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Abstract: The shear-wave velocity time-averaged over the upper 30 m (VS30) is widely used as a proxy for 1 

site effects, forms the basis of seismic site class, and underpins site-amplification factors in empirical ground-2 

motion models. Many earthquake simulations therefore require VS30. This presents a challenge at regional scale, 3 

given the infeasibility of subsurface testing over vast areas. While various models for predicting VS30 have thus 4 

been proposed, the most popular U.S. national, or “background,” model is a regression equation based on just 5 

one variable. Given the growth of community datasets, satellite remote sensing, and algorithmic learning, more 6 

advanced and accurate solutions may be possible. Towards that end, we develop national VS30 models and 7 

maps using field data from over 7,000 sites and machine learning (ML), wherein up to 17 geospatial parameters 8 

are used to predict subsurface conditions (i.e., VS30). Of the two models developed, that using geologic data 9 

performs marginally better, yet such data is not always available. Both models significantly outperform 10 

existing solutions in unbiased testing and are used to create new VS30 maps at ~220 m resolution. These maps 11 

are updated in the vicinity of field measurements using regression kriging and cover the 50 U.S. states and 12 

Puerto Rico. Ultimately, and like any model, performance cannot be known where data is sparse. In this regard, 13 

alternative maps that use other models are proposed for steep slopes. More broadly, this study demonstrates 14 

the utility of ML for inferring below-ground conditions from geospatial data, a technique that could be applied 15 

to other data and objectives.   16 

Introduction 17 

Subsurface seismic-wave velocities (e.g., shear-wave velocity, VS) affect the amplitude, duration, and 18 

frequency content of ground motions. Measurements or estimates of these velocities are thus needed to predict 19 
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ground motions and, by consequence, earthquake impacts. Ideally, these velocities would be obtainable: (i) 20 

quickly (i.e., by time- and cost-efficient means); (ii) at high spatial resolution (e.g., consistent with the scale 21 

at which subsurface velocities change); and (iii) over the spatial extents that experience strong motion (e.g., a 22 

metropolitan region). Problematically, state-of-practice methods for measuring VS typically result in discrete, 23 

1D VS-profiles that require considerable time and cost. As a result, it is infeasible to measure VS over vast areas, 24 

as would be required for regional earthquake simulations. Even in cases where VS is needed for important, site-25 

specific purposes (e.g., at seismic-recording stations, to develop empirical ground motion models, or GMMs), 26 

it is often the case that VS is estimated, rather than measured (e.g., Ahdi et al., 2017).  27 

Accordingly, efforts have been made to predict VS profiles remotely (e.g., Boore and Joyner, 1997; Holzer 28 

et al., 2005; Wald and Allen, 2007; Castellaro et al., 2008; Boore et al., 2011; Thompson et al., 2014; Parker 29 

et al., 2017; Foster et al., 2019; Yu, 2021). These efforts have mostly focused on predicting the time-averaged 30 

VS in the upper 30 m (VS30), which: (i) is widely used as a proxy for site effects; (ii) forms the current basis of 31 

seismic site class; (iii) underpins site-amplification functions (e.g., Stewart et al., 2017); and (iv) is a required 32 

input to all modern empirical GMMs. VS30 thus serves an important role in regional earthquake simulations, 33 

post-earthquake data products (e.g., Worden et al., 2010), site-specific hazard analyses, and indirectly, the 34 

National Seismic Hazard Model (Petersen et al., 2019), given the need for VS30 at strong-motion stations when 35 

developing GMMs. At present, a patchwork of VS30 models is used in the U.S., with the national “background,” 36 

model adopted by the U.S. Geological Survey (Heath et al., 2020) being a regression equation with one input 37 

– topographic slope (e.g., Wald and Allen, 2007; Allen and Wald, 2009). The underlying, seminal concept – 38 

that flat ground tends to be soft and steep ground tends to be hard – is quite useful, but also often inefficient 39 

and/or insufficient for predicting VS30. Several regional models have thus aimed to improve on this approach, 40 

generally by using higher-resolution elevation models, more advanced statistical schemes, and/or by binning 41 

the data on mapped geology (e.g., Ahdi et al., 2017; Wills and Clahan, 2006; Thompson et al., 2014; Li and 42 

Rathje, 2020). Considering the growth of community geophysical datasets, satellite remote sensing, and 43 

algorithmic learning, more advanced and accurate solutions may yet be achievable, both at national and 44 

regional scales.   45 
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Toward that goal, this paper develops U.S. national VS30 models and maps using machine learning (ML), 46 

wherein 17 above-ground geospatial variables are used to predict below-ground VS30. Examples of geospatial 47 

predictor variables, which are obtained from remote-sensing and existing mapped information, include 48 

topographic slope and various topographic indices; distance to rivers, streams, and other water bodies; and 49 

various values describing or predicting geology, hydrology, lithology, climate, etc. While such predictors lack 50 

mechanistic links to VS30, they correlate in complex and interconnected ways – an ideal application for ML. 51 

Although the concept of a “geospatial” VS30 model is not new – all existing models could be described this way 52 

– neither algorithmic learning nor a large quantity of predictors has previously been used (whether at national 53 

or regional scale). In this regard, accurate prediction of subsurface conditions likely requires many variables, 54 

as suggested by Iwahashi et al. (2010), Yong et al. (2012), and Zhu et al. (2015; 2017) (i.e., more than 55 

topographic slope), but traditional regression requires hypotheses of what is believed to matter and how, 56 

limiting the number of variables easily modeled. Because such beliefs are unnecessary with ML, it can provide 57 

learning insights that are unlikely, if not infeasible, with traditional techniques. The adopted approach thus 58 

allows for a large body of predictive information to be utilized, with more potential for that information to be 59 

exploited. In the following, the data and methodology are first described, after which the trained ML models 60 

are compared via unbiased tests against the national “background” model of Wald and Allen (2007) and Allen 61 

and Wald (2009), as implemented by Heath et al. (2020a,b). For brevity, we refer to this slope-based model as 62 

Allen and Wald (2009), or AW09. The resulting map products, which are updated in the vicinity of field 63 

measurements using regression kriging, are then presented.  64 

Data and Methodology 65 

A total of 7,081 VS30 measurements were selected for analysis, as mapped in Figure 1 for the contiguous U.S. 66 

Not shown are 24 measurements in Hawaii, 23 in Puerto Rico, and 15 in Alaska. While these data represent a 67 

range of geographic and geologic settings, they are biased toward densely populated, high-seismicity regions 68 

where there is greater need for VS data. As a result, some U.S. states are unrepresented in model training and 69 

testing, a limitation that is shared by all existing national models. In addition, and as will be discussed further, 70 
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the compiled data are biased with respect to both topographic slope, with <10% of measurements made on 71 

terrain with >3˚ slope, and soil sites, with <10% of measurements having VS30 > 760 m/s.  72 

Significant VS30 data sources included the McPhillips et al. (2020), Parker et al. (2017), and Ahdi et al. 73 

(2017) compilations. The authors also computed and added VS30 values from profiles unrepresented in other 74 

large compilations. This augmented the available VS30 data by 1,021 points. Larger sources of such data 75 

included Kayen et al. (2011), Salomone et al. (2012), and Kwak et al. (2021). In computing VS30 from VS 76 

profiles, the extrapolation method of Boore et al. (2011) was applied to profiles that did not reach 30 m depth. 77 

While this increases the measurement uncertainty at certain sites, it was deemed acceptable, given the 78 

incomplete coverage of VS30 data at national scale. Of the compiled data, 80% was randomly selected for model 79 

training and the remaining 20% was held for unbiased testing. While the definition of a truly unbiased test is 80 

debatable (e.g., test sites are occasionally located near training sites), it should be noted that the AW09 model 81 

against which comparisons will be made was originally trained using much of the data compiled herein for 82 

testing. As a result, the ensuing tests are likely biased in favor of the existing AW09 model. Finally, it must be 83 

emphasized that empirical models can be particularly unreliable when encountering unfamiliar regions or 84 

features. The limits and resolution of each predictor variable – introduced below – should thus be understood 85 

by users.  86 

In the current effort, either 15 or 17 predictor variables were compiled at the sites of VS30 data. These 87 

consisted of: the depths to (1) bedrock and (2) groundwater, as predicted by geospatial models trained on ~1.6 88 

million global field measurements; the mapped (3) geologic unit and (4) consolidation state; the (5) classified 89 

geomorphologic phonotype (consisting of landforms that include valley, depression, hollow, footslope, flat, 90 

and others); the measured (6) distance-to-river, (7) compound topographic index (which describes the 91 

hydrologic environment), and (8) topographic slope; the (9) profile curvature and (10) tangential curvature; 92 

the computed (11) topographic position index, (12) roughness, (13) terrain ruggedness index, and (14) vector 93 

ruggedness measure (which collectively describe the profile and heterogeneity of the surface terrain); and 94 

lastly, the geomorphologic landform’s (15) Shannon diversity index, (16) uniformity, and (17) entropy (which 95 

collectively describe the diversity and spatial distribution of geomorphons in a sample area). The range, 96 
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resolution, and source of each variable are in Table 1; the reader is referred to these respective sources for 97 

methodological details and background information on all 17 variables. Supplemental Table S1 also provides 98 

additional descriptions and citations for each variable. The goal of these variables, which predominantly use 99 

above-ground data, is to predict below-ground conditions.  100 

Except for the geologic unit and consolidation state, which were sampled from the Horton et al. (2017) 101 

U.S. national geologic map compilation, all variables are continuously available in North America, and in 102 

many cases, have global coverage. While surface geology ultimately resulted in a marginally better model, the 103 

Horton et al. (2017) compilation does not include Alaska, Hawaii, or Puerto Rico. Additionally, it will be 104 

shown that undesirable transitions occur at a few state boundaries, where differences in the state source maps 105 

result in different mapped geologies on either side of a state line, and by corollary different VS30. For these 106 

reasons we ultimately present two map products – one that includes mapped surface geology (“Model 1”, 107 

which performs slightly better), and one that does not (“Model 2”). The geologic unit is also a unique feature 108 

in that it was reclassified, whereas all other variables were used directly as sampled. Specifically, we: (i) 109 

grouped all sedimentary, igneous, and metamorphic rock units; and (ii) of the remaining units applicable to 110 

soils, selectively excluded those sparsely populated with VS30 data. In this regard, sites that do not map as either 111 

a type of rock or as alluvial, fluvial, glacial, lacustrine, peat, or terrace deposits are implicitly treated as general, 112 

unknown soil deposits; additional classification details are provided in supplemental Table S2. In addition to 113 

the predictors in Table 1, several others, including annual precipitation (Fick and Hijmans, 2017), distance to 114 

coastline (NASA, 2020), deposit age (Horton et al. (2017), and regional flags (e.g., Western US vs. Eastern 115 

US) did not improve performance and were not adopted. This apparent lack of utility could potentially change 116 

for some variables if more field data were available. The futility of geologic age and regional flags, for 117 

example, might be explained by the lack of VS30 measurements at rock sites, particularly from seismic site class 118 

A (e.g., <1% of the data has VS30 > 1225 m/s). 119 

Having compiled VS30 data and predictor variables, numerical predictors were BoxCox transformed (Box 120 

and Cox, 1964) and normalized to have values between 0 and 1 to reduce spurious interactions among 121 

predictors. Several ML techniques were used to train prospective models, including support vector machines 122 
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(e.g., Vapnik, 1995), Gaussian process regression (GPR) (e.g., Rasmussen, 2003), decision trees (e.g., Rokach 123 

and Maimon, 2008), and decision tree ensembles constructed by gradient boosting, bagging, or random forests 124 

(e.g., Breiman, 1996; Piryonesi and El-Diraby, 2021). Of the resulting models, those that are easier to interpret 125 

tend to have lesser accuracy and portability (e.g., an individual decision tree), while those that tend to perform 126 

best (e.g., tree ensembles) are more convoluted. Once promising techniques were identified, the internal 127 

parameters of those techniques (i.e., “hyperparameters’) were optimized to minimize the prediction error. 5-128 

fold cross-validation was used to evaluate and mitigate overfitting, as is common. The particulars of the 129 

developed models are further described in the following.  130 

Results and Discussion 131 

Using the training set and all 17 predictor variables (i.e., including surface geology), many provisional 132 

models were trained. Of these, three were adopted for optimization and testing. Two were ensembles of 200 133 

decision trees each, where relatively weak decision tree models were combined to build a stronger model. 134 

When a decision tree is trained, recursive decision forks are formed, such that a specific combination of model 135 

inputs maps to an expected output. However, because an individual tree is typically neither accurate nor 136 

portable (i.e., it is prone to overfitting), trees are generally ensembled. This modeling approach, which is found 137 

in popular ML toolkits (e.g., TensorFlow, Scikit, PyTorch), is reviewed by Friedman (2001) and practically 138 

demonstrated in detail by Elith et al. (2008). A primary distinction of tree ensembles is how the individual 139 

models are trained and combined. In this regard, “bagging” and “boosting” were respectively employed to 140 

develop the two tree ensembles. In bagging (also referred to as bootstrap aggregating), numerous versions of 141 

the training set are formed via bootstrap sampling, with each used to train a decision tree, and the predictions 142 

from the various trees are aggregated to make a final prediction. Given this resampling and averaging, bagging 143 

tends to minimize the prediction variance and reduce overfitting, relative to other ensembling methods. In 144 

boosting, a sequence of decision trees is built from weaker trees, wherein each tree attempts to learn from the 145 

prior trees by increasing the weight on observations that were poorly predicted. In this way, the most difficult 146 

cases are emphasized, such that subsequent models focus on them more. In contrast to bagging, the models 147 
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that perform best are weighted most. While boosting is slow, it may maximize accuracy relative to other 148 

ensembling techniques, albeit at the expense of overfitting (Piryonesi and El-Diraby, 2021).  149 

The last of the three adopted models was a GPR model. In contrast to other ML techniques that learn exact 150 

values, both for a model’s parameters and for its output, GPR infers probability distributions via the Bayesian 151 

approach and is nonparametric. An important ingredient of GPR models is the prior assumption, or kernel 152 

(also called the covariance function in the context of GPR), which describes how a model’s predictions are 153 

related, given different inputs. We ultimately adopted a squared exponential kernel function, which is the 154 

default in many ML toolkits (e.g., Duvenaud, 2014), and which results in a “smooth” model, rather than one 155 

in which non-differentiable behavior (e.g., multilinearity) is permitted. Benefits of GPR include the ability to 156 

impart judgment via the kernel and its intrinsic use of interpolation, which makes GPR relatively less reliant 157 

on a large dataset. On the random test set (i.e., the 20% of VS30 data held from training), the bagged ensemble, 158 

boosted ensemble, and GPR models had respective mean absolute errors (MAEs) of 112 m/s, 118 m/s, and 159 

110 m/s, whereas the AW09 model had an MAE of 171 m/s. This represents an average improvement of 34%. 160 

The mean square errors (MSEs) suggest larger improvements, with the three respective models reducing MSE 161 

by 52%, 51%, and 50%, relative to AW09.  162 

Finally, while the three adopted models perform well individually, we used “meta-learning” to combine 163 

them (Dzeroski and Zenko, 2004). Also known as “stacking”, this approach recognizes that the base models, 164 

which were each developed using different approaches, may be more (or less) effective in different situations. 165 

The GPR model, for example, has the lowest MAE but the largest MSE, meaning that it prioritizes accuracy 166 

at the expense of some large outliers. Stacking can result in a meta-model that performs better than any base 167 

predictor and which is more stable (i.e., it avoids large swings on account of which model is chosen). While 168 

stacking refers to a specific ML technique, the basic concept is ubiquitous in natural hazards modeling (e.g., 169 

ensembling of ground motion or hurricane models in a logic tree). Starting with the three base models, the 170 

training set was again partitioned for 5-fold cross-validation. The out-of-fold predictions (i.e., the validation 171 

data) were then used to train the meta-model using a bagging algorithm. In other words, the base models were 172 

optimally coalesced through analysis of their out-of-fold predictions. The resulting meta-model, henceforth 173 
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termed “Model 1,” achieved an MAE of 108 m/s on the unbiased test set and reduced the MSE by 55% relative 174 

to AW09. While these additional improvements are minor, the generalization that results from stacking could 175 

provide other, unrealized benefits during forward application. The overall improvement relative to AW09 is 176 

summarized in Table 2, which compiles MAE values binned on VS30 and topographic slope. Model 1 has lower 177 

MAE across all VS30 and all slopes, but especially for VS30 < 180 m/s and 537 < VS30 < 2000 m/s. This may be 178 

attributable to: (i) AW09’s truncation of low VS30 predictions at 180 m/s; and (ii) the predictors used by Model 179 

1 (e.g., geology) that help to distinguish when relatively flat ground is rock rather than soil, where the latter is 180 

the default assumption of slope-based models.  181 

Plotted in Figure S1 of the electronic supplement are measured vs. predicted VS30 values for the compiled 182 

dataset, both for Model 1 and AW09. The corresponding prediction residuals, defined as r = ln 183 

(observed/predicted), are in Figure 2. Also shown via green lines are the residual standard deviations, 184 

computed as 0.218 and 0.555 for Model 1 and AW09, respectively. Model 1 residuals are thus less dispersed 185 

(e.g., R2 = 0.72 vs. 0.02) and minimally biased, whereas AW09 tends to overpredict lower VS30 values and 186 

underpredict higher VS30 values. It can similarly be shown that the Model 1 residuals are unbiased with respect 187 

to each input variable. In this regard, residuals are plotted vs. each numerical input in Figure S2. Collectively, 188 

the results suggest that Model 1 warrants adoption and further evaluation as a national background model.     189 

While simplified interpretations of model structure are often infeasible with ML (i.e., relative to traditional 190 

regression), insights can be gained via the computed predictor importance (e.g., Auret and Aldrich, 2011), 191 

which may be interpreted as each variable’s relative contribution to the accuracy of a model. Accordingly, the 192 

relative importance of each variable was computed and is plotted in Figure 3, where variables are sorted from 193 

most to least important. This approach to model interpretation was also used by Durante and Rathje (2021) 194 

and Geyin et al. (2022), who developed ML models for liquefaction-induced ground failure. The most 195 

influential variables in Model 1 include the predicted depth to bedrock, measured topographic slope, three 196 

different indices of surface roughness, and the mapped geologic unit and geomorphologic phonotype. These 197 

predictors are ~3-5 times more influential than the least important variable – distance to river. These results 198 

also reflect both the utility and insufficiency of topographic slope, which is useful, but which alone cannot 199 
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predict when flat ground is relatively hard or when sloping ground is relatively soft. Lastly, these results have 200 

important implications for forward mapping, given that spatial biases or discontinuities in important variables 201 

(e.g., a mispredicted depth to bedrock or surface geology) can be expected to cause similar problems in the 202 

predicted VS30. 203 

Using Model 1, VS30 predictions were next mapped throughout the contiguous US, wherein regression 204 

kriging (Hengl et al., 2007) of model residuals was used to update predictions in the vicinity of measurements 205 

(i.e., to bring them into agreement). With this approach, which was used by Thompson et al. (2014) to map 206 

VS30 in California, a model trained on various predictors (i.e., “regression”) is combined with spatial 207 

interpolation of that model’s residuals (i.e., “kriging”). Thus, the residuals are predicted at unsampled locations 208 

using nearby measurements (where residuals are known) and are used to update the model’s predictions in the 209 

vicinity. Defining the residuals as r = ln (observed/predicted), which pass the Lilliefors (1967) test for 210 

normality, an exponential semivariogram model was selected for its best fit of the data: 211 

 𝑆𝑒𝑚𝑖𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (ℎ) =  𝑐0 (1 − 𝑒
−ℎ

𝑎⁄ )                                                     (1) 212 

Where 𝑐0 and 𝑎 are respectively the semivariogram sill and range, defined as 𝑐0 = 1.1576 and 𝑎 = 4.7667, and 213 

h is the separation distance between locations. This semivariogram and its fit of the empirical data are shown 214 

in Figure S3. Using this information, which describes spatial correlation, residuals were predicted nationally. 215 

As a representative example, the krigged residuals are shown in Figure 4 for the Puget Sound region of 216 

Washington State. Predicted residuals approach the computed residual at sites of VS30 measurement and 217 

attenuate with distance toward zero (i.e., the model’s mean residual). The rate of this attenuation is controlled 218 

by the semivariogram in Eq. (1). Similarly, the standard deviation of the krigged residual approaches zero at 219 

measurement locations (reflecting the “known” error) and increases to σ = 0.218 (i.e., the overall model 220 

uncertainty) at locations far away. It should be noted, however, that the semivariance at a separation distance 221 

of zero (i.e., the nugget) is zero in Eq. (1), meaning that VS30 measurement uncertainties are not considered. 222 

Additionally, the nugget could contain small-scale spatial uncertainty (i.e., variability in VS30 over a distance 223 
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that is greater than zero, but smaller than the smallest separation distance in the dataset). In other words, VS30 224 

may not be uniform over an individual cell/pixel in the resulting VS30 map. However, because the nugget is 225 

poorly constrained by the data (e.g., see Figure S3) and would require additional measurements and/or 226 

subjectivity to define, it is neglected in the present effort. Had the nugget been non-zero, the mapped VS30 227 

values at sites of VS30 measurement would not equal the measured values (i.e., the ML model prediction would 228 

be given more weight) and the uncertainties would not be zero. This issue can and should be revisited in the 229 

future. Measurement uncertainties, for example, could be assigned via regression kriging or the multivariate 230 

normal method (Worden et al., 2018; Foster et al., 2019). The primary benefit of the latter is that it allows for 231 

site-specific uncertainty assignments, although this would require a rigorous, judgment-based analysis of the 232 

more than 7,000 VS30 measurements.  233 

A national VS30 map was next created by computing the product VS30*exp(r), where VS30 is the prediction 234 

from Model 1 and r is the krigged residual. This process scales the prediction up or down in the vicinity of 235 

measurements, thereby correcting for local or sub-regional prediction bias (e.g., where VS30 is mispredicted at 236 

a site or across a city). It should be noted, however, that biases at larger scales (e.g., state-scale) were not 237 

observed. As a representative example, the resulting krigged VS30 map is shown in Figure 5 for the Puget Sound 238 

and is compared to AW09. Aside from local VS30 discrepancies, the most notable difference is the shift in 239 

predicted VS30 across mountainous terrain, with AW09 consistently predicting higher VS30 on steeper slopes.  240 

As previously mentioned, the compiled dataset is biased toward sites that are flatter and softer, with very 241 

few measurements in mountainous terrain. Plotted in Figure S4 of the electronic supplement, for example, is 242 

the cumulative distribution of the compiled data with respect to slope, which indicates that ~5% of 243 

measurements are from sites >5˚ slope. This is because VS30 is of greatest interest where infrastructure exists 244 

(flatter ground), and where subsurface conditions have the potential to alter ground motions (soil sites). 245 

Although the test data from steeper terrain and harder sites indicate that Model 1 outperforms AW09 (see 246 

Table 2), these predictions should nonetheless be viewed skeptically, given the paucity of data. Our 247 

interpretation is that the AW09 model was based on judgement for steeper slopes and was not strictly a 248 

regression of the VS30 data then available. Inspection of the AW09 data, for example, reveals that the AW09 249 
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model tended to severely overpredict the measured VS30 values for slopes exceeding ~6˚. This departure from 250 

the data – seemingly driven by a belief that VS30 values must be higher than suggested by the limited data – 251 

likely explains the difference across mountainous terrain illustrated in Figure 5. Whereas AW09 purposefully 252 

mispredicted the measured values on steeper slopes, the models developed herein do not. Mirroring AW09, 253 

however, it is also our judgement that Model 1 generally underpredicts VS30 on steep slopes. While predictions 254 

on steeper slopes are generally less consequential for engineering purposes, we created an alternative map 255 

termed “Model 1alt.” Here, Model 1 is heuristically blended with AW09 using a weighting scheme in which 256 

Model 1 predictions are adopted for slopes ≤ 5˚, AW09 predictions are adopted for slopes ≥ 10˚, and otherwise: 257 

𝑉𝑆30 = 𝑀𝑜𝑑𝑒𝑙 1 ∗ (−
1

5
∗ (𝑠𝑙𝑜𝑝𝑒) + 2) + 𝐴𝑊09 ∗ (

1

5
∗ (𝑠𝑙𝑜𝑝𝑒) − 1)                              (2) 258 

where VS30 is the Model 1alt prediction and slope is measured in degrees. This scheme is based on the data 259 

available for analysis (see Figure S4) but is ultimately subjective. While the performance of Model 1alt is 260 

slightly less than that of Model 1, it is our judgement that the blended predictions are more reasonable across 261 

the full domain of topographic slope, given that steep slopes are almost necessarily comprised of rock. 262 

Ultimately, additional measurements are needed from steeper slopes, or else judgement must continue to be 263 

relied upon. An example of the Model 1alt map is shown in Figure 6 for the Puget Sound. Both the original 264 

and alternative maps can be downloaded as ~220 m resolution geotiff files from Geyin and Maurer (2022) (see 265 

Data and Resources) and provide continuous coverage of the contiguous U.S. 266 

Although the developed model, with 17 predictors, performs better than any other on the training and 267 

unbiased test data, it: (i) covers only the contiguous U.S., given the extents of the Horton et al. (2017) geology 268 

compilation; and (ii) results in discontinuities at a few state borders, an example of which at the Nebraska-269 

Kansas border is shown in Figure S5. While the first of these problems could be rectified by augmenting the 270 

Horton et al. (2017) national compilation with additional maps, the latter problem, which results in minor but 271 

unreasonable shifts in the predicted VS30, would be resolved only through a rigorous reinterpretation of the 272 

state source maps. Given these problems, the preceding effort for Model 1 was repeated without surface 273 
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geology (i.e., the mapped geologic unit and consolidation state). The resulting model, henceforth termed 274 

“Model 2,” achieved an MAE of 115 m/s on the unbiased test set (vs. 108 m/s by Model 1 and 171 m/s by 275 

AW09) and reduced the MSE by 49% relative to AW09 (vs. a 55% reduction by Model 1). Thus, while surface 276 

geology is useful, Model 2 provides a serviceable alternative given the stated limitations. Following the same 277 

methodology, the relative predictor importance was computed for Model 2 and is shown in Figure S6. The 278 

ranking of variables is very similar to Model 1 (see Figure 3), except for: (i) the absence of surface geology; 279 

and (ii) a slight upward shift in the importance of groundwater depth, which suggests that it provides additional 280 

utility in the absence of geologic mapping. This is unsurprising, given that surface geology and groundwater 281 

depth are correlated under certain conditions. 282 

Analogous to Figure 2, the Model 2 prediction residuals, defined as r = ln (observed/predicted), are plotted 283 

in Figure S7 and have a standard deviation of 0.264 (vs. 0.218 for Model 1 and 0.555 for AW09). Again, use 284 

of surface geology is beneficial, but a large improvement over slope-based methods is still achieved in its 285 

absence. Finally, following the prior methodology, two maps were created using regression kriging to update 286 

Model 2 in the vicinity of field measurements. The semivariogram defining the spatial correlation of Model 2 287 

residuals is shown and defined in Figure S8. Using the weighting scheme given in Eq. (2) the Model 2 map 288 

was blended with AW09, such that predictions shift toward AW09 predictions at larger topographic slope, 289 

creating “Model 2alt.” Both the original and alternative maps (Model 2 and Model 2alt) can be downloaded 290 

from Geyin and Maurer (2022) and provide continuous coverage of the 50 U.S. states and Puerto Rico at 291 

~220 m resolution. While the Model 1 and Model 2 maps are provided for transparency into the modeling 292 

process, we recommend adoption and further testing of the Model 1alt and Model 2alt products, the first of 293 

which is mapped in Figure 7 for the contiguous U.S. 294 

Limitations, Uncertainties, and Future Work 295 

The developed models are inherently tied to the data compiled for analysis. While this is true of any model, it 296 

is especially true of empirical models, given the lack of mechanistic links between the prediction variables and 297 

target. ML models are unfortunately no exception. As with any empirical model trained by finite data, 298 
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correlations do not necessarily indicate causality and may not necessarily transfer to larger datasets. While 299 

several techniques were used to mitigate overfitting, including the use of an unbiased test set, k-fold cross 300 

validation, and model stacking, additional data is inevitably needed to confirm and/or improve model 301 

portability. Thus, while Models 1 and 2 improve upon a national slope-based model in unbiased tests, their 302 

performance in data-poor regions cannot be known. The models should be used cautiously in these locations 303 

(e.g., Colorado, Florida, etc.), where the model uncertainty may exceed that suggested by the presented test 304 

statistics, given that neither the training nor test data represent those locales. Nonetheless, the merits of the 305 

presented approach and models, which warrant adoption and further testing alongside other solutions, are 306 

arguably compelling. In the future, this approach could be improved in several ways.  307 

First, it is obvious that more VS30 data is desirable, both for training and testing models, and for anchoring 308 

model predictions at sites of measurement. There is also currently a strong imbalance towards sites that are 309 

flatter and softer, where there is more interest in measuring VS30. There is almost a complete lack of 310 

measurements from seismic site class A, for example, which is problematic for the Central and Eastern U.S. 311 

This imbalance results in models with questionable performance at very hard sites and on steep slopes. While 312 

oversampling of underrepresented data was attempted during model development, there is so little data at high 313 

VS30 and on steep slopes that resampling a very small amount of data a very large number of times produces 314 

an overfit model. To circumvent this problem, we prefer judgment-based estimates on steep slopes, following 315 

from AW09. Neither oversampling nor judgment are ideal, of course, and the problem ultimately awaits 316 

additional data. Second, it is well known that ML (like any algorithmic, or “AI,” learning technique) can make 317 

strong models, but is generally weak in explaining the “why.” It can be difficult, for example, to explain the 318 

influences and interactions of variables, or the physical structure of the resulting model. This is particularly 319 

true when multiple models are “stacked” to produce an ensemble that is more effective, but also more 320 

convoluted. Thus, focused efforts to identify new geospatial variables that more efficiently and sufficiently 321 

correlate to VS30 are warranted and could produce additional gains.  322 

Third, the models rely on the accuracy and spatial resolution of inputs, some of which are themselves 323 

predictions (e.g., depth to bedrock, surface geology). Mispredictions may therefore occur in the vicinity of 324 
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geomorphic transitions (e.g, at the base of a mountain, as in Salt Lake City, UT), where the resolution of input 325 

variables may not capture local conditions, or where one or more variables is inaccurate (e.g., among other 326 

examples, the unmapped presence of artificial fill, as in Seattle, WA). The adopted approach should therefore 327 

improve as the accuracy and resolution of the geospatial predictors improves. Fourth, the uncertainties of VS30 328 

measurements, which are especially non-trivial for surface-wave inversion methods, were not included in the 329 

present effort but could be in the future, as could uncertainty more broadly (also neglected, for example, is the 330 

small-scale spatial variability than may occur across a map pixel). Fifth, regression kriging is one of several 331 

approaches for updating predictions with field data. Other methods (e.g., Worden et al., 2018; Foster et al., 332 

2019) may provide advantages in certain situations, such as when site-specific measurement uncertainties are 333 

available. Moreover, the geostatistical updating was not bound by predictor variables, but potentially should 334 

be. As one example, an underpredicted VS30 in a unit mapped as igneous rock shouldn’t necessarily suggest 335 

that VS30 is also underpredicted 1 km away in a unit mapped as alluvium, contrary to what a univariate 336 

semivariogram suggests. This possibility could be evaluated in the future. While improvements are inevitably 337 

warranted, this study demonstrated the utility of ML for inferring VS30 from geospatial information. Ultimately, 338 

more data and future research will confirm or update the findings presented herein and succinctly summarized 339 

below.    340 

Conclusions 341 

While not a panacea for describing seismic site conditions and response, VS30 is an important input parameter 342 

for many earthquake applications. This paper developed U.S. national VS30 models using ML and geospatial 343 

information. Using these models, predictions were mapped at national scale and updated in the vicinity of field 344 

measurements. Of the resulting maps, Model 1alt and Model 2alt, which each defer to existing models on 345 

steeper slopes, are recommended. Of these, Model 1alt performed slightly better, but requires geologic 346 

information that may be unavailable or otherwise problematic. Based on the presented tests, these maps 347 

warrant adoption and further evaluation alongside existing solutions. More broadly, the approach employed 348 
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herein can be applied to other subsurface data and objectives (e.g., predicting liquefaction, as demonstrated by 349 

Geyin et al., 2022).  350 

Data and Resources 351 

All data analyzed in this study is publicly available, as described and referenced in the text. The resulting VS30 352 

maps are downloadable from Geyin and Maurer (2022) (https://doi.org/10.17603/ds2-80d8-9m83). 353 

Supplemental Material for this article includes additional figures and tables, as described in the main text.   354 
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Figure 1. Spatial distribution of VS30 measurements in the contiguous U.S. 
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Figure 2. Prediction residuals [ln (observed/predicted)] computed for (a): Model 1; and (b) AW09. The green 

bands depict the standard deviations of the residuals for each model. 
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Figure 3. Relative predictor importance ranking for Model 1. 
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Figure 4. Krigged residuals in the Puget Sound region of Washington State. 
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Figure 5. VS30 predicted by: (a) Model 1 with residual kriging; and (b) AW09 in the Puget Sound.  
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Figure 6. VS30 predicted by Model 1alt with residual kriging in the Puget Sound.  
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Figure 7. VS30 predicted by Model 1alt with residual kriging in the contiguous United States.  
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Table 1. Range, spatial resolution, and sources of predictor variables in the dataset. 

Variable (Units) Source Range in Dataset Spatial Resolution 

Depth to bedrock (cm) Shangguan et al. (2017) 0 to 43,437  250 m 

Depth to groundwater (m) Fan & Miguez-Macho (2020) 0 to 216 ~1000 m (30 arc-sec) 

Geologic unit  Horton et al. (2017) Categorical 25 m to 500 m (varies) 

Consolidation state Horton et al. (2017) 0 or 1 25 m to 500 m (varies) 

Distance to river (m) Lehner and Grill (2013) 0 to 8.4 x 104  ~90 m (3 arc-sec) 

Compound topographic index Verdin et al. (2017) 484 to 2858 ~90 m (3 arc-sec) 

Geomorphologic phonotype 

Amatulli et al. (2018) 

Categorical ~1000 m (30 arc-sec) 

Topographic slope (%) 0 to 26.7 ~1000 m (30 arc-sec) 

Topographic position index -37.38 to 22.94 ~1000 m (30 arc-sec) 

Profile curvature  -0.0012 to 0.0013 ~1000 m (30 arc-sec) 

Tangential curvature 
 -9.0577 x 10-4 to 

9.35069 x 10-4 
~1000 m (30 arc-sec) 

Roughness 0 to 284 ~1000 m (30 arc-sec) 

Terrain ruggedness index 0 to 90.88 ~1000 m (30 arc-sec) 

Vector ruggedness measure 0 to 0.0457 ~1000 m (30 arc-sec) 

Landform entropy 0 to 2.9572 ~1000 m (30 arc-sec) 

Landform uniformity 0.0536 to 1 ~1000 m (30 arc-sec) 

Landform Shannon index 0 to 2.0467 ~1000 m (30 arc-sec) 
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Table 2. Mean absolute errors (MAE), binned on VS30 and topographic slope, for the unbiased test set. 

Bin 

Variable 

Bin 

Range 

Model 1 

MAE 

(m/s) 

AW09 

MAE 

(m/s) 

Improvement 

(%) 

VS30 

(m/s) 

0-180 55.64 164.76 66.23 

180-259 55.84 57.38 2.70 

259-360 77.65 84.61 8.23 

360-537 98.43 126.09 21.93 

537-760 148.32 239.39 38.04 

760-1150 296.73 520.70 43.01 

1150-2000 531.23 1055.53 49.67 

>2000 1484.25 1700.35 12.71 

Slope 

(deg) 

0.00-0.13 39.26 46.03 14.70 

0.13-0.21 44.08 76.05 42.04 

0.21-0.30 88.51 140.10 36.82 

0.30-0.40 101.93 200.77 49.23 

0.40-0.55 101.94 159.17 35.96 

0.55-0.78 119.46 198.80 39.91 

0.78-1.24 155.38 280.24 44.56 

>1.24 168.70 200.95 16.05 
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Figure Captions 

Figure 1. Spatial distribution of VS30 measurements in the contiguous U.S. 

Figure 2. Prediction residuals [ln (observed/predicted)] computed for (a): Model 1; and (b) AW09. The 

green bands depict the standard deviations of the residuals for each model. 

Figure 3. Relative predictor importance ranking for Model 1. 

Figure 4. Krigged residuals in the Puget Sound region of Washington State. 

Figure 5. VS30 predicted by: (a) Model 1 with residual kriging; and (b) AW09 in the Puget Sound.  

Figure 6. VS30 predicted by Model 1alt with residual kriging in the Puget Sound.  

Figure 7. VS30 predicted by Model 1alt with residual kriging in the contiguous United States.  

 

Table Captions 

Table 1. Range, spatial resolution, and sources of predictor variables in the dataset. 

Table 2. Mean absolute errors (MAE), binned on VS30 and topographic slope, for the unbiased test set. 
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