 16.02 (1.26) 1687.62 13.88 (0.22) 52.44

0.7 22.65 (0.25) 385.08 22.50 (0.27) 41.39 25.75 (1.21) 1585.23 22.88 (0.28) 59.99

0.9 24.76 (0.24) 467.40 24.57 (0.24) 48.78 27.42 (1.16) 1510.98 24.82 (0.31) 69.52

5000 0.2 13.78 (0.18) 806.36 13.72 (0.21) 142.09 16.32 (1.25) 30170.44 14.12 (0.26) 420.09

0.7 22.66 (0.21) 890.84 23.00 (0.24) 150.44 24.15 (0.79) 31865.01 23.03 (0.23) 435.63

0.9 24.70 (0.25) 975.34 24.76 (0.24) 154.73 26.88 (1.00) 32132.55 25.03 (0.24) 450.30

Example 3

500 0.2 10.30 (0.15) 290.41 10.13 (0.16) 31.53 12.04 (1.14) 1476.20 10.69 (0.24) 51.16

0.7 19.48 (0.18) 368.74 19.40 (0.18) 39.71 22.90 (1.34) 1726.07 19.80 (0.25) 60.53

0.9 23.50 (0.22) 435.55 23.54 (0.22) 44.92 26.55 (1.19) 1625.15 23.93 (0.28) 66.23

5000 0.2 10.51 (0.20) 793.67 10.46 (0.18) 141.23 13.02 (1.35) 34555.70 10.74 (0.21) 418.58

0.7 19.70 (0.21) 877.54 19.89 (0.22) 146.99 22.54 (1.18) 34574.72 20.09 (0.25) 433.84

0.9 23.85 (0.23) 944.63 23.81 (0.24) 152.78 26.55 (1.11) 36732.99 23.90 (0.24) 445.60

V. NUMERICAL STUDIES

A. Simulation

In this section, we use several simulation examples to demonstrate the performance of DCSVM.

The response variables of all the simulated data are binary and the two classes are balanced, i.e., P (Y = 1) = P (Y = −1) = 0.5. In each

example, define the p-dimensional mean vectors µ+ = (0.7, 0.7, 0.7, 0.7, 0.7, 0, 0, . . . , 0) and µ− = −µ+, where p = 500 or 5000 in our

experiments. Each observation from the positive class is drawn from N(µ+,Σ) and each observation from the negative class is drawn from

N(µ−,Σ). We consider three different choices of Σ. In example 1, Σ = Ip×p so the variables are independent. In both examples 2 and 3,

Σ =

 Σ?
5×5 05×(p−5)

0(p−5)×5 I(p−5)×(p−5)


where Σ?

5×5 have all diagonal elements of 1 and off-diagonal elements of ρ in example 2, and (Σ?
5×5)i,j = ρ|i−j| in example 3. We use

ρ = 0.2, 0.7, and 0.9.

We first compared elastic-net DCSVM with Gaussian kernel and Epanechnikov kernel with elastic-net SVM (Wang et al., 2006) and elastic-

net logistic regression that is fitted using the R package gcdnet (Yang and Zou, 2013). For each example, the training size is 200 and

we use five-fold cross-validation to select the best tuple of (h, λ0, λ) where h is chosen from 0.1, 0.25, 0.5, and 1, λ0 is selected from

0.5 ∗ (10−4, 10−3, 10−2, 10−1, 1, 5), and λ is searched along the solution path; for the SVM and logistic regression, we select λ0 and λ in

the same manner.

We record the prediction error and run time in Table I. The run time include all the time spent on tuning and training the models. We

observe the DCSVM with Epanechnikov kernel has slightly better performance than DCSVM with Gaussian kernel, and both of them have

better prediction accuracy than the other two methods. DCSVM with Epanechnikov kernel is the fastest while the elastic-net SVM is the slowest.

All the methods exhibited in Table I use elastic-net penalty. We now study the performance when using other sparse penalities. Due to the
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TABLE II. Comparison of prediction error (in percentage) and variable selection of density-convoluted SVM with Epanechnikov
kernels using lasso and elastic-net (enet) penalties. Denote by C and IC the number of correctly and incorrectly selected
variables, respectively. Under each simulation setting, the method with the lowest prediction error is marked by a black box. All
the quantities are averaged over 50 independent runs and the standard errors of the prediction error are given in parentheses.

lasso-DCSVM enet-DCSVM

p ρ err (%) C IC err (%) C IC

Example 1

500 6.88 (0.14) 5 0 6.77 (0.14) 5 0

5000 7.31 (0.19) 5 0 7.29 (0.16) 5 0

Example 2

500 0.2 13.89 (0.23) 5 0 13.47 (0.17) 5 0

0.7 22.86 (0.20) 3 0 22.51 (0.27) 5 0

0.9 24.53 (0.19) 2 0 24.51 (0.23) 4 0

5000 0.2 14.55 (0.25) 5 0 13.72 (0.21) 5 0

0.7 23.41 (0.23) 3 0 23.05 (0.25) 4 0

0.9 25.36 (0.35) 2 0 24.76 (0.26) 3 0

Example 3

500 0.2 10.47 (0.22) 5 0 10.09 (0.15) 5 0

0.7 19.90 (0.22) 3 0 19.44 (0.19) 4 0

0.9 23.74 (0.20) 3 0 23.49 (0.22) 4 0

5000 0.2 10.78 (0.23) 5 0 10.48 (0.18) 5 0

0.7 20.12 (0.22) 3 0 19.89 (0.22) 4 0

0.9 24.34 (0.31) 2 0 23.81 (0.24) 3 0

overall best performance, we stay with DCSVM with Epanechnikov kernel and we compare the prediction accuracy and variable selection when

using lasso and elastic-net penalties. We present the results in Table II. In general, we find the elastic-net has the best performance in both

prediction error and variable selection.

B. Benchmark data applications

In this section, we demonstrate the performance of DCSVM using several benchmark data, which are available from UCI machine learning

repository. We randomly split each data set into a training set and a test set with a 1:1 ratio. On the training set, we fit elastic-net DCSVM,

elastic-net logistic regression, and elastic-net SVM, and tune each method using five-fold cross-validation. The prediction accuracy is computed

based on the test set.

We present the result in Table III. We observe the elastic-net DCSVM has the best performance in general.

APPENDIX A

PROOF OF THEOREM 1

We first give some general formula regarding the loss function Lh and its derivatives. Recall Lh(u) =
∫∞
−∞(1−u+v)+

1
h
K( v

h
)dv, u ∈ R.

A direct calculation gives

Lh(t) =

∫ 1

−∞

1− u
h

K(
t− u
h

)du,
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TABLE III. Comparison of prediction error (in percentage) and run time (in second) of elastic-net density-convoluted SVM
with Epanechnikov kernel, elastic-net SVM, and elastic-net logistc regression. For each benchmark data, the method with the
lowest prediction error is marked by a black box. All the quantities are averaged over 50 independent runs and the standard
errors of the prediction error are given in parentheses.

enet-DCSVM enet-SVM enet-logistic

data n p err (%) time err (%) time err (%) time

arcene 100 9920 32.24 (1.46) 53.26 37.09 (1.59) 8912.87 35.82 (1.65) 219.30

breast 42 22283 25.90 (1.64) 51.33 30.38 (2.05) 1946.98 30.76 (2.14) 227.88

colon 62 2000 18.13 (1.03) 10.22 18.90 (1.55) 722.48 23.87 (1.51) 27.33

leuk 72 7128 3.50 (0.47) 22.98 3.89 (0.51) 1863.23 4.33 (0.61) 115.00

LSVT 126 309 16.01 (0.73) 6.25 16.20 (0.68) 74.20 15.87 (0.68) 9.05

malaria 71 22283 5.37 (0.68) 85.52 7.60 (1.21) 12046.09 6.80 (0.98) 483.20

ovarian 253 15154 0.63 (0.12) 189.22 4.87 (1.23) 14442.87 0.87 (0.14) 964.16

prostate 102 6033 9.25 (0.67) 29.34 8.98 (0.50) 2421.20 10.24 (0.61) 116.50

L′h(t) = −
∫ 1−t

h

−∞
K(u)du,

L′′h(t) =
1

h
K(

1− t
h

), ∀t ∈ R. (A.0.1)

It is important to note that |L′h(·)| ≤ 1, since K(t) ≥ 0, ∀t and
∫∞
−∞K(u)du = 1.

Proof of Theorem 1. By definition of the `1-penalized CRR estimator and triangle inequality, we have

1

n

n∑
i=1

Lh
(
yi(x

T
i β̂ + β̂0)

)
−

1

n

n∑
i=1

Lh
(
yi(x

T
iβ
∗ + β∗0 )

)
+ λ0(‖β̂‖22 − ‖β∗‖22)

≤ λ(‖β∗‖1 − ‖β̂‖1)

≤ λ(‖β∗A − β̂A‖1 + ‖β̂A‖1 − ‖β̂A‖1 − ‖β̂Ac − β∗Ac‖1)

= λ(‖uA‖1 − ‖uAc‖1), (A.0.2)

where we denote u := β̂ − β∗. On the other hand, by convexity of Lh(·), we have

1

n

n∑
i=1

Lh
(
yi(x

T
i β̂ + β̂0)

)
−

1

n

n∑
i=1

Lh
(
yi(x

T
iβ
∗ + β∗0 )

)
+ λ0(‖β̂‖22 − ‖β∗‖22)

≥
1

n

n∑
i=1

L′h
(
yi(x

T
iβ
∗ + β∗0 )

)
yi(β̂0 − β∗0 )

+
(

2λ0β
∗T +

1

n

n∑
i=1

L′h
(
yi(x

T
iβ
∗ + β∗0 )

)
yix

T
i

)
(β̂ − β∗)

≥ −
∣∣∣ 1
n

n∑
i=1

L′h
(
yi(x

T
iβ
∗ + β∗0 )

)
yi

∣∣∣ · |δ|
−
∥∥∥2λ0β

∗ +
1

n

n∑
i=1

L′h
(
yi(x

T
iβ
∗ + β∗0 )

)
yixi

∥∥∥
∞

(‖uA‖1 + ‖uAc‖1), (A.0.3)
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where δ := β̂0 − β∗0 . Define event E1 := {| 1
n

∑n
i=1 L

′
h

(
yi(x

T
iβ
∗ + β∗0 )

)
yi| ≤ λ

2
} and E2 := {‖2λ0β∗ + 1

n

∑n
i=1 L

′
h

(
yi(x

T
iβ
∗ +

β∗0 )
)
yixi‖∞ ≤ λ

2
}. Note that E

[
L′h
(
y(xTβ∗ + β∗0 )

)
y
]

= 0, and
∣∣L′h(y(xTβ∗ + β∗0 )

)
y
∣∣ ≤ 1. So by Hoeffding’s inequality,

P(Ec
1) = P

(∣∣∣ 1
n

n∑
i=1

L′h
(
yi(x

T
iβ
∗ + β∗0 )

)
yi

∣∣∣ > λ

2

)
≤ 2 exp

{
−
nλ2

8

}
. (A.0.4)

Meanwhile, we have E
[
L′h
(
y(xTβ∗ + β∗0 )

)
yx
]

= 0 by the definition of β∗ and optimality condition. By the choice of tuning parameters we

have

P(Ec
2) = P

(∥∥2λ0β
∗ +

1

n

n∑
i=1

L′h
(
yi(x

T
iβ
∗ + β∗0 )

)
yixi

∥∥
∞ >

λ

2

)

≤ P
(∥∥ 1

n

n∑
i=1

L′h
(
yi(x

T
iβ
∗ + β∗0 )

)
yixi

∥∥
∞ >

λ

4

)

≤
p∑
j=1

P
(∣∣ 1
n

n∑
i=1

L′h
(
yi(x

T
iβ
∗ + β∗0 )

)
yixij

∣∣ > λ

4

)
. (A.0.5)

Notice that by assumption 1 and |L′h(·)| ≤ 1,

E
[
e|L
′
h(yi(x

T
iβ
∗+β∗0 ))yixij |/m0

]
≤ E

[
e
|xij |
m0

]
≤ 2.

This implies that ‖L′h(yi(x
T
iβ
∗ + β∗0 ))yixij‖ψ1

≤ m0, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , p}. By Theorem 1.4 in Götze et al. (2021), there

exists an absolute constant η0 > 0 such that

P
(∣∣ 1
n

n∑
i=1

L′h
(
yi(x

T
iβ
∗ + β∗0 )

)
yixij

∣∣ > λ

4

)

≤ 2e
− 1
η0

( λ2

16m2
0

∧ λ
4m0

)n
.

So following (A.0.5) we have P(Ec
2) ≤ 2pe

− 1
η0

( λ2

16m2
0

∧ λ
4m0

)n
.

Now, under E1 ∩ E2, combining (A.0.2) and (A.0.3) we have

−
λ

2
(|δ|+ ‖uA‖1 + ‖uAc‖1) ≤ λ(‖uA‖1 − ‖uAc‖1),

which implies ‖uAc‖1 ≤ 3‖uA‖1 + |δ|, or (δ,u) ∈ SA.

Define F (β0,β) = 1
n

∑n
i=1 Lh

(
yi(x

T
iβ + β0)

)
for any (β0,β) ∈ R × Rp. Also, define C(r) =

{
(w,w) ∈ SA : |w|2 + ‖w‖22 =

r2 s log p
n

}
for any r > 0. Let G(β0,β) = F (β0,β)− F (β∗0 ,β

∗), and let H(r) = sup(β0,β)∈(β∗0 ,β∗)+C(r)
∣∣G(β0,β)− E[G(β0,β)]

∣∣.
We give an upper bound for E[H(r)]. Let σ1, . . . , σn be i.i.d. Rademacher random variables (i.e. P(σi = 1) = P(σi = −1) = 1

2
), which

is independent from all the other random elements. By the symmetrization inequality (see for instance, Lemma 2.3.1 in Van Der Vaart and

Wellner (1996)) and contraction inequality (see for instance, Theorem 4.12 in Ledoux and Talagrand (1991)), |L′h(·)| ≤ 1 and Cauchy-Schwarz

inequality, we have

E[H(r)]

≤ 2E
[

sup
(β0,β)∈(β∗0 ,β∗)+C(r)

∣∣∣∣ 1n
n∑
i=1

σi

{
Lh
(
yi(x

T
iβ + β0)

)
− Lh

(
yi(x

T
iβ
∗ + β∗0 )

)}∣∣∣∣]
≤ 4E

[
sup

(β0,β)∈(β∗0 ,β∗)+C(r)

∣∣∣∣ 1n
n∑
i=1

σiyi
(
xT
i(β − β∗) + β0 − β∗0

)∣∣∣∣]
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≤
4

n
E
[∥∥∥∥ n∑

i=1

σiyi(1,x
T
i)

T

∥∥∥∥
∞

](
4
√
s · r

√
s log p

n
+ 2r

√
s log p

n

)
. (A.0.6)

By assumption 1 and definition of Orlicz norm, we know ‖σiyixij‖ψ1
= ‖xij‖ψ1

≤ m0, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , p}. Also, it is

straightforward to see ‖σiyi‖ψ1
= 1

log 2
. By Proposition 2.7.1 in Vershynin (2018), there exists a constant c1 > 0 such that E[etσiyixij ] ≤

ec
2
1t

2
and E[etσiyi ] ≤ ec

2
1t

2
for all |t| < 1

c1
, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , p}. By Jensen’s inequality, we have for any 0 < t < 1

c1
,

etE[max{max1≤j≤p |
∑n
i=1 σiyixij |,|

∑n
i=1 σiyi|}]

≤ E[etmax{max1≤j≤p |
∑n
i=1 σiyixij |,|

∑n
i=1 σiyi|}]

≤ E
[

max
1≤j≤p

(et
∑n
i=1 σiyixij + e−t

∑n
i=1 σiyixij )

+ et
∑n
i=1 σiyi + e−t

∑n
i=1 σiyi

]
≤

p∑
j=1

(

n∏
i=1

E[etσiyixij ] +

n∏
i=1

E[e−tσiyixij ])

+

n∏
i=1

E[etσiyi ] +

n∏
i=1

E[e−tσiyi ]

≤ 2pec
2
1t

2n + 2ec
2
1t

2n ≤ 4pec
2
1t

2n.

Consequently, for any 0 < t < 1
c1

,

E
[∥∥∥ n∑

i=1

σiyi(1,x
T
i)

T
∥∥∥
∞

]
≤

log p+ log 4

t
+ c21tn. (A.0.7)

By the condition of Theorem 1, we know
√
log p+log 4
c1
√
n

= o(1), so for large enough n,
√
log p+log 4
c1
√
n

< 1
c1

. Thus, choosing t =
√
log p+log 4
c1
√
n

in (A.0.7) we obtain

E
[∥∥∥ n∑

i=1

σiyi(1,x
T
i)

T
∥∥∥
∞

]
≤ 2c1

√
(log p+ log 4)n (A.0.8)

for large enough n. Thus, combining (A.0.6) and (A.0.8) we get

E[H(r)]

≤
4

n
· 2c1

√
(log p+ log 4)n ·

(
4
√
s · r

√
s log p

n
+ 2r

√
s log p

n

)
≤

96c1rs log p

n
.

This implies thatH(r) = Op( rs log p
n

). Define event GT := {H(r) ≤ Trs log p
n

} for any T > 0, then we have limT→∞ lim supn→∞ P (Gc
T ) =

0.

Next, for any (β0,β) ∈ (β∗0 ,β
∗)+C(r), we derive a lower bound for E[G(β0,β)]. For large enough n, for any (β0,β) ∈ (β∗0 ,β

∗)+C(r),

by Taylor’s theorem and assumption 2, there exists a ∈ [0, 1] such that

E[G(β0,β)] = E
[
Lh
(
y(xTβ + β0)

)]
− E

[
Lh
(
y(xTβ∗ + β∗0 )

)]
=

1

2
(β0 − β∗0 , (β − β∗)T)I

(
β∗0 + a(β0 − β∗0 ),β∗ + a(β − β∗)

)
(β0 − β∗0 , (β − β∗)T)T

≥
1

2
ρ
(
(β0 − β∗0 )2 + ‖β − β∗‖22

)
≥

1

2
ρr2

s log p

n
. (A.0.9)
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On the other hand, by our choice for tuning parameters, for any (β0,β) ∈ (β∗0 ,β
∗) + C(r) we have

λ
∣∣‖β‖1 − ‖β∗‖1∣∣
≤ λ‖(β − β∗)A‖1 + λ‖(β − β∗)Ac‖1

≤ 4λ‖(β − β∗)A‖1 + λ|β0 − β∗0 |

≤ 4λ
√
s‖(β − β∗)A‖2 + λr

√
s log p

n

≤ 4λ
√
sr

√
s log p

n
+ λr

√
s log p

n

≤ 5c0sr
log p

n
, (A.0.10)

and we also have, by convexity of `2 norm,

λ0(‖β‖22 − ‖β∗‖22) ≥ 2λ0β
∗T(β − β∗) ≥ −2λ0‖β∗‖max‖β − β∗‖1

≥ −
λ

4
(4‖(β − β∗)A‖1 + |β0 − β∗0 |)

≥ −λ
√
sr

√
s log p

n
−
λ

4
r

√
s log p

n

≥ −
2c0sr log p

n
. (A.0.11)

Thus, combining (A.0.9), (A.0.10) and (A.0.11), under GT , we have for any (β0,β) ∈ (β∗0 ,β
∗) + C(r),

F (β0,β) + λ0‖β‖22 + λ‖β‖1 − F (β∗0 ,β
∗)− λ0‖β∗‖22 − λ‖β∗‖1

≥ G(β0,β)−
7c0sr log p

n

≥ E[G(β0,β)]−H(r)−
7c0sr log p

n

≥ E[G(β0,β)]−
Trs log p

n
− 7c0sr

log p

n

≥
(1

2
ρr − T − 7c0

) rs log p

n
.

Now, choose r = 4T+28c0
ρ

, we have that under GT ,

inf
(β0,β)∈(β∗0 ,β∗)+C(r)

F (β0,β) + λ0‖β‖22 + λ‖β‖1

> F (β∗0 ,β
∗) + λ0‖β∗‖22 + λ‖β∗‖1. (A.0.12)

Recall that under E1 ∩ E2, (β̂0, β̂) ∈ (β0,β
∗) + SA. We next claim that under E1 ∩ E2 ∩ GT , |β̂0 − β∗0 |2 + ‖β̂ − β∗‖22 ≤ r2 s log p

n
. In

fact, if |β̂0 − β∗0 |2 + ‖β̂ − β∗‖22 > r2 s log p
n

, let t0 :=
r
√
s log p/n√

|β̂0−β∗0 |2+‖β̂−β∗‖22
, then 0 < t0 < 1. Further define (β′0,β

′) := t0(β̂0, β̂) +

(1 − t0)(β∗0 ,β
∗), then we have |β′0 − β∗0 |2 + ‖β′ − β∗‖22 = r2 s log p

n
. Moreover, since (β̂0, β̂) − (β0,β

∗) ∈ SA under E1 ∩ E2 and SA
is a cone, we know (β′0,β

′)− (β∗0 ,β
∗) = t0

(
(β̂0, β̂)− (β∗0 ,β

∗)
)
∈ SA. This means that under E1 ∩ E2, (β′0,β

′) ∈ (β∗0 ,β
∗) + C(r). By

convexity of F (·) and norm functions and by (A.0.12), we further have

t0
(
F (β̂0, β̂) + λ0‖β̂‖22 + λ‖β̂‖1

)
+ (1− t0)

(
F (β∗0 ,β

∗) + λ0‖β∗‖22 + λ‖β∗‖1
)

≥ F (β′0,β
′) + λ0‖β′‖22 + λ‖β′‖1

≥ inf
(β0,β)∈(β∗0 ,β∗)+C(r)

F (β0,β) + λ0‖β‖22 + λ‖β‖1
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> F (β∗0 ,β
∗) + λ0‖β∗‖22 + λ‖β∗‖1

under E1∩E2∩GT . The above inequality implies F (β̂0, β̂)+λ0‖β̂‖22 +λ‖β̂‖1 > F (β∗0 ,β
∗)+λ0‖β∗‖22 +λ‖β∗‖1, which is a contradiction

with the definition of (β̂0, β̂). So the claim is proved. By union bound, previous results and choice of tuning parameters, we have

P
(
(E1 ∩ E2 ∩ GT )c) ≤ P(Ec

1) + P(Ec
2) + P(Gc

T )

≤ 2 exp
{
−
nλ2

8

}
+ 2pe

− 1
η0

( λ2

16m2
0

∧ λ
4m0

)n
+ P(Gc

T )

≤ 2p−
c20
8 + 2pe

− 1
η0

λ2n
16m2

0 + 2pe
− 1
η0

λn
4m0 + P(Gc

T )

≤ 2p−
c20
8 + 2p

−
(

1
η0

c20
16m2

0

−1
)

+ 2e
−
√
n log p

(
1
η0

c0
4m0
−
√

log p
n

)
+ P(Gc

T ).

Since log p
n

= o(1), as long as c0 is large enough (for instance c0 > 4
√

2η0m0), we have

lim
T→∞

lim sup
n→∞

P
(
(E1 ∩ E2 ∩ GT )c) = 0.

Combining this result and the previous claim, the proof of Theorem 1 is finished.

APPENDIX B

PROOF OF LEMMA 1

It is seen that LGh (v) is twice differentiable with

LG′′h (v) =
1

√
2πh

exp

{
−

(1− v)2

2h2

}
≤

1
√

2πh
. (B.0.1)

Thus inequality (IV.1) is obtained due to the mean value theorem.

We then prove inequality (IV.2). The inequality is trivial when v1 < v2 ≤ 1− h or v2 > v1 ≥ 1 + h. When 1− h < v1 < v2 < 1 + h,

since LEh is twice differentiable between 1− h and 1 + h, we see

|LE′h (v1)− LE′h (v2)| < sup
v∈(1−h,1+h)

|LE′′h (v)||v1 − v2|,

and

sup
v∈(1−h,1+h)

|LE′′h (v)| = sup
v∈(1−h,1+h)

∣∣∣∣3(h2 − (1− u)2)

4h3

∣∣∣∣ < 3

4h
.

When v1 ≤ 1− h and v2 ≥ 1 + h,

|LE′h (v1)− LE′h (v2)| < 1 <
3

4h
(2h) ≤

3

4h
|v1 − v2|.

When v1 ≤ 1− h and 1− h < v2 < 1 + h,

|LE′h (v1)− LE′h (v2)| =
∣∣∣∣1− (1− v2 + h)2(2h− 1 + v2)

4h3

∣∣∣∣
<

3

4h
|1− h− v2|

≤
3

4h
|v1 − v2|,

where the second to the last inequality is due to

sup
v2∈(1−h,1+h)

∣∣∣∣1− (1− v2 + h)2(2h− 1 + v2)

4h3

∣∣∣∣
|1− h− v2|

≤
9

16h
<

3

4h
.
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When 1− h < v1 < 1 + h and v2 ≥ 1 + h,

|LE′h (v1)− LE′h (v2)| =
∣∣∣∣ (1− v1 + h)2(2h− 1 + v1)

4h3

∣∣∣∣
<

3

4h
|v1 − (1 + h)|

≤
3

4h
|v1 − v2|,

where the second to the last inequality is due to

sup
v2∈(1−h,1+h)

∣∣∣∣ (1− v1 + h)2(2h− 1 + v1)

4h3

∣∣∣∣
|1− v1 + h|

≤
9

16h
<

3

4h
.

APPENDIX C

ITERATION COMPLEXITY ANALYSIS OF THE GCD ALGORITHM

a) Notation: For a vector v = (v1, . . . , vd)T ∈ Rd and a univariate function u(·), we write u(v) = (u(v1), . . . , u(vd))T. Also,

denote the subvector of v with its kth component removed by v−k = (v1, . . . , vk−1, vk+1, . . . , vd)T and recover v from v−k by v =

[vk,v−k]. We also let ∂h be the sub-differential of a nonsmooth convex function h (see e.g., Bertsekas, 1999).

b) Iteration Complexity Analysis: Without loss of generality, we focus solely on the GCD algorithm for solving the weighted

lasso penalized DCSVM

min
β∈Rp

n∑
i=1

Lh(yix
T
iβ) +

p∑
k=1

wk|βk|, (C.0.1)

where wk ≥ 0 are the weights of the penalty. Indeed, this formulation covers all the sparsity patterns in Section II-C. Also, the intercept term

β0 can be absorbed into the formulation by setting xi1 = 1 for i = 1, . . . , n and w1 = 0. For ease of exposition, let us rewrite (C.0.1) as the

following unconstrained optimization problem

min
β∈Rp

f(β) = g(β) +

p∑
k=1

hk(βk), (C.0.2)

where g(β) =
∑n
i=1 Lh(yix

T
iβ) is smooth convex in β ∈ Rp, while hk(βk) = wk|βk| is nonsmooth convex in βk for each k = 1, . . . , p.

Let h(β) =
∑p
k=1 hk(βk). Note that ∇g(β) =

∑n
i=1 yiL

′
h(yix

T
iβ)xi with ∇kg(β) =

∑n
i=1 yiL

′
h(yix

T
iβ)xik for k = 1, . . . , p. Let

ρmax = λmax(XTX) = λmax(XXT) and `(β) = (`1(β), . . . , `n(β))T with `i(β) = L′h(yix
T
iβ) for i = 1, . . . , n. Denote by ◦ the

Hadamard product. It follows that

‖∇g(β)−∇g(β′)‖ = ‖XT[y ◦ (`(β)− `(β′))]‖

≤ ρ1/2max‖`(β)− `(β′)‖

≤ ρ1/2maxch‖X(β − β′)‖ ≤ chρmax‖β − β′‖,

which implies that the gradient of g(·) is uniformly Lipschitz continuous with Lipschitz constant L = chρmax. When restricted to each

coordinate, we have

|∇kg([βk,β−k])−∇kg([β′k,β−k])| ≤ ch‖Xk‖2|βk − β′k|, k = 1, . . . , p,

which implies that the gradient of g(·) is coordinate-wise uniformly Lipschitz continuous with Lipschitz constants Lk = ch‖Xk‖2, k =

1, . . . , p.

In the GCD (cyclic coordinate descent) algorithm, let βr be the update of β after the rth cycle, r ≥ 0. For ease of notation, denote

br+1
k = (βr+1

1 , . . . , βr+1
k−1, β

r
k, β

r
k+1, . . . , β

r
p)T, k = 1, . . . , p,

br+1
−k = (βr+1

1 , . . . , βr+1
k−1, β

r
k+1, . . . , β

r
p)T, k = 1, . . . , p.
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Clearly, we have br+1
1 = βr and br+1

p+1 = βr+1. Note that in the proximal gradient update,

βr+1
k := prox

L−1
k
hk

(βrk − L
−1
k ∇kg([β

r
k,b

r+1
−k ]))

is equivalent to

βr+1
k := argmin

βk

uk(βk; [βrk,b
r+1
−k ]) + hk(βk),

where the proximity operator prox does the soft-thresholding (Parikh and Boyd, 2013) and

uk(βk; [βrk,b
r+1
−k ]) = g([βrk,b

r+1
−k ]) +∇kg([βrk,b

r+1
−k ])(βk − βrk)

+
Lk

2
(βk − βrk)2

is a quadratic majorization function of ĝ(βk; br+1
−k ) := g([βk,b

r+1
−k ]) at βrk. It is easy to see that uk(βk; [βrk,b

r+1
−k ]) is strongly convex in

βk . By the optimality of βr+1
k , there exists ζr+1

k ∈ ∂hk(βr+1
k ) such that

(∇uk(βr+1
k ; [βrk,b

r+1
−k ]) + ζr+1

k )(βk − βr+1
k ) ≥ 0, ∀βk. (C.0.3)

Our analysis will be divided into three parts: the sufficient descent step, the cost-to-go estimate step, and the local error bound step. Similar

techniques can be found in Luo and Tseng (1992), Luo and Tseng (1993), Zhang et al. (2013) and Hong et al. (2013).

c) Sufficient Descent: Consider the proximal gradient method applied to solving the following problem

min
βk∈R

f([βk,b
r+1
−k ]) = g([βk,b

r+1
−k ]) + hk(βk),

we have by (C.0.3)

f(br+1
k )− f(br+1

k+1) = f([βrk,b
r+1
−k ])− f([βr+1

k ,br+1
−k ])

≥ uk(βrk; [βrk,b
r+1
−k ])− uk(βr+1

k ; [βrk,b
r+1
−k ]) + hk(βrk)− hk(βr+1

k )

= ∇kuk(βr+1
k ; [βrk,b

r+1
−k ])(βrk − β

r+1
k ) + hk(βrk)− hk(βr+1

k )

+
Lk

2
(βrk − β

r+1
k )2

≥ (∇kuk(βr+1
k ; [βrk,b

r+1
−k ]) + ζr+1

k )(βrk − β
r+1
k )

+
Lk

2
(βrk − β

r+1
k )2

≥
Lk

2
(βrk − β

r+1
k )2.

(C.0.4)

It follows that

f(βr)− f(βr+1) =

p∑
k=1

[
f(br+1

k )− f(br+1
k+1)

]
≥
L

2
‖βr − βr+1‖2, (C.0.5)

where L = min1≤k≤p Lk = ch min1≤k≤p ‖xk‖2.
d) Cost-to-go Estimate: Let X ∗ := {β∗|f(β∗) = minβ f(β)} be the optimal solution set of problem (C.0.2). Let β̄r ∈ X ∗

be the point in X ∗ such that dX ∗ (βr) := minβ∈X ∗ ‖β − βr‖ = ‖β̄r − βr‖. By optimality of

βr+1
k = argmin

βk∈R
uk(βk; [βrk,b

r+1
−k ]) + hk(βk),

one has

h(βr+1
k )− h(β̄rk) +∇kg([βrk,b

r+1
−k ])(βr+1

k − β̄rk) ≤
Lk

2
(β̄rk − β

r
k)2.

By the mean value theorem, there exists λ ∈ [0, 1] and ξr = λβr+1 + (1− λ)β̄
r such that

g(βr+1)− g(β̄r) = 〈∇g(ξr),βr+1 − β̄r〉.
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It follows that

f(βr+1)− f(β̄
r
) = g(βr+1)− g(β̄r) +

p∑
k=1

[
hk(βr+1

k )− hk(β̄rk)
]

=

p∑
k=1

[
∇kg(ξr)(βr+1

k − β̄rk) + hk(βr+1
k )− hk(β̄rk)

]

=

p∑
k=1

[
∇kg([βrk,b

r+1
−k ])(βr+1

k − β̄rk) + hk(βr+1
k )− hk(β̄rk)

+
(
∇kg(ξr)−∇kg([βrk,b

r+1
−k ])

)
(βr+1
k − β̄rk)

]
≤

p∑
k=1

[Lk
2

(β̄rk − β
r
k)2

+
(
∇kg(ξr)−∇kg([βrk,b

r+1
−k ])

)
(βr+1
k − β̄rk)

]
.

By the fact that ∇g(·) is Lipschitz continuous, it is implied that

( p∑
k=1

(
∇kg(ξr)−∇kg([βrk,b

r+1
−k ])

)
(βr+1
k − β̄rk)

)2

≤
( p∑
k=1

‖∇g(ξr)−∇g([βrk,b
r+1
−k ])‖2

)( p∑
k=1

(βr+1
k − β̄rk)2

)

≤
( p∑
k=1

L2‖ξr − [βrk,b
r+1
−k ]‖2

)
‖βr+1 − β̄r‖2

=

( p∑
k=1

L2‖λ(βr+1 − βr) + (1− λ)(β̄
r − βr)

+ βr − [βrk,b
r+1
−k ]‖2

)
· 2(‖βr+1 − βr‖2 + ‖βr − β̄r‖2)

≤ 12(p+ 1)L2
[
‖βr+1 − βr‖2 + ‖βr − β̄r‖2

]2
≤ 25pL2

[
‖βr+1 − βr‖2 + d2

X ∗ (βr)
]2
.

It follows that

f(βr+1)− f(β̄
r
) ≤ (5L

√
p+ L̄)

[
‖βr+1 − βr‖2 + d2

X ∗ (βr)
]
, (C.0.6)

where L̄ = max1≤k≤p Lk = ch max1≤k≤p ‖xk‖2.
e) Local Error Bound: Let dX ∗ (β) ≡ minβ∗∈X ∗ ‖β∗−β‖. Here we handle the Gaussian and Epanechnikov kernels separately.

For the Gaussian kernel, that is, when Lh(·) = LGh (·), according to (C.0.4) and (C.0.5), the GCD algorithm is descending along its iterations.

We can thus restrict the domain of β to the sublevel set L0 = {β : f(β) ≤ f(0)}. Let ηi = xT
iβ for i = 1, . . . , n. It follows that the

set C0 = {η = (ηi, 1 ≤ i ≤ n)T : β ∈ L0} is convex compact. Therefore, for all β ∈ L0, ηi is bounded by ηmax, where ηmax =

max1≤i≤n supβ∈L0
|ηi| < ∞. Note that the function p(z) =

∑n
i=1 L

G
h (yizi) is strongly convex in z ∈ C0 by (B.0.1). We can see that

g(β) = p(Xβ). It follows from Zhang et al. (2013) that for any ξ ≥ minβ f(β), there exist κ, ε > 0 such that

dX ∗ (β) ≤ κ‖β − proxh(β −∇g(β))‖, (C.0.7)

for all β such that ‖β − proxh(β −∇g(β))‖ ≤ ε and f(β) ≤ ξ.
For the Epanechnikov kernel, that is, when Lh(·) = LEh (·), one needs to add an additional ridge penalty µ‖β‖2 for some small µ > 0 in

order to achieve strong optimality. Thus, when the Epanechnikov kernel is used, we instead consider the following problem

min
β∈Rp

n∑
i=1

LEh (yix
T
iβ) +

p∑
k=1

wk|βk|+ µ‖β‖2
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and solve it using the GCD algorithm.

As a summary, we show in the following theorem that the GCD algorithm converges at least linearly.

Theorem 2. The GCD algorithm converges at least linearly to a solution in X ∗.

Proof. We first show that there exists some σ > 0 such that

‖βr − proxh(βr −∇g(βr))‖ ≤ σ‖βr+1 − βr‖, ∀r ≥ 1. (C.0.8)

For any r ≥ 1 and any 1 ≤ k ≤ p, by the optimality of

βr+1
k = argmin

βk

uk(βk; [βrk,b
r+1
−k ]) + hk(βk),

we have

βr+1
k = prox

L−1
k
hk

(βr+1
k − L−1

k ∇uk(βr+1
k ; [βrk,b

r+1
−k ])).

Let L̂k = max(1, Lk) and L̃k = max(1, L−1
k ). It follows from Lemma 4.3 of Kadkhodaie et al. (2014) that

|βrk − proxhk (βrk −∇kg(β
r))| ≤ L̂k|βrk − prox

L−1
k
hk

(βrk − L
−1
k ∇kg(β

r))|

≤ L̂k
[
|βr+1
k − prox

L−1
k
hk

(βrk − L
−1
k ∇kg(β

r))|+ |βr+1
k − βrk|

]
≤ L̂k

[
|prox

L−1
k
hk

(βr+1
k − L−1

k ∇uk(βr+1
k ; [βrk,b

r+1
−k ]))

− prox
L−1
k
hk

(βrk − L
−1
k ∇kg(β

r))|+ |βr+1
k − βrk|

]
≤ 2L̂k|βr+1

k − βrk|+ L̂kL
−1
k |∇uk(βr+1

k ; [βrk,b
r+1
−k ])−∇kg(βr)|

≤ 3L̂k|βr+1
k − βrk|+ L̃k‖∇g([βrk,b

r+1
−k ])−∇g(βr)‖

≤ (3L̂k + LL̃k)‖βr+1
k − βrk‖.

It follows that

‖βr − proxh(βr −∇g(βr))‖ ≤ (3L̂+ LL̃)
√
p‖βr+1

k − βrk‖,

where L̂ = max(1, L̄) and L̃ = max(1, L−1). Therefore, when we take σ = (3L̂+LL̃)
√
p, we get the desired result in (C.0.8). Note that the

sufficient descent property (C.0.5) implies that ‖βr+1−βr‖ → 0 as r →∞. It follows from (C.0.8) that ‖βr−proxh(βr−∇g(βr))‖ → 0

as r → ∞. Thus, by (C.0.7) we have dX ∗ (βr) → 0 as r → ∞. Consequently, from (C.0.6) it implies that f(βr) → f∗ := minβ f(β),

which shows that the GCD algorithm converges to the global minimum.

Now let c1 = L(2B)−1, c2 = 5L
√
p+ L̄, and ∆r = f(βr)− f∗. By the local error bound (C.0.7) and the cost-to-go estimate (C.0.6),

we obtain

∆r+1 ≤ c2
[
d2

X ∗ (βr) + ‖βr+1 − βr‖2
]

≤ c2κ2‖βr − proxh(βr −∇g(βr))‖2 + c2‖βr+1 − βr‖2

≤ (c2κ
2σ2 + c2)‖βr+1 − βr‖2

≤ (c2κ
2σ2 + c2)c−1

1 [f(βr)− f(βr+1)]

= (c2κ
2σ2 + c2)c−1

1 (∆r −∆r+1),

which implies that

∆r+1 ≤
c3

1 + c3
∆r, (C.0.9)

where c3 = (c2κ2σ2 + c2)c−1
1 . We can see from (C.0.9) that f(βr) approaches f∗ with at least linear rate of convergence. From (C.0.5)

again, this further implies that the sequence {βr} converges at least linearly.
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APPENDIX D

ADDITIONAL NUMERIC RESULTS WITH GAUSSIAN KERNEL

Under the same settings introduced in our simulation section, we compared the performance of lasso DCSVM and elastic-net DCSVM,

using Gaussian kernel. The result is shown in Table S.1. Again, we can see that the elastic-net DCSVM outperforms lasso DCSVM. We also

conducted elastic-net DCSVM with Gaussian kernel on the same real datasets that we introduced in our real data section, and compared its

performance with the performance of elastic-net SVM and elastic-net logistic regression. The result is displayed in Table S.2. Overall, DCSVM

still achieves the best performance.

TABLE S.1. Comparison of prediction error (in percentage) and variable selection of density-convoluted SVM with Gaussian
kernels using lasso and elastic-net (enet) penalties. Denote by C and IC the number of correctly and incorrectly selected
variables, respectively. Under each simulation setting, the method with the lowest prediction error is marked by a black box. All
the quantities are averaged over 50 independent runs and the standard errors of the prediction error are given in parentheses.

lasso-DCSVM enet-DCSVM

p ρ err (%) C IC err (%) C IC

Example 1

Example 1

500 6.92 (0.14) 5 0 6.84 (0.14) 5 0

5000 7.22 (0.19) 5 0 7.11 (0.13) 5 0

Example 2

500 0.2 13.96 (0.21) 5 0 13.52 (0.19) 5 1

0.7 23.18 (0.26) 3 0 22.65 (0.25) 4 0

0.9 24.83 (0.24) 2 0 24.75 (0.23) 4 0

5000 0.2 14.46 (0.23) 5 0 13.78 (0.18) 5 0

0.7 23.57 (0.26) 3 0 22.66 (0.21) 4 0

0.9 25.25 (0.25) 2 0 24.70 (0.25) 3 0

Example 3

500 0.2 10.58 (0.21) 5 0 10.27 (0.15) 5 1

0.7 19.78 (0.21) 4 0 19.48 (0.18) 4 0

0.9 23.97 (0.22) 2 0 23.49 (0.21) 4 0

5000 0.2 10.70 (0.20) 5 0 10.51 (0.20) 5 0

0.7 20.13 (0.24) 3 0 19.70 (0.21) 4 0

0.9 24.34 (0.30) 2 0 23.85 (0.23) 4 0
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TABLE S.2. Comparison of prediction error (in percentage) and run time (in second) of elastic-net density-convoluted SVM
with Gaussian kernel, elastic-net SVM, and elastic-net logistc regression. For each benchmark data, the method with the lowest
prediction error is marked by a black box. All the quantities are averaged over 50 independent runs and the standard errors of
the prediction error are given in parentheses.

enet-DCSVM enet-SVM enet-logistic

data n p err (%) time err (%) time err (%) time

arcene 100 9920 32.00 (1.42) 454.36 37.09 (1.59) 8912.87 35.82 (1.65) 219.30

breast 42 22283 24.86 (1.79) 243.13 30.38 (2.05) 1946.98 30.76 (2.14) 227.88

colon 62 2000 18.71 (1.11) 91.70 18.90 (1.55) 722.48 23.87 (1.51) 27.33

leuk 72 7128 3.94 (0.51) 215.95 3.89 (0.51) 1863.23 4.33 (0.61) 115.00

LSVT 126 309 15.74 (0.62) 73.04 16.20 (0.68) 74.20 15.87 (0.68) 9.05

malaria 71 22283 5.49 (0.63) 818.98 7.60 (1.21) 12046.09 6.80 (0.98) 483.20

ovarian 253 15154 0.67 (0.13) 1491.25 4.87 (1.23) 14442.87 0.87 (0.14) 964.16

prostate 102 6033 9.69 (0.68) 199.85 8.98 (0.50) 2421.20 10.24 (0.61) 116.50
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