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U.S. National Vs3p Models and Maps Informed by Remote Sensing and Machine Learning

Geyin, M.! and Maurer, B.W .2

Abstract: The shear-wave velocity time-averaged over the upper 30 m (Vs39) is widely used as a proxy for
site effects, forms the basis of seismic site class, and underpins site-amplification factors in empirical ground-
motion models. Many earthquake simulations therefore require V3. This presents a challenge at regional scale,
given the infeasibility of subsurface testing over vast areas. While various models for predicting V3o have thus
been proposed, the most popular U.S. national, or “background,” model is a regression equation based on just
one variable. Given the growth of community datasets, satellite remote sensing, and algorithmic learning, more
advanced and accurate solutions may be possible. Towards that end, we develop national V3 models and
maps using field data from over 7,000 sites and machine learning (ML), wherein up to 17 geospatial parameters
are used to predict subsurface conditions (i.e., Vs3g). Of the two models developed, that using geologic data
performs marginally better, yet such data is not always available. Both models significantly outperform
existing solutions in unbiased testing and are used to create new V3 maps at ~220 m resolution. These maps
are updated in the vicinity of field measurements using regression kriging and cover the 50 U.S. states and
Puerto Rico. Ultimately, and like any model, performance cannot be known where data is sparse. In this regard,
alternative maps that use other models are proposed for steep slopes. More broadly, this study demonstrates
the utility of ML for inferring below-ground conditions from geospatial data, a technique that could be applied

to other data and objectives.

Introduction

Subsurface seismic-wave velocities (e.g., shear-wave velocity, Vs) affect the amplitude, duration, and

frequency content of ground motions. Measurements or estimates of these velocities are thus needed to predict
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ground motions and, by consequence, earthquake impacts. Ideally, these velocities would be obtainable: (i)
quickly (i.e., by time- and cost-efficient means); (ii) at high spatial resolution (e.g., consistent with the scale
at which subsurface velocities change); and (iii) over the spatial extents that experience strong motion (e.g., a
metropolitan region). Problematically, state-of-practice methods for measuring Vs typically result in discrete,
1D Vs-profiles that require considerable time and cost. As a result, it is infeasible to measure Vs over vast areas,
as would be required for regional earthquake simulations. Even in cases where Vs is needed for important, site-
specific purposes (e.g., at seismic-recording stations, to develop empirical ground motion models, or GMMs),

it is often the case that Vs is estimated, rather than measured (e.g., Ahdi et al., 2017).

Accordingly, efforts have been made to predict Vs profiles remotely (e.g., Boore and Joyner, 1997; Holzer
et al., 2005; Wald and Allen, 2007; Castellaro et al., 2008; Boore et al., 2011; Thompson et al., 2014; Parker
et al., 2017; Foster et al., 2019; Yu, 2021). These efforts have mostly focused on predicting the time-averaged
Vs in the upper 30 m (Vs3¢), which: (i) is widely used as a proxy for site effects; (ii) forms the current basis of
seismic site class; (iii) underpins site-amplification functions (e.g., Stewart et al., 2017); and (iv) is a required
input to all modern empirical GMMs. V3 thus serves an important role in regional earthquake simulations,
post-earthquake data products (e.g., Worden et al., 2010), site-specific hazard analyses, and indirectly, the
National Seismic Hazard Model (Petersen et al., 2019), given the need for Vi3 at strong-motion stations when
developing GMMs. At present, a patchwork of V3 models is used in the U.S., with the national “background,”
model adopted by the U.S. Geological Survey (Heath et al., 2020) being a regression equation with one input
— topographic slope (e.g., Wald and Allen, 2007; Allen and Wald, 2009). The underlying, seminal concept —
that flat ground tends to be soft and steep ground tends to be hard — is quite useful, but also often inefficient
and/or insufficient for predicting Vssg. Several regional models have thus aimed to improve on this approach,
generally by using higher-resolution elevation models, more advanced statistical schemes, and/or by binning
the data on mapped geology (e.g., Ahdi et al., 2017; Wills and Clahan, 2006; Thompson et al., 2014; Li and
Rathje, 2020). Considering the growth of community geophysical datasets, satellite remote sensing, and
algorithmic learning, more advanced and accurate solutions may yet be achievable, both at national and

regional scales.
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Toward that goal, this paper develops U.S. national Vs3p models and maps using machine learning (ML),
wherein 17 above-ground geospatial variables are used to predict below-ground Vs3g. Examples of geospatial
predictor variables, which are obtained from remote-sensing and existing mapped information, include
topographic slope and various topographic indices; distance to rivers, streams, and other water bodies; and
various values describing or predicting geology, hydrology, lithology, climate, etc. While such predictors lack
mechanistic links to Vi3, they correlate in complex and interconnected ways — an ideal application for ML.
Although the concept of a “geospatial” Vss3p model is not new — all existing models could be described this way
— neither algorithmic learning nor a large quantity of predictors has previously been used (whether at national
or regional scale). In this regard, accurate prediction of subsurface conditions likely requires many variables,
as suggested by Iwahashi et al. (2010), Yong et al. (2012), and Zhu et al. (2015; 2017) (i.e., more than
topographic slope), but traditional regression requires hypotheses of what is believed to matter and how,
limiting the number of variables easily modeled. Because such beliefs are unnecessary with ML, it can provide
learning insights that are unlikely, if not infeasible, with traditional techniques. The adopted approach thus
allows for a large body of predictive information to be utilized, with more potential for that information to be
exploited. In the following, the data and methodology are first described, after which the trained ML models
are compared via unbiased tests against the national “background” model of Wald and Allen (2007) and Allen
and Wald (2009), as implemented by Heath et al. (2020a,b). For brevity, we refer to this slope-based model as
Allen and Wald (2009), or AW09. The resulting map products, which are updated in the vicinity of field

measurements using regression kriging, are then presented.

Data and Methodology

A total of 7,081 Vs3p measurements were selected for analysis, as mapped in Figure 1 for the contiguous U.S.
Not shown are 24 measurements in Hawaii, 23 in Puerto Rico, and 15 in Alaska. While these data represent a
range of geographic and geologic settings, they are biased toward densely populated, high-seismicity regions
where there is greater need for Vs data. As a result, some U.S. states are unrepresented in model training and

testing, a limitation that is shared by all existing national models. In addition, and as will be discussed further,
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the compiled data are biased with respect to both topographic slope, with <10% of measurements made on
terrain with >3° slope, and soil sites, with <10% of measurements having Vs3> 760 m/s.

Significant Vg3 data sources included the McPhillips et al. (2020), Parker et al. (2017), and Ahdi et al.
(2017) compilations. The authors also computed and added Vs3y values from profiles unrepresented in other
large compilations. This augmented the available Vg3 data by 1,021 points. Larger sources of such data
included Kayen et al. (2011), Salomone et al. (2012), and Kwak et al. (2021). In computing Vs3p from Vs
profiles, the extrapolation method of Boore et al. (2011) was applied to profiles that did not reach 30 m depth.
While this increases the measurement uncertainty at certain sites, it was deemed acceptable, given the
incomplete coverage of Vssp data at national scale. Of the compiled data, 80% was randomly selected for model
training and the remaining 20% was held for unbiased testing. While the definition of a truly unbiased test is
debatable (e.g., test sites are occasionally located near training sites), it should be noted that the AW09 model
against which comparisons will be made was originally trained using much of the data compiled herein for
testing. As a result, the ensuing tests are likely biased in favor of the existing AW09 model. Finally, it must be
emphasized that empirical models can be particularly unreliable when encountering unfamiliar regions or
features. The limits and resolution of each predictor variable — introduced below — should thus be understood
by users.

In the current effort, either 15 or 17 predictor variables were compiled at the sites of Vs data. These
consisted of: the depths to (1) bedrock and (2) groundwater, as predicted by geospatial models trained on ~1.6
million global field measurements; the mapped (3) geologic unit and (4) consolidation state; the (5) classified
geomorphologic phonotype (consisting of landforms that include valley, depression, hollow, footslope, flat,
and others); the measured (6) distance-to-river, (7) compound topographic index (which describes the
hydrologic environment), and (8) topographic slope; the (9) profile curvature and (10) tangential curvature;
the computed (11) topographic position index, (12) roughness, (13) terrain ruggedness index, and (14) vector
ruggedness measure (which collectively describe the profile and heterogeneity of the surface terrain); and
lastly, the geomorphologic landform’s (15) Shannon diversity index, (16) uniformity, and (17) entropy (which
collectively describe the diversity and spatial distribution of geomorphons in a sample area). The range,
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resolution, and source of each variable are in Table 1; the reader is referred to these respective sources for
methodological details and background information on all 17 variables. Supplemental Table S1 also provides
additional descriptions and citations for each variable. The goal of these variables, which predominantly use
above-ground data, is to predict below-ground conditions.

Except for the geologic unit and consolidation state, which were sampled from the Horton et al. (2017)
U.S. national geologic map compilation, all variables are continuously available in North America, and in
many cases, have global coverage. While surface geology ultimately resulted in a marginally better model, the
Horton et al. (2017) compilation does not include Alaska, Hawaii, or Puerto Rico. Additionally, it will be
shown that undesirable transitions occur at a few state boundaries, where differences in the state source maps
result in different mapped geologies on either side of a state line, and by corollary different V3. For these
reasons we ultimately present two map products — one that includes mapped surface geology (“Model 17,
which performs slightly better), and one that does not (“Model 2”). The geologic unit is also a unique feature
in that it was reclassified, whereas all other variables were used directly as sampled. Specifically, we: (i)
grouped all sedimentary, igneous, and metamorphic rock units; and (ii) of the remaining units applicable to
soils, selectively excluded those sparsely populated with V3 data. In this regard, sites that do not map as either
a type of rock or as alluvial, fluvial, glacial, lacustrine, peat, or terrace deposits are implicitly treated as general,
unknown soil deposits; additional classification details are provided in supplemental Table S2. In addition to
the predictors in Table 1, several others, including annual precipitation (Fick and Hijmans, 2017), distance to
coastline (NASA, 2020), deposit age (Horton et al. (2017), and regional flags (e.g., Western US vs. Eastern
US) did not improve performance and were not adopted. This apparent lack of utility could potentially change
for some variables if more field data were available. The futility of geologic age and regional flags, for
example, might be explained by the lack of V3 measurements at rock sites, particularly from seismic site class
A (e.g., <1% of the data has Vsszp > 1225 m/s).

Having compiled V39 data and predictor variables, numerical predictors were BoxCox transformed (Box
and Cox, 1964) and normalized to have values between 0 and 1 to reduce spurious interactions among
predictors. Several ML techniques were used to train prospective models, including support vector machines
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(e.g., Vapnik, 1995), Gaussian process regression (GPR) (e.g., Rasmussen, 2003), decision trees (e.g., Rokach
and Maimon, 2008), and decision tree ensembles constructed by gradient boosting, bagging, or random forests
(e.g., Breiman, 1996; Piryonesi and El-Diraby, 2021). Of the resulting models, those that are easier to interpret
tend to have lesser accuracy and portability (e.g., an individual decision tree), while those that tend to perform
best (e.g., tree ensembles) are more convoluted. Once promising techniques were identified, the internal
parameters of those techniques (i.e., “hyperparameters’) were optimized to minimize the prediction error. 5-
fold cross-validation was used to evaluate and mitigate overfitting, as is common. The particulars of the

developed models are further described in the following.

Results and Discussion

Using the training set and all 17 predictor variables (i.e., including surface geology), many provisional
models were trained. Of these, three were adopted for optimization and testing. Two were ensembles of 200
decision trees each, where relatively weak decision tree models were combined to build a stronger model.
When a decision tree is trained, recursive decision forks are formed, such that a specific combination of model
inputs maps to an expected output. However, because an individual tree is typically neither accurate nor
portable (i.e., it is prone to overfitting), trees are generally ensembled. This modeling approach, which is found
in popular ML toolkits (e.g., TensorFlow, Scikit, PyTorch), is reviewed by Friedman (2001) and practically
demonstrated in detail by Elith et al. (2008). A primary distinction of tree ensembles is how the individual
models are trained and combined. In this regard, “bagging” and “boosting” were respectively employed to
develop the two tree ensembles. In bagging (also referred to as bootstrap aggregating), numerous versions of
the training set are formed via bootstrap sampling, with each used to train a decision tree, and the predictions
from the various trees are aggregated to make a final prediction. Given this resampling and averaging, bagging
tends to minimize the prediction variance and reduce overfitting, relative to other ensembling methods. In
boosting, a sequence of decision trees is built from weaker trees, wherein each tree attempts to learn from the
prior trees by increasing the weight on observations that were poorly predicted. In this way, the most difficult

cases are emphasized, such that subsequent models focus on them more. In contrast to bagging, the models
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that perform best are weighted most. While boosting is slow, it may maximize accuracy relative to other
ensembling techniques, albeit at the expense of overfitting (Piryonesi and El-Diraby, 2021).

The last of the three adopted models was a GPR model. In contrast to other ML techniques that learn exact
values, both for a model’s parameters and for its output, GPR infers probability distributions via the Bayesian
approach and is nonparametric. An important ingredient of GPR models is the prior assumption, or kernel
(also called the covariance function in the context of GPR), which describes how a model’s predictions are
related, given different inputs. We ultimately adopted a squared exponential kernel function, which is the
default in many ML toolkits (e.g., Duvenaud, 2014), and which results in a “smooth” model, rather than one
in which non-differentiable behavior (e.g., multilinearity) is permitted. Benefits of GPR include the ability to
impart judgment via the kernel and its intrinsic use of interpolation, which makes GPR relatively less reliant
on a large dataset. On the random test set (i.e., the 20% of V39 data held from training), the bagged ensemble,
boosted ensemble, and GPR models had respective mean absolute errors (MAEs) of 112 m/s, 118 m/s, and
110 m/s, whereas the AW09 model had an MAE of 171 m/s. This represents an average improvement of 34%.
The mean square errors (MSEs) suggest larger improvements, with the three respective models reducing MSE
by 52%, 51%, and 50%, relative to AW09.

Finally, while the three adopted models perform well individually, we used “meta-learning” to combine
them (Dzeroski and Zenko, 2004). Also known as “stacking”, this approach recognizes that the base models,
which were each developed using different approaches, may be more (or less) effective in different situations.
The GPR model, for example, has the lowest MAE but the largest MSE, meaning that it prioritizes accuracy
at the expense of some large outliers. Stacking can result in a meta-model that performs better than any base
predictor and which is more stable (i.e., it avoids large swings on account of which model is chosen). While
stacking refers to a specific ML technique, the basic concept is ubiquitous in natural hazards modeling (e.g.,
ensembling of ground motion or hurricane models in a logic tree). Starting with the three base models, the
training set was again partitioned for 5-fold cross-validation. The out-of-fold predictions (i.e., the validation
data) were then used to train the meta-model using a bagging algorithm. In other words, the base models were
optimally coalesced through analysis of their out-of-fold predictions. The resulting meta-model, henceforth
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termed “Model 1,” achieved an MAE of 108 m/s on the unbiased test set and reduced the MSE by 55% relative
to AW09. While these additional improvements are minor, the generalization that results from stacking could
provide other, unrealized benefits during forward application. The overall improvement relative to AW09 is
summarized in Table 2, which compiles MAE values binned on Vs3 and topographic slope. Model 1 has lower
MAE across all V30 and all slopes, but especially for Vs < 180 m/s and 537 < V39 < 2000 m/s. This may be
attributable to: (i) AW09’s truncation of low V39 predictions at 180 m/s; and (ii) the predictors used by Model
1 (e.g., geology) that help to distinguish when relatively flat ground is rock rather than soil, where the latter is
the default assumption of slope-based models.

Plotted in Figure S1 of the electronic supplement are measured vs. predicted V3o values for the compiled
dataset, both for Model 1 and AWO09. The corresponding prediction residuals, defined as » = In
(observed/predicted), are in Figure 2. Also shown via green lines are the residual standard deviations,
computed as 0.218 and 0.555 for Model 1 and AWO09, respectively. Model 1 residuals are thus less dispersed
(e.g., R?=0.72 vs. 0.02) and minimally biased, whereas AWO09 tends to overpredict lower Vs3 values and
underpredict higher V3o values. It can similarly be shown that the Model 1 residuals are unbiased with respect
to each input variable. In this regard, residuals are plotted vs. each numerical input in Figure S2. Collectively,
the results suggest that Model 1 warrants adoption and further evaluation as a national background model.

While simplified interpretations of model structure are often infeasible with ML (i.e., relative to traditional
regression), insights can be gained via the computed predictor importance (e.g., Auret and Aldrich, 2011),
which may be interpreted as each variable’s relative contribution to the accuracy of a model. Accordingly, the
relative importance of each variable was computed and is plotted in Figure 3, where variables are sorted from
most to least important. This approach to model interpretation was also used by Durante and Rathje (2021)
and Geyin et al. (2022), who developed ML models for liquefaction-induced ground failure. The most
influential variables in Model 1 include the predicted depth to bedrock, measured topographic slope, three
different indices of surface roughness, and the mapped geologic unit and geomorphologic phonotype. These
predictors are ~3-5 times more influential than the least important variable — distance to river. These results
also reflect both the utility and insufficiency of topographic slope, which is useful, but which alone cannot

8
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predict when flat ground is relatively hard or when sloping ground is relatively soft. Lastly, these results have
important implications for forward mapping, given that spatial biases or discontinuities in important variables
(e.g., a mispredicted depth to bedrock or surface geology) can be expected to cause similar problems in the
predicted Viso.

Using Model 1, V3o predictions were next mapped throughout the contiguous US, wherein regression
kriging (Hengl et al., 2007) of model residuals was used to update predictions in the vicinity of measurements
(i.e., to bring them into agreement). With this approach, which was used by Thompson et al. (2014) to map
Vs3o in California, a model trained on various predictors (i.e., “regression”) is combined with spatial
interpolation of that model’s residuals (i.e., “kriging”). Thus, the residuals are predicted at unsampled locations
using nearby measurements (where residuals are known) and are used to update the model’s predictions in the
vicinity. Defining the residuals as » = In (observed/predicted), which pass the Lilliefors (1967) test for

normality, an exponential semivariogram model was selected for its best fit of the data:
Semivariance (h) = ¢, (1 - e_h/a) (1)

Where ¢ and a are respectively the semivariogram sill and range, defined as ¢y = 1.1576 and a = 4.7667, and
h is the separation distance between locations. This semivariogram and its fit of the empirical data are shown
in Figure S3. Using this information, which describes spatial correlation, residuals were predicted nationally.
As a representative example, the krigged residuals are shown in Figure 4 for the Puget Sound region of
Washington State. Predicted residuals approach the computed residual at sites of V3 measurement and
attenuate with distance toward zero (i.e., the model’s mean residual). The rate of this attenuation is controlled
by the semivariogram in Eq. (1). Similarly, the standard deviation of the krigged residual approaches zero at
measurement locations (reflecting the “known” error) and increases to ¢ = 0.218 (i.e., the overall model
uncertainty) at locations far away. It should be noted, however, that the semivariance at a separation distance
of zero (i.e., the nugget) is zero in Eq. (1), meaning that V53 measurement uncertainties are not considered.

Additionally, the nugget could contain small-scale spatial uncertainty (i.e., variability in Vs3p over a distance
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that is greater than zero, but smaller than the smallest separation distance in the dataset). In other words, V3o
may not be uniform over an individual cell/pixel in the resulting Vs3 map. However, because the nugget is
poorly constrained by the data (e.g., see Figure S3) and would require additional measurements and/or
subjectivity to define, it is neglected in the present effort. Had the nugget been non-zero, the mapped Visso
values at sites of V3 measurement would not equal the measured values (i.e., the ML model prediction would
be given more weight) and the uncertainties would not be zero. This issue can and should be revisited in the
future. Measurement uncertainties, for example, could be assigned via regression kriging or the multivariate
normal method (Worden et al., 2018; Foster et al., 2019). The primary benefit of the latter is that it allows for
site-specific uncertainty assignments, although this would require a rigorous, judgment-based analysis of the
more than 7,000 Vss; measurements.

A national Vg3 map was next created by computing the product Vssp*exp(r), where Vs is the prediction
from Model 1 and r is the krigged residual. This process scales the prediction up or down in the vicinity of
measurements, thereby correcting for local or sub-regional prediction bias (e.g., where Viszpis mispredicted at
a site or across a city). It should be noted, however, that biases at larger scales (e.g., state-scale) were not
observed. As a representative example, the resulting krigged V3o map is shown in Figure 5 for the Puget Sound
and is compared to AW09. Aside from local V3 discrepancies, the most notable difference is the shift in
predicted V39 across mountainous terrain, with AWO09 consistently predicting higher Vs3y on steeper slopes.

As previously mentioned, the compiled dataset is biased toward sites that are flatter and softer, with very
few measurements in mountainous terrain. Plotted in Figure S4 of the electronic supplement, for example, is
the cumulative distribution of the compiled data with respect to slope, which indicates that ~5% of
measurements are from sites >5° slope. This is because V3 is of greatest interest where infrastructure exists
(flatter ground), and where subsurface conditions have the potential to alter ground motions (soil sites).
Although the test data from steeper terrain and harder sites indicate that Model 1 outperforms AWO09 (see
Table 2), these predictions should nonetheless be viewed skeptically, given the paucity of data. Our
interpretation is that the AW09 model was based on judgement for steeper slopes and was not strictly a
regression of the V3 data then available. Inspection of the AW09 data, for example, reveals that the AW09
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model tended to severely overpredict the measured Vssy values for slopes exceeding ~6°. This departure from
the data — seemingly driven by a belief that V3 values must be higher than suggested by the limited data —
likely explains the difference across mountainous terrain illustrated in Figure 5. Whereas AW09 purposefully
mispredicted the measured values on steeper slopes, the models developed herein do not. Mirroring AW09,
however, it is also our judgement that Model 1 generally underpredicts Vs3o on steep slopes. While predictions
on steeper slopes are generally less consequential for engineering purposes, we created an alternative map
termed “Model 1alt.” Here, Model 1 is heuristically blended with AW09 using a weighting scheme in which

Model 1 predictions are adopted for slopes <5°, AWO09 predictions are adopted for slopes > 10°, and otherwise:
1 1
Vs3o = Model 1 * (—g * (slope) + 2) + AW09 = (E * (slope) — 1) ()

where Vs3p is the Model 1alt prediction and slope is measured in degrees. This scheme is based on the data
available for analysis (see Figure S4) but is ultimately subjective. While the performance of Model 1alt is
slightly less than that of Model 1, it is our judgement that the blended predictions are more reasonable across
the full domain of topographic slope, given that steep slopes are almost necessarily comprised of rock.
Ultimately, additional measurements are needed from steeper slopes, or else judgement must continue to be
relied upon. An example of the Model 1alt map is shown in Figure 6 for the Puget Sound. Both the original
and alternative maps can be downloaded as ~220 m resolution geotiff files from Geyin and Maurer (2022) (see
Data and Resources) and provide continuous coverage of the contiguous U.S.

Although the developed model, with 17 predictors, performs better than any other on the training and
unbiased test data, it: (i) covers only the contiguous U.S., given the extents of the Horton et al. (2017) geology
compilation; and (ii) results in discontinuities at a few state borders, an example of which at the Nebraska-
Kansas border is shown in Figure S5. While the first of these problems could be rectified by augmenting the
Horton et al. (2017) national compilation with additional maps, the latter problem, which results in minor but
unreasonable shifts in the predicted V30, would be resolved only through a rigorous reinterpretation of the

state source maps. Given these problems, the preceding effort for Model 1 was repeated without surface
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geology (i.e., the mapped geologic unit and consolidation state). The resulting model, henceforth termed
“Model 2,” achieved an MAE of 115 m/s on the unbiased test set (vs. 108 m/s by Model 1 and 171 m/s by
AWO09) and reduced the MSE by 49% relative to AW09 (vs. a 55% reduction by Model 1). Thus, while surface
geology is useful, Model 2 provides a serviceable alternative given the stated limitations. Following the same
methodology, the relative predictor importance was computed for Model 2 and is shown in Figure S6. The
ranking of variables is very similar to Model 1 (see Figure 3), except for: (i) the absence of surface geology;
and (ii) a slight upward shift in the importance of groundwater depth, which suggests that it provides additional
utility in the absence of geologic mapping. This is unsurprising, given that surface geology and groundwater
depth are correlated under certain conditions.

Analogous to Figure 2, the Model 2 prediction residuals, defined as » = In (observed/predicted), are plotted
in Figure S7 and have a standard deviation of 0.264 (vs. 0.218 for Model 1 and 0.555 for AW09). Again, use
of surface geology is beneficial, but a large improvement over slope-based methods is still achieved in its
absence. Finally, following the prior methodology, two maps were created using regression kriging to update
Model 2 in the vicinity of field measurements. The semivariogram defining the spatial correlation of Model 2
residuals is shown and defined in Figure S8. Using the weighting scheme given in Eq. (2) the Model 2 map
was blended with AWO09, such that predictions shift toward AW09 predictions at larger topographic slope,
creating “Model 2alt.” Both the original and alternative maps (Model 2 and Model 2alt) can be downloaded
from Geyin and Maurer (2022) and provide continuous coverage of the 50 U.S. states and Puerto Rico at
~220 m resolution. While the Model 1 and Model 2 maps are provided for transparency into the modeling
process, we recommend adoption and further testing of the Model 1alt and Model 2alt products, the first of

which is mapped in Figure 7 for the contiguous U.S.

Limitations, Uncertainties, and Future Work

The developed models are inherently tied to the data compiled for analysis. While this is true of any model, it
is especially true of empirical models, given the lack of mechanistic links between the prediction variables and

target. ML models are unfortunately no exception. As with any empirical model trained by finite data,
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correlations do not necessarily indicate causality and may not necessarily transfer to larger datasets. While
several techniques were used to mitigate overfitting, including the use of an unbiased test set, k-fold cross
validation, and model stacking, additional data is inevitably needed to confirm and/or improve model
portability. Thus, while Models 1 and 2 improve upon a national slope-based model in unbiased tests, their
performance in data-poor regions cannot be known. The models should be used cautiously in these locations
(e.g., Colorado, Florida, etc.), where the model uncertainty may exceed that suggested by the presented test
statistics, given that neither the training nor test data represent those locales. Nonetheless, the merits of the
presented approach and models, which warrant adoption and further testing alongside other solutions, are
arguably compelling. In the future, this approach could be improved in several ways.

First, it is obvious that more Vi3 data is desirable, both for training and testing models, and for anchoring
model predictions at sites of measurement. There is also currently a strong imbalance towards sites that are
flatter and softer, where there is more interest in measuring Vss. There is almost a complete lack of
measurements from seismic site class A, for example, which is problematic for the Central and Eastern U.S.
This imbalance results in models with questionable performance at very hard sites and on steep slopes. While
oversampling of underrepresented data was attempted during model development, there is so little data at high
Vs30 and on steep slopes that resampling a very small amount of data a very large number of times produces
an overfit model. To circumvent this problem, we prefer judgment-based estimates on steep slopes, following
from AWO09. Neither oversampling nor judgment are ideal, of course, and the problem ultimately awaits
additional data. Second, it is well known that ML (like any algorithmic, or “Al,” learning technique) can make
strong models, but is generally weak in explaining the “why.” It can be difficult, for example, to explain the
influences and interactions of variables, or the physical structure of the resulting model. This is particularly
true when multiple models are “stacked” to produce an ensemble that is more effective, but also more
convoluted. Thus, focused efforts to identify new geospatial variables that more efficiently and sufficiently
correlate to Vssg are warranted and could produce additional gains.

Third, the models rely on the accuracy and spatial resolution of inputs, some of which are themselves
predictions (e.g., depth to bedrock, surface geology). Mispredictions may therefore occur in the vicinity of
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geomorphic transitions (e.g, at the base of a mountain, as in Salt Lake City, UT), where the resolution of input
variables may not capture local conditions, or where one or more variables is inaccurate (e.g., among other
examples, the unmapped presence of artificial fill, as in Seattle, WA). The adopted approach should therefore
improve as the accuracy and resolution of the geospatial predictors improves. Fourth, the uncertainties of Vssg
measurements, which are especially non-trivial for surface-wave inversion methods, were not included in the
present effort but could be in the future, as could uncertainty more broadly (also neglected, for example, is the
small-scale spatial variability than may occur across a map pixel). Fifth, regression kriging is one of several
approaches for updating predictions with field data. Other methods (e.g., Worden et al., 2018; Foster et al.,
2019) may provide advantages in certain situations, such as when site-specific measurement uncertainties are
available. Moreover, the geostatistical updating was not bound by predictor variables, but potentially should
be. As one example, an underpredicted V39 in a unit mapped as igneous rock shouldn’t necessarily suggest
that V3o is also underpredicted 1 km away in a unit mapped as alluvium, contrary to what a univariate
semivariogram suggests. This possibility could be evaluated in the future. While improvements are inevitably
warranted, this study demonstrated the utility of ML for inferring V3o from geospatial information. Ultimately,
more data and future research will confirm or update the findings presented herein and succinctly summarized

below.

Conclusions

While not a panacea for describing seismic site conditions and response, Vszp is an important input parameter
for many earthquake applications. This paper developed U.S. national Vs3 models using ML and geospatial
information. Using these models, predictions were mapped at national scale and updated in the vicinity of field
measurements. Of the resulting maps, Model 1alt and Model 2alt, which each defer to existing models on
steeper slopes, are recommended. Of these, Model lalt performed slightly better, but requires geologic
information that may be unavailable or otherwise problematic. Based on the presented tests, these maps

warrant adoption and further evaluation alongside existing solutions. More broadly, the approach employed
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herein can be applied to other subsurface data and objectives (e.g., predicting liquefaction, as demonstrated by

Geyin et al., 2022).

Data and Resources

All data analyzed in this study is publicly available, as described and referenced in the text. The resulting V3o

maps are downloadable from Geyin and Maurer (2022) (https://doi.org/10.17603/ds2-80d8-9m83).

Supplemental Material for this article includes additional figures and tables, as described in the main text.
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Figure 1. Spatial distribution of Vs3p measurements in the contiguous U.S.
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Figure 4. Krigged residuals in the Puget Sound region of Washington State.
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Figure 5. Vg3 predicted by: (a) Model 1 with residual kriging; and (b) AWO09 in the Puget Sound.
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Figure 7. Vsso predicted by Model 1alt with residual kriging in the contiguous United States.
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Table 1. Range, spatial resolution, and sources of predictor variables in the dataset.

Variable (Units) Source Range in Dataset Spatial Resolution
Depth to bedrock (cm) Shangguan et al. (2017) 0 to 43,437 250 m
Depth to groundwater (m) Fan & Miguez-Macho (2020) 0to 216 ~1000 m (30 arc-sec)
Geologic unit Horton et al. (2017) Categorical 25 m to 500 m (varies)
Consolidation state Horton et al. (2017) Oorl 25 m to 500 m (varies)
Distance to river (m) Lehner and Grill (2013) 0to8.4x10* ~90 m (3 arc-sec)
Compound topographic index Verdin et al. (2017) 484 to 2858 ~90 m (3 arc-sec)
Geomorphologic phonotype Categorical ~1000 m (30 arc-sec)
Topographic slope (%) 0 to 26.7 ~1000 m (30 arc-sec)
Topographic position index -37.38 t0 22.94 ~1000 m (30 arc-sec)
Profile curvature -0.0012 t0 0.0013 ~1000 m (30 arc-sec)

Tangential curvature

Roughness

Terrain ruggedness index

Vector ruggedness measure

Landform entropy

Landform uniformity

Landform Shannon index

Amatulli et al. (2018)

-9.0577 x 10 to
9.35069 x 10+

~1000 m (30 arc-sec)

0to 284 ~1000 m (30 arc-sec)
010 90.88 ~1000 m (30 arc-sec)
0to 0.0457 ~1000 m (30 arc-sec)
01t02.9572 ~1000 m (30 arc-sec)
0.0536to 1 ~1000 m (30 arc-sec)
0to 2.0467 ~1000 m (30 arc-sec)
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Table 2. Mean absolute errors (MAE), binned on V3 and topographic slope, for the unbiased test set.

Modell  AWO09

Va]:il:ble Rg:ll:ge MAE MAE Impr((:’z(;mem
(m/s) (m/s)
0-180 55.64 164.76 66.23
180-259 55.84 57.38 2.70
259-360 77.65 84.61 8.23
Vo 360-537 98.43 126.09 21.93
(m/s) 537-760 148.32 23939 38.04
760-1150  296.73  520.70 43.01
1150-2000 53123 1055.53 49.67
>2000 1484.25  1700.35 12.71
0.00-0.13 39.26 46.03 14.70
0.13-0.21 44.08 76.05 42.04
0.21-0.30 88.51 140.10 36.82
Slope  0.30-0.40  101.93  200.77 49.23
(deg)  0.40-0.55  101.94  159.17 35.96
0.55-0.78  119.46  198.80 39.91
0.78-1.24 15538  280.24 44.56
>1.24 168.70  200.95 16.05
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Figure Captions

Figure 1. Spatial distribution of Vs3;p measurements in the contiguous U.S.

Figure 2. Prediction residuals [In (observed/predicted)] computed for (a): Model 1; and (b) AW09. The
green bands depict the standard deviations of the residuals for each model.

Figure 3. Relative predictor importance ranking for Model 1.

Figure 4. Krigged residuals in the Puget Sound region of Washington State.

Figure 5. Vg3 predicted by: (a) Model 1 with residual kriging; and (b) AW09 in the Puget Sound.

Figure 6. Vs3) predicted by Model 1alt with residual kriging in the Puget Sound.

Figure 7. Vs3o predicted by Model 1alt with residual kriging in the contiguous United States.

Table Captions

Table 1. Range, spatial resolution, and sources of predictor variables in the dataset.

Table 2. Mean absolute errors (MAE), binned on Vs39 and topographic slope, for the unbiased test set.

Mailing Addresses

Brett W. Maurer

132 More Hall
University of Washington
Seattle, WA 98195

Mertcan Geyin

Norwegian Geotechnical Institute
10615 Shadow Wood Dr Suite 100
Houston, TX 77043

30



