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ABSTRACT

We establish asymptotic and finite sample properties of the Hill and
Harmonic Moment estimators applied to heavy-tailed data contami-
nated by errors. We formulate conditions on the errors and the num-
ber of upper order statistics under which these estimators continue
to be asymptotically normal. We specify analogous conditions which
must hold in finite samples for the confidence intervals derived from
the asymptotic normal distribution to be reliable. In the large sample
analysis, we specify conditions related to second-order regular vari-
ation and divergence rates for the number of upper order statistics,
k, used to compute the estimators. In the finite sample analysis, we
examine several data-driven methods of selecting k, and determine
which of them are most suitable for confidence interval inference.
The results of these investigations are applied to interarrival times of
internet traffic anomalies, which are available only with a round-off
error.
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1. Introduction

Heavy-tailed phenomena have been found in a variety of fields, including finance, insur-

ance, computer network traffic and geophysics. The theory of regular variation provides a

mathematical framework for their analysis. Hundreds of papers have been written on the

subject, and it is difficult to present an unbiased selection of the most important contri-

butions, so we merely cite here the book of Resnick (2007), and discuss the most closely

related references, as the presentation progresses.

This work is concerned with semiparametric estimation of the tail index, α, of a heavy-

tailed distribution from observations contaminated by measurement or other errors. We

investigate asymptotic and finite sample properties of the Hill estimator, which is the most

commonly used tool for inference on α, and of the harmonic moment estimator (HME),

which is a class of estimators related to and generalising the Hill estimator. The asymptotic

theory establishes conditions on the errors and the number of the largest order statistics, k,

that guarantee consistency and asymptotic normality. Finite sample investigation finds the
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best methods of constructing confidence intervals for α, focusing on data-driven methods

for the selection of k, in scenarioswhere data are observedwith errors.While the estimators

considered in the paper, especially the Hill estimator, have been extensively explored, their

properties in the presence of errors have been mostly unknown.

Suppose {Xi, i ≥ 1} is a sequence of independent, nonnegative random variables with

common distribution function F, which has regularly varying tail probabilities, i.e.

F̄(x) = 1 − F(x) = P(Xi > x) = x−αL(x), α > 0, (1)

where L is a slowly varying function. The class of distributions with tail behaviour (1) coin-

cides with the maximum domain of attraction of the Fréchet distribution, one of the three

basic types of extreme value distributions. The Hill estimator is defined as

Hk,n = 1

k

k−1∑

i=1

log
X(i)

X(k)
,

with the convention that X(i) is the ith largest order statistic. Throughout the paper, we

assume that

n −→ ∞, k −→ ∞,
k

n
−→ 0. (2)

The Hill estimator is often used after an examination of the Hill plot, which is also a

tool for detecting the presence of heavy tails. The Hill plot and the Hill estimator have

been extensively studied, and are introduced in all monographs on extreme value theory,

see e.g. Embrechts, Klüppelberg, and Mikosch (1997), Beirlant, Goegebeur, Segers, and

Teugels (2004), de Haan and Ferreira (2006), Resnick (2007) and Markovich (2008). Con-

siderable research has been done to establish conditions for the asymptotic normality of

the Hill estimator. If only the regular variation (1) is assumed, asymptotic normality holds

with random centring. Several authors formulated conditions on F, which permit replac-

ing the random centring by a deterministic one. The first result of this type was established

by Hall (1982) for slowly varying functions, L, which converge to a constant at a polyno-

mial rate. Davis and Resnick (1984) showed that the estimator is asymptotically normal for

any regularly varying function satisfying the vonMises condition, their centring, however,

depends on the sample size n. To show that the Hill estimator centred by the exponent

α−1 is asymptotically normal, second-order regular variation, a refinement of the con-

cept of regular variation, is assumed, see Haeusler and Teugels (1985), Csörgő, Deheuvels,

and Mason (1985), Resnick and Stărică (1997a, 1997b). The approach in Section 9.1 of

Resnick (2007), which is based on tail empirical processes, also requires the second-order

regular variation. Kulik and Soulier (2011) also use the tail empirical process to study

asymptotic normality of the Hill estimator for long memory stochastic volatility models

assuming a second-order condition.

The HME was introduced by Henry (2009) to provide a broad class of estimators,

which, in a sense, extend the Hill estimator and have desirable robustness properties

against large outliers. Consistency and asymptotic normality of the HME was established

by Henry (2009) for the Pareto distribution and by Beran, Schell, and Stehlík (2014) under

a second-order regular variation condition. The HME was also studied, under a differ-

ent name, by Brilhante, Gomes, and Pestana (2013), Paulauskas and Vaičiulis (2013) and
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Caeiro, Gomes, Beirlant, and de Wet (2016). The HME is defined in Beran et al. (2014) by

H
(β)

k,n := 1

β − 1

⎧
⎨
⎩

[
1

k

k∑

i=1

(
X(k)

X(i)

)β−1
]−1

− 1

⎫
⎬
⎭ ,

where β > 0, β �= 1, is a tuning parameter. For β = 1, the HME is defined by H
(1)
k,n :=

limβ→1H
(β)

k,n . We, therefore, obtain the Hill estimator as the limit of the HME as β → 1.

We study the Hill estimator and the HME computed from observations contaminated

by measurement errors, or other errors whose origin is either difficult to understand and

model or to quantify precisely. We thus assume that we observe

Yi = Xi + εi, 1 ≤ i ≤ n,

where the εi are i.i.d. random errors independent of the Xi. The Hill estimator computed

from the observations Yi is then

Ĥk,n := 1

k

k−1∑

i=1

log
Y(i)

Y(k)
,

and the HME based on the Yi is

Ĥ
(β)

k,n := 1

β − 1

⎧
⎨
⎩

[
1

k

k∑

i=1

(
Y(k)

Y(i)

)β−1
]−1

− 1

⎫
⎬
⎭ .

In our context, Ĥk,n, Ĥ
(β)

k,n are the estimators that can be actually used sincewhat we observe

are theYi, not theXi. The consistency of theHill estimator Ĥk,n has been established in very

general scenarios in Kim and Kokoszka (2020). In this paper, we want to find conditions

under which the asymptotic normality of Ĥk,n, Ĥ
(β)

k,n continues to hold. If the errors εi have

lighter tails than the Xi, the Yi inherit the regular variation of the Xi. However, the second-

order regular variation, needed for the asymptotic normality, is not inherited and suitable

conditions that quantify the interplay between the Xi, the εi and k must be found. Some

specific questions we seek to answer are as follows. What must we assume about the errors

εi to obtain asymptotic normality with random centring?What additional assumptions are

needed for the deterministic centring? In either case, are any additional assumptions on the

rate of k, beyond (2), needed? Which characteristics of the distribution of the εi enter into

these assumptions? In finite samples, how ‘large’, and in what sense, can the εi be for the

asymptotic confidence intervals to remain useful? It is hoped that the research we present

answers such questions in a useful and informative way.

The problem of estimation in the presence of errors has received considerable attention.

For example, Hall and Simar (2002), Goldenshluger and Tsybakov (2004), Kneip, Simar,

and Keilegom (2015), and Leng, Peng, Zhou, and Wang (2018) study estimation of the

end-point of data observed with additive measurement errors.While they all show asymp-

totic normality in the presence of Gaussian measurement errors, in our case we assume a

broader class of error distributions because the heavy-tailed Xi are ‘much larger’ random

variables than those with a finite end-point. Most closely related is the work of Matsui,
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Mikosch, and Tafakori (2013) who study the Hill estimator assuming that the observa-

tions have the form Yi = 10−l[10lU
−1/α
i ], where Ui is uniform on [0, 1] and [·] denotes

the integer part, for l = 0, 1, 2, . . .. Such data can be written in the form of Yi = Xi + εi,

where Xi = U
−1/α
i has the exact Pareto distribution and εi = 10−l[10lU

−1/α
i ] − U

−1/α
i ∈

[−10−l, 0] is a non-positive, bounded error of a specific form. Another related, very recent

work is Ma, Yan, and Zhang (2022) where rounded data from generalised Pareto distribu-

tions are treated as interval-censored data. The parameters of the GPD are estimated by

maximum likelihood methods. This method works well in a parametric setting.

We consider broader classes for both the Xi and the εi under the assumption that εi
is independent of Xi, reflecting our treatment of the εi as measurement errors. We use a

different asymptotic approach. We establish weak convergence of suitable empirical tail

processes for observations contaminated by general errors. Asymptotic normality follows

from these general results, which are also of independent interest.

The paper is organised as follows. Assumptions and main theoretical results are stated

in Section 2. In Section 3, we present simulation studies examining finite sample prop-

erties of confidence intervals based on the asymptotic normal distribution, focusing on

the impact of errors. This numerical investigation is followed in Section 4 by an appli-

cation to the interarrival times of internet traffic anomalies. The proofs are presented in

Section B of online Supplementary Material, after some preparation in Section A. Addi-

tional Tables examining the finite sample performance of the estimators we study are

collected in Section C of the online material.

2. Assumptions andmain asymptotic results

Recall that the observations are Yi = Xi + εi, 1 ≤ i ≤ n. We first state assumptions on

the unobservable random variables Xi. Recall that a function U : R+ −→ R+ is regularly

varying with index −α, α > 0, denoted U ∈ RV−α , if

lim
t−→∞

U(tx)

U(t)
= x−α , for any x > 0.

Assumption 2.1 (Regular variation): The Xi are nonnegative, independent random

variables with common distribution function FX such that F̄X = P(Xi > ·) ∈ RV−α .

Regular variation is not enough to establish asymptotic normality with centring by 1/α.

For this, second-order regular variation is typically assumed. We stated Assumption 2.1

because it is sufficient for certainweaker results that are needed to establish ourmain result.

Assumption 2.2 (Second-order regular variation (2RV)): The Xi are nonnegative, inde-

pendent random variables with common distribution function FX , which is second-order

(−α, ρ) regularly varying (written F̄X ∈ 2RV(−α, ρ)), i.e. there exists a positive function

g ∈ RVρ such that g(t) → 0, as t → ∞, and for α > 0, ρ ≤ 0, K �= 0,

lim
t→∞

1

g(t)

(
F̄X(tx)

F̄X(t)
− x−α

)
= H(x) := Kx−α x

ρ − 1

ρ
, x > 0. (3)

Note that Assumption 2.2 implies Assumption 2.1. Observe, however, that condition (3)

does not hold if the Xi have the exact Pareto distribution, i.e. P(Xi > x) = x−α . In this
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case, one would need to allow K = 0, and would thus lose any information contained in

the function g. The case of exact Pareto tails should however be included in any reasonable

theory for heavy-tailed observations.We do so by introducing a parallel set of assumptions.

Assumption 2.3 (Pareto): The Xi are nonnegative, independent random variables with a

common distribution function FX such that F̄X(x) = P(Xi > x) = x−α , x ≥ 1, α > 0.

The function g in (3) can be interpreted as the convergence rate of F̄X(tx)/F̄X(t) to x−α .

It has been used to restrict the sequence k = k(n). Haeusler and Teugels (1985), Csörgő

et al. (1985), Resnick and Stărică (1997a, 1997b) assume that
√
kg(b(n/k)) → 0, (4)

along with the second-order regular variation for ρ ≤ 0. In (4), and throughout the paper,

b(·) is the quantile function, defined by

P(Xi > b(t)) = t−1.

It has the representation

b(t) = t1/αLb(t), (5)

where Lb is a slowly varying function. Condition (4) is sufficient in our setting if ρ > −1.

To cover the 2RV case with ρ ≤ −1 and the pure Pareto case, we consider the following

condition: √
k

b(n/k)
→ 0. (6)

Using (5), it is easy to verify that (4) implies k = o(n−2ρ/(α−2ρ)), and (6) implies k =
o(n2/(α+2)). These two rates agree at the phase transition point ρ = −1. We use Assump-

tion 2.4 in the 2RV case and Assumption 2.5 in the Pareto case.

Assumption 2.4 (2RV): The sequence k = k(n) satisfies (4) if ρ > −1 and (6) if ρ ≤ −1.

Assumption 2.5 (Pareto): The sequence k = k(n) satisfies (6).

We now turn to the assumptions on the measurement errors εi.

Assumption 2.6: The εi are i.i.d. with tails satisfying

P(|ε| > x) = o(P(X > x)), as x −→ ∞.

The sequence {εi} is independent of the sequence {Xi}.

Under Assumption 2.1, Assumption 2.6 implies that Yi = Xi + εi ∈ RV−α . It however

does not imply that the Yi satisfy analogs of Assumptions 2.2 or 2.3. To obtain the asymp-

totic normality with a constant centring, a stronger, but still broadly applicable assumption

on the errors is needed; the errors must have lighter tails than a power function. Assump-

tion 2.7 is neededwhenwe assume the second-order regular variation, andAssumption 2.8

is suitable for the Pareto distribution.
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Assumption 2.7 (2RV): The εi satisfy Assumption 2.6 and

P(|ε| > x) = o(x−κ), as x −→ ∞, (7)

for some κ > α + max(−ρ, 1).

Assumption 2.8 (Pareto): The εi satisfy Assumption 2.6 and (7) for some κ > α + 1.

We now proceed to define the function spaces in which our functional convergence

results hold. We work in D[0,∞), the Skorokhod space of real-valued, right-continuous

functions on [0,∞) with finite left limits existing on (0,∞). For any s>0, the Skorokhod

metric in D[0, s] is defined by

ds(x, y) = inf
λ∈�s

‖λ − e‖s ∨ ‖x − y ◦ λ‖s, x, y ∈ D[0, s],

where�s = {λ : [0, s] �→ [0, s], λ(0) = 0, λ(s) = s, λ(·) is continuous, strictly increasing},
and ‖x − y‖s = sup0≤t≤s |x(t) − y(t)|. The Skorokhod metric on D[0,∞) is then defined

by

d∞(x, y) =
∫ ∞

0
e−s(ds(rsx, rsy) ∧ 1) ds, x, y ∈ D[0,∞),

where rsx, rsy are the restrictions of x, y ∈ D[0,∞) to the interval [0, s]. Given a sequence

of random processes, Xn, n ≥ 0, in D[0,∞), we denote weak convergence of Xn to X0 by

Xn ⇒ X0. We also use ⇒ to denote weak convergence of random variables.

Wedefine two ‘increasingly empirical’measures, with only the last one being observable.

We set

νn := 1

k

n∑

i=1

IYi/b(n/k), ν̂n := 1

k

n∑

i=1

IYi/Y(k)
,

with b(·) defined in (5). The randommeasures νn, ν̂n, and all other Radonmeasures of this

type are defined on (0,∞] compactified at ∞. Thus, for s ≥ 0, we can define the random

processes

Wn(s) =
√
k(νn(s

−1/α ,∞] − Eνn(s
−1/α ,∞]),

Ŵn(s) =
√
k(ν̂n(s

−1/α ,∞] − Eν̂n(s
−1/α ,∞]).

We first investigate the asymptotic normality of the tail empirical processesWn, Ŵn, then

study when it implies the asymptotic normality of the Hill estimator Ĥk,n and the HME

Ĥ
(β)

k,n . Theorem 2.1 shows that even very general errors specified in Assumption 2.6 do

not impact the asymptotic behaviour of the tail empirical processesWn nor Ŵn: the limit

distributions of these statistics based on the Yi are the same as those of the corresponding

statistics based on the unobservable Xi.

Theorem 2.1: Under Assumptions 2.1 and 2.6,

Wn ⇒ W in D[0,∞), (8)

and

Ŵn ⇒ W in D[0,∞), (9)

where W is the standard Brownian motion on [0,∞).
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The Hill estimator can be written as an integral of the tail empirical measure ν̂n, i.e.

Ĥk,n =
∫ ∞

1

1

k

n∑

i=1

IYi/Y(k)
(s,∞]s−1 ds =

∫ ∞

1
ν̂n(s,∞]s−1 ds.

Similarly, theHME can be expressed as a transformed integral of the tail empirical measure

ν̂n, i.e.

Ĥ
(β)

k,n = 1

β − 1
{[(1 − β)M̂k,n + 1]−1 − 1}, β �= 1,

where

M̂
(β)

k,n :=
∫ ∞

1
ν̂n(s,∞]s−β ds = 1

1 − β

[
1

k

k∑

i=1

(
Y(k)

Y(i)

)β−1

− 1

]
.

The order statistics used to compute the Hill estimator and the HME must be positive. In

the following, all statements are tacitly assumed to hold conditional on the event {Y(k) > 0},
where k is the count of the largest order statistics in the definition of Ĥk,n, Ĥ

(β)

k,n .

Theorem 2.2: Suppose that Assumptions 2.1 and 2.6 hold. If α > 0 and β > 1 − α/2,

√
k

(∫ ∞

1
ν̂n(s,∞]s−β ds −

∫ ∞

Y(k)

n

k
F̄Y(s)s−β ds

)
⇒ 1

α

∫ 1

0
W(s)s

β−1
α

−1 ds.

By putting β = 1 in Theorem 2.2 we obtain the asymptotic normality of the Hill

estimator with random centring, which is stated as Corollary 2.1(a). Similarly, the

asymptotic behaviour of M̂
(β)

k,n follows directly from Theorem 2.2, which is presented in

Corollary 2.1(b).

Corollary 2.1: Under the assumptions of Theorem 2.2,

(a)

√
k

(
Ĥk,n −

∫ ∞

Y(k)

n

k
F̄Y(s)

ds

s

)
⇒ 1

α

∫ 1

0
W(s)

ds

s
,

(b) if β �= 1, then

√
k

(
M̂

(β)

k,n −
∫ ∞

Y(k)

n

k
F̄Y(s)

ds

sβ

)
⇒ 1

α

∫ 1

0
W(s)s

β−1
α

−1 ds.

We emphasise that Theorems 2.1, 2.2, and Corollary 2.1 hold either under Assump-

tion 2.2 or Assumption 2.3, since both imply Assumption 2.1.

The convergence in Theorem 2.2 requires random centring with
∫ ∞
Y(k)

n/kF̄Y(s)s−β ds,

which makes Corollary 2.1 of limited practical use, but it provides a starting point for

improvements. To replace it with a constant centring, we need the assumption of second-

order regular variation (or of exact Pareto tails) and the stronger assumptions on the errors.
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In the following theorem, we establish the asymptotic normality of the integral of the tail

empirical measure,
∫ ∞
1 ν̂n(s,∞]s−βds, with a constant centring.

Theorem 2.3: Suppose that Assumptions 2.2, 2.4, and 2.7 (2RV case) hold. If ρ = −1,

assume, in addition that the limit limt→∞ tg(t) exists. Then for any α > 1, β > 1 − α/2,

√
k

(∫ ∞

1
ν̂n(s,∞]s−β ds − 1

α + β − 1

)
⇒ N

(
0,

α

(α + β − 1)2(α + 2β − 2)

)
. (10)

Under Assumptions 2.3, 2.5, and 2.8 (Pareto case), (10) holds for α > 0, β > 1 − α/2.

Remark 2.1: The case of the second-order regular variation exponent ρ = −1 needs spe-

cial treatment because our arguments require that limt→∞ tg(t) exists (∞ is allowed). By

Proposition 2.6(i) in Resnick (2007), if ρ > −1, then limt→∞ tg(t) = ∞, and if ρ < −1,

then limt→∞ tg(t) = 0. If ρ = −1, limt→∞ tg(t) need not exist.

The asymptotic normality of the Hill estimator Ĥk,n follows easily from Theorem 2.3.

To obtain the asymptotic normality of the HME Ĥ
(β)

k,n , we must apply Theorem 2.3 and the

delta method. The corresponding results are stated in the following corollary.

Corollary 2.2: Under the assumptions of Theorem 2.3,

(a)

√
k

(
Ĥk,n − 1

α

)
⇒ N(0, 1/α2), (11)

(b) if β �= 1, then

√
k

(
[(1 − β)M̂

(β)

k,n + 1] − α

α + β − 1

)
⇒ N

(
0,

α(1 − β)2

(α + β − 1)2(α + 2β − 2)

)

and

√
k

(
Ĥ

(β)

k,n − 1

α

)
⇒ N

(
0,

(α + β − 1)2

α3(α + 2β − 2)

)
. (12)

The limits in (11) and (12) are the same as for observationswithoutmeasurement errors;

see Theorem 3.2.5 of de Haan and Ferreira (2006) and Theorem 2 of Beran et al. (2014).

The effect of suitably small errors εi is thus asymptotically negligible. However, even for

such errors, we impose conditions (4) and (6) on the rate of k in the cases of 2RV (ρ ≤ −1)

and exact Pareto observations, respectively. We do not know if Corollary 2.2 remains true

without these conditions on k.We also remark that Corollary 2.2(a) cannot be easily proven

by verifying the conditions in Theorem 3.2.5 of de Haan and Ferreira (2006). If the Xi are

exactly Pareto or second-order regularly varying, the Yi need not be in any of these classes.

Proposition B.1 in the online material, which may be useful in other contexts, is a related

result which plays an important role in the proof of Theorem 2.3.

In the next two sections, we explore how small the errors must be in finite samples to

have a practically negligible effect on confidence interval inference.



JOURNAL OF NONPARAMETRIC STATISTICS 9

3. Impact of errors on confidence intervals

We investigate the effect of error contaminations on confidence intervals constructed using

the more commonly used Hill estimator. The effect of various errors on the harmonic

moment estimator (HME) is studied in a more limited, but informative, simulation study

presented in Section C.2 of the online material.

The asymptotic level 1−p confidence interval for α−1 implied by Corollary 2.2 (a) is

(
1

α̂
− zp/2

1

α̂
√
k
,
1

α̂
+ zp/2

1

α̂
√
k

)
, (13)

where α̂−1 = Ĥk,n, and zq is the upper quantile of the standard normal distribution

defined by 
(zq) = 1 − q. The above interval is implemented by the function hill of

the R package evir, with the default asymptotic coverage 1−p = 0.95. According to

Corollary 2.2(a), it is asymptotically valid even if the observations are contaminated by

fairly general errors. In this section, we investigate the impact of these errors on the empir-

ical coverage probability of the interval (13). To obtain interval (13), the number of upper

order statistics, k, has to be chosen. We consider a range of values of k for a given sample

size n. We also employ a few methods of selecting k, which have been proposed.

The design of our simulation study is as follows. We generate observations Yi = Xi +
εi, i = 1, 2, . . . , n, where {Xi} and {εi} are independent sets of random variables. For each

model/error pair, we compute 1000 confidence intervals and report the fraction of the

intervals that contain the reciprocal of the true tail index.We consider sample sizesn = 500

and n = 2000. The sample size n = 500 is representative of the sample sizes occurring in

the application presented in Section 4.

We use two models for the Xi, both satisfying the condition of Corollary 2.2(a) and

having the true tail index α = 2. The first is the standard Pareto distribution, which is not

second-order regularly varying, and the second is a distribution in the Hall/Weiss class.

The Hall/Weiss class provides examples of the second-order regular variation, see p. 142

of Geluk, de Haan, Resnick, and Stărică (1997). Model 2 satisfies Assumption 2.2 with

g(t) = t−5.

Model 1 [Pareto] The Xi are i.i.d. random variables, which follow a Pareto distribution

with α = 2, P(Xi > x) = x−2, x ≥ 1.

Model 2 [2RV] TheXi are i.i.d. random variables, which follow theHall/Weiss class with

α = 2 and ρ = −5, P(Xi > x) = x−2(1 + x−5)/2, x ≥ 1.

We consider four different distributions for the errors εi. They all satisfy Assump-

tions 2.7 and 2.8 (with α = 2), since for each of them P(|ε| > x) = o(x−κ), for some

7 < κ < 8.

Error 1 [Normal] The εi are i.i.d. random variables, drawn from a normal distribution

with mean 0 and standard deviation σNormal.

Error 2 [scaled t8] The εi are i.i.d. random variables, drawn from a scaled t-distribution

with 8 degrees of freedom.

Error 3 [GPD] The εi are i.i.d. random variables, drawn from a generalised Pareto dis-

tribution, P(|ε| > z) = (1 + ξ(z − µ)/σ)−1/ξ , with location µ = 0, shape ξ = 1/8, and

scale σGPD.

Error 4 [Uniform] The εi are i.i.d. random variables, drawn from the uniform distribu-

tion on the interval [−a, a], a>0.
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In the investigations that follow, we need to separate the effect of the shape of the density

from the effect of the typical size of the error relative to the size of the Xi. We do so by

reporting the ratio of the sample SDs: (error SD)/(model SD). The Xi we consider have

infinite variance, but the sample SD is always finite and provides a measure of the size of

the generated data.

We first consider a wide range of k for a given sample size n. Tables 5 and 6 in Section C

of the online Supplementary Material report coverage probabilities of the approximate

95% confidence intervals for the Pareto model, with n = 500 and n = 2000, respectively.

We first observe that the coverage probabilities for samples generated from the Pareto

distribution without the errors are close to the target coverage, 95%, for large k’s. This

is found in the row with the ratio 0 in each table. This result is in agreement with the

typical behaviour of the Hill plot showing stable, unbiased estimates for large k when

its underlying distribution is exactly a Pareto distribution. Second, the coverage overall

decreases with the ratio, but this decrease is relatively flat over a range of the ratio from

0.01 to 0.1, for all the error types. In particular, for n = 2000, the coverage is surprisingly

acceptable for a wide range of values of k; in many cases, it is close to the target of 95%.

On the other hand, the coverage seems sensitive to relatively large errors with a ratio of

more than 10%. An interesting observation is that, in the presence of errors, the coverage

gets worse as k gets larger. This result is consistent with Corollary 2.2(a), which implies

that the Hill estimator obtains the asymptotic normality if k satisfies Assumption 2.5; k

goes to infinity with n, but not too fast. The reduction in the coverage probability caused

by large k is not observed for data contaminated by relatively small errors. Finally, the

impact on the coverage probability overall does not depend on the type of error distri-

bution. In particular, for the small ratios, the difference that the error type makes looks

negligible.

Tables in Section C of Supplementary Material report coverage probabilities of the

asymptotic 95% confidence intervals for the 2RV model, with n = 500 and n = 2000,

respectively. Unlike the Pareto case, the 2RV model does not achieve the target coverage,

95%, even if there are no errors. This may be due to n not being sufficiently large. The

errors with a small ratio, however, have only a small impact on the coverage. It can be also

seen that the impact on the coverage probability for a small ratio does not depend on the

error type. Finally, we see that k cannot increase too fast, indirectly confirming the need

for Assumption 2.4.

We have found so far that the coverage can achieve the target probability for some prop-

erly chosen k or cannot achieve it for any k, given a finite sample. Even if we can identify

some range of k for which the coverage approaches the target, the question still remains

of how to select an optimal k in practice. There are various methods for choosing it. A

commonly used approach is based on the minimisation of the asymptotic mean squared

error (AMSE), see e.g. Hall and Welsh (1985), Hall (1990), Drees and Kaufmann (1998),

and Danielsson, de Haan, Peng, and de Vries (2001). These methods are however based

on asymptotic arguments, which brings up a question of how well they perform in finite

samples. Danielsson, Ergun, de Haan, and de Vries (2019) suggest a data-driven method

minimising a penalty function of the distance between empirical quantiles and theoretical

quantiles to improve the performance in finite samples. There are also heuristic methods,

mainly trying to find the region where the Hill plot, a plot of estimates of the tail index

against k, becomes more stable, see Resnick and Stărică (1997b).
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To provide practically useful information on choosing a data-driven cut-off k, we exam-

ined four methods based on different underlying ideas of selecting the optimal k. The first

threshold selection method, introduced by Hall (1990), uses a bootstrap procedure to find

the k which minimises the AMSE. This value is computed by the function hall of the R

package tea. (We also considered a few relatedmethods based on the minimisation of the

AMSE argument, but they all gave disappointing results. The coverage that theHallmethod

produced was always among the best of these methods.) The second method, proposed by

Danielsson et al. (2019), is based onminimising a penalty function of the distance between

the observed quantile and the fitted Pareto-type tail. This distance is in the quantile

dimension, not in the probability dimension like the Kolmogorov–Smirnov distance. This

method is suggested to remedy the behaviour that a small change in probabilities makes a

large difference in quantiles. We use two different penalty functions: the supremum of the

absolute distance (KS), and the mean absolute distance (MAD). Both are implemented by

the function mindist of the R package tea. The final method is an Eye–Ball technique

whose automatic algorithm is developed by Danielsson et al. (2019) and is carried out by

the functioneye of theRpackagetea. This heuristicmethod attempts to find a stable por-

tion of theHill plot and obtain the k atwhich a considerable drop in the variance occurs, as k

increases.

Tables 1 and 2 report coverage probabilities and the average optimal k selected using

the four different methods. For the Pareto model, the coverage decreases with the ratio

for all the selection methods as shown in Table 1; again, a small ratio has a relatively small

impact on the coverage. TheMAD and Eye–Ball methods achieve the target coverage, 95%,

when the underlying process is not contaminated by the errors. Thesemethods also are less

sensitive to the ratio increase. For the Pareto model, the MAD approach generally leads to

coverage probabilities which are higher than 95%. However, as shown in Table 2, it gives

very low coverage for the 2RV model. It has an unexpected, difficult to explain, property

of the coverage increasing with the ratio. The Hall method also shows some fluctuation

over the ratio, but this fluctuation is not found when the ratio is 0.01 and 0.02. The other

methods also exhibit this insensitivity for small ratios. The Eye–Ball method seems to work

well for the Pareto and 2RV models since it gives relatively high values of coverage. Its

average optimal k also falls into the optimal range which gives high values of coverage in

Tables 5 and 7 in Section C.

The main conclusions of the above-detailed discussion are as follows.

(1) The Eye–Ball method of selecting k is recommended for both the Pareto and 2RV

models.

(2) For the heavy-tailed Xi with the tail index α = 2, the coverage probability of the

approximate 95% confidence interval containing the true index is robust to errors

whose SD does not exceed 2% of model SD.

(3) There is no clear evidence that the coverage probability depends on the error distri-

bution. Instead, the coverage is mainly affected by how large the εi are compared to

the Xi, regardless of the threshold selection methods.

We conclude this section with a discussion of the confidence interval for α obtained

via an application of the delta method. Corollary 2.2(a) and the delta method imply
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Table 1. Proportion (in percent) of the approximate 95% confidence intervals including 1/α and the
average optimal k in parentheses, for n = 500 and the Paretomodel.

Error SD/model SD ratio

Method Error type 0 0.01 0.02 0.05 0.1 0.2 0.3

Hall Normal 88.9 87.6 88.4 88.9 83.8 77.5 71.2
(283) (311) (330) (329) (301) (256) (222)

scaled t8 88.7 88.0 88.6 88.9 83.2 77.6 68.9
(283) (321) (337) (322) (289) (242) (201)

GPD 89.4 88.9 88.8 88.7 83.7 76.9 72.7
(285) (322) (340) (320) (283) (220) (169)

Uniform 89.1 88.2 88.3 87.9 80.1 73.1 61.3
(284) (308) (329) (329) (301) (265) (238)

MAD Normal 97.0 97.4 96.8 97.6 96.8 97.4 96.2
(218) (214) (214) (198) (147) (92) (68)

scaled t8 97.1 97.2 97.4 97.8 97.2 97.2 97.2
(219) (219) (214) (200) (156) (107) (79)

GPD 97.1 97.2 98.0 98.2 97.8 98.2 98.0
(219) (216) (214) (191) (145) (95) (77)

Uniform 97.0 97.4 96.4 96.2 97.0 94.8 93.6
(218) (219) (220) (195) (151) (99) (70)

KS Normal 83.4 82.2 84.0 81.2 77.2 75.0 67.6
(68) (67) (68) (77) (93) (83) (79)

scaled t8 83.6 83.6 83.5 84.2 81.7 77.4 71.9
(68) (67) (69) (71) (90) (85) (82)

GPD 83.6 84.4 83.8 83.8 82.4 77.9 75.1
(68) (68) (66) (72) (83) (74) (62)

Uniform 83.4 84.0 82.0 82.0 78.6 69.4 63.6
(68) (70) (69) (80) (92) (103) (101)

Eye Normal 95.3 95.1 94.8 95.2 94.8 93.2 90.5
(51) (51) (51) (51) (51) (51) (50)

scaled t8 95.3 95.4 95.5 95.3 93.5 92.7 88.2
(51) (51) (51) (51) (51) (50) (50)

GPD 95.3 95.2 94.9 95.2 93.5 91.7 86.0
(51) (51) (51) (51) (50) (50) (49)

Uniform 95.3 95.1 95.0 95.6 94.3 93.6 92.0
(51) (51) (51) (51) (51) (51) (51)

Notes: The Hall, MAD, KS, and Eye–Ball methods are used to choose the optimal k. The target coverage is 95%.

that
√
k(Ĥ−1

k,n − α) =⇒ N(0,α2).

Thus, setting α̃ = Ĥ−1
k,n , we get the approximate level 1−p confidence interval for α of the

form
(

α̃ − zp/2
α̃√
k
, α̃ + zp/2

α̃√
k

)
. (14)

One might want to use the interval (14) rather than (13) to make inference on α, but care

is needed in finite samples. Since the delta method is based on an additional asymptotic

approximation, confidence intervals derived from it could provide a poor approximation

for small sample sizes. We have performed a simulation study for the interval (14), similar

to the one described earlier in this section. We have found that it almost always gives cov-

erage probability worse than the interval (13). Therefore, when working with sample sizes

similar to n = 500 or n = 2000, we recommend using the reciprocals of the bounds of the

interval (13).
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Table 2. Proportion (in percent) of the approximate 95% confidence intervals including 1/α and the
average optimal k in parentheses, for n = 500 and the 2RVmodel.

Error SD/model SD ratio

Method Error type 0 0.01 0.02 0.05 0.1 0.2 0.3

Hall Normal 75.3 75.6 75.0 12.9 8.8 37.2 34.7
(118) (119) (142) (395) (416) (326) (250)

scaled t8 75.8 75.3 74.4 29.0 0.8 29.1 37.4
(118) (119) (130) (339) (429) (366) (293)

GPD 75.8 76.2 72.5 28.3 1.9 17.6 38.3
(118) (119) (150) (340) (422) (368) (284)

Uniform 75.6 75.2 74.0 33.8 26.4 35.0 30.3
(118) (119) (129) (316) (410) (314) (256)

MAD Normal 18.7 18.2 18.5 16.3 7.5 36.6 70.8
(222) (221) (221) (228) (304) (150) (90)

scaled t8 18.7 18.9 18.8 17.0 8.5 21.0 51.7
(222) (221) (222) (223) (311) (200) (121)

GPD 18.7 18.3 18.8 16.3 12.1 22.2 66.2
(222) (221) (221) (223) (270) (203) (127)

Uniform 18.7 18.4 18.1 16.1 11.1 40.6 60.2
(222) (222) (221) (240) (282) (134) (82)

KS Normal 66.6 66.6 67.0 66.4 56.7 52.5 53.0
(104) (102) (104) (104) (152) (160) (117)

scaled t8 66.6 66.9 66.8 67.0 66.3 53.9 53.0
(104) (103) (105) (100) (117) (175) (136)

GPD 66.6 66.4 67.5 67.0 65.6 56.8 58.8
(104) (103) (104) (101) (109) (155) (115)

Uniform 66.6 67.1 66.8 66.3 53.9 51.0 48.4
(104) (102) (102) (107) (169) (166) (140)

Eye Normal 93.6 93.9 93.4 93.7 92.6 88.7 77.8
(51) (51) (51) (51) (51) (51) (50)

scaled t8 93.6 93.9 94.6 93.9 91.9 91.1 83.3
(51) (51) (51) (51) (51) (50) (50)

GPD 93.6 93.8 93.8 93.9 92.5 88.1 82.3
(51) (51) (51) (51) (51) (50) (50)

Uniform 93.6 93.7 93.8 94.0 92.7 90.4 82.9
(51) (51) (51) (51) (51) (51) (51)

Notes: The Hall, MAD, KS, and Eye–Ball methods are used to choose the optimal k. The target coverage is 95%.

Finally, we note that a preliminary simulation study indicates that themoment estimator

of Dekkers, Einmahl, and de Haan (1989) might also be robust to errors and suitable for

the construction of confidence intervals in case of error contaminated data. A separate

theoretical and empirical study is needed.

4. Application to Internet2 anomalous traffic

In this section, we present an application to interarrival times of anomalies in a back-

bone internet network, Internet2. These times are available only with round-off errors.

We provide only minimal background; more details are presented in Bandara, Pezeshki,

and Jayasumana (2014), a paper which to some extent motivates the present research.

We describe the results of confidence interval inference for the tail index of these inter-

arrival times. We restrict ourselves to confidence intervals based on the Hill estimator, the

results for the HME are similar. We then examine the robustness of the Hill estimator to

the round-off errors by a numerical experiment.
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Figure 1. Amap showing 14 two-directional links of the Internet2 network.

The Internet2 network consists of 14 two-directional links connectingmajor cities in the

United States, as shown in Figure 1. A traffic disruption in any of these links can slow down

service in the whole country. For this reason, anomalies in the internet traffic have been

extensively studied. An anomaly is a time and space confined traffic whose volume is much

higher than typical. Bandara et al. (2014) developed an anomaly extraction algorithm. The

anomaly extraction algorithm can identify the arrival time of an anomaly in any unidi-

rectional link only in a resolution of five minutes. While network measurement devices

operate at much higher frequencies, such a rough resolution is due to the limitation of

the anomaly extraction algorithm. It is based on the Fourier transform, which eliminates

noise by retaining only low-frequency harmonics. Bandara et al. (2014) created a database

for the time period of 50 weeks, starting 16 October 2005. A question we seek to answer

in this section is if the round-off error has a negligible or a non-negligible impact on the

confidence intervals for the tail index of the interarrival times. Additionally, we would like

to see if the various data-drivenmethods of selecting k, discussed in Section 3 lead to over-

lapping confidence intervals, or if they suggest different ranges of α. These conclusions

could potentially be different for each of the 28 unidirectional links. We index these links

by integers from 1 to 28 since it is not important for the purpose of our investigation to

which nodes they correspond.

In the context of this paper, each interarrival time Yi, computed by the algorithm, is

treated as a ‘true’ interarrival time Xi measured with a round-off error, i.e. Yi = Xi + εi.

The unobserved Xi is not rigorously defined, but we can think of it as the time separation

based on a more precise algorithm, or just a different algorithm. In the latter case, the

analysis that follows provides information about the uncertainty in the estimation of α

caused by the choice of a specific algorithm. The value of the εi does not depend on Xi

because there is no reason to believe that, say, larger Xi have a ‘preference’ for falling into

some specific part of the 5-minute interval separating the possible measurement times.

(The Xi are at least a few hours.) The errors need not be negative and it is risky to assume

that the Xi have exact Pareto tails, so the theory of Matsui et al. (2013) does not apply.
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Table 3. Point estimates and 95% confidence intervals for the tail index of the anomalies interarrival
times.

Link 1 (n = 405) 2 (n = 247) 3 (n = 362) 4 (n = 454)

Hall 1.70 (1.3, 2.4) 1.50 (1.1, 2.5) 1.63 (1.3, 2.1) 1.64 (1.3, 2.1)
MAD 1.43 (1.2, 1.8) 1.21 (1.0, 1.6) 1.51 (1.1, 2.3) 1.28 (0.9, 2.6)
KS 3.19 (1.3,∞) 3.06 (1.6, 24.8) 4.66 (2.0,∞) 2.08 (1.2, 8.0)
Eye 1.79 (1.4, 2.4) 1.23 (1.0, 1.8) 1.60 (1.3, 2.2) 1.59 (1.3, 2.1)
Overlap (1.4, 1.8) (1.6, 1.6) (2.0, 2.1) (1.3, 2.1)

5 (n = 347) 6 (n = 345) 7 (n = 603) 8 (n = 300)

Hall 1.54 (1.2, 2.1) 1.59 (1.2, 2.2) 1.64 (1.3, 2.2) 1.45 (1.1, 2.1)
MAD 1.43 (1.2, 1.8) 1.49 (1.0, 2.9) 1.31 (0.9, 2.4) 1.27 (1.0, 1.7)
KS 1.88 (1.3, 3.2) 3.35 (1.9, 12.9) 5.34 (3.2, 17.4) 3.43 (2.1, 9.9)
Eye 1.53 (1.2, 2.1) 1.52 (1.2, 2.1) 1.38 (1.1, 1.7) 1.38 (1.1, 1.9)
Overlap (1.3, 1.8) (1.9, 2.1) ∅ ∅

9 (n = 387) 10 (n = 345) 11 (n = 382) 12 (n = 304)

Hall 1.48 (1.2, 2.1) 1.44 (1.1, 2.1) 1.83 (1.4, 2.6) 2.27 (1.6, 3.7)
MAD 1.31 (1.1, 1.7) 1.24 (1.0, 1.6) 1.36 (1.1, 1.8) 1.50 (1.2, 2.0)
KS 3.98 (2.3, 15.4) 2.85 (1.7, 9.3) 3.63 (1.7,∞) 2.51 (1.7, 4.9)
Eye 1.52 (1.2, 2.0) 1.39 (1.1, 1.9) 1.72 (1.4, 2.3) 1.60 (1.3, 2.2)
Overlap ∅ ∅ (1.7, 1.8) (1.7, 2.0)

13 (n = 476) 14 (n = 507) 15 (n = 478) 16 (n = 319)

Hall 2.16 (1.7, 3.0) 1.96 (1.5, 3.0) 2.07 (1.6, 3.0) 1.44 (1.1, 2.0)
MAD 1.58 (1.0, 3.9) 1.44 (0.9, 3.5) 1.46 (0.9, 3.4) 1.36 (1.0, 2.2)
KS 2.06 (1.6, 2.9) 3.85 (1.3,∞) 2.05 (1.6, 2.9) 3.32 (1.9, 16.6)
Eye 2.02 (1.6, 2.7) 1.60 (1.3, 2.1) 1.80 (1.5, 2.3) 1.47 (1.2, 2.0)
Overlap (1.7, 2.7) (1.5, 2.1) (1.6, 2.3) (1.9, 2.0)

Notes: The link index along with the sample size are displayed. The estimates are obtained using the Hall, MAD, KS, and
Eye–Ball methods. The intersection of the four intervals is shown if it is nonempty, an empty intersection is indicated by
∅.

Kokoszka, Nguyen, Wang, and Yang (2020) and Nicholson, Kokoszka, Lund, Kiessler, and

Sharp (2021) showed that the Yi have regularly varying, but not exact Pareto tails. The

autocorrelation analysis in these papers also showed that the Yi can be assumed to be i.i.d.

Tables 3 and 4 report tail index estimates and 95% confidence intervals for each link,

obtained using the four methods of selecting k discussed in Section 3. We first observe

that all methods, except for the KS method, generally produce similar point estimates for

each link. The interval estimates from the KS method are generally wider. In particular,

some links have the infinity as the upper end. This is manually put in to deal with a nega-

tive lower end of the interval (13). We now check whether intervals from the four methods

overlap.We find 20 links with a nonempty intersection of the 4 intervals and 8 links with an

empty intersection. The intersection does not have any interpretation in the usual frequen-

tist sense of Neyman (1937), but it provides, so to say, the safest region in an engineering

sense, for the 20 links for which it is nonempty. For the links with the empty intersection, or

even for all links, we recommendusing the confidence interval produced from the Eye–Ball

method, which can be considered the most reliable estimate based on the simulation result

of Section 3.

We conclude this section by reporting results of an experiment designed to assess if the

rounding-off errors have a practical impact on the estimates of α. For each link, we treat

the value of α estimated from the observed interarrival times as the true value and the

observed Yi as the true Xi. We generate R = 1000 replications of error contaminated data
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Table 4. Continuation of Table 3.

Link 17 (n = 402) 18 (n = 388) 19 (n = 433) 20 (n = 493)

Hall 1.91 (1.5, 2.5) 1.36 (1.1, 1.9) 1.27 (1.1, 1.6) 1.90 (1.5, 2.6)
MAD 1.51 (1.0, 3.7) 1.22 (1.0, 1.6) 1.27 (1.0, 1.9) 1.45 (0.9, 3.3)
KS 1.96 (1.5, 2.8) 3.22 (1.7, 26.1) 2.63 (1.2,∞) 1.97 (1.6, 2.6)
Eye 1.86 (1.5, 2.5) 1.31 (1.1, 1.8) 1.51 (1.2, 2.0) 1.83 (1.5, 2.4)
Overlap (1.5, 2.5) ∅ (1.2, 1.6) (1.6, 2.4)

21 (n = 340) 22 (n = 417) 23 (n = 597) 24 (n = 296)

Hall 1.97 (1.5, 2.9) 1.46 (1.2, 1.9) 1.67 (1.3, 2.2) 1.56 (1.2, 2.2)
MAD 1.51 (1.0, 3.3) 1.38 (1.1, 2.0) 1.26 (0.8, 2.9) 1.28 (1.0, 1.7)
KS 2.01 (1.5, 3.0) 3.61 (1.5,∞) 3.67 (2.1, 14.2) 3.44 (2.0, 13.3)
Eye 1.87 (1.5, 2.6) 1.54 (1.2, 2.1) 1.50 (1.2, 1.9) 1.43 (1.1, 2.0)
Overlap (1.5, 2.6) (1.5, 1.9) ∅ ∅

25 (n = 258) 26 (n = 340) 27 (n = 348) 28 (n = 264)

Hall 1.78 (1.3, 2.9) 1.48 (1.1, 2.3) 1.95 (1.5, 2.9) 1.58 (1.2, 2.3)
MAD 1.35 (1.0, 1.9) 1.20 (0.9, 1.7) 1.64 (1.0, 4.7) 1.38 (1.0, 2.4)
KS 4.11 (1.7,∞) 3.57 (2.2, 10.3) 2.80 (1.6, 14.0) 2.70 (1.3,∞)

Eye 1.38 (1.1, 2.0) 1.25 (1.0, 1.7) 1.71 (1.4, 2.4) 1.60 (1.2, 2.3)
Overlap (1.7, 1.9) ∅ (1.6, 2.4) (1.3, 2.3)

Y
(r)
i = Yi + ε

(r)
i , 1 ≤ r ≤ 1000. We assume that the errors are uniformly distributed on

[−1, 1], because, as noted above, there is no reason why the Xi should prefer some parts

of the 5-minute interval. (The data are normalised so that this interval corresponds to the

interval [0, 1].) For each of these replications we compute the interval (13) with p = 10%

and p = 5%. To choose k, we use the Hall, MAD, KS, and Eye–Ball methods described in

Section 3. For each link, we determine the percentage of these intervals that cover the value

of α estimated from real data. If the interarrival times were measured perfectly, i.e. εi ≡ 0,

then 100% of these intervals would cover the ‘true value’, so our target in this experiment

is 100% rather than 95% or 90% as in Section 3. If the actual coverage is 100(1 − q)%, then

we interpret q as the probability of getting a wrong interval estimate due to the round-off

error. It turned out that for all links we achieved the target percentage, 100%, for both 95%

and 90% confidence levels, regardless of the threshold selection methods. In light of the

results of Section 3, the 100% coverage could be expected since the ratio of the Error SD

to the observation SD is less than 0.001 for each link. We have seen from Tables 1 and 2

that the errors with the ratio of 0.01 had almost no impact on the coverage probability.

Based on this 100% coverage, we conclude that the impact of the round-off error on the

confidence interval estimate from the real data is practically negligible. This allows us to

use the available rough interarrival times to make an inference on the tail index.

The conclusions of the research described in this section are as follows.

(1) For the purpose of confidence interval inference on the tail index of the anomalies

interarrival times, the 5-minute resolution is acceptable.

(2) For most links, the confidence intervals obtained using the four data-driven methods

of selecting k have a nonempty intersection.

(3) Based on the Eye–Ball method, one can be confident that for all links the true value

of α is between 1.0 and 2.7. The most typical range for α is (1.2, 2.3); each interval for

half of the links falls into the range.



JOURNAL OF NONPARAMETRIC STATISTICS 17

Acknowledgments

Section 4 uses a proprietary data product derived from historical US-wide internet traffic mea-
surements. We thank Professor Anura P. Jayasumana of Colorado State University’s Department
of Electrical and Computer Engineering for making it available to us.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research has been partially supported by theNational Science Foundation grant DMS-1737795:
ATD: Spatio-Temporal Model for the Propagation of Internet Traffic Anomalies.

References

Bandara, V.W., Pezeshki, A., and Jayasumana, A.P. (2014), ‘A Spatiotemporal Model for Internet
Traffic Anomalies’, IET Networks, 3, 41–53.

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. (2004), Statistics of Extremes: Theory and
Applications, Chichester: John Wiley & Sons.

Beran, J., Schell, D., and Stehlík, M. (2014), ‘The Harmonic Moment Tail Index Estimator: Asymp-
totic Distribution and Robustness’, Annals of the Institute of Statistical Mathematics, 66, 193–220.

Brilhante, M., Gomes, M., and Pestana, D. (2013), ‘A Simple Generalisation of the Hill Estimator’,
Computational Statistics & Data Analysis, 57, 518–535.

Caeiro, F., Gomes, M., Beirlant, J., and de Wet, T. (2016), ‘Mean–of–order P Reduced–bias Extreme
Value Index Estimation Under a Third–order Framework’, Extremes, 19, 561–589.

Csörgő, S., Deheuvels, P., andMason, D. (1985), ‘Kernel Estimates of the Tail Index of aDistribution’,
The Annals of Statistics, 13, 1050–1077.

Danielsson, J., de Haan, L., Peng, L., and de Vries, C. (2001), ‘Using a Bootstrap Method to Choose
the Sample Fraction in Tail Index Estimation’, Journal of Multivariate Analysis, 76, 226–248.

Danielsson, J., Ergun, L.M., de Haan, L., and de Vries, C.G (2019), ‘Tail Index Estimation: Quantile
Driven Threshold Selection’, Technical Report, Bank of Canada.

Davis, R.A., and Resnick, S.I. (1984), ‘Tail Estimates Motivated by Extreme Value Theory’, The
Annals of Statistics, 12, 1467–1487.

de Haan, L., and Ferreira, A. (2006), Extreme Value Theory: An Introduction, New York: Springer.
Dekkers, A., Einmahl, J., and de Haan, L. (1989), ‘AMoment Estimator for the Index of an Extreme-

Value Distribution’, The Annals of Statisctis, 17, 1833–1855.
Drees, H., and Kaufmann, E. (1998), ‘Selecting the Optimal Sample Fraction in Univariate Extreme

Value Estimation’, Stochastic Processes and their Applications, 75, 149–172.
Embrechts, P., Klüppelberg, C., andMikosch, T. (1997),Modelling Extremal Events for Insurance and

Finance, Berlin: Springer.
Geluk, J., de Haan, L., Resnick, S.I., and Stărică, C. (1997), ‘Second-Order Regular Variation,

Convolution and the Central Limit Theorem’, Stochastic Processes and their Applications, 69,
139–159.

Goldenshluger, A., and Tsybakov, A. (2004), ‘Estimating the Endpoint of a Distribution in the
Presence of Additive Observation Errors’, Statistics & Probability Letters, 68, 39–49.

Haeusler, E., and Teugels, J.L. (1985), ‘OnAsymptotic Normality of Hill’s Estimator for the Exponent
of Regular Variation’, The Annals of Statistics, 13, 743–756.

Hall, P. (1982), ‘On Some Simple Estimates of an Exponent of Regular Variation’, Journal of the Royal
Statistical Society: Series B (Methodological), 44, 37–42.

Hall, P. (1990), ‘Using the Bootstrap to Estimate Mean Squared Error and Select Smoothing
Parameter in Nonparametric Problems’, Journal of Multivariate Analysis, 32, 177–203.



18 M. KIM AND P. KOKOSZKA

Hall, P., and Simar, L. (2002), ‘Estimating a Changepoint, Boundary, or Frontier in the Presence of
Observation Error’, Journal of the American Statistical Association, 97, 523–534.

Hall, P., andWelsh, A.H. (1985), ‘Adaptive Estimates of Parameters of Regular Variation’,TheAnnals
of Statistics, 13, 331–341.

Henry, I.J. (2009), ‘A Harmonic Moment Tail Index Estimator’, Journal of Statistical Theory and
Applications, 8, 141–162.

Kim, M., and Kokoszka, P. (2020), ‘Consistency of the Hill Estimator for Time Series Observed with
Measurement Errors’, Journal of Time Series Analysis, 41, 421–435.

Kneip, A., Simar, L., and Keilegom, I.V. (2015), ‘Frontier Estimation in the Presence ofMeasurement
Error with Unknown Variance’, Journal of Econometrics, 184, 379–393.

Kokoszka, P., Nguyen, H., Wang, H., and Yang, L. (2020), ‘Statistical and Probabilistic Analysis of
Interarrival and Waiting Times of Internet2 Anomalies’, Statistical Methods & Applications, 29,
727–744.

Kulik, R., and Soulier, P. (2011), ‘The Tail Empirical Process for Long Memory Stochastic Volatility
Sequences’, Stochastic Processes and their Applications, 121, 109–134.

Leng, X., Peng, L., Zhou, C., and Wang, X. (2018), ‘Endpoint Estimation for Observations with
Normal Measurement Errors’, Extremes, 21, 1–26.

Ma, S., Yan, J., and Zhang, X (2022), ‘ExtremeValueModeling withGeneralized ParetoDistributions
for Rounded Data’, Technical Report, University of Connecticut, Storrs, CT, April. Available at
https://doi.org/10.1002/essoar.10511093.1.

Markovich, N. (2008), Nonparametric Analysis of Univariate Heavy-Tailed Data: Research and
Practice, Chichester: John Wiley & Sons.

Matsui, M., Mikosch, T., and Tafakori, L. (2013), ‘Estimation of the Tail Index for Lattice-Valued
Sequences’, Extremes, 16, 429–455.

Neyman, J. (1937), ‘Outline of a Theory of Statistical Estimation Based on the Classical Theory of
Probability’, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and
Physical Sciences, 236, 333–380.

Nicholson, J., Kokoszka, P., Lund, R., Kiessler, P., and Sharp, J. (2021), ‘Renewal Model for Anoma-
lous Traffic in Internet2 Links’, Statistical Modelling, 22, 430–456.

Paulauskas, V., and Vaičiulis, M. (2013), ‘On an Improvement of Hill and some Other Estimators’,
Lithuanian Mathematical Journal, 53, 336–355.

Resnick, S.I. (2007), Heavy-Tail Phenomena, New York: Springer.
Resnick, S.I., and Stărică, C. (1997a), ‘Asymptotic Behavior of Hill’s Estimator for Autoregressive

Data’, Communications in Statistics. Stochastic Models, 13, 703–721.
Resnick, S.I., and Stărică, C. (1997b), ‘Smoothing theHill Estimator’,Advances inApplied Probability,

29, 271–293.


	1. Introduction
	2. Assumptions and main asymptotic results
	3. Impact of errors on confidence intervals
	4. Application to Internet2 anomalous traffic
	Acknowledgments
	Disclosure statement
	Funding
	References

