

Probabilistic Seismic Source Inversion of the 1886 Charleston, South Carolina, Earthquake from Macroseismic Evidence: A Major Updating

Rasanen, R.A.^a and Maurer, B.W.^{a,*}

ABSTRACT

6 The source of the 1886 Charleston, South Carolina earthquake influences the computed seismic hazard of
7 the Southeastern U.S. and thus impacts public policy and engineering practice. However, because the 1886
8 rupture predated seismic instruments, its source is highly uncertain. This study presents probabilistic
9 seismic-source inversions of the Charleston earthquake from liquefaction evidence and historical intensity
10 reports. Using the latest predictive models and a novel inversion approach, we seek to constrain the
11 magnitude, location, and orientation of the 1886 rupture. Probability distributions of rupture magnitude are
12 conditioned on both the “Woodstock Fault” – a commonly inferred source of the 1886 event – and on an
13 unknown source, wherein the uncertainties of fault location and orientation are considered. These
14 distributions are compared to the M_w 6.7- M_w 7.5 distribution adopted by the U.S. National Seismic Hazard
15 Model Project (NSHMP). Collectively, the results do not provide strong support for the hypothesized
16 Woodstock Fault. This is not to say the Woodstock Fault does not exist or could not have caused the 1886
17 rupture, but rather, that the position of the 1886 source model cannot be constrained by the data and models
18 studied herein, given the large uncertainties inherent to each. While this is at odds with the underlying
19 assumption of prior studies, the results nonetheless generally uphold the magnitude distribution adopted by
20 the NSHMP. The largest uncertainties inherent to this distribution are identified and could be diminished
21 in the future. Finally, we note that the inversion methodology used here is not specific to any region, or to
22 certain types of evidence, but can be applied to any seismic zone and to any co-seismic response. This
23 methodology allows for uncertainty to be accounted for in a more complete and transparent manner when
24 inverting seismic source parameters from macroseismic data. Of course, any limitations, biases, or
25 unmodeled uncertainties inherent to these data must be understood, and their implications acknowledged,
26 as further discussed herein.

27 Keywords: seismic hazard, macroseismic intensity, soil liquefaction, inverse analysis

28 1. Introduction

29 Computed seismic hazards are especially uncertain in regions of infrequent seismicity, where the return
30 periods of moderate-to-large earthquakes may exceed the historic observational period. To reduce this
31 uncertainty, engineering geologists routinely perform forensic analyses of the macroseismic evidence (e.g.,

^a Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195

*Corresponding author: bwmaurer@uw.edu

32 liquefaction, landslides, intensity reports) produced by prehistoric and pre-instrumental earthquakes (e.g.,
33 among many, Obermeier, 1998; Schneider et al., 2001; Green et al., 2005; Kuhn, 2005; Obermeier et al.,
34 2005; Olson et al., 2005; Rodriguez-Marek and Ciani, 2008; Maurer et al., 2015a; Gheibi and Gassman,
35 2016; Yousuf et al., 2021; Chung et al., 2021; Rasanen et al., 2021; Bwambale et al., 2022). The goal of
36 these analyses, in effect, is to constrain the seismic-source parameters of paleoearthquakes, such that these
37 parameters may be input to probabilistic seismic hazard analyses. It follows that computed seismic hazards
38 are, in some regions, heavily influenced by analyses of macroseismic evidence. The South Carolina Coastal
39 Plain is one such region and is strongly influenced by interpretations of the 1886 Charleston earthquake.

40 The 1886 event induced widespread soil liquefaction across the Coastal Plain (Amick et al., 1990),
41 damaged structures in multiple U.S. states, including most structures in Charleston (Dutton, 1889; Wong et
42 al., 2005), produced perceptible shaking over 1500 km away in Canada (Bakun et al., 2002), and was larger
43 in magnitude than any earthquake to since occur in the Southeastern U.S. The source of the Charleston
44 event is thus a major seismic hazard for the region. A 2005 study, for example, predicted that a repeat of
45 the 1886 event would cause 900 deaths, 44,000 injuries, and economic losses of \$20 billion in South
46 Carolina alone (Wong et al., 2005). In turn, the Charleston source controls the computed seismic hazard for
47 much of the Southeastern U.S., particularly for long-period structures (Petersen et al., 2020), and thus
48 impacts building codes, governing policies, and engineering practice. However, because the 1886 rupture
49 predated seismic instruments and did not manifest at the surface, its exact location and magnitude remain
50 uncertain, as do the regional amplitudes of resultant ground motions. To constrain these unknowns, and
51 thus prepare for a similar event, numerous researchers have studied macroseismic evidence, as summarized
52 in Table 1. Published confidence intervals (CIs) of the 1886 magnitude range from M_w 6.4 to M_w 7.8, as
53 interpreted from intensity reports (e.g., Bakun and Hopper, 2004; Cramer and Boyd, 2014) and liquefaction
54 evidence (e.g., Martin and Clough, 1994; Hayati and Andrus, 2008). Liquefaction features also suggest a
55 history of recurrent earthquakes in the region extending back 6,000 years (Talwani and Schaeffer, 2001)
56 with wide-ranging magnitude estimates of M_w 5.1 to M_w 7.8 (e.g., Hu et al., 2002; Gheibi et al., 2020).
57 Considering the existing literature, Petersen et al. (2014, 2020) assigned to the Charleston seismic zone a
58 magnitude probability distribution that ranged from M_w 6.7 to M_w 7.5 in the most recent U.S. National
59 Seismic Hazard Model Project (NSHMP) maps.

60 While much has been learned about the 1886 Charleston earthquake, prior analyses of the macroseismic
61 data (i.e., intensity reports, soil liquefaction) have several limitations. First, the analysis of this data has
62 multiple uncertainties, yet existing studies tend either to be deterministic or to account for uncertainties
63 informally. That is, they generally provide either a median estimate of the rupture magnitude or uncertainty
64 bounds that are nominal in nature. It is often unclear what the bounds are, exactly, and which uncertainties
65 are, and are not, accounted for. Second, most analyses assume that the 1886 event was caused by a particular

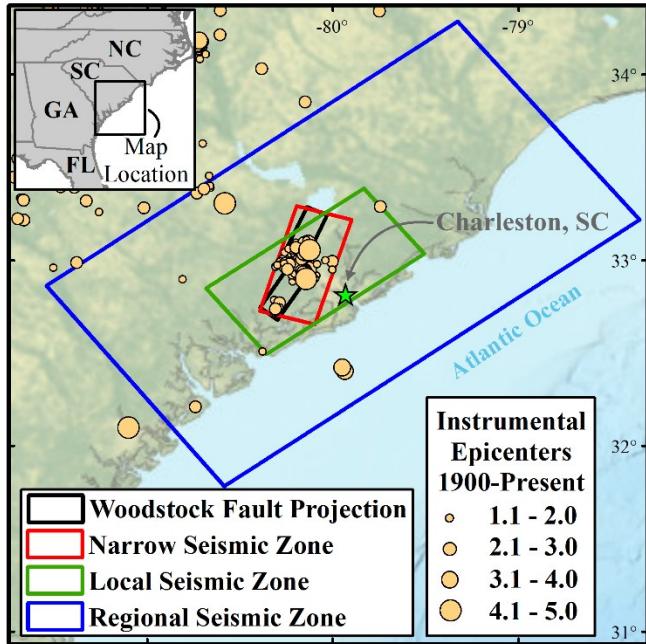
66 fault (i.e., the “Woodstock Fault”) with known characteristics, even though the fault(s) responsible for the
 67 event are debated and the characteristics of the Woodstock Fault are uncertain. The feasibility of the data
 68 to constrain the source model has arguably not been fully explored, given that nearly all studies provide a
 69 magnitude estimate conditioned on a single fault and do not investigate the uncertainty of this assumption.
 70 Third, the inverse analysis of intensity and liquefaction data requires a series of models for predicting these
 71 phenomena. Regionally distributed ground motions must be predicted, conditioned on a hypothetical
 72 source, to include site-response effects at the locations of study. The probability of field observations (i.e.,
 73 the observed intensity or liquefaction response) must then be computed, conditioned on the expected ground
 74 motions. In this regard, major modeling advances have recently been made. The NGA-East project (Goulet
 75 et al., 2018) resulted in the most advanced understanding of Eastern North America (ENA) ground motions
 76 and site response (Harmon et al., 2019) to date. Models for correlating ground motions to macroseismic
 77 intensities, including ENA-specific relationships, have been updated (e.g., Cramer, 2020). And models for
 78 predicting the probability of liquefaction surface expression have been trained using all liquefaction case
 79 histories globally compiled to date (Geyin and Maurer, 2020).

Table 1. Prior estimates of the 1886 Charleston earthquake magnitude; estimates are in moment magnitude (M_w) and ranges are at the 95% confidence level, unless noted otherwise (m_b = body wave magnitude; M_s = surface wave magnitude).

Study	Study Type	Magnitude
Bollinger (1977)	MMI	6.8-7.1 (m_b)*
Nuttli et al. (1986)	MMI	6.7 (m_b), 7.7 (M_s)†
Martin and Clough (1994)	Liquefaction	7.0-7.5†
Johnston (1996)	MMI	6.8-7.8
Bakun and Hopper (2004)	MMI	6.4-7.2
Heidari and Andrus (2010)	Liquefaction	6.8-7.0†
Cramer and Boyd (2014)	MMI	6.7-7.3

* Upper bound magnitude estimate (range is not at the 95% confidence level)

† Magnitude range is either not given or is not at the 95% confidence level


80
 81 Accordingly, this study presents probabilistic seismic-source inversions of the 1886 Charleston
 82 earthquake from historical intensity reports and liquefaction evidence. Each is studied using a novel
 83 approach wherein the above shortcomings are addressed directly. With this approach, the likelihood of a
 84 rupture with some location, geometry, and magnitude to produce a set of field observations (observed
 85 intensities or liquefaction responses) is computed. Repeating for enumerable hypothetical faults results in
 86 a regional scale understanding of the likely source parameters, to the degree the observational data permits.
 87 Probability distributions of earthquake magnitude, conditioned on both an unknown source and on the
 88 Woodstock Fault, are computed and compared to that used to develop the NSHMP maps (Petersen et al.,

89 2014, 2020). In the following, prior studies of the 1886 macroseismic data (see Table 1) are discussed
90 further. An overview of the analysis methodology is then presented, followed by implementation details.
91 Lastly, the macroseismic data are analyzed and a variety of results are presented and discussed.

92 **2. Prior analyses of 1886 macroseismic evidence**

93 *2.1 Analyses of MMI data*

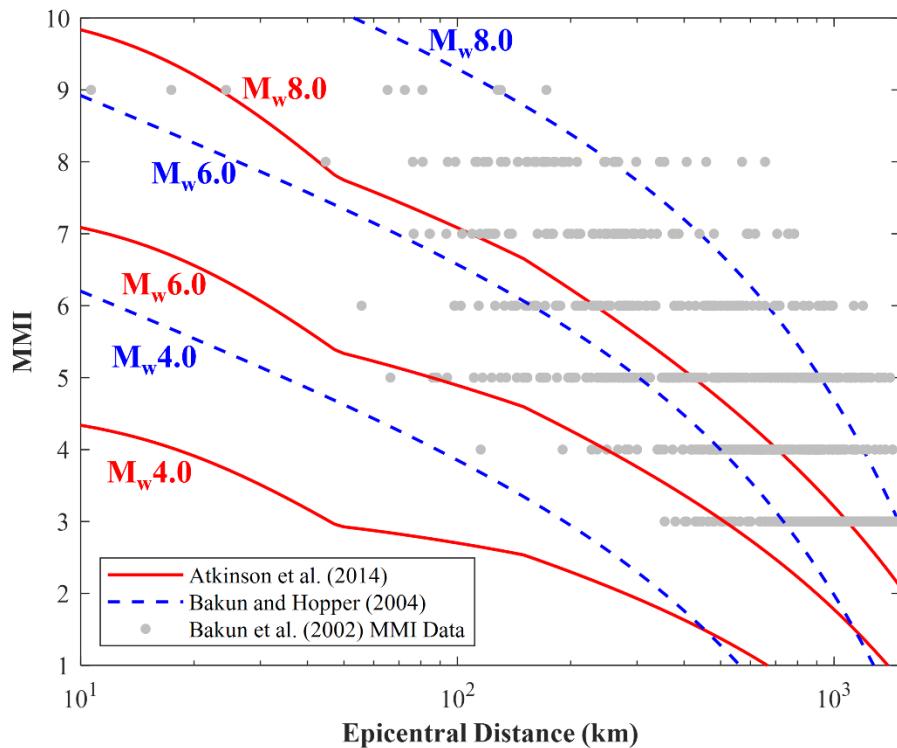

94 Following the 1886 earthquake, Dutton (1889) compiled intensity reports throughout ENA and developed
95 isoseismal maps based on the Rossi-Forel intensity scale. Researchers have since reinterpreted these reports
96 to the Modified Mercalli Intensity (MMI) scale and analyzed them to infer seismic parameters. Bakun et
97 al. (2002), for example, compiled 1,034 MMI observations from these and other original reports. Prior
98 analyses of the 1886 MMI data have typically used intensity-prediction equations (IPEs), which predict
99 intensity as a function of rupture magnitude and site-to-source distance. Assuming some source location
100 and adopting an IPE, researchers have constrained the causative M_w which best fits the MMI data (e.g.,
101 Bollinger, 1977; Nuttli et al., 1986; Johnston, 1996; Bakun and Hopper, 2004) as summarized in Table 1.
102 Bakun and Hopper (2004), for example, developed an ENA-specific IPE, applied it to the Bakun et al.
103 (2002) MMI data, and reported a magnitude of M_w 6.9 (M_w 6.4-7.2 at the 95% confidence level). Using
104 different methods than prior researchers, Cramer and Boyd (2014) compared the mean MMI of the Bakun
105 et al. (2002) dataset against those from two reference events in similar tectonic settings (M_w 7.2 1929 Grand
106 Banks, Canada and M_w 7.6 2001 Bhuj, India) over a site-to-source distance of 600-1200 km. With this
107 approach, Cramer and Boyd (2014) estimated a median magnitude of M_w 7.0 with uncertainty of $\pm 0.3M_w$.
108 Collectively, existing studies of the MMI data have reported estimates of M_w 6.4 to M_w 7.8. In producing
109 such estimates, these studies have generally assumed that the source was epicentrally located in the vicinity
110 of what is typically called the Woodstock Fault, an inferred N striking, W dipping fault \sim 25 km NW of
111 Charleston (e.g., Durá-Gómez and Talwani, 2009a,b; Chapman et al., 2016). The fault's surface projection,
112 as hypothesized by Durá-Gómez and Talwani (2009a,b), is mapped in Figure 1. While most studies based
113 on geophysical investigations or modern seismological data have supported this proposed alignment – at
114 least in a general sense (e.g., Pratt et al., 2022) – dramatically different hypotheses for the 1886 earthquake
115 have also been proposed. Marple and Hurd (2020), for example, recently suggested that the 40-km long
116 “Deer Park lineament,” which is oriented roughly E-W, may have been responsible.

Figure 1. Woodstock Fault projection (Durá-Gómez and Talwani, 2009a,b) and the zonal weighting scheme assigned to the Charleston Seismic Zone in the most recent U.S. National Seismic Hazard Model Project (NSHMP) maps (Petersen et al., 2014, 2020).

117 Also shown in Figure 1 is the zonal weighting scheme assigned to the Charleston Seismic Zone by the
 118 NSHMP (Petersen et al., 2014, 2020). In this scheme, a “Narrow” zone with weight of 0.3 delineates the
 119 hypothesized Woodstock Fault while accounting for uncertainties in its position and branching structure.
 120 The “Local” and “Regional” zones, with respective weights of 0.5 and 0.2, collectively extend offshore and
 121 across the extents of the South Carolina Coastal Plain, thereby encompassing more distal faults and
 122 liquefaction features that have not been tied to the 1886 event. Each zone is assigned the same M_w 6.7 to
 123 M_w 7.5 probability distribution by Petersen et al. (2014, 2020). This weighting scheme was adopted from
 124 the Central and Eastern United States Seismic Source Characterization for Nuclear Facilities Project
 125 (Coppersmith et al., 2012), who concluded: “Neither the 1886 nor the prehistoric (i.e., pre-1886)
 126 earthquakes in the Charleston area can be definitively attributed to any specific fault or fault zone at the
 127 present time.” In arriving at this conclusion, Coppersmith et al. (2012) noted: “the Charleston region is
 128 associated with a pattern of observed seismicity that is not particularly remarkable for drawing attention to
 129 the location of the 1886 earthquake.” As summarized by Chapman et al. (2016), very different hypotheses
 130 have arisen from analyses of microseismicity data. While it should be emphasized that the NSHMP scheme
 131 does not describe the uncertainty of the 1886 rupture specifically, it does reflect the overall uncertainty of
 132 moderate-to-large “1886-like” events in the region. Thus, while prior studies have generally assumed that
 133 the 1886 source was in the “Narrow” zone, a scientific consensus has not been reached.

134 As a precursor to other analyses presented herein, the Bakun and Hopper (2004) IPE was first
 135 reimplemented on the Bakun et al. (2002) dataset and the same M_w 6.9 estimate as Bakun and Hopper (2004)
 136 was obtained, indicating that the approach and dataset were correctly reproduced. Next, this approach was
 137 updated using the newest ENA IPE (Atkinson et al., 2014). Assuming the same source location and studying
 138 MMI data within 1000 km (the applicable distance of the Atkinson et al. (2014) IPE) and within all distances
 139 (to mirror Bakun and Hopper, 2004), median estimates of M_w 8.0 and M_w 8.2 were respectively obtained.
 140 The cause of the discrepant results obtained using Bakun and Hopper (2004) vs. Atkinson et al. (2014) can
 141 be seen in Figure 2, where both IPEs are plotted for three values of M_w . For a given M_w and epicentral
 142 distance, the Atkinson et al. (2014) model tends to predict a lesser MMI, indicating that a larger earthquake
 143 magnitude (i.e., M_w 8.0 - M_w 8.2) is needed to produce the same set of MMI observations.

Figure 2. ENA-specific intensity prediction equations (IPEs) proposed by Bakun and Hopper (2004) and Atkinson et al. (2014) considering three values of M_w .

144 While it may appear, per the latest ENA IPE, that the 1886 rupture was much larger than previously
 145 thought, there are limitations that give rise to the work that follows. Most notably, perhaps, is that existing
 146 ENA IPEs do not allow for consideration of site effects when predicting MMI. The Atkinson et al. (2014)
 147 IPE, for example, is intended for site class C, or stiff soil and soft rock profiles (i.e., sites where V_{S30} , the
 148 time averaged shear-wave velocity over the upper 30 m, is $360 \text{ m/s} < V_{S30} < 760 \text{ m/s}$). Accordingly, if some
 149 of the 1886 MMI observations were on softer sites (e.g., in river valleys or along waterways, which seems

150 likely), then the estimate of M_w 8.0– M_w 8.2 obtained via the Atkinson et al. (2014) IPE could require
151 significant reduction. Moreover, the MMI studies in Table 1: (i) predate the latest knowledge of ENA
152 ground motions and site response (Goulet et al., 2018; Harmon et al., 2019); and (ii) do not rigorously
153 account for uncertainty. In this study, probabilistic site-adjusted ground motion intensity measures (IMs)
154 will be explicitly predicted using 17 ENA ground-motion models (GMMs) (whereas ground motions were
155 only implicitly predicted in prior studies). In turn, MMI values will be probabilistically predicted at study
156 sites using the latest IM-MMI models (e.g., Cramer, 2020). These predictions will be repeated for a
157 multitude of fault locations, orientations, and magnitudes to compute the likelihood that each source would
158 produce the 1886 MMI observations of Bakun et al. (2002). This approach, which will be subsequently
159 presented in detail, incorporates ground-motion IM uncertainty, IM-MMI uncertainty, and source location
160 uncertainty to produce a probability distribution of rupture magnitude. It must be noted that MMI data is
161 also subject to measurement uncertainty and reporting bias (e.g., Hough et al., 2000; Cramer and Boyd,
162 2014). While site-specific measurement uncertainties, correction factors, or weighting schemes could be
163 accommodated, a thorough reinterpretation of the more than 1000 original intensity reports would be
164 required, to include possible reassignment of MMI values in the Bakun et al. (2002) dataset and
165 development of observation-specific uncertainties. In the current effort, however, we study the existing data
166 directly, treat measurement uncertainty in a simple manner, and assign all observations equal weight. It
167 should be noted that all prior studies of the 1886 intensities have also used these data. Thus, while our
168 methodology has important advantages over prior efforts (e.g., the capacity to probabilistically constrain
169 the rupture location), a future study might further benefit from rigorous reinterpretation of the original
170 intensity reports.

171 *2.2 Analyses using liquefaction*

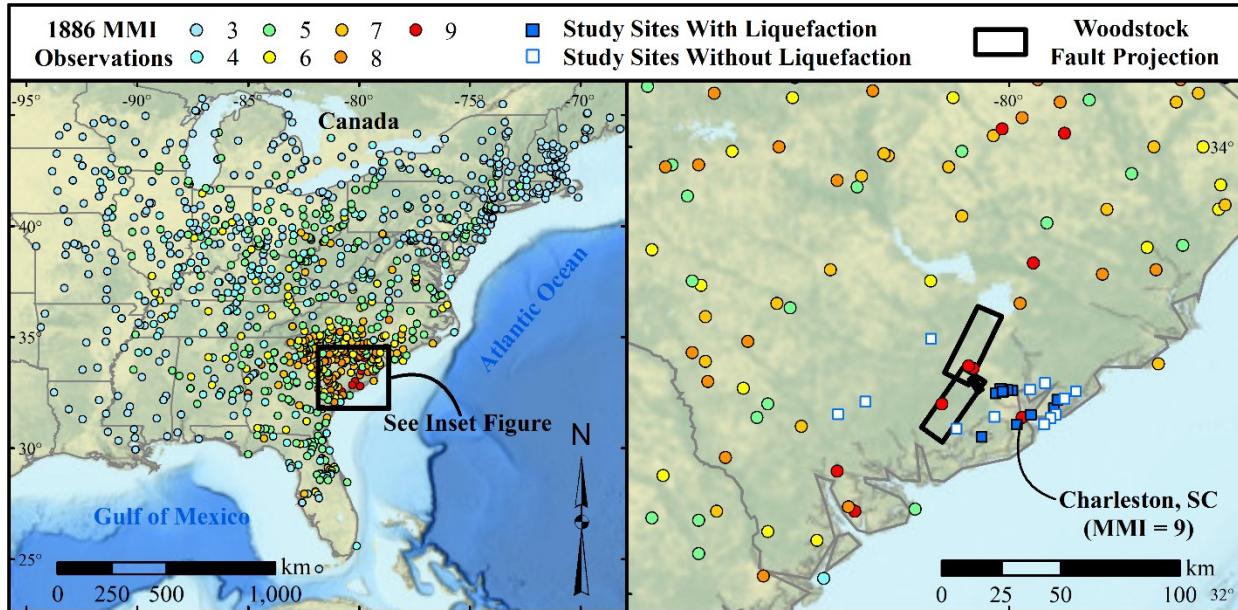
172 Paleoliquefaction evidence suggests that at least seven moderate-to-large earthquakes have impacted the
173 South Carolina Coastal Plain in the last 6,000 years (e.g., Gohn et al., 1984; Obermeier et al., 1985;
174 Obermeier et al., 1987; Talwani and Schaeffer, 2001). Three of these events are interpreted to have a source
175 in the vicinity of Charleston and a recurrence rate of ~500 years (Talwani and Schaeffer, 2001). The 1886
176 event was the most recent of these to generate liquefaction and the only instance in which liquefaction was
177 well documented as it occurred. Surface manifestations (e.g., ejecta, ground cracks) were mapped by Earle
178 Sloan, among others, and compiled by Dutton (1889). Additional liquefaction evidence was subsequently
179 discovered during trenching investigations (e.g., Obermeier et al., 1985; Talwani and Cox, 1985).
180 Collectively, this evidence has been analyzed to determine the magnitude of the earthquake that caused it.
181 Liquefaction models (e.g., Green et al., 2019; Maurer et al., 2015b) conventionally predict the future
182 triggering and surface manifestation of liquefaction, given in-situ geotechnical test data and some seismic

183 loading. In an inverse analysis, these models are used in reverse to constrain the seismic loading that would,
184 and would not, produce the observed response. By comparing this loading to that forward predicted by a
185 GMM for an assumed source, the magnitude of that source may be constrained. Studying primarily standard
186 penetration test (SPT) data from sites of interest, Martin and Clough (1994) carried out such an analysis
187 with the Seed et al. (1984) SPT-based liquefaction triggering model and the Ishihara (1985) liquefaction
188 manifestation model. Assuming a seismic source at the centroid of reported intensity (roughly consistent
189 with the hypothesized Woodstock Fault), adopting GMMs then available (e.g., Chapman et al., 1989), and
190 employing considerable judgement, Martin and Clough (1994) estimated that an M_w 7.0- M_w 7.5 event could
191 produce liquefaction consistent with that observed.

192 Studying cone penetration test (CPT) data, Hayati and Andrus (2008) used the Robertson and Wride
193 (1998) CPT-based triggering model and the Iwasaki et al. (1978) manifestation model to estimate a
194 magnitude of M_w 6.8- M_w 7.3. Because triggering models are trained almost exclusively with case-history
195 data from Holocene deposits, “aging correction” factors (or “deposit resistance” corrections) have been
196 proposed when applying triggering models in older soils. Specifically, it has been argued that aging effects,
197 or increases in the cyclic strength of soils over time, may be resolved into gains measurable by large strain
198 penetration tests and gains influenced by soil fabric phenomena undetectable at larger strain (e.g., Maurer
199 et al., 2014). Thus, penetration resistance may correlate to liquefaction resistance differently in Pleistocene
200 soils than in Holocene soils. Accordingly, Hayati and Andrus (2008) employed aging correction factors in
201 select geologic units. In producing their estimate of M_w 6.8- M_w 7.3, Hayati and Andrus (2008) assumed that
202 the Woodstock fault was the source and that a peak ground acceleration (*PGA*) of 0.3 g occurred throughout
203 Charleston, citing previous ground-motion predictions (e.g., Silva et al., 2003). Using this methodology,
204 they constrained the magnitude range for which predictions from liquefaction models matched observations
205 of response. Heidari and Andrus (2010) used a similar methodology as Hayati and Andrus (2008) but
206 applied the updated aging correction factors of Hayati and Andrus (2009) to obtain an estimate of M_w 6.8-
207 M_w 7.0. In addition to these studies, researchers have studied paleoliquefaction interpreted to be from older,
208 possibly similar events. Gheibi et al. (2020), for example, studied evidence induced by a “Charleston
209 Source” approximately ~550 and ~5,000 YBP. Assuming the source to be the Woodstock fault, they
210 computed respective minimum magnitudes of M_w 6.6- M_w 7.2 and M_w 6.2- M_w 6.7 for these two events, where
211 the uncertainty stems from which GMM is adopted to predict median ground motions.

212 Like prior studies of the MMI data, those of liquefaction evidence have greatly improved knowledge
213 of the regional seismic hazard, but also have limitations that motivate the present study. In brief, existing
214 studies: (i) predate both the NGA East Project (Goulet et al., 2018; Harmon et al., 2019) and the latest
215 liquefaction models trained on all globally available data (Geyin and Maurer, 2020); and (ii) do not
216 rigorously account for uncertainty. In this regard, prior studies do not account for source-model uncertainty

217 (i.e., they assume a single seismic source), do not account for the uncertainty of ground motions conditioned
218 on that source, and do consider the prediction of liquefaction in any probabilistic sense. In general,
219 published uncertainties of the 1886 rupture magnitude, whether derived from MMI or liquefaction data, are
220 arguably nominal in nature. In some studies, for example, only a single uncertainty is considered, such as
221 the epistemic uncertainty of which deterministic model is used (say, to compute ground motions). In such
222 cases, published uncertainty bounds (e.g., M_w 6.8– M_w 7.0) are ranges of the estimated *median* magnitude
223 considering one source of uncertainty. This may be distinctly different from the total uncertainty of the
224 1886 magnitude, which could be much greater. Consider, for example, that *instrumental* magnitudes have
225 95% CIs exceeding some of the ranges in Table 1 (e.g., Werner and Sornette, 2008).


226 In this study, and analogous to the analysis of MMI data, probabilistic site-adjusted ground motion IMs
227 will be predicted by 17 ENA GMMs. Conditioned on these IMs, the probability of liquefaction
228 manifestation will be computed by the fragility functions of Geyin and Maurer (2020), wherein multiple
229 models for soil aging effects will be ensembled. These predictions will be repeated for a multitude of
230 hypothetical sources to compute the likelihood that each would produce the observed regional liquefaction
231 response. Like the study of MMI data, this will result in a probability distribution of earthquake magnitude
232 and, arguably, a more complete and transparent understanding of the 1886 source model, at least insofar as
233 can be gained from the macroseismic evidence available for analysis.

234 **3. Macrosesimic data**

235 *3.1 MMI data*

236 Bakun et al. (2002) compiled 1,034 intensity reports from the 1886 event, including those of Dutton (1889)
237 and Bollinger and Stover (1976), and assigned MMI values per the: (i) MMI definitions of Wood and
238 Neumann (1931); and (ii) USGS National Earthquake Information Center practice for assigning intensity
239 (Stover and Coffman, 1993). In compiling these data, Bakun et al. (2002) either excluded MMI = 1 and
240 MMI = 2 reports (i.e., documented instances where shaking was not felt) or found no such reports to
241 compile. Like all previous studies of these data, we assume that MMI values were accurately assigned by
242 Bakun et al. (2002), with proper consideration of structural vulnerability to avoid biasing estimates. While
243 matters of MMI uncertainty and bias could be important and will be further discussed, they are largely
244 beyond the scope of the present analysis. It should be emphasized that our analysis is not an endorsement
245 of the Bakun et al. (2002) dataset. Rather, we study this data because it is the most recent compilation of
246 1886 intensity reports and because many prior publications studied either the Bakun et al. (2002)
247 compilation, or earlier collections of data that Bakun et al. (2002) built upon. As previously stated, a future
248 study could further benefit from a complete reinterpretation of the more than 1000 original intensity reports.
249 While the coordinates of one MMI report from Ottawa, Ontario were judged to be erroneous and corrected

250 by judgement, we otherwise adopt the Bakun et al. (2002) MMI data as presented therein. The locations of
 251 these data are shown in Figure 3 and extend ~1500 km from Charleston, SC. A larger, alternative version
 252 of Fig. 3 that provides an MMI raster surface is also provided in the electronic supplement.

Figure 3. 1886 MMI observations (Bakun et al., 2002) and liquefaction evidence, as introduced subsequently. Also shown is the Woodstock Fault projection (Durá-Gómez and Talwani, 2009a,b).

253 *3.2 Liquefaction data*

254 Twenty-four sites where liquefaction manifestations were or were not observed in 1886, and where CPT
 255 testing was subsequently performed, will be studied. Liquefaction manifested (typically in the form of large
 256 sand boils) at twelve of these sites, whereas no evidence of liquefaction was observed at the remainder.
 257 These sites are summarized in Table 2, where citations are provided for the observed liquefaction response
 258 and for the geotechnical tests, which are all available in the public domain. These study sites are also
 259 mapped later in the paper and CPT data from each site is plotted in the electronic supplement.

Table 2. Summary of 1886 liquefaction data analyzed herein.

CPT ID	Longitude	Latitude	Manifestation	Geotechnical Reference	Liquefaction Reference
BKY07	-79.9061	32.9150	No	USGS (2021)	Dutton (1889)
BKY09	-79.8385	32.9443	No	USGS (2021)	Dutton (1889)
BKY23	-79.9855	32.9115	Yes	USGS (2021)	Dutton (1889)
BKY24	-80.0071	32.9118	Yes	USGS (2021)	Dutton (1889)
CHN01	-79.7900	32.8030	No	USGS (2021)	Dutton (1889)
CHN07	-79.8134	32.7874	No	USGS (2021)	Dutton (1889)
CHN12	-79.7989	32.8310	Yes	USGS (2021)	Amick et al. (1990)
CHN15	-79.6998	32.9073	No	USGS (2021)	Dutton (1889)

CHN28	-79.8428	32.7597	No	USGS (2021)	Dutton (1889)
CHN29	-79.7840	32.8682	Yes	USGS (2021)	Amick et al. (1990)
CHN31	-79.7520	32.8741	No	USGS (2021)	Dutton (1889)
CHN32	-80.0267	32.9043	Yes	USGS (2021)	Dutton (1889)
CHN33	-80.0323	32.9166	Yes	USGS (2021)	Dutton (1889)
CHN34	-80.0391	32.9170	Yes	USGS (2021)	Dutton (1889)
CHN50	-80.1235	32.7023	Yes	USGS (2021)	Dutton (1889)
CHN59	-79.9655	32.7575	Yes	USGS (2021)	Dutton (1889)
CHN64	-80.0604	32.8982	Yes	USGS (2021)	Dutton (1889)
CREC1	-80.0655	32.7921	No	Boller (2008)	Martin and Clough (1994); Boller (2008)
FHS3	-80.3507	33.1420	No	Hasek (2016)	Williamson and Gassman (2014); Hasek (2016)
HA74	-80.0300	32.9050	Yes	Heidari & Andrus (2012)	Dutton (1889)
HWD2	-80.2355	32.7394	No	Hasek (2016)	Talwani and Cox (1985); Hasek (2016)
S99634DS1	-79.9015	32.8017	Yes	Heidari & Andrus (2010)	Dutton (1889)
WLC2	-80.6444	32.8607	No	Geiger (2010)	Geiger (2010)
WRAP2	-80.7666	32.8040	No	Geiger (2010)	Geiger (2010)

260 In compiling these study sites, an interpreted, potential lateral spread at Fort Dorchester, SC (Talwani
 261 et al., 2011) was omitted because the liquefaction response was ambiguous and because lateral spreading –
 262 a distinct and complex manifestation of liquefaction – is not intended to be predicted by the liquefaction
 263 model adopted herein. Whereas the MMI data are spread throughout ENA, the compiled liquefaction data
 264 are within 100 km of Charleston. Because liquefaction is mechanistically implausible, irrespective of soil
 265 properties, at PGAs less than ~0.09 g (de Magistris, 2013), the maximum site-to-source distance of
 266 liquefaction observations is inherently limited. By corollary, an analysis of sites where liquefaction was not
 267 observed, but which are very far from Charleston, would not provide meaningful constraint of the source
 268 model, given that the computed probability of such an observation is 100% even for very large earthquakes.
 269 In addition, while the MMI data from 1886 are unlikely to grow significantly, additional liquefaction data
 270 could be compiled. That is, the liquefaction response was documented in 1886 at more than twenty-four
 271 sites, but costly geotechnical testing must also be performed at each site. In this regard, it is known that
 272 CPTs have been performed near additional sites of observation, yet these data are privately held and could
 273 not be obtained for analysis. Nonetheless, a larger dataset could be studied in the future.

274 **4. Methodology**

275 The methodology that will be used to analyze macroseismic data was first introduced by Rasanen and
 276 Maurer (2021, 2022), who collectively demonstrated and validated its use on landslide and liquefaction

277 evidence produced by eleven modern earthquakes with known source models. This is the first application
278 of the method to a prehistoric or pre-instrumental earthquake. The methodology will be covered in two
279 sections. The first provides a succinct conceptual overview. The second describes in detail the application
280 of the methodology to the 1886 Charleston earthquake.

281 *4.1 Conceptual Overview*

282 Our goal is to probabilistically constrain the 1886 source model. This is accomplished by computing the
283 likelihood that a rupture with some magnitude, location, and geometry, would produce a set of field
284 observations (reported MMI or liquefaction observations), wherein uncertainties inherent to these observed
285 outcomes are considered. In general, the likelihood of a parameter having some value, given a set of
286 observations, is the product of the probabilities of those observations, conditioned on the parameter value.
287 In other words, the likelihood of a rupture having some magnitude (M_w), location (L), and geometry (G),
288 given a set (x) of field observations at N different sites, can be computed as:

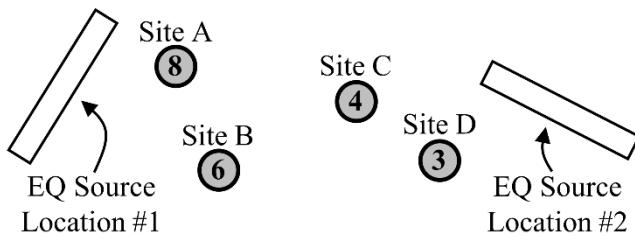
289
$$\text{Likelihood } (L, G, M_w | x) = P(X = x | L, G, M_w) = \prod_{i=1}^N P(X_i = x_i | L, G, M_w) \quad (1)$$

290 where $P(X_i = x_i | L, G, M_w)$ is the probability of what was observed at site i (i.e., the observed MMI or
291 liquefaction response) given an earthquake with parameters L , G , and M_w . By repeating for enumerable
292 possibilities, the actual rupture parameters may be probabilistically constrained by the likelihood function
293 (product of the probabilities of N observations), such that different source models will be found more and
294 less likely to produce the observed evidence.

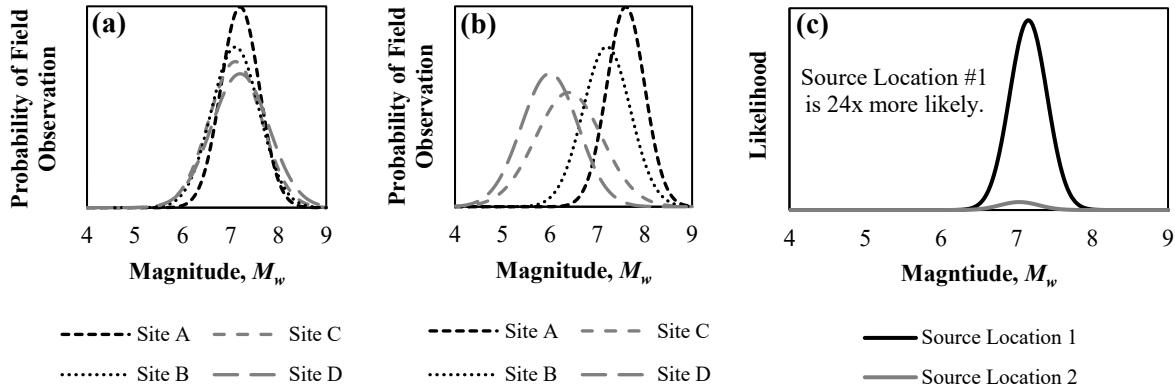
295 If the evidence is MMI data, then the probability of any one field observation (obs) is:

296
$$P(\text{obs} | \text{EQK}; L, G, M_w) = \int_{IM} \int_{MMI} P(\text{obs} | \text{MMI}) f(\text{MMI} | IM) f(IM | L, G, M_w) \cdot d\text{MMI} \cdot dIM \quad (2)$$

297 where $f(IM | L, G, M_w)$ is the probability of an IM value conditioned on fault parameters L , G and M_w , and
298 site parameter V_{S30} , as computed by a GMM that considers site response; $f(\text{MMI} | IM)$ is the probability of
299 an MMI value conditioned on the IM value, and possibly on other parameters, as computed by an IM-MMPI
300 model; and $P(\text{obs} | \text{MMI})$ is the binomial probability that the predicted MMI is equal to the observed MMI.
301 In this work, we consider predictions and observations to agree if within ± 0.5 MMI (e.g., predicted MMIs
302 of 5.51 and 6.49 agree with an observed MMI of 6). Thus, we assign an implicit, uniform measurement
303 uncertainty of ± 0.5 MMI, but do not otherwise model the uncertainty of reported MMIs. In this regard, a
304 thorough reinterpretation of the original intensity data, to include assignment of site-specific uncertainty
305 distributions and corrections for bias, would be a valuable endeavor. In the current effort, however, we
306 adopt the Bakun et al. (2002) MMI dataset, which has been studied by other modern investigators of the
307 1886 earthquake.


308 If the evidence is observed liquefaction response rather than MMI, then the probability of field
 309 observation is computed per Eq (3) if liquefaction manifestation was observed and per Eq (4) otherwise:

$$310 \quad P(\text{Manifestation|EQK: } L, G, M_w) = \int_{IM} P(\text{Manifestation|IM, } M_w) f(\text{IM| } L, G, M_w) \cdot d\text{IM} \quad (3)$$


$$311 \quad P(\text{No Manifestation|EQK: } L, G, M_w) = 1 - \int_{IM} P(\text{Manifestation|IM, } M_w) f(\text{IM| } L, G, M_w) \cdot d\text{IM} \quad (4)$$

312 In these equations, uncertainty is not assigned to the observed liquefaction response; $f(\text{IM| } L, G, M_w)$ has
 313 the same meaning as above; and $P(\text{Manifestation|IM, } M_w)$ is computed by a probabilistic model that
 314 predicts the triggering of liquefaction at depth and its subsequent manifestation at the ground surface using
 315 subsurface geotechnical data. Ultimately, the uncertainties that are, and are not, accounted for in this work
 316 will be explicitly discussed.

317 Application of this method is demonstrated conceptually in Figure 4 considering four MMI
 318 observations and two hypothetical sources for the earthquake that produced the observations. In actual
 319 analyses, a very large number of sources is considered. Figure 5 illustrates how the relative likelihoods of
 320 these two sources are assessed. Shown in Figure 5a are the computed probabilities of individual
 321 observations, given a rupture of source one, as computed by Eq. 2 for varying M_w . In Figure 5b, this is
 322 repeated considering a rupture of source two. In Figure 5c, the likelihood of each source is computed as a
 323 function of M_w by Eq. 1 (i.e., the product of the four probability distributions in Figure 5a or 5b). In this
 324 simple example, source one has a far greater peak likelihood of producing the set of field observations,
 325 whereas source two is very unlikely to do so, regardless of its M_w . By repeating this process for an array of
 326 hypothetical sources and generating a likelihood distribution for each, the characteristics of the causative
 327 rupture (e.g., location, orientation, magnitude) are probabilistically constrained, to the degree that evidence
 328 permits. In this work, we compute M_w probability-distributions conditioned on both the hypothesized
 329 Woodstock fault and on an unknown source. The latter is accomplished by aggregating probability
 330 distributions from all hypothetical sources and thus includes the uncertainties of fault location and
 331 geometry, whereas the former assumes the fault location and geometry are known.

Figure 4. Hypothetical MMI inverse analysis consisting of four field sites, where MMI values were reported for each of the site locations (the value in the circle). In addition, two hypothetical sources for the earthquake that produced these observations are shown.

Figure 5. Approach for computing the likelihood of the sources depicted in Figure 4: (a) probabilities of individual observations, given an earthquake at location one of variable M_w ; (b) probabilities of individual observations, given an earthquake at location two of variable M_w ; (c) M_w -likelihood distributions for source locations one and two.

332 *4.2 Implementation Details*

333 The implementation of Eqs. 1-4 is next described in detail. This includes both general methods transferrable
 334 to other regions and to other forms of evidence, as well as the specific models adopted for the 1886
 335 earthquake. Because the analyses of MMI and liquefaction data are procedurally similar, we first fully
 336 describe the former and then succinctly discuss differences specific to the latter. For completeness,
 337 however, the liquefaction analysis procedure is fully replicated in the electronic supplement.

338 As detailed in the following, two approaches will be used to model hypothetical seismic sources. These
 339 sources are first treated as earthquake epicenters on a grid pattern, which we term the “epicenter search”.
 340 To use modern GMMs, which are applicable only to faults, and because modeling large earthquakes as
 341 points is inappropriate, each epicenter is converted to an amorphous fault realization using site-to-source
 342 distance correlations, which implicitly assume some fault geometry as a function of magnitude. With this
 343 approach, the source location may be investigated (i.e., probabilistically constrained) without consideration
 344 of rupture geometry. While this reduces computational expense, it considers only a “median” geometry and
 345 thus omits one source of uncertainty. Accordingly, and following constraint of the epicentral region, seismic
 346 sources are next treated as faults having an array of locations, lengths, and orientations, which we term the
 347 “fault search.” Of these enumerable faults, one is the hypothesized Woodstock Fault, which we highlight
 348 in the results for obvious reasons.

349 *4.2.1 MMI Analysis Procedure*

350 The analysis of MMI data is completed via the following 15 steps:

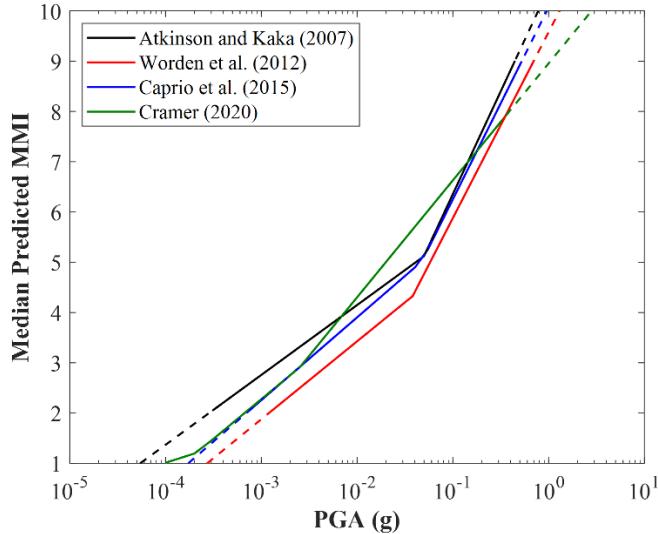
351 (1) Create an array of seismic sources. In this paper, a 62,500 km² grid of surficial points was centered on
352 Charleston. Within this grid, a finer point spacing increases spatial resolution while a coarser spacing
353 decreases computational demand (which can be significant, and tractable only with high performance
354 computing). Having found that 1 km and 10 km spacing produce nearly identical outcomes, we adopted
355 the latter spacing when studying MMI observations. These surficial points will be treated first as
356 earthquake epicenters (i.e., the “epicenter search”) and second as surface projections of the centroids of
357 faults (i.e., the “fault search”).

358 (2) Select N study sites (i.e., the *MMI* observations compiled by Bakun et al. (2002)).

359 (3) Select an appropriate GMM. In this paper, the 17 GMMs developed by the NGA East Project (Goulet et
360 al., 2018) were coalesced in a logic tree using the weights proposed by Goulet et al. (2018). Using this
361 scheme, the least and greatest model weights were ~2% and 10%, respectively.

362 (4) For each seismic source created in (1):

363 (5) For each seismic-source M_w considered (a range of M_w 4 to M_w 8.2 – the applicable range of the adopted
364 GMMs – was used in this paper):


365 (6) For each of N study sites selected in (2), cycling from $i = 1$ to N :

366 (7) Compute the site-to-source distance(s) required by the GMM chosen in (3), as measured from study site
367 i to the seismic source selected in (4). For the GMMs adopted herein, the only such metric required is the
368 closest distance to fault rupture (R_{RUP}). When the seismic sources in (1) are treated as epicenters, rather
369 than faults, the correlations of Scherbaum et al. (2004) were used to estimate a median R_{RUP} from
370 epicentral distance (R_{EPI}). In effect, these correlations, which are magnitude dependent, convert each
371 epicenter from (1) into a median realization of a multidimensional fault. Alternative approaches to
372 estimating R_{RUP} from point sources are provided by Bommer et al. (2016) and Thompson and Worden
373 (2018). Ultimately, the sources in (1) are explicitly modeled as faults via the “fault search” to determine
374 whether the field evidence can constrain the 1886 source more precisely. In doing so, R_{RUP} is directly
375 measured from fault planes and the uncertainty of fault orientation is considered.

376 (8) Using the GMM in (3), M_w from (5), and site-to-source distances from (7), compute the probability
377 density function (PDF) of expected *PGA* at site i , modified for site effects. In general, this PDF is a
378 lognormal random variable described by a median and lognormal standard deviation, which are given by
379 a GMM. *PGA* predictions beyond ± 3 standard deviations of the median were truncated, as is typical, and
380 the PDF was scaled such that the area beneath it was one. In this study, the ENA weighted GMM predicts
381 *PGA* for reference rock conditions. Accordingly, the V_{S30} -dependent model of Harmon et al. (2019),
382 which is ENA-specific and developed as part of the NGA-East Project, was used to adjust *PGAs* for local
383 site effects. V_{S30} was estimated at the site of each field observation using the Heath et al. (2020) maps.

384 (9) For each possible *PGA* value at study site i , as computed in (8) for a given M_w and R_{RUP} pair:

385 (10) Select an IM-MMI model. In this paper, the Atkinson and Kaka (2007), Worden et al. (2012), Caprio et
 386 al. (2015), and Cramer (2020) models were adopted. The inputs to these models vary but generally include
 387 PGA , M_w , and R_{RUP} . The median MMI predicted by each model is plotted in Figure 6 as a function of
 388 PGA considering an M_w 6 event at $R_{RUP} = 100$ km.

Figure 6. Predicted median MMI versus PGA according to four recent models (where applicable, $M_w = 6.0$; $R_{RUP} = 100$ km). Solid lines indicate the range of each model's proposed applicability (typically the range of training data); dashed lines indicate extrapolation beyond these respective bounds.

389 (11) Using the IM-MMI model selected in (10), the R_{RUP} from (7), and the PGA from (9), compute the PDF
 390 of expected MMI at study site i . In this paper, MMI predictions beyond $1 \leq MMI \leq 10$ were truncated
 391 because the definition of MMI gives a lower bound of 1 and because intensities greater than 10 are rarely
 392 assigned in practice (Stover and Coffman, 1993). Following truncation (when applicable) the PDF was
 393 scaled such that the area underneath it was one.

394 (12) For each possible MMI value at study site i , as computed in (11):

395 (13) Compute the probability of field observation as described in Eq. 2. Completing this equation (i.e., by
 396 multiplying the probability of field observation by the probabilities of MMI and PGA , then summing over
 397 all MMI and PGA values) gives the probability of the field observation at site i for a given seismic source
 398 location, geometry, and M_w . Repeating steps 6-13 for all M_w results in a probability of field observation
 399 curve for each source, examples of which are in Figures 5a and 5b.

400 (14) Compute the likelihood of a seismic source (as evidenced by MMI) as a function of M_w by multiplying
 401 the probabilities of all field observations (i.e., multiply the curves in Figures 5a or 5b at each value of
 402 M_w). The result, an example of which is shown in Figure 5c, is a likelihood distribution of M_w conditioned

403 on a single seismic source (i.e., assuming that a fault with given location and geometry, but unknown M_w ,
404 is responsible for producing the field observations).

405 (15) Repeating steps 5-14 for all seismic sources created in (1) results in a likelihood distribution of M_w for
406 each. Collectively, this field of distributions describes the locations and magnitudes of earthquakes that
407 are, and are not, likely to produce the field evidence. To allow for relative likelihoods to be compared
408 visually, we normalize the likelihood of each source by the peak likelihood among all sources, such that
409 the most likely source has a normalized peak value of one. We then map contours of likelihood to identify
410 this location. The M_w distribution at this location (see Figure 5c) is the PDF of the inverted M_w conditioned
411 on the most likely source. Finally, by aggregating PDFs from all potential sources in (1), an overall PDF
412 of M_w , considering all possible sources, is produced. While a single source will always be “most likely,”
413 earthquakes at other locations typically also have potential to produce the evidence. This latter PDF,
414 conditioned on all possible sources, includes that uncertainty.

415 *4.2.2 Liquefaction Analysis Procedure*

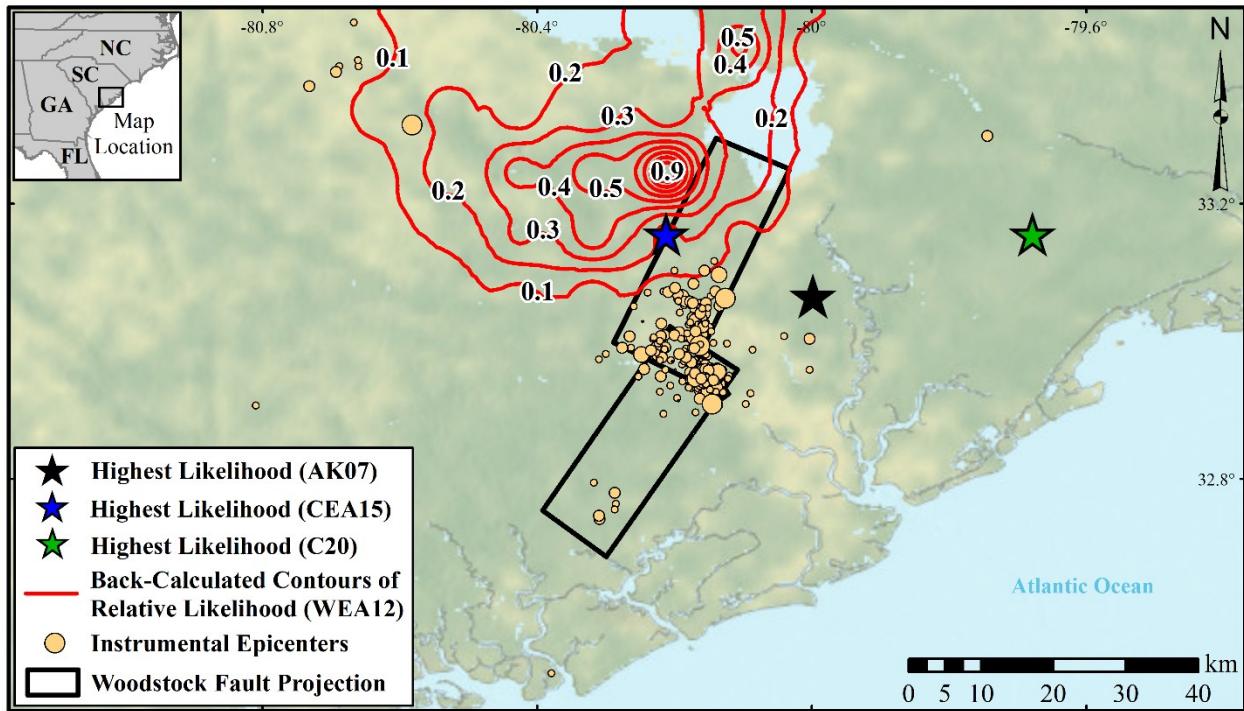
416 The analysis of liquefaction is akin to that of MMI, differing only in steps (10) through (13) of the
417 preceding. Once site-adjusted PGAs are predicted at sites of observation (in this case, sites with liquefaction
418 observations), the factor of safety against liquefaction is computed throughout the soil profile using the
419 Boulanger and Idriss (2014) CPT-based triggering model, which is a function of PGA, M_w , and subsurface
420 geotechnical data. As part of this procedure, the effects of soil aging are separately accounted for with three
421 proposed models, in addition to a control analysis without any such accounting. Two of these models,
422 henceforth termed “A” and “B”, are regional-scale corrections based on the Weems et al. (2014) geology
423 map of the Charleston region, whereas Model “C” uses site-specific measurements. Model A uses the
424 Hayati and Andrus (2009) aging-correction model based on the measured to estimated shear-wave velocity
425 ratio (MEVR). As MEVR increases, the shear stiffness of soil measured at small strain exceeds that inferred
426 from large strain measurements, which may be interpreted as an indicator of cementation. Median MEVR
427 values for each geologic unit were adopted from the regional sampling of Heidari and Andrus (2012). Model
428 B uses the Hayati and Andrus (2009) correction model based on depositional age, which we estimated for
429 each geologic unit from the Weems et al. (2014) map. As a deposit’s age increases, an increasingly larger
430 correction is applied to the computed liquefaction resistance. Lastly, Model “C” again adopts the MEVR-
431 based approach of Hayati and Andrus (2009), but in this case MEVR is directly computed at each study
432 site using data from seismic CPTs (i.e., CPT resistances and shear-wave travel times) per the method of
433 Andrus et al. (2009). This approach produced corrections that tended to exceed those of Models A and B.
434 While corrections from Model C – being based on site-specific subsurface data – should be most efficient,
435 all such corrections are likely very uncertain and the best approach to account for soil aging is actively

436 debated. We thus argue that all three models, which scale upward the computed liquefaction triggering
437 resistance at depth, warrant consideration. However, given that the field observations are of surface
438 manifestations (i.e., liquefaction vents and dikes) rather than observations of liquefaction at discrete depths,
439 surface manifestations must be predicted for proper comparison to field observations. Accordingly, the
440 liquefaction potential index (*LPI*) of Iwasaki et al. (1978) was adopted, given its longstanding use:

441
$$LPI = \int_0^{20m} F(FS_{liq}) \times w(z) dz \quad (5)$$

442 where $F(FS_{liq})$ and $w(z)$ weight the respective influences of FS_{liq} and depth, z , on surface manifestation.
443 In brief, *LPI* assumes that manifestation depends on the FS_{liq} in each soil stratum, the thickness of all
444 liquefied strata, and the proximity of those strata to the surface. Given this definition, *LPI* can range from
445 0 to 100. Next, the probability of liquefaction manifestation was computed at each study site, considering
446 all values of M_w from (5) and all values of PGA from (9), using the fragility function of Geyin and Maurer
447 (2020), which relates the probability of liquefaction manifestation to *LPI*, and which was trained on all
448 globally available CPT-based liquefaction case histories. Lastly, and analogous to (13), the probability of
449 what was observed in the field was computed by Eq. 3 or 4, depending on whether manifestations were or
450 were not observed. Thus, the fact that the liquefaction hazard differs at different study sites is directly
451 measured and accounted for via site-specific CPT measurements and the latest CPT-based liquefaction
452 triggering and manifestation models. Using these data and tools, the probability of surficial liquefaction
453 manifestation is computed for a range of M_w and PGA at each study site. The liquefaction analysis
454 procedure is fully replicated in the electronic supplement.

455 **5. Results and discussion**


456 Using the above data and methodologies, the source of the 1886 Charleston rupture was rigorously
457 investigated. Results are separately presented for MMI and liquefaction evidence. For each, three types of
458 analyses were performed, namely the: (i) “epicenter search;” (ii) “fault search;” and (iii) “Woodstock
459 Fault,” wherein the hypothesized Woodstock Fault is directly considered. The first provides preliminary
460 probability distributions of the source location and magnitude. The second provides final distributions that
461 include additional source-model uncertainties and conveys whether the orientation of the causative fault
462 can be constrained. The third provides results conditioned on the singular Woodstock Fault and should be
463 adopted if all other seismic sources, known and unknown, are dismissed as sources of the 1886 earthquake.

464 *5.1 Analysis of MMI Data: Epicenter Search*

465 Using the “epicenter search,” the inversion methodology was applied with the Atkinson and Kaka (2007),
466 Worden et al. (2012), Caprio et al. (2015), and Cramer (2020) IM-MMI models. For brevity, these models

467 are henceforth titled AK07, WEA12, CEA15, and C20. For these analyses, MMI observations were studied
468 if within 600 km of Charleston. While the sensitivity of this decision will be analyzed further, it was made
469 based on a trait of the Bakun et al. (2002) MMI dataset that we view as problematic, but which prior
470 researchers have not discussed. Namely, Bakun et al. (2002) did not include “negative” observations (i.e.,
471 MMI values of 1 or 2) where ground motions were not perceived. This is notable, given that a *distribution*
472 of MMI values is naturally experienced at any given distance. Problematically, the omission of low MMI
473 values asymmetrically truncates this distribution at large distances (i.e., those where some observers report
474 MMI 1 or 2). The analysis of this dataset at large distances thus potentially has the effect of biasing inverted
475 magnitudes toward larger values, since those magnitudes need not adhere to small MMI values that were
476 experienced, but which were systematically undocumented. The analysis of data only at small distances is
477 equally undesirable, of course, given the inherent benefits of analyzing more data over a wider spectrum of
478 attenuation. Based on these competing interests and given that we begin to observe evidence of MMI
479 truncation at distances exceeding 600 km, this threshold was provisionally selected.

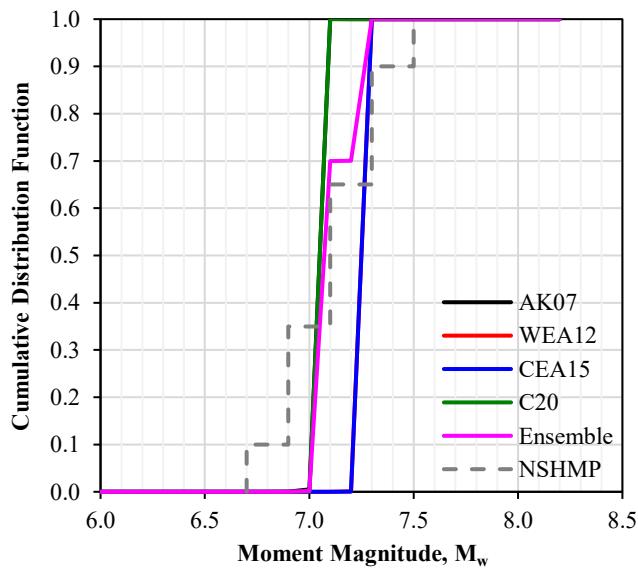
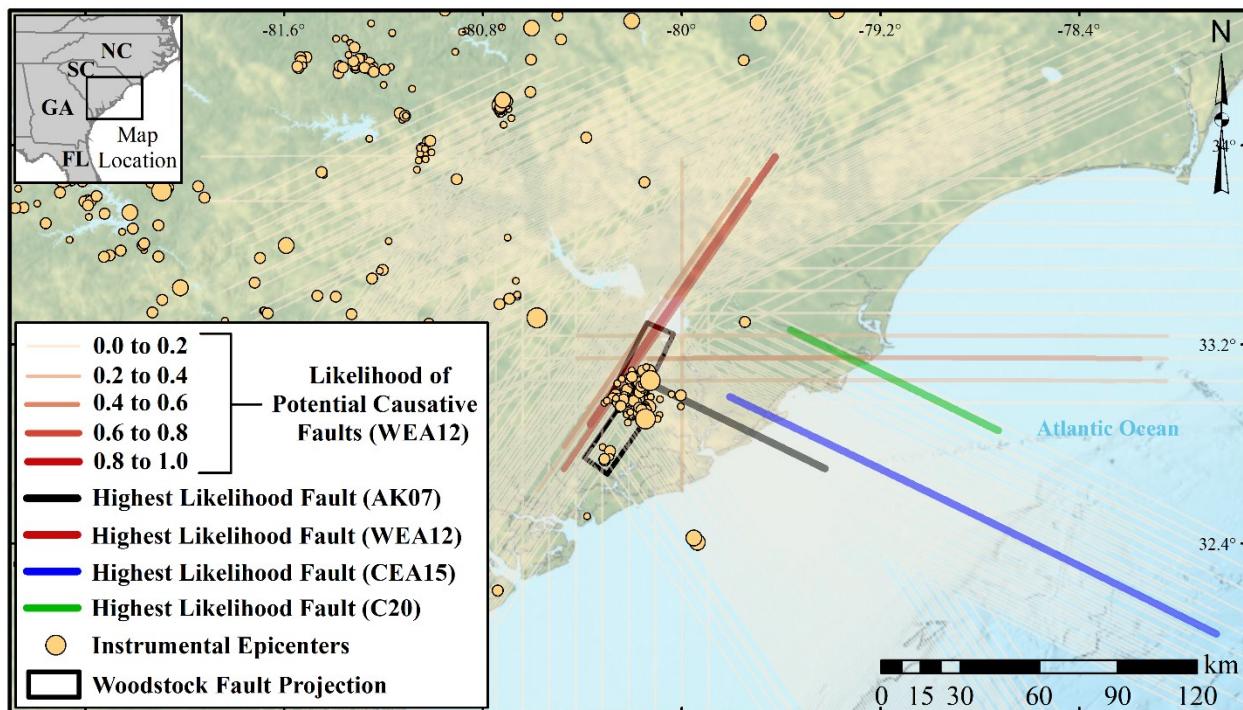

480 The resulting geospatial contours of seismic-source likelihood are shown in Figure 7 for the WEA12
481 model. Also shown is the surface projection of the hypothesized Woodstock fault (Durá-Gómez and
482 Talwani, 2009a,b), as well as instrumental epicenters ($M_w > 1.0$; 1900-present). These contours show the
483 source locations most and least likely to produce the MMI evidence. Using the WEA12 model, a zone of
484 high likelihood is computed just northwest of the Woodstock Fault projection, with the most likely source
485 located 2 km from the mapped projection. By contrast, source locations to the south and east are
486 comparatively very unlikely to produce the MMI observations. For brevity, results using the AK07, CEA15,
487 and C20 models are summarized in Figure 7 via stars, which denote the epicenters deemed most likely by
488 each model. Complete contour maps, analogous to those in Figure 7 for WEA12, are provided in the
489 electronic supplement. While CEA15 produces a result similar to WEA12, with the most likely source
490 inside the Woodstock Fault projection, AK07 and C20 suggest most likely sources ~ 10 km and ~ 35 km
491 east of the projection. Thus, all analyses point to a source north of Charleston. Some IM-MMI models
492 strongly support an earthquake source in the immediate vicinity of the hypothesized Woodstock Fault, while
493 others do not.

Figure 7. Likelihood contours produced using the WEA12 model which indicate source locations that are, and are not, likely of producing the MMI evidence. Stars = the most likely source locations per the AK07, CEA15, and C20 models; AK07 = Atkinson and Kaka (2007), WEA12 = Worden et al. (2012), CEA15 = Caprio et al. (2015), C20 = Cramer (2020); black rectangles = the Woodstock fault projection (Durá-Gómez and Talwani 2009a,b); tan circles = instrumental epicenters ($M_w > 1.0$; 1900-present) (USGS, 2022).

494 Shown in Figure 8 are the cumulative distribution functions (CDFs) of M_w inverted from MMI data, as
 495 computed with each of the four IM-MMI models. These results include the uncertainty of an unknown
 496 source (epicenter) location, the uncertainties of expected shaking intensities conditioned on a given source,
 497 considering also the epistemic uncertainty of GMM selection, and the uncertainties of the IM-MMI models.
 498 For comparison, the CDF assigned to the Charleston source in the NSHMP (Petersen et al., 2014, 2020) is
 499 also shown and ranges from $M_w 6.7$ to $M_w 7.5$ with a median of $M_w 7.1$. AK07 and C20 produce nearly
 500 identical CDFs with a median of $M_w 7.1$. WEA12 and CEA15 produce similarly identical CDFs, but with a
 501 median of $M_w 7.3$. The grouping of these outcomes can be traced to Figure 6. AK07 and C20 tend to predict
 502 larger MMIs for a given PGA. As a result, smaller magnitude ruptures result from the use of AK07 and
 503 C20 within the inversion methodology. Each of the individual CDFs has relatively low uncertainty. This
 504 can be attributed to: (i) the large quantity of MMI observations; (ii) the fact that not all uncertainties are
 505 considered (e.g., those of site conditions or rupture geometry, among others); and (iii) the relatively large
 506 variance of MMI observations over any given site-to-source distance. Regarding the last, extreme outliers
 507 from the mean MMI trend have the effect of yielding very low likelihoods for small and large magnitude

508 events. That is, only a narrow range of magnitudes are likely to simultaneously produce MMI observations
 509 of, say, 3, 5, and 7 at the same site-to-source distance and on similar site profiles. Conversely, a wider range
 510 of magnitudes could simultaneously produce MMI observations of 4, 5, and 6. While geostatistical analyses
 511 could conceivably identify and delete observations that are extreme outliers, the justification would be
 512 largely speculative without an intensive reinvestigation. In other words, we are unaware of any objective
 513 basis for deleting some MMI reports but not others in the absence of a complete reinterpretation of the more
 514 than 1000 original intensity reports. Lastly, to include the epistemic uncertainty of IM-MMI model
 515 selection, each CDF was weighted to produce an ensemble CDF, as shown in Figure 8. This selection of
 516 weights is heuristic, as no quantitative justification could be identified (e.g., based on model residuals in
 517 ENA). The weights and justifications are as follows. C20 (0.4) is the latest ENA-specific model and was
 518 trained using the largest quantity of ENA data. AK07 (0.3) is also ENA-specific, but also found no need
 519 for region-specific models within North America. For that reason, and because differences in methodology
 520 (e.g., data selection, intensity scales, regression techniques) can result in very different models with
 521 apparently similar performance (i.e., on the respective training sets), we hesitate to omit other reputable
 522 models even if nonspecific to ENA. Accordingly, WEA12 (0.15), which was trained only on California
 523 data, and CEA15 (0.15), which was trained on global data including some from ENA, are also weighted in
 524 the ensemble. While CEA15 might otherwise warrant greater weighting, its training set was truncated at a
 525 site-to-source distance of 200 km, which calls into question its suitability in ENA, where ground motions
 526 are commonly felt at greater distances (as in the 1886 event).

Figure 8. CDFs of rupture magnitude, as inverted from MMI observations using four IM-MMI models, wherein seismic sources are modelled as epicenters. AK07 = Atkinson and Kaka (2007), WEA12 = Worden et al. (2012), CEA15 = Caprio et al. (2015), C20 = Cramer (2020), and NSHMP = National Seismic Hazard Model Project (Petersen et al., 2014, 2020).


527 *5.2 Analysis of MMI Data: Fault Search (Seismic Sources Modelled as Faults)*

528 To determine whether MMI observations can constrain the seismic source beyond a general area, the
529 gridded sources were next treated as surface projections of the centroids of faults. For simplicity, the faults
530 were initially assumed to be strike-slip with a dip of 90 degrees. The orientations of the faults were
531 discretized into strike azimuths of 30° increments (i.e., 0°, 30°, 60°...). The lengths of the faults were
532 computed via the magnitude-dependent correlation of Wells and Coppersmith (1994). The depth to the top
533 of rupture was estimated using the correlation of Kakla manos et al. (2011), which produces estimates
534 consistent with the inferred depths of modern ruptures in the region (Chapman et al., 2016). Thus, while
535 not every aspect of rupture geometry was assigned uncertainty, the analyses can nonetheless determine
536 whether some fault alignments (e.g., the hypothesized Woodstock Fault) are more likely than others to
537 produce the observed evidence. With this approach, the inversion methodology was again applied to the
538 Bakun et al. (2002) dataset using each of the four IM-MMI models.

539 Results are shown in Figure 9 for the WEA12 model in the style of a heat map. Faults more likely to
540 produce the MMI observations have thicker lineweight and are darker in color. Faults very unlikely to
541 produce the evidence have thin lineweight and light color, and thus blend with the map's background. Also
542 shown is the surface projection of the hypothesized Woodstock Fault (Durá-Gómez and Talwani 2009a,b)
543 as well as instrumental epicenters. While most modelled faults are relatively unlikely to produce the
544 evidence, the faults deemed most likely align with the hypothesized Woodstock Fault, albeit their
545 magnitudes are greater than most prior estimates. The singular fault most likely to produce the MMI
546 evidence, for example, has a median M_w of 7.60. Faults striking E-W and N-S have lesser, but nontrivial,
547 likelihoods of producing the MMI evidence.

548 For brevity, results using the AK07, CEA15, and C20 models are each summarized in Figure 9 by
549 single lines, which denote the singular faults deemed most likely by each model. Complete heat maps,
550 analogous to those in Figure 9 for WEA12, are provided in the electronic supplement. These three models
551 produce results that are similar to one another and different from WEA12, with the most likely faults
552 oriented perpendicular to the Woodstock Fault and located partly offshore. These most-likely faults range
553 in median magnitude from M_w 7.20 to M_w 7.90. A close inspection of these results (electronic supplement)
554 reveals that each of these models finds faults consistent with the Woodstock Fault to have low relative
555 likelihoods of producing the MMI evidence, as compared to all other hypothetical faults. It is worth noting
556 that the two ENA-specific IM-MMI models (AK07 and C20) point to faults inconsistent with the
557 Woodstock Fault. While these results do not necessarily indicate that the Woodstock Fault was not
558 responsible for the 1886 earthquake, they do indicate that the causative fault cannot currently be constrained
559 by the available MMI evidence. That is, faults striking SE and partly offshore are just as likely to produce
560 this evidence as faults striking NE and onshore. While different assumptions about fault depth, length, and

561 dip invariably change the results, a parametric analysis indicates that these changes are minor, upholding
 562 the overall conclusion that the MMI data cannot constrain the 1886 fault rupture. If anything, the data point
 563 to a fault striking SE and partly offshore. This conclusion might be different if: (i) more MMI observations
 564 were available in the near field; and (ii) the affected area was not on a coastline. Analogous to the inversion
 565 of an epicenter from wave-arrival times, which relies on distributed instruments, this inversion relies on
 566 distributed observers to “record” the amplitudes of ground motions. Thus, in events such as this, where the
 567 near-field is not more densely populated with observations than the far field, and where observations are
 568 geographically asymmetric, it may be more difficult to detect directions and rates of ground-motion
 569 attenuation, and thus more difficult to constrain the causative fault from which motions propagated.

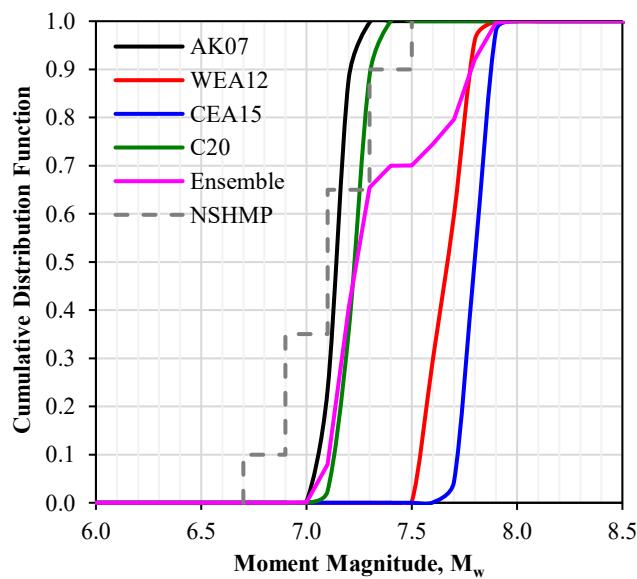


Figure 9. Likelihoods of hypothetical faults with differing orientations and lengths to produce the MMI evidence, as obtained using the WEA12 model. Also shown are the singular faults deemed most likely using the AK07, CEA15, and C20 models; AK07 = Atkinson and Kaka (2007), WEA12 = Worden et al. (2012), CEA15 = Caprio et al. (2015), C20 = Cramer (2020); black rectangles = the Woodstock projection (Durá-Gómez and Talwani 2009a,b); tan circles = instrumental epicenters ($M_w > 1.0$; 1900-present) (USGS, 2022).

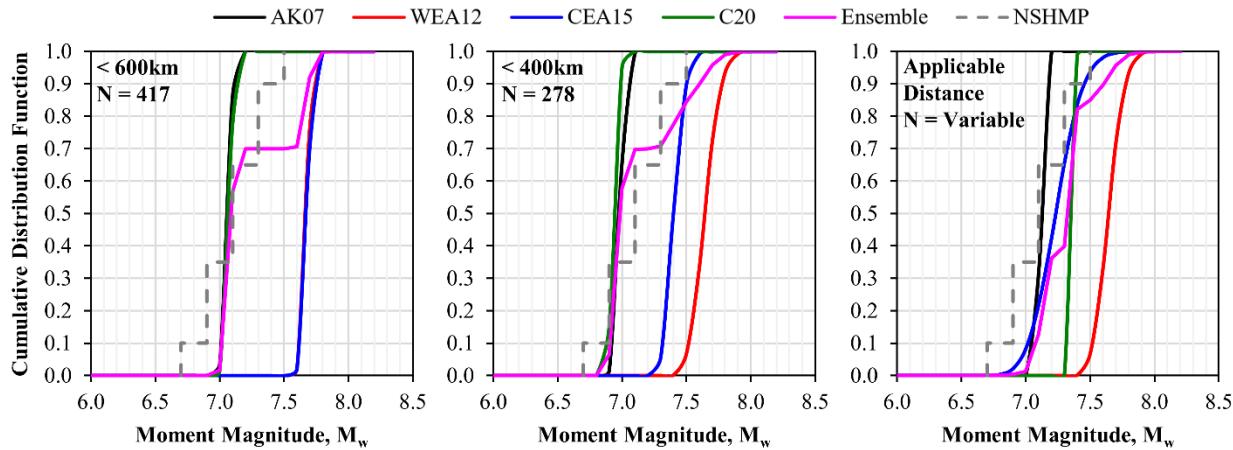
570 Shown in Figure 10 are the CDFs of M_w inverted from MMI data via the “fault search”, as computed
 571 with each of the four IM-MMI models. These results include the uncertainty of an unknown source location,
 572 the uncertainty of unknown fault orientation, the uncertainties of expected shaking intensities conditioned
 573 on a given source and considering the epistemic uncertainty of GMM selection, and the uncertainties of the

574 IM-MMI models. It should be emphasized that these results do not include every source of uncertainty.
 575 Omitted, for example, are the uncertainties of: (i) fault depth and length; (ii) fault dip; and (iii) site V_{S30} . For
 576 each of these inputs only a median prediction was used. For comparison, the CDF assigned to the Charleston
 577 source in the NSHMP (Petersen et al., 2014, 2020) is also shown. Like the “epicenter search” results in
 578 Figure 8, the AK07 and C20 models produce similar CDFs with a lesser median of $\sim M_w 7.2$, while WEA12
 579 and CEA15 produce similar CDFs with a greater median of $\sim M_w 7.7$. It is readily apparent that the epistemic
 580 uncertainty of IM-MMI model selection is considerable. To account for this uncertainty, each CDF was
 581 weighted per the prior scheme to produce an ensemble CDF, as shown in Figure 10, which has a median of
 582 $\sim M_w 7.25$ and 95% CI of $M_w 7.05$ to $M_w 7.85$. In this regard, efforts to better quantify the suitability of various
 583 IM-MMI models to ENA, and in turn to refine the weighting scheme used herein, could have significant
 584 influence on the overall conclusions of this study (and presumably also on studies of other seismic sources).
 585 Despite this ambiguity, the ensemble CDF in Figure 10 suggests that ruptures larger than $M_w 7.5$ – the
 586 largest value considered in the NSHMP – could produce the observed evidence.

587 Of course, it should also be emphasized that the numerous hypothetical faults considered in our
 588 methodology and aggregated to form the results in Figure 10 may not exist. That is, some of these gridded
 589 faults are more likely to produce the 1886 MMI data than the hypothesized Woodstock Fault, but these
 590 various faults are not necessarily present. Conversely, there is evidence (e.g., seismological data,
 591 geophysical surveys) supporting the Woodstock Fault’s existence (Durá-Gómez and Talwani 2009a,b;
 592 Chapman et al., 2016). Accordingly, the preceding analyses are next repeated, conditioned solely on the
 593 Woodstock Fault, thereby removing all source uncertainties aside from magnitude.

Figure 10. CDFs of rupture magnitude, as inverted from MMI observations using four IM-MMI models, wherein seismic sources are modelled as faults. AK07 = Atkinson and Kaka (2007), WEA12 = Worden et

al. (2012), CEA15 = Caprio et al. (2015), C20 = Cramer (2020), and NSHMP = National Seismic Hazard Model Project (Petersen et al., 2014, 2020).


594 *5.3 Analysis of MMI Data: Woodstock Fault*

595 While the parameters of the Woodstock Fault are uncertain, we adopt the source model of Durá-Gómez and
596 Talwani (2009a,b) exactly as proposed therein, the surface projection of which appears in Figures 1, 7, and
597 9. While Chapman et al. (2016) do not identify the Woodstock Fault by name, they infer and describe from
598 more recent seismological records a source that is similar: “We interpret ...that the modern seismicity is
599 the lingering aftershock sequence of the 1886 shock and that the mainshock occurred on a south-striking,
600 west-dipping fault plane ...” To evaluate the prior site-to-source distance threshold of 600 km (i.e., that
601 which was used to exclude MMI observations), these analyses were also repeated using MMI data at
602 different site-to-source distances. Shown in Figure 11, for example, are the CDFs of M_w conditioned on the
603 Woodstock Fault and inverted from MMI data in two distance bins: (a) < 600 km; and (b) < 400 km. Several
604 observations are made from Figure 11 as follows.

605 First, it is observed that the ensemble CDF in Figure 11a is only marginally less uncertain than the
606 ensemble CDF in Figure 10, meaning that conditioning the analysis on the Woodstock Fault does not
607 significantly alter the results. In other words, the uncertainties of fault location and geometry are relatively
608 minor, given the data available for analysis. As previously discussed in Figure 9, these data are unable to
609 constrain the causative fault. That is, faults with diverse locations and orientations have similar likelihoods
610 of producing the MMI evidence, which may be due to a paucity of near-field observations. However,
611 because similar rupture magnitudes are inferred for these various faults irrespective of their positions, the
612 CDFs conditioned on the Woodstock Fault and the CDFs conditioned on an unknown fault are similar.

613 Second, a site-to-source distance bias is observed from Figures 11a and 11b. While the CDFs become
614 more vertical as more observations are included (reflecting a decrease in uncertainty) the CDFs also tend
615 to increase in magnitude. Observations at distances up to 600 km suggest larger rupture magnitudes than
616 those at distances up to 400 km. The median magnitude, for example, increases by $\sim 0.25 M_w$ according to
617 CEA15, by $\sim 0.1 M_w$ according AK07 and C20, and by $\sim 0.01 M_w$ according to WEA12. It could be shown
618 that the prior “epicenter search” and “fault search” results have a similar degree of sensitivity. This distance
619 bias could be present in either: (i) one or more of the component models utilized (e.g., the GMMs, site-
620 response model, or IM-MMI models); or (ii) in the MMI data itself. With respect to the adopted models, all
621 were shown to be unbiased during their respective trainings and cannot be further tested in the absence of
622 additional data. It is worth noting again, however, that the CEA15 model, which exhibits the greatest site-
623 to-source distance sensitivity in Figure 11, is herein applied to data much more distant than it was trained
624 on. It was for this reason that CEA15 was given low weighting despite having a large global training set.
625 With respect to the MMI data, we reiterate that analyzing more data over a wider spectrum of attenuation

626 is beneficial but remain adamant that the Bakun et al. (2002) dataset is apt to introduce bias at large
 627 distances, given that small MMI values were systematically undocumented. To further probe the issue of
 628 IM-MMI model applicability, the analyses were performed using only the data to which each model is
 629 applicable (as stated by the original authors, or otherwise interpreted by the present authors). Specifically,
 630 the WEA12, AK07, CEA15, and C20 models were respectively applied to observations within site-to-
 631 source distances of 400 km, 800 km, 200 km, and 1500 km. The results are shown in Figure 11c. The most
 632 salient changes are: (i) the CEA15 CDF is more uncertain (due to fewer field observations) and has a
 633 reduced median of $\sim M_w 7.2$; and (ii) the C20 CDF is less uncertain (due to more field observations) and has
 634 an increased median of $\sim M_w 7.35$. In summary, we are unsure why the results show evidence of site-to-
 635 source distance bias at distances less than 600 km. However, we argue that the bias observed at larger
 636 distances (e.g., the C20 result in Figure 11c) is at least partly due to the aforementioned bias of the Bakun
 637 et al. (2002) dataset. As such, we prefer not to glean new conclusions from Figure 11c or champion its
 638 results over those in Figure 11a. Our preferred CDF conditioned on the Woodstock Fault thus has a median
 639 of $M_w 7.10$ and 95% CI of $M_w 7.0$ to $M_w 7.75$. Given an unknown source, our preferred CDF (Figure 10) has
 640 median of $\sim M_w 7.25$ and 95% CI of $M_w 7.05$ to $M_w 7.85$. For either result, the epistemic uncertainty of IM-
 641 MMI model selection has significant influence.

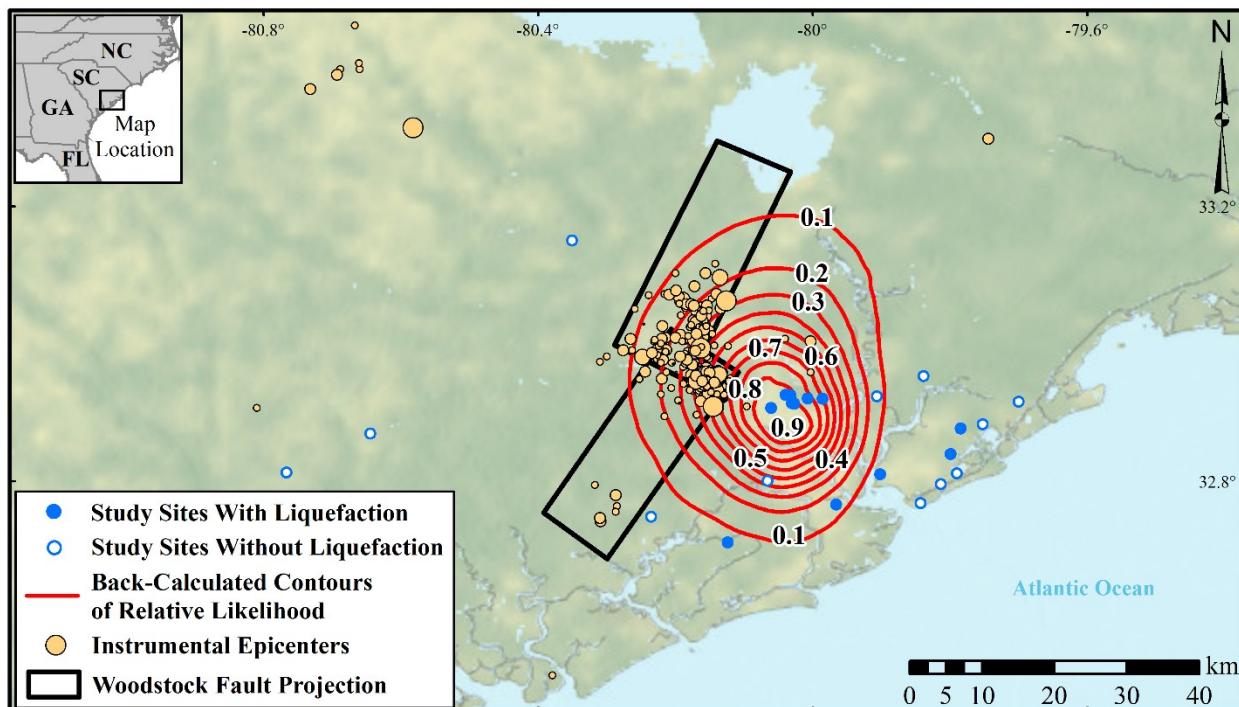


Figure 11. CDFs of rupture magnitude, as inverted from MMI observations using four IM-MMI models and assuming the Woodstock Fault (Durá-Gómez and Talwani, 2009a,b) to be the earthquake source. AK07 = Atkinson and Kaka (2007), WEA12 = Worden et al. (2012), CEA15 = Caprio et al. (2015), C20 = Cramer (2020); NSHMP = National Seismic Hazard Model Project (Petersen et al., 2014, 2020).

642 5.4 Analysis of Liquefaction Data: Epicenter Search

643 The inversion methodology was next applied to the 24 study sites summarized in Table 2 where the 1886
 644 liquefaction response was observed, or has since been investigated, and where CPT testing has been
 645 performed. Analogous to the analysis of MMI data, the seismic source was first treated as an epicenter with

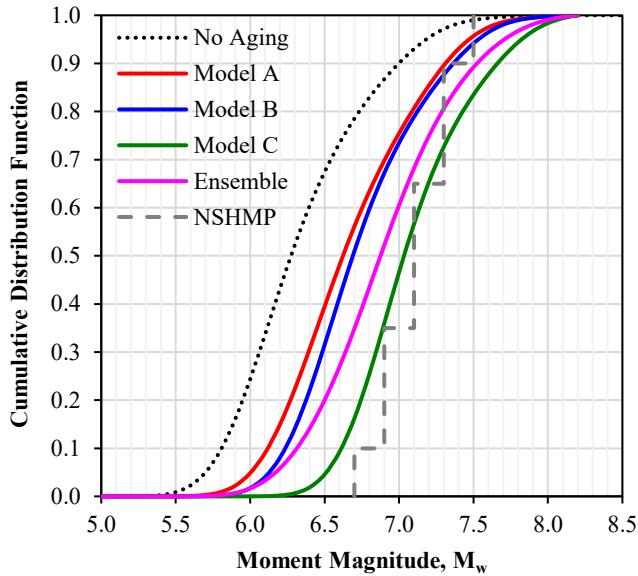

646 unknown location. The resulting contours of seismic-source likelihood, which depict the epicenters most
 647 and least likely to produce the observed liquefaction response, are mapped in Figure 12, as are the 24 study
 648 sites. Also shown are instrumental epicenters and the hypothesized Woodstock Fault (Durá-Gómez and
 649 Talwani, 2009a,b). These initial results include no correction to account for the effects of soil aging on
 650 liquefaction. As shown in Figure 12, the analysis identified a source area east of the Woodstock fault. While
 651 the single most likely epicenter is 9 km from the proposed fault projection, epicenters within the projection
 652 have up to 70% relative likelihood. Notably, these geolocation results are largely insensitive to the treatment
 653 of soil aging. Because aging correction models tend to adjust the computed liquefaction resistances by
 654 similar amounts, the inverted magnitude tends to be significantly affected, whereas the inverted, most likely
 655 source location does not. For this reason, geolocation results are not shown for each aging-correction model.
 656 All give similar results to those in Figure 12, indicating that an epicenter more than ~20 km in any direction
 657 from the northern Charleston Peninsula (e.g., the Charleston Airport) is relatively unlikely to produce the
 658 observed evidence.

Figure 12. Likelihood contours indicating source locations that are, and are not, likely of producing the observed liquefaction response. Black rectangles = the Woodstock fault projection (Durá-Gómez and Talwani 2009a,b); tan circles = instrumental epicenters ($M_w > 1.0$; 1900–present) (USGS, 2022).

659 Shown in Figure 13 are the CDFs of M_w inverted from liquefaction evidence, as computed using: (i) no
 660 aging correction; and (ii) each of the three correction methods discussed in the *Liquefaction Analysis*

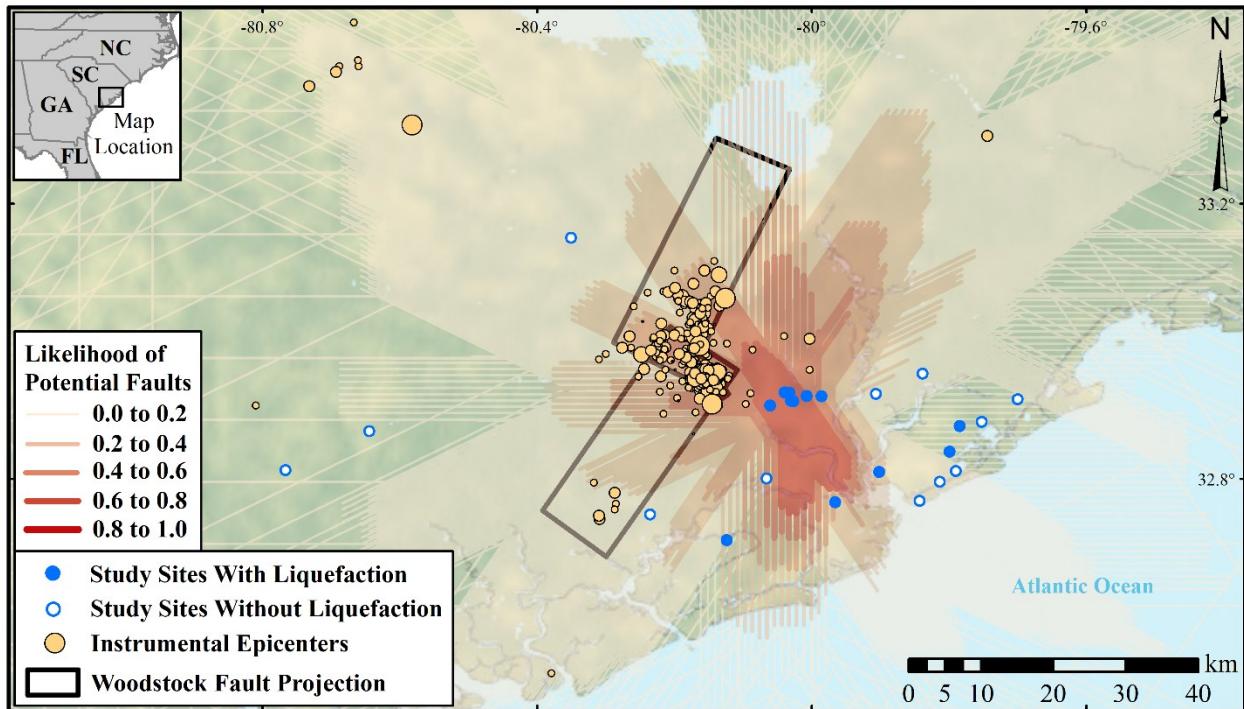
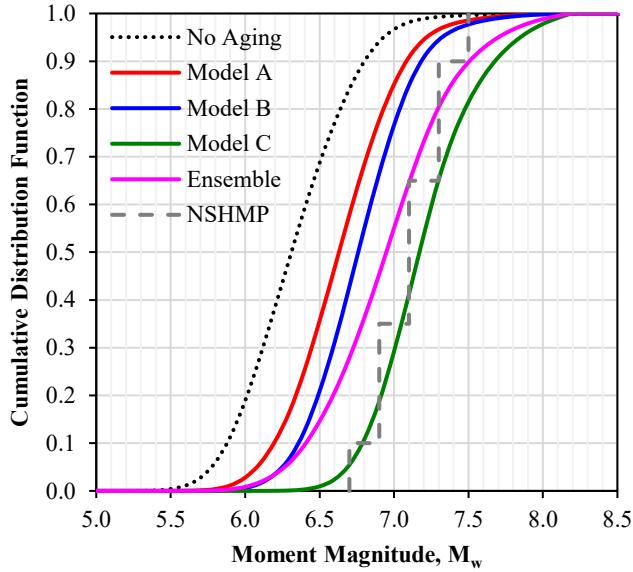

661 *Procedure* (i.e., Models “A, B, and C”). It is apparent from Figure 13 that the uncertainties of *whether* and
662 *how* to correct for the effects of soil aging have significant influence, with the inverted median magnitudes
663 ranging from $\sim M_w 6.3$ (no aging correction) to $\sim M_w 7.0$ (Model C). Irrespective of soil aging, it is also
664 apparent that a magnitude inverted from the available liquefaction evidence is: (i) more uncertain than a
665 magnitude inverted from the available MMI evidence; and (ii) more uncertain than past studies have
666 reported. The former is attributable to there being far more MMI data than liquefaction data. The latter, as
667 previously discussed, is attributable to published uncertainty bounds (e.g., “ $M_w 6.8$ - $M_w 7.0$ ”) being ranges
668 of the *median* magnitude considering one source of uncertainty, which is distinctly different from a CDF
669 of magnitude. Consequently, these results suggest more uncertainty than is adopted in the NSHMP.
670 Magnitudes below $M_w 6.7$ and above $M_w 7.5$, for example (i.e., the limits of the NSHMP weighting), have
671 non-trivial probabilities of producing the field evidence. It should also be noted that these results do not
672 include uncertainty within the aging-correction models (which are certainly uncertain). That is, the models
673 provide a median correction factor. To include the epistemic uncertainty of model selection, each CDF was
674 weighted to produce an ensemble. As with the MMI results, our selection of weights is based more on
675 judgement than on quantitative evidence. While we agree with the developers of aging-correction models
676 that corrections are likely warranted, these corrections are actively debated and likely have large
677 uncertainty. The weights selected and their justifications are as follows. Model C (0.5) is the only site-
678 specific method. It uses detailed subsurface geotechnical measurements from each study site to compute
679 site-specific corrections and thus arguably warrants the greatest weighting. In contrast, Models A (0.25)
680 and B (0.25) both rely on a sampling of the median characteristics of the geologic unit in which each study
681 site resides (e.g., the age of the unit). These models, which do not use site-specific information, are
682 therefore better suited for regional scale analyses (i.e., where subsurface data is unavailable). Nonetheless,
683 we argue these models warrant weighting given the overall uncertainty and debate surrounding aging
684 corrections. The ensemble CDF has a median of $\sim M_w 6.90$ and 95% CI of $M_w 6.05$ to $M_w 7.85$.

Figure 13. CDFs of rupture magnitude, as inverted from liquefaction observations using three age correction models, wherein seismic sources are modelled as epicenters. NSHMP = National Seismic Hazard Model Project (Petersen et al., 2014, 2020).


685 *5.5 Analysis of Liquefaction Data: Fault Search (Seismic Sources Modelled as Faults)*

686 To determine whether the liquefaction data can constrain the seismic source beyond a point location, the
 687 epicenters were next converted to faults. The discretization and treatment of hypothetical fault sources was
 688 identical to the MMI analyses. The results without correction for soil aging are shown in Figure 14. It can
 689 be seen that the data are incapable of constraining the seismic source to the Woodstock Fault, or to any
 690 other hypothetical alignment. The faults deemed most likely to produce the field evidence strike SE (like
 691 the predominant result from MMI analysis), but faults with nearly any orientation also have high relative
 692 likelihoods. These faults all strike through the general area previously identified via the epicenter search
 693 (i.e., through the northern Charleston Peninsula). While faults striking NE do have some likelihood of
 694 producing the evidence, these faults deviate from the proposed position of the Woodstock Fault. Results
 695 using each of the aging correction models are very similar to those in Figure 14 and are therefore not
 696 presented. The use of these models increases the inverted magnitudes (and thus increases the fault lengths
 697 in Figure 14), but otherwise has little effect on the inferred fault location or orientation. As with the MMI
 698 analyses, this should not be interpreted to mean that the Woodstock Fault or any similar alignment was not
 699 the source of the 1886 earthquake. Rather, this should be interpreted to mean that many aspects of the
 700 causative fault cannot be constrained with the available macroseismic evidence. This evidence is only
 701 marginally supportive of the Woodstock Fault's existence, which is not to say it doesn't exist. This
 702 conclusion might be different if more liquefaction study sites were available to the analysis, or if the
 703 component prediction models were less uncertain.

Figure 14. Likelihoods of hypothetical faults with differing orientations and lengths to produce the liquefaction evidence (no aging correction). Black rectangles = Woodstock fault projection (Durá-Gómez and Talwani 2009a,b); tan circles = instrumental epicenters ($M_w > 1.0$; 1900-present) (USGS, 2022).

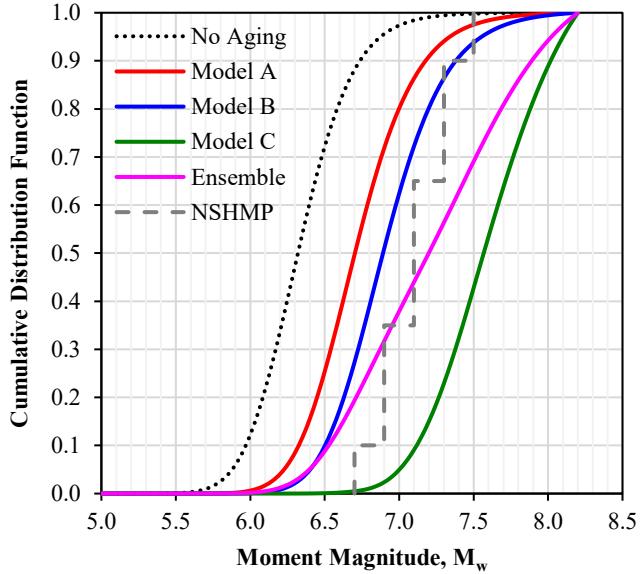

704 Shown in Figure 15 are the CDFs of M_w inverted from liquefaction data via the “fault search.” The
 705 large uncertainty of a magnitude inferred from the liquefaction data is again apparent, as is the influence of
 706 soil aging and its correction. It is again emphasized that these results do not include every source of
 707 uncertainty. Omitted, for example, are the uncertainties of: (i) fault depth and length; (ii) fault dip; (iii) site
 708 V_{S30} ; and (iv) the aging-correction factor. For each of these inputs only a median prediction was used. To
 709 account for the uncertainty of selecting aging-correction models, each CDF was weighted per the prior
 710 scheme to produce an ensemble CDF, as shown in Figure 15. This ensemble has a median of $M_w 6.95$ and
 711 95% CI of $M_w 6.15$ to $M_w 7.85$, suggesting a similar median magnitude as the NSHMP (Petersen et al., 2014,
 712 2020) but much greater uncertainty.

Figure 15. CDFs of rupture magnitude, as inverted from liquefaction observations using three age correction models, wherein seismic sources are modelled as faults. NSHMP = National Seismic Hazard Model Project (Petersen et al., 2014, 2020).

713 *5.6 Analysis of Liquefaction Data: Woodstock Fault*

714 Finally, the preceding analyses were repeated, but conditioned solely on the Woodstock Fault as
 715 hypothesized by Durá-Gómez and Talwani (2009a,b). The computed CDFs of M_w , including the weighted
 716 ensemble, are shown in Figure 16. Our preferred CDF (i.e., the ensemble) has a median of M_w 7.20 and 95%
 717 CI of M_w 6.30 to M_w 8.10. Relative to the CDF conditioned on an unknown source in Figure 15, conditioning
 718 on the Woodstock Fault increases the inverted magnitude by $\sim 0.2M_w$ and increases the M_w uncertainty.
 719 This counterintuitive increase in uncertainty is attributable to the epistemic uncertainty of selecting aging-
 720 correction models, which is observed to increase with increasing rupture magnitude. Because conditioning
 721 on the Woodstock Fault increases the inverted rupture magnitude, differences between the aging-correction
 722 models become more apparent. Nonetheless, and similar to the analysis of MMI data, the uncertainties of
 723 fault location and geometry appear relatively minor compared to other uncertainties, given the data
 724 available for analysis. As shown in Figure 14, faults with diverse orientations were found to have similar
 725 likelihoods of producing the liquefaction evidence. In other words, the data are sufficient to constrain the
 726 source to a general area but are insufficient to constrain the source to a specific fault alignment. However,
 727 because similar magnitudes are inferred for these faults irrespective of their positions, the CDFs conditioned
 728 on the Woodstock Fault and the CDFs conditioned on an unknown source are similar.

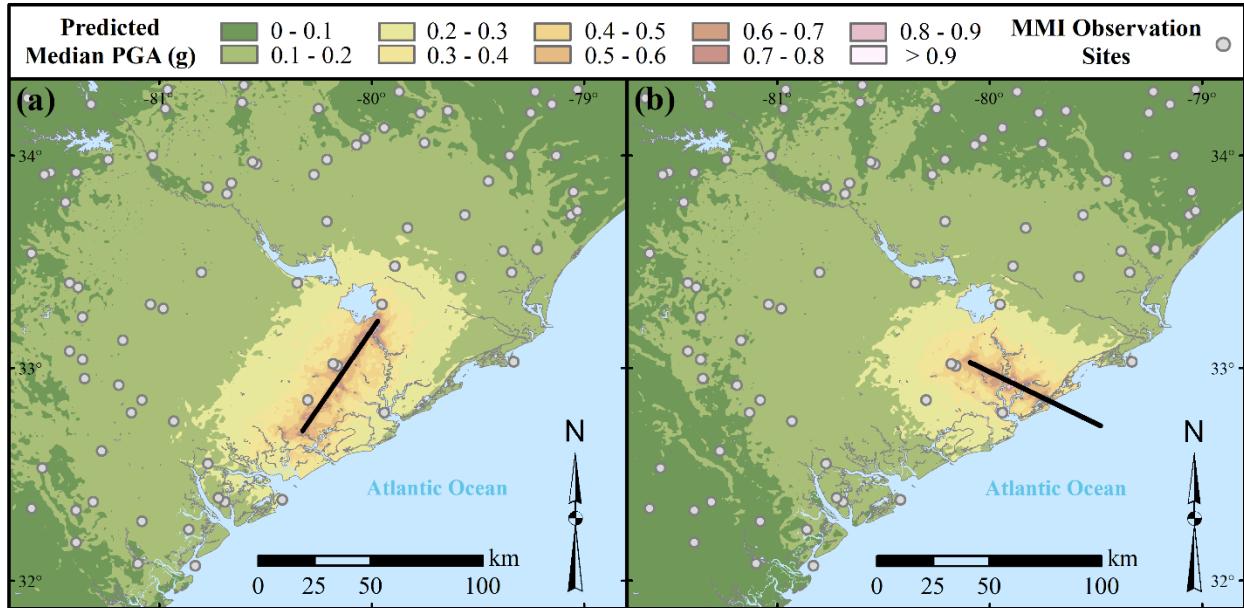


Figure 16. CDFs of rupture magnitude, as inverted from liquefaction observations using three age correction models and assuming the Woodstock Fault (Durá-Gómez and Talwani, 2009a,b) to be the earthquake source. NSHMP = National Seismic Hazard Model Project (Petersen et al., 2014, 2020).

729 *5.7 Forward Predictions of an 1886-Like Rupture*

730 Based on the preceding, which indicated that the intensity and liquefaction data alone cannot well constrain
 731 the source of the 1886 event beyond a general region, we forward predict the median PGAs expected in an
 732 “1886-like” rupture. As part of this effort, two fault locations and three magnitudes are considered. The
 733 purpose of these predictions is to: (i) further illustrate why constraint of the source model is difficult, given
 734 data limitations; and (ii) provide predictions for this scenario event using the latest predictive models, which
 735 may be useful for regional-scale consequence modelling or science communication. Shown in Figure 17,
 736 for example, are predictions considering an M_w 7.1 rupture and two strike-slip fault scenarios: (i) fault 1,
 737 which is similar to the Woodstock fault; and (ii) fault 2, which is further east, perpendicular to fault 1, and
 738 similar to hypothetical faults that were shown to have high likelihoods of producing the MMI and
 739 liquefaction evidence (see Figures 9 and 14). Among previously hypothesized sources of the 1886
 740 earthquake, fault 2 is most similar to the Deer Park lineament proposed by Marple and Hurd (2020),
 741 although this fault is not as well supported by modern seismicity and is very different from most
 742 hypothesized sources. Although the predicted PGAs do differ in the nearfield (e.g., within 50 km of the
 743 source), the overall expectation at regional scale is obviously similar for two perpendicular faults.
 744 Importantly, and as previously discussed, the Bakun et al. (2002) dataset does not contain an abundance of
 745 1886 MMI observations in the vicinity of Charleston, or in the near field more generally. Only 16

746 observations, for example, are within 100 km of Charleston. As a result, the predicted PGAs, and by
 747 corollary MMIs, are relatively similar at most observation sites.

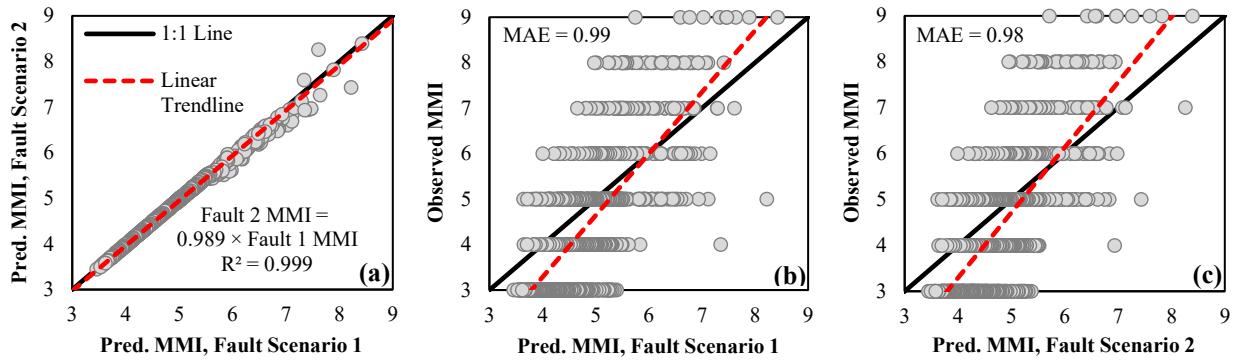


Figure 17. Predictions of median PGA in the Charleston region, as computed using 17 NGA-East GMMS (Goulet et al., 2018) and the Harmon et al. (2019) site-response model, and considering an $M_w7.1$ rupture on: (a) fault scenario 1; and (b) fault scenario 2, as described in the text.

748 Plotted in Figure 18a, considering these two fault scenarios, are the predicted MMIs at each of the
 749 intensity report locations in the Bakun et al. (2002) dataset. For this example, the Atkinson and Kaka (2007)
 750 IM-MMI model was adopted. It can be seen that large differences between the predicted MMIs (say, > 0.5
 751 MMI) are rare. In turn, the difficulty of source-model constraint is apparent, given that the two scenarios
 752 lead to perceptible differences at relatively few observation sites. This ambiguity is analogous to that which
 753 arises when inverting faults from seismic displacements, wherein the classic “double couple” model
 754 requires near-field or supplemental information to solve. Plotted in Figure 18b are the MMI values predicted
 755 for fault scenario 1 versus the MMI values observed in 1886; an analogous plot is shown in Figure 18c for
 756 fault scenario 2. While scenario 2 fits the data marginally better, as measured by mean absolute error, the
 757 fits are essentially the same, as expected. Building off prior results, it cannot be concluded that scenario 1,
 758 which approximates the Woodstock Fault, fits the MMI data better than alternative scenarios.

759 While a version of Figure 18a at sites of liquefaction evidence would show larger differences between
 760 expected MMIs (given that all such sites are in the near field), the large finite-sample uncertainty of this
 761 smaller dataset leads to a similar outcome, with a variety of faults having relatively high likelihoods of
 762 producing the evidence (see Figure 14). It follows that additional near-field evidence (whether MMI or
 763 liquefaction) could be especially influential to future studies of the 1886 earthquake. Following the same

approach, predictions were made for M_w 6.6 and M_w 7.6 ruptures. These results are shown in the electronic supplement, where each of the forward predictions is also provided as a GIS map package.

Figure 18. MMI values predicted by the Atkinson and Kaka (2007) model at sites of MMI observations: (a) fault scenario 1 predictions vs. fault scenario 2 predictions; (b) predictions vs. observations for fault scenario 1; (c) predictions vs. observations for fault scenario 2. MAE = mean absolute error.

5.8 Limitations and Uncertainties

The findings presented herein are inherently tied to the field evidence currently available and adopted for analysis. Reinterpretation or augmentation of these observations, which we assume to be independent events, would potentially change these findings, as would the adoption of new component models (e.g., to predict ground motions, site response, MMI, liquefaction triggering, or liquefaction manifestation). Undoubtedly, the modeling of these phenomena will continually advance, warranting future analyses of the 1886 Charleston earthquake. ENA ground-motion modeling has advanced, for example, yet GMMs remain especially uncertain and untested at large magnitudes and will continue to evolve. And, as a supplement to empirical GMMs, physics-based ground motion simulations could provide new insights into the 1886 rupture via more explicit modeling of influential site, path, and source effects (e.g., stress drop), as has been shown for other historical earthquakes (e.g., Lozos, 2016). While empirical GMMs are ubiquitous in earthquake science/engineering and implicitly account for many salient effects, a more explicit accounting could help to reduce uncertainty. Moreover, the goal of this study was to assess the degree to which macroseismic evidence can constrain the 1886 source model (i.e., rupture magnitude and position), rather than to perform a broad investigation of all geophysical and modern seismological evidence, which would fall under the purview of other investigators with different expertise. As one example, our inversions of rupture magnitude conditioned on an unknown source allowed for randomly oriented fault sources. However, with support of the interpreted regional stress regime, it may be reasonable to limit the range of orientations considered, or alternatively, to subjectively assign weights to each orientation, thereby

785 increasing or decreasing the computed likelihoods, all else being equal. These possibilities could be
786 investigated in the future. In addition, it should be noted that many, but not all, sources of uncertainty were
787 accounted for in the analyses. Neglected, for example, were the uncertainties of site characterization (i.e.,
788 V_{S30}) and site observations (i.e., MMI and liquefaction responses). The inclusion of these and other
789 uncertainties could potentially broaden the M_w CDFs computed herein. It must similarly be emphasized
790 that a thorough reinterpretation of the more than 1000 original intensity reports, to include the assignment
791 of site-specific uncertainties, bias corrections, and/or weighting schemes, could potentially change the
792 results we present. And, as previously emphasized, our ensemble M_w CDFs utilize judgement-based
793 weighting schemes. While justifications were provided for these weights, readers might argue for other
794 weights, and thus draw other conclusions from our suites of M_w CDFs. Ultimately, future analyses will
795 confirm or revise the conclusions reached in this study and summarized below.

796 **6. Conclusions**

797 Prior studies of MMI and liquefaction data resulting from the 1886 Charleston, SC, earthquake have several
798 limitations. Namely, these studies tend to: (i) either be deterministic or account for uncertainties in an
799 informal manner (e.g., it is often unclear what published uncertainty bounds represent and which
800 uncertainties are, and are not, included); (ii) assume that the 1886 event was caused by a particular fault
801 (i.e., the Woodstock Fault) without investigating the uncertainty of this assumption or the ability of the field
802 data to constrain source traits beyond magnitude (i.e., fault location, geometry); and (iii) rely on models for
803 predicting various phenomena (e.g., ground motions, site response, liquefaction response, MMI) that have
804 since been superseded or augmented (e.g., by the NGA East project's 17 GMMS). Accordingly, this study
805 presented probabilistic seismic-source inversions of the 1886 earthquake using the latest predictive models
806 and a novel inversion methodology. With this approach, the likelihood of a rupture with some magnitude,
807 location, and geometry to produce a set of field observations is computed. Repeating for enumerable
808 hypothetical sources results in a regional scale constraint of the likely source traits, to the extent that
809 observational data permits. With this approach, magnitude probability distributions conditioned on both an
810 unknown source and on the hypothesized Woodstock Fault (Durá-Gómez and Talwani, 2009a,b) were
811 computed and compared to that used in the U.S. NSHMP (Petersen et al., 2014, 2020). The most salient
812 findings of this study, subject to the limitations and uncertainties summarized in section 5.8, are:

- 813 • Neither the location nor orientation of the 1886 fault rupture could be confidently constrained by the
814 macroseismic evidence and models utilized herein, given the large uncertainties inherent to each.
815 Hypothetical faults in a range of locations and with various alignments were deemed to have high
816 relative likelihoods of producing this evidence. Considering both types of evidence and all analyses,
817 faults striking SE and partly offshore were predominantly identified as having the greatest likelihood.

818 Yet these faults ranged in location and other faults, with very different strikes, were also often found
819 to be relatively likely.

- 820 • Collectively, the evidence does not provide strong support for the hypothesized Woodstock Fault.
821 One analysis (that of MMI data using the WEA12 IM-MMI model) found a NE-striking “Woodstock
822 like” fault to be the most likely source of the field evidence. Yet most analyses – in so far as
823 supporting the Woodstock Fault – point to the likelihood of a seismic source somewhere north of
824 Charleston but deem the Woodstock Fault to be relatively unlikely. This is not to say the fault does
825 not exist or could not have been the source of the 1886 rupture (geophysical investigations and
826 modern seismological data clearly suggest that active faults exist in the area), but rather, that many
827 aspects of the 1886 source model cannot be well constrained with the available macroseismic
828 evidence and models. This result might change if: (i) more MMI and liquefaction evidence were
829 available – particularly in the near field; (ii) the MMI evidence was reinterpreted to remove or correct
830 outliers, and to assign observation-specific uncertainties; or (iii) if the various required component
831 models were less uncertain.
- 832 • In the absence of these developments, certain aspects of the 1886 fault rupture can only be constrained
833 with other seismologic, geologic, and/or coseismic data and interpretation.
- 834 • When conditioned on the Woodstock Fault proposed by Durá-Gómez and Talwani (2009a,b), and
835 generally supported by others, our preferred CDF of M_w inverted from MMI data has a median of
836 M_w 7.10 and 95% CI of M_w 7.0 to M_w 7.75. Of all uncertainties considered, the epistemic uncertainty
837 of IM-MMI model selection was larger than any other, since different models may give significantly
838 different MMI predictions for a given IM. In this regard, efforts to better quantify the suitability of
839 IM-MMI models to the study region, and in turn, to refine the weighting scheme used herein, could
840 have a significant influence on our overall conclusions.
- 841 • The results from MMI analysis show some site-to-source distance bias, with magnitudes inverted
842 from more distal MMI observations tending to be larger. Possible reasons for this bias were discussed
843 but could be further investigated in the future.
- 844 • When conditioned on the Woodstock Fault, our preferred CDF of M_w inverted from liquefaction data
845 has a median of M_w 7.20 and 95% CI of M_w 6.30 to M_w 8.10. The greater M_w uncertainty, relative to
846 that from MMI analysis, is attributable to there being fewer liquefaction study sites, the compilation
847 of which requires both an observation of liquefaction response *and* subsurface geotechnical testing.
848 In addition, the uncertainties of whether and how to correct for soil-aging effects considerably
849 augmented the uncertainty. As such, efforts to quantify the suitability and uncertainties of aging-
850 correction models could have significant influence on our overall conclusions.

- 851 • When conditioned on an unknown seismic source, the CDFs of M_w inverted from MMI and
852 liquefaction data did not differ greatly from the CDFs conditioned on the Woodstock Fault. Our
853 interpretation is that while faults with a range of locations and alignments were found similarly likely
854 to produce the field evidence, these faults were inferred to have mostly similar magnitude
855 distributions. Thus, the results of this study pertaining to the magnitude of the 1886 rupture would
856 not necessarily change if the rupture's exact position was known. This should not be interpreted to
857 mean that the uncertainties of source location and geometry are inconsequential to inverse-analyses
858 of macroseismic data. As demonstrated via simulated inversions of modern earthquakes (Rasanen
859 and Maurer, 2021, 2022), these uncertainties are often considerable. This is especially the case, for
860 example, when the effects of a distant, large M_w rupture cannot be distinguished from the effects of
861 a nearby, small M_w rupture. In such cases, constraint of the source location can dramatically reduce
862 the overall uncertainty of the inverted magnitude.
- 863 • Collectively, the results largely support the M_w distribution adopted by the NSHMP, which ranges
864 from M_w 6.7 to M_w 7.5 with a median of M_w 7.1. While analyses indicate that $M_w < 6.7$ ruptures have
865 potential to produce the observed liquefaction response (particularly when the uncertainty of selecting
866 an aging-correction model is considered), the MMI evidence suggests a near-zero likelihood of such
867 magnitudes. Conversely, both types of evidence suggest that $M_w > 7.5$ events have potential to
868 produce the field evidence. While this conclusion hinges on which component models are adopted to
869 predict soil-aging effects and MMI, we fail to find conclusive evidence for outright rejecting some
870 models in favor of others. In the absence of such evidence, the possibility of $M_w > 7.5$ ruptures would
871 merit consideration.
- 872 • Ultimately, the flexible inversion methodology employed herein is not specific to ENA, or to certain
873 types of macroseismic evidence, but rather is applicable to any seismic zone and to any co-seismic
874 response for which probabilistic prediction models exist. This methodology allows for uncertainty to
875 be accounted for in a more complete and transparent manner when inverting seismic parameters from
876 macroseismic evidence.

877 **Declaration of competing interests**

878 The authors declare no competing interests.

879 **Acknowledgements**

880 The presented study is based on work supported by the National Science Foundation (NSF) under Grant
881 No. CMMI-1751216 and by the NSF Graduate Research Fellowship Program under Grant No. DGE-
882 1762114. However, any opinions, findings, and conclusions or recommendations expressed in this paper
883 are those of the authors and do not necessarily reflect the views of NSF. We also gratefully acknowledge

884 Silvia Mazzoni of the John Garrick Institute for Risk Sciences at UCLA for developing NGA East ground
885 motion characterization tools based on the results of Goulet et al. (2018), which were utilized in this study.

886 **Appendix A. Supplementary data**

887 All data and models utilized in this study are publicly available, as cited herein. The supplemental material
888 includes 13 additional figures that largely pertain to the analysis of MMI data using the “epicenter search”
889 and “fault search” methods. The results presented in these figures are summarized and discussed in the
890 main text. Also included are maps (figures and GIS files) of the predicted median PGAs in an “1886-like”
891 event, considering three magnitudes and two fault alignments, as well as measurements from 24 CPTs.

892 **REFERENCES**

- 893 Amick, D., G. Maurath, and R. Gelinas (1990). Characteristics of seismically induced liquefaction sites and
894 features located in the vicinity of the 1886 Charleston, South Carolina earthquake, *Seismological*
895 *Research Letters*, **61**, no. 2, 117-211.
- 896 Andrus R.D., H. Hayati, and N.P. Mohanan (2009). Correcting liquefaction resistance for aged sands using
897 measured to estimated velocity ratio, *J. Geotech. Geoenviron. Eng.*, **135**, no. 6, 735-744, doi:
898 [10.1061/\(ASCE\)GT.1943-5606.0000025](https://doi.org/10.1061/(ASCE)GT.1943-5606.0000025)
- 899 Atkinson G.M., and S.I. Kaka (2007). Relationships between felt intensity and instrumental ground motion
900 in the central United States and California, *Bull. Seismol. Soc. Am.* **97**, no. 2, 497-510, doi:
901 [10.1785/0120060154](https://doi.org/10.1785/0120060154)
- 902 Atkinson, G.M., C.B. Worden, and D.J. Wald (2014). Intensity prediction equations for North America,
903 *Bulletin of the Seismological Society of America*, **104**, no. 6, 3084-3093, doi: [10.1785/0120140178](https://doi.org/10.1785/0120140178)
- 904 Bakun W.H., and M.G. Hopper (2004). Magnitudes and locations of the 1811-1812 New Madrid, Missouri,
905 and the 1886 Charleston, South Carolina, earthquakes, *Bulletin of the Seismological Society of America*,
906 **94**, no. 1, 64-75, doi: [10.1785/0120020122](https://doi.org/10.1785/0120020122).
- 907 Bakun W.H., A.C. Johnston, and M.G. Hopper (2002). Modified Mercalli Intensities (MMI) for large
908 earthquakes near New Madrid, Missouri, in 1811-1812 and near Charleston, South Carolina, in 1886,
909 *U.S. Geol. Surv. Open File Rep.* 02-184.
- 910 Boller, R. (2008). Geotechnical investigations at three sites in the South Carolina coastal plain that did not
911 liquefy during the 1886 Charleston earthquake (*Master's thesis*). Available from
912 https://tigerprints.clemson.edu/all_theses/301/
- 913 Bollinger, G.A. (1977). Reinterpretation of the intensity data for the 1886 Charleston, South Carolina,
914 earthquake, *U.S. Geol. Surv. Profess. Pap.* 1028, 17-32.
- 915 Bollinger, G.A. and C.W. Stover (1976). List of intensities for the 1886 Charleston, South Carolina
916 earthquake, *U.S. Geol. Surv. Open-File Rept.* 76-66, 31pp.
- 917 Bommer, J.J., B. Dost, B. Edwards, P.J. Stafford, J. van Elk, D. Doornhof, and M. Ntinalexis (2016).
918 Developing an application-specific ground motion model for induced seismicity, *Bull. Seismol. Soc. Am.*
919 **106**, 158–173, doi: [10.1785/0120150184](https://doi.org/10.1785/0120150184)
- 920 Boulanger R.W., and I.M. Idriss (2014). CPT and SPT based liquefaction triggering procedures. Report no.
921 UCD/CGM-14/01. Davis, CA: Center for Geotechnical Modeling, University of California, Davis.
- 922 Bwambale, B., Andrus, R. D., Heidari, T., Gathro, J., & Cramer, C. H. (2022). Influence of source-to-site
923 distance and diagenesis on liquefaction triggering of 200,000-year-old beach sand. *Engineering*
924 *Geology*, **298**, 106557, [10.1016/j.enggeo.2022.106557](https://doi.org/10.1016/j.enggeo.2022.106557).

- 925 Caprio M., B. Tarigan, C.B. Worden, S. Wiemer, and D.J. Wald (2015). Ground motion to intensity
 926 conversion equations (GMICEs): A global relationship and evaluation of regional dependency, *Bull.*
 927 *Seismol. Soc. Am.* **105**, no. 3, 1476-1490, doi: [10.1785/0120140286](https://doi.org/10.1785/0120140286)
- 928 Chapman, M.C., M.S. Sibol, and G. A. Bollinger (1989). Investigation of anomalous earthquake intensity
 929 levels along the coastal-plain-Piedmont boundary in South Carolina and Georgia, *Virginia Tech*
 930 *Seismological Observatory Report* 1360.
- 931 Chapman, M.C., J.N. Beale, A.C. Hardy, and Q. Wu (2016). Modern seismicity and the fault responsible
 932 for the 1886 Charleston, South Carolina, earthquake, *Bulletin of the Seismological Society of America*,
 933 **106**, no. 2, 364-372, doi: [10.1785/0120150221](https://doi.org/10.1785/0120150221).
- 934 Chung, J., Okok, A., and Rogers, J. D. (2021). Geologic impacts and calculated magnitudes of historic
 935 earthquakes in the central United States. *Engineering Geology*, **280**, 105923, doi:
 936 [10.1016/j.enggeo.2020.105923](https://doi.org/10.1016/j.enggeo.2020.105923).
- 937 Coppersmith, K. J., Salomone, L. A., Fuller, C. W., Glaser, L. L., Hanson, K. L., Hartleb, R. D., ... & Tuttle,
 938 M. P. (2012). Central and eastern United States (CEUS) seismic source characterization (SSC) for
 939 nuclear facilities project (No. DOE/NE-0140). Electric Power Research Institute (EPRI).
- 940 Cramer, C.H. (2020). Updated GMICE for central and eastern North America extending to higher
 941 intensities, *Seismol. Res. Lett.* **91**, no. 6, 3518-3527, doi: [10.1785/0220200061](https://doi.org/10.1785/0220200061)
- 942 Cramer, C.H., and O.S. Boyd (2014). Why the New Madrid earthquakes are **M** 7-8 and the Charleston
 943 earthquake is \sim **M** 7, *Bulletin of the Seismological Society of America*, **104**, no. 6, 2884-2903, doi:
 944 [10.1785/0120120257](https://doi.org/10.1785/0120120257)
- 945 de Magistris, F.S., G. Lanzano, G. Forte, and G. Fabbrocino (2013). A database for PGA threshold in
 946 liquefaction occurrence, *Soil Dynamics and Earthquake Engineering*, **54**, 17-19, doi:
 947 [10.1016/j.soildyn.2013.07.011](https://doi.org/10.1016/j.soildyn.2013.07.011)
- 948 Durá-Gómez, I., and P. Talwani (2009a). Finding faults in the Charleston area, South Carolina: 1.
 949 seismological data. *Seismological Research Letters* **80**, no. 5, 883-900, doi: [10.1785/gssrl.80.5.883](https://doi.org/10.1785/gssrl.80.5.883)
- 950 Durá-Gómez, I., and P. Talwani (2009b). Finding faults in the Charleston area, South Carolina: 2.
 951 complementary data. *Seismological Research Letters* **80**, no. 5, 901-919, doi: [10.1785/gssrl.80.5.901](https://doi.org/10.1785/gssrl.80.5.901)
- 952 Dutton, C.E. (1889). The Charleston earthquake of August 31, 1886: *U.S. Geological Survey*, Ninth Annual
 953 Report 1887-88, 203-528.
- 954 Gheibi, E., & Gassman, S. L. (2016). Application of GMPEs to estimate the minimum magnitude and peak
 955 ground acceleration of prehistoric earthquakes at Hollywood, SC. *Engineering Geology*, **214**, 60-66,
 956 doi: [10.1016/j.enggeo.2016.09.016](https://doi.org/10.1016/j.enggeo.2016.09.016).
- 957 Geiger, A. (2010). Liquefaction analysis of three Pleistocene sand deposits that did not liquefy during the
 958 1886 Charleston, South Carolina earthquake based on shear wave velocity and penetration resistance
 959 (*Master's thesis*). Available from https://tigerprints.clemson.edu/all_theses/815/
- 960 Geyin M. and B.W. Maurer (2020). Fragility functions for liquefaction-induced ground failure, *Journal of*
 961 *Geotechnical and Geoenvironmental Engineering* **146**, no. 12, doi: [10.1061/\(ASCE\)GT.1943-5606.0002416](https://doi.org/10.1061/(ASCE)GT.1943-5606.0002416)
- 963 Gheibi, E., S. Gassman, and P. Talwani (2020). Regional assessment of prehistoric earthquake magnitudes
 964 in the South Carolina Coastal Plain, *Bulletin of Engineering Geology and the Environment*, **79**, no. 3,
 965 1413-1427, doi: [10.1007/s10064-019-01627-7](https://doi.org/10.1007/s10064-019-01627-7)
- 966 Gohn, G.S., R.E. Weems, S.F. Obermeier, and R.L. Gelinas (1984). Field studies of earthquake-induced
 967 liquefaction-flowage features in the Charleston, South Carolina area: preliminary report: *U.S.*
 968 *Geological Survey Open-File Report* 84-670, 26 p.
- 969 Goulet, C., Y. Bozorgnia, N. Abrahamson, N. Kuehn, L. Al Atik, R. Youngs, R.W. Graves, G.M. Atkinson
 970 (2018). Central and eastern North America ground-motion characterization (NGA-East Final Report,
 971 PEER Report Number 2018/08). Berkeley, CA: Pacific Earthquake Engineering Research Center,
 972 University of California.
- 973 Green, R.A., Obermeier, S.F., and Olson, S.M. (2005). Engineering geologic and geotechnical analysis of

- 974 paleoseismic shaking using liquefaction effects: field examples. *Engineering Geology*, **76**, no. 3-4, 263-
975 293. doi: [10.1016/j.enggeo.2004.07.026](https://doi.org/10.1016/j.enggeo.2004.07.026)
- 976 Green, R.A., J.J. Bommer, A. Rodriguez-Marek, B.W. Maurer, P.J. Stafford, B. Edwards, ... J., Van Elk
977 (2019). Addressing limitations in existing 'simplified' liquefaction triggering evaluation procedures:
978 application to induced seismicity in the Groningen gas field. *Bulletin of Earthquake Engineering*, **17**, no.
979 8, 4539-4557. doi: [10.1007/s10518-018-0489-3](https://doi.org/10.1007/s10518-018-0489-3)
- 980 Harmon, J., Y.M.A., Hashash, J.P. Stewart, E.M. Rathje, K.W. Campbell, W.J. Silva, and O. Ilhan (2019).
981 Site Amplification Functions for Central and Eastern North America – Part II: Modular Simulation-
982 Based Models, *Earthquake Spectra*, **35**, no. 2, 815-847, doi: [10.1193/091117EQS179M](https://doi.org/10.1193/091117EQS179M)
- 983 Hasek, M.J. (2016). Age-related liquefaction resistance of Pleistocene coastal plain sands in South Carolina
984 (*Doctoral dissertation*). Retrieved from <https://scholarcommons.sc.edu/etd/3600>.
- 985 Hayati, H. and R.D. Andrus (2008). Liquefaction potential map of Charleston, South Carolina based on the
986 1886 earthquake, *Journal of Geotechnical and Geoenvironmental Engineering*, **134**, no. 6, 815-828, doi:
987 [10.1061/\(ASCE\)1090-0241\(2008\)134:6\(815\)](https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(815))
- 988 Hayati, H., and R.D. Andrus (2009). Updated liquefaction resistance correction factors for aged soils,
989 *Journal of Geotechnical and Geoenvironmental Engineering*, **135**, no. 11, 1683–1692, doi:
990 [10.1061/\(ASCE\)GT.1943-5606.0000118](https://doi.org/10.1061/(ASCE)GT.1943-5606.0000118)
- 991 Heidari, T., and R.D. Andrus (2010). Mapping liquefaction potential of aged soil deposits in Mount
992 Pleasant, South Carolina, *Eng. Geol.* **112**, 1–12, doi: [10.1016/j.enggeo.2010.02.001](https://doi.org/10.1016/j.enggeo.2010.02.001)
- 993 Heidari, T., and R.D. Andrus (2012). Liquefaction potential assessment of Pleistocene beach sands near
994 Charleston, South Carolina, *J. Geotech. Geoenvir. Eng.* **138**, no. 10, 1196-1208, doi:
995 [10.1061/\(ASCE\)GT.1943-5606.0000686](https://doi.org/10.1061/(ASCE)GT.1943-5606.0000686)
- 996 Heath, D.C., D.J. Wald, C.B. Worden, E.M. Thompson and G.M. Smoczyk (2020) A global hybrid Vs30
997 map with a topographic slope-based default and regional map insets. *Earthquake Spectra* **36**, 1570–
998 1584, doi: [10.1177/875529302091137](https://doi.org/10.1177/875529302091137)
- 999 Hough, S. E., Armbruster, J. G., Seeber, L., and Hough, J. F. (2000). On the modified Mercalli intensities
1000 and magnitudes of the 1811–1812 New Madrid earthquakes. *Journal of Geophysical Research: Solid*
1001 *Earth*, **105**(B10), 23839-23864.
- 1002 Hu, K., S.L. Gassman, and P. Talwani (2002). Magnitudes of prehistoric earthquakes in the South Carolina
1003 coastal plain from geotechnical data, *Seismological Research Letters*, **73**, no. 6, 979-991, doi:
1004 [10.1061/9780784479087.112](https://doi.org/10.1061/9780784479087.112)
- 1005 Ishihara, K. (1985). Stability of natural soil deposits during earthquakes, *Proc. 11th Conf. on Soil Mech. and*
1006 *Found. Engrg.*, International Society of Soil Mechanics and Foundation Engineers, San Francisco,
1007 Calif., 321-376.
- 1008 Iwasaki T., F. Tatsuoka, K. Tokida and S. Yasud (1978) A practical method for assessing soil liquefaction
1009 potential based on case studies at various sites in Japan. In: Proceedings of the 2nd international
1010 conference on microzonation for safer construction research and application, (2): 885–896, 30 Oct– 3
1011 Nov, Seattle, Washington.
- 1012 Johnston, A.C. (1996). Seismic moment assessment of stable continental earthquakes - III. New Madrid
1013 1811–1812, Charleston 1886 and Lisbon 1755, *Geophys. J. Int.*, **126**, no. 2, 314–344, doi:
1014 [10.1111/j.1365-246X.1996.tb05294.x](https://doi.org/10.1111/j.1365-246X.1996.tb05294.x)
- 1015 Kaklamanos J., L.G. Baise and D.M. Boore (2011). Estimating unknown input parameters when
1016 implementing the NGA ground motion prediction equations in engineering practice, *Earthquake Spectra*
1017 **27**, no. 4, 1219–1235, doi: [10.1193/1.3650372](https://doi.org/10.1193/1.3650372)
- 1018 Kuhn, G. G. (2005). Paleoseismic features as indicators of earthquake hazards in North Coastal, San Diego
1019 County, California, USA. *Engineering geology*, **80**(1-2), 115-150, doi: [10.1016/j.enggeo.2005.04.006](https://doi.org/10.1016/j.enggeo.2005.04.006).
- 1020 Lozos, J.C. (2016). A case for historic joint rupture of the San Andreas and San Jacinto faults. *Science*
1021 *advances*, **2**(3), e1500621.

- 1022 Marple, R. T., & Hurd, J. D. (2020). Interpretation of lineaments and faults near Summerville, South
 1023 Carolina, USA, using LiDAR data: Implications for the cause of the 1886 Charleston, South Carolina,
 1024 earthquake. *Atlantic Geology: Journal of the Atlantic Geoscience Society/Atlantic Geology: revue de la
 1025 Société Géoscientifique de l'Atlantique*, 56, 73-95, doi: [10.4138/atgeol.2020.003](https://doi.org/10.4138/atgeol.2020.003).
- 1026 Martin, J.R., II, and G.W. Clough (1994). Seismic parameters from liquefaction evidence, *J. Geotech.
 1027 Engrg.*, 120, no. 8, 1345-1361, doi: [10.1061/\(ASCE\)0733-9410\(1994\)120:8\(1345\)](https://doi.org/10.1061/(ASCE)0733-9410(1994)120:8(1345))
- 1028 Maurer, B.W., R.A. Green, M. Cubrinovski, and B.A. Bradley (2014). Assessment of aging correction
 1029 factors for liquefaction resistance at sites of recurrent liquefaction. In *Proceedings of the 10th US
 1030 National Conference on Earthquake Engineering*.
- 1031 Maurer, B. W., Green, R. A., Quigley, M. C., & Bastin, S. (2015a). Development of magnitude-bound
 1032 relations for paleoliquefaction analyses: New Zealand case study. *Engineering Geology*, 197, 253-266,
 1033 doi: [10.1016/j.enggeo.2015.08.023](https://doi.org/10.1016/j.enggeo.2015.08.023).
- 1034 Maurer, B.W., R.A. Green, and O.D.S Taylor (2015b). Moving towards an improved index for assessing
 1035 liquefaction hazard: lessons from historical data. *Soils and Foundations*, 55, no. 4, 778-787. doi:
 1036 [10.1016/j.sandf.2015.06.010](https://doi.org/10.1016/j.sandf.2015.06.010)
- 1037 Nuttli, O.W., G.A. Bollinger, and R.B. Herrmann (1986). The 1886 Charleston, South Carolina,
 1038 earthquake: A 1986 perspective, *U.S. Geological Survey*, 985, doi: [10.3133/cir985](https://doi.org/10.3133/cir985)
- 1039 Obermeier, S. F. (1998). Liquefaction evidence for strong earthquakes of Holocene and latest Pleistocene
 1040 ages in the states of Indiana and Illinois, USA. *Engineering Geology*, 50(3-4), 227-254, doi:
 1041 [10.1016/S0013-7952\(98\)00032-5](https://doi.org/10.1016/S0013-7952(98)00032-5).
- 1042 Obermeier, S.F., G.S. Gohn, R.S. Weems, R.L. Gelinas, and M. Rubin (1985). Geologic Evidence for
 1043 Recurrent Moderate to Large Earthquakes Near Charleston, South Carolina, *Science*, 277, no. 4685, 408-
 1044 411.
- 1045 Obermeier, S. F., Olson, S. M., & Green, R. A. (2005). Field occurrences of liquefaction-induced features:
 1046 a primer for engineering geologic analysis of paleoseismic shaking. *Engineering Geology*, 76(3-4), 209-
 1047 234, doi: [10.1016/j.enggeo.2004.07.009](https://doi.org/10.1016/j.enggeo.2004.07.009).
- 1048 Obermeier, S. F., R.E. Weems, and R.B. Jacobson, (1987). Earthquake induced liquefaction features in the
 1049 coastal South Carolina region, *U.S. Geol. Surv. Open File Report* 87-504.
- 1050 Olson, S. M., Green, R. A., & Obermeier, S. F. (2005). Geotechnical analysis of paleoseismic shaking using
 1051 liquefaction features: a major updating. *Engineering Geology*, 76(3-4), 235-261, doi:
 1052 [10.1016/j.enggeo.2004.07.008](https://doi.org/10.1016/j.enggeo.2004.07.008).
- 1053 Petersen, M.D., M.P. Moschetti, P.M. Powers, C.S. Mueller, K.M. Haller, A.D. Frankel, ... A.H. Olsen
 1054 (2014). Documentation for the 2014 update of the United States national seismic hazard maps. *U.S.
 1055 Geol. Surv. Open-File Report* 2014-1091.
- 1056 Petersen, M.D., A.M. Shumway, P.M. Powers, C.S. Mueller, M.P. Moschetti, A.D. Frankel, ... Y. Zeng
 1057 (2020). The 2018 update of the US National Seismic Hazard Model: Overview of model and
 1058 implications, *Earthquake Spectra*, 36, no. 1, 5-41, doi: [10.1177/8755293019878199](https://doi.org/10.1177/8755293019878199)
- 1059 Pratt, T. L., Shah, A. K., Counts, R. C., Horton, J. W., & Chapman, M. C. (2022). Shallow Faulting and
 1060 Folding in the Epicentral Area of the 1886 Charleston, South Carolina, Earthquake. *Bulletin of the
 1061 Seismological Society of America*, doi: [10.1785/0120210329](https://doi.org/10.1785/0120210329).
- 1062 Rasanen, R.A., and B.W. Maurer (2021). Probabilistic seismic source inversion from regional landslide
 1063 evidence. *Landslides*, doi: [10.1007/s10346-021-01780-9](https://doi.org/10.1007/s10346-021-01780-9)
- 1064 Rasanen, R.A., and B.W. Maurer (2022). Probabilistic seismic source location and magnitude via inverse
 1065 analysis of paleoliquefaction evidence. *Earthquake Spectra*, 38, no. 2, 1499-1528. doi:
 1066 [10.1177/87552930211056355](https://doi.org/10.1177/87552930211056355)
- 1067 Rasanen, R. A., Marafi, N. A., & Maurer, B. W. (2021). Compilation and forecasting of paleoliquefaction
 1068 evidence for the strength of ground motions in the US Pacific Northwest. *Engineering Geology*, 292,
 1069 doi: [10.1016/j.enggeo.2021.106253](https://doi.org/10.1016/j.enggeo.2021.106253).

- 1070 Robertson, P.K., and C.E. Wride (1998). Evaluating cyclic liquefaction potential using the cone penetration
1071 test. *Canadian Geotechnical Journal*, **35**, no. 3, 442-459. doi: [10.1139/t98-017](https://doi.org/10.1139/t98-017)
- 1072 Rodriguez-Marek, A., & Ciani, D. (2008). Probabilistic methodology for the analysis of paleoliquefaction
1073 features. *Engineering geology*, **96**(3-4), 159-172, [10.1016/j.enggeo.2007.10.007](https://doi.org/10.1016/j.enggeo.2007.10.007).
- 1074 Scherbaum F., J. Schmedes and F. Cotton (2004). On the conversion of source-to-site distance measures
1075 for extended earthquake source models. *Bulletin of the Seismological Society of America* **94**, no. 3,
1076 1053–1069, doi: [10.1785/0120030055](https://doi.org/10.1785/0120030055)
- 1077 Schneider, J. A., Mayne, P. W., & Rix, G. J. (2001). Geotechnical site characterization in the greater
1078 Memphis area using cone penetration tests. *Engineering Geology*, **62**(1-3), 169-184, doi:
1079 [10.1016/S0013-7952\(01\)00060-6](https://doi.org/10.1016/S0013-7952(01)00060-6).
- 1080 Seed, H.B., K. Tokimatsu, L.F. Harder, and R.M. Chung (1984). The influence of SPT procedures in soil
1081 liquefaction resistance evaluations, *Report No. UBC/EERC-84/15*, Earthquake Engineering Research
1082 Center, University of California, Berkeley, Calif.
- 1083 Silva, W., I. Wong, T. Siegel, N. Gregor, R. Darragh, and R. Lee (2003). Ground motion and liquefaction
1084 simulation of the 1886 Charleston, South Carolina, earthquake, *Bulletin of the Seismological Society of
1085 America*, **93**, no. 6, 2717-2736, doi: [10.1785/0120030029](https://doi.org/10.1785/0120030029)
- 1086 Stover, C.W. and J.L. Coffman (1993). Seismicity of the United States, 1568-1989 (Revised), *U.S.
1087 Geological Survey Prof. Pap.* 1527, 418pp.
- 1088 Talwani, P., and J. Cox (1985). Paleoseismic evidence for recurrence of earthquakes near Charleston, South
1089 Carolina, *Science*, **228**, no. 4711, 379-381, doi: [10.1126/science.229.4711.379](https://doi.org/10.1126/science.229.4711.379)
- 1090 Talwani, P., M. Hasek, S. Gassman, W.R. Doar III, and A. Chapman (2011). Discovery of a sand blow and
1091 associated fault in the epicentral area of the 1886 Charleston earthquake, *Seismological Research
1092 Letters*, **82**, no. 4, 589-598, doi: [10.1785/gssrl.82.4.589](https://doi.org/10.1785/gssrl.82.4.589)
- 1093 Talwani, P., and W.T. Schaeffer (2001). Recurrence rates of large earthquakes in the South Carolina coastal
1094 plain based on paleoliquefaction data, *Journal of Geophysical Research*, **106**, no. B4, 6621-6642, doi:
1095 [10.1029/2000JB900398](https://doi.org/10.1029/2000JB900398)
- 1096 Thompson, E. M., and C.B. Worden (2018). Estimating rupture distances without a rupture. *Bulletin of the
1097 Seismological Society of America*, **108**, no. 1, 371-379, doi: [10.1785/0120170174](https://doi.org/10.1785/0120170174)
- 1098 USGS (2021). Cone Penetration Test (CPT) Map and Database. U.S. Geological Survey, Earthquake
1099 Hazards Program. <https://earthquake.usgs.gov/research/cpt/data/>
- 1100 USGS (2022). Advanced National Seismic System (ANSS) Comprehensive Catalog of Earthquake Events
1101 and Products: Various. U.S. Geological Survey, Earthquake Hazards Program. doi:
1102 [10.5066/F7MS3QZH](https://doi.org/10.5066/F7MS3QZH)
- 1103 Weems, R.E., W.C. Lewis, and E.M. Lemon, Jr. (2014). Surficial geologic map of the Charleston region,
1104 Berkeley, Charleston, Colleton, Dorchester, and Georgetown Counties, South Carolina, *U.S. Geological
1105 Survey Open-File Report 2013-1030*, 1 sheet, scale 1:100,000, doi: [10.3133/ofr20131030](https://doi.org/10.3133/ofr20131030)
- 1106 Wells D.L., and K.J. Coppersmith (1994). New empirical relationships among magnitude, rupture length,
1107 rupture width, rupture area, and surface displacement. *Bull. Seismol. Soc. Am.* **84**, no. 4, 974–1002, doi:
1108 [10.1785/BSSA0840040974](https://doi.org/10.1785/BSSA0840040974)
- 1109 Werner, M. J., and D. Sornette (2008). Magnitude uncertainties impact seismic rate estimates, forecasts,
1110 and predictability experiments, *J. Geophys. Res.*, **113**, no. B8, doi: [10.1029/2007JB005427](https://doi.org/10.1029/2007JB005427)
- 1111 Williamson, J.R., and S.L. Gassman (2014). Identification of liquefiable coastal plain soils using DMT,
1112 SPT, and CPT profiles, *Geo-Congress 2014*, February 23-26, Atlanta, Georgia, doi:
1113 [10.1061/9780784413272.206](https://doi.org/10.1061/9780784413272.206)
- 1114 Wong, I., J. Bouabid, W. Graf, C. Huyck, A. Porush, W. Silva, T. Siegel, G. Bureau, R. Eguchi, and J.
1115 Knight (2005). Potential losses in a repeat of the 1886 Charleston, South Carolina, earthquake,
1116 *Earthquake Spectra*, **21**, no. 4, 1157-1184, doi: [10.1193/1.2083907](https://doi.org/10.1193/1.2083907).
- 1117 Wood, H.O., and F. Neumann (1931). Modified Mercalli Intensity scale of 1931, *Bull. Seismol. Soc. Am.*
1118 **21**, 277-283.

- 1119 Worden, C.B., M.C. Gerstenberger, D.A. Rhoades, and D.J. Wald (2012). Probabilistic relationships
1120 between ground-motion parameters and Modified Mercalli Intensity in California, *Bull. Seismol. Soc.*
1121 *Am.* **102**, no. 1, 204-221, doi: [10.1785/0120110156](https://doi.org/10.1785/0120110156).
- 1122 Yousuf, M., Bukhari, S. K., & Bhat, G. R. (2021). Using paleo-liquefaction features to determine the likely
1123 source, magnitude and ground accelerations of pre-historic earthquakes in the Kashmir Basin
1124 (Northwestern Himalaya), India. *Engineering Geology*, 293, 106302, [10.1016/j.enggeo.2021.106302](https://doi.org/10.1016/j.enggeo.2021.106302).