
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1911  | https://doi.org/10.1038/s41598-023-29167-x

www.nature.com/scientificreports

Long‑term survival and second 
malignant tumor prediction 
in pediatric, adolescent, and young 
adult cancer survivors using 
Random Survival Forests: a SEER 
analysis
Ivy Y. Zhang 1, Gregory R. Hart 2, Bo Qin 3 & Jun Deng 4*

Survival and second malignancy prediction models can aid clinical decision making. Most commonly, 
survival analysis studies are performed using traditional proportional hazards models, which require 
strong assumptions and can lead to biased estimates if violated. Therefore, this study aims to 
implement an alternative, machine learning (ML) model for survival analysis: Random Survival Forest 
(RSF). In this study, RSFs were built using the U.S. Surveillance Epidemiology and End Results to (1) 
predict 30-year survival in pediatric, adolescent, and young adult cancer survivors; and (2) predict 
risk and site of a second tumor within 30 years of the first tumor diagnosis in these age groups. The 
final RSF model for pediatric, adolescent, and young adult survival has an average Concordance index 
(C-index) of 92.9%, 94.2%, and 94.4% and average time-dependent area under the receiver operating 
characteristic curve (AUC) at 30-years since first diagnosis of 90.8%, 93.6%, 96.1% respectively. The 
final RSF model for pediatric, adolescent, and young adult second malignancy has an average C-index 
of 86.8%, 85.2%, and 88.6% and average time-dependent AUC at 30-years since first diagnosis of 
76.5%, 88.1%, and 99.0% respectively. This study suggests the robustness and potential clinical value 
of ML models to alleviate physician burden by quickly identifying highest risk individuals.

In 2022 in the United States, about 10,500 pediatrics (under age 15), 5500 adolescents (age 15–19), and 80,000 
young adults (age 20–39) are expected to be diagnosed with cancer1–3. Prior to 1970, cancer survival rates were 
bleak; for example, almost all pediatric cancer patients died as a result of their primary disease4. Fortunately, in 
the last decades, advances in early detection, treatments, and supportive care have expanded the population of 
cancer survivors5.

The most commonly reported measure of cancer survival is the 5-year survival rate6. However, as the number 
of childhood, adolescent, and young adult survivors grows, there is an increasing need and interest to investigate 
long-term outcomes. In addition to examining long-term survival of this population, clinicians are also interested 
in understanding the development of secondary malignant tumors as a late effect for their treatment decision 
making7. This is because the risk of second malignancies in cancer patients is elevated by primary cancer treat-
ments such as chemotherapy or radiotherapy8.

Multivariate survival analyses with censored data are most commonly performed, particularly in medi-
cal research, using traditional proportional hazards models such as the Cox regression in combination with 
nomograms9. The Cox model’s advantages include not needing to define a distribution for the survival time 
and high interpretability in the form of a regression between survival time and explanatory variables10. Several 
recent studies with the U.S. Surveillance Epidemiology and End Results (SEER) data using this method developed 
cancer-type specific prediction models for pediatric, adolescents, and young adults for 3-, 5-, and 10-year overall 
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survival11–13. Second malignancy risks were also investigated with this method in studies of 3- and 5-year risks 
after prostate cancer and 1-year risk after rectal cancer radiation therapy14.

However, one of the limitations of applying the Cox model is the assumption of proportional hazard (constant 
hazard ratio for any two individuals over time), which is often violated in high dimensional covariates15. One 
alternative to predicting time-to-events data is turning the problem into a classification one without censored 
data. For example, one recent study applied artificial neural networks to SEER data to predict, with 95% test 
accuracy, which thyroid cancer patients had survived more than 10 years since diagnosis versus passed away 
within the first 5 years16. Other SEER-based studies recently classified 6-month, 9-month, 1-, 2-, and 5-year lung 
cancer survival with various models such as decision trees and neural network17. Outside of SEER data, other 
recent studies that achieved high performance from this method include Random Forest (RF) prediction of breast 
cancer recurrence within 5 and 10 years, with 88% area under the receiver operating characteristic curve (AUC) 
on the test set18. While this method avoids the complications of dealing with censored data, useful insights can 
be lost when not evaluating information from censored instances19. Furthermore, ignoring censored outcomes 
can lead to severely biased estimates. Bias can also be introduced if censoring is not independent of covariates 
when using the hazard ratio19–21.

To address the challenges faced with modeling censored data and the restrictive proportional hazards assump-
tion, recent innovations in machine learning (ML) techniques have been adapted. One such method is a survival 
tree ensemble model such as Random Survival Forest (RSF), a non-parametric approach that incorporates sur-
vival time and censoring information into the splitting criterion22. RSF is a variation of RF used on survival data. 
Just like RF, RSF is constructed from an ensemble of binary decision trees and each tree is built from a random 
bootstrap sample with the unsampled data used as an out-of-bag (OOB) data. A tree is built from its bootstrap 
sample through the process of random node splitting. At each split, mtry number of random variables are chosen 
as split candidates and one is chosen based on which maximizes the difference between the number of people 
who have reached an event vs those who have not at the time of the daughter nodes, similar to the impurity 
measure used in RF. The splitting process happens iteratively until all the uncensored events have happened and 
the tree is complete. The hazard function estimates, used for predicting survival at a point t, from each tree are 
calculated and then averaged over the whole forest to get the final estimate.

A few recent studies conducted with the SEER data employ this method for cancer-type specific survival and 
second malignancy prediction models: for example, one RSF model for predicting 4-year breast cancer survival 
status had a test AUC of 82.2% while one XGBoost model, another ensemble tree technique, had a test AUC of 
91.1% for predicting 5-year survival status of osteosarcoma patients23.

While a few recent studies have been conducted to test ML methods to handle censored data with SEER, 
there have not been studies focusing on long term outcomes for these pediatric, adolescent, and young adult 
cancer survivors. This is a result of both insufficient longitudinal data and lower chances of long-term survival 
in the past prior to treatment advancements in the recent decades. Furthermore, these recent studies typically 
center around just one cancer type and do not include second tumor site prediction. Therefore, the goals of this 
study are twofold: (1) develop an ML model to predict 30-year survival in pediatric, adolescent, and young adult 
cancer survivors; and (2) develop an ML model to predict risk and site of a second tumor within 30 years of the 
first tumor diagnosis in these age groups.

Methods
The SEER dataset.  The SEER dataset is one of the most comprehensive sources for U.S. cancer data, sup-
ported by the National Cancer Institute (NCI). SEER currently collects yearly data from various cancer registries, 
covering 47.9% of the U.S. population. The SEER November 2016 dataset used in this study includes patient 
demographics, primary tumor site, tumor morphology, and stage at diagnosis information between 1973 and 
201424. There are 134 variables present, including various recodes of the same information and year/site depend-
ent breakouts of the same characteristic across several columns. The full data consists of 5,037,307 records, 
representing 4,370,772 unique patients. All data processing and modeling was completed using R version 4.0.2.

This study population includes patients whose first tumor record was before the age of 40 (pediatric, adoles-
cent, or young adult at the time of first diagnosis). Only malignant tumor diagnosis records were included, as 
recommended by SEER for cancer analyses. Several steps were taken during data cleanup. First was reconciliation: 
columns representing the same characteristic, spread across different encodings or years were carefully com-
bined into one using the most recent encoding schema available. For example, EOD—Tumor Size (representing 
years 1988–2003) and CS Tumor Size (representing years 2004+) were combined into one column based on the 
2004+ CS sizing codes. Next, new variables necessary for the modeling were created, such as indicator columns 
for whether someone developed a 2nd, 3rd, or 4th+ tumor and whether the data for a given patient is censored.

Other data cleaning steps include re-encoding some factor variables as indicator columns, data transforma-
tions (e.g., log transformation of tumor size), and differentiated and consistent encoding of N/A versus missing 
values (e.g. whether the tumor stage for a patient’s 2nd tumor record was truly missing or whether this informa-
tion is missing because a patient did not have a 2nd tumor). Finally, outlier records (e.g., outlier tumor sizes, 
4th+ tumor record details) were excluded from the analyses. In addition, records whose sequence number had 
non-sequential diagnosis dates (e.g., record two had an earlier diagnosis date than record one) were also excluded 
as it was unclear whether this may have been a data entry issue or whether the record sequence does not reflect 
diagnosis date. The final dataset consists of 401,264 unique patient records. Detailed data-preprocessing steps 
can be found in Supplementary Table S1.

Statistical methods and machine learning algorithms.  Before modeling, imputation was used to 
handle the true missing values in the covariates. Multivariate Imputation by Chained Equations (MICE) with 
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Categorical and Regression Trees (CART) from the MICE R package was compared with multiple imputation by 
RF from the missForest R package. MICE with CART imputes data, from leftmost to rightmost column, through 
sequential modeling, with CART modeling the distribution of each missing element conditioned on the other 
observed elements, until convergence of the models25. The package, missForest, imputes data iteratively, starting 
with the variable with the least missing observations to most, through fitting a RF on the observed values. This 
trained model is then used to predict the missing observation and the algorithm stops when the imputed data 
matrix converges26. In both cases, the assumption of missingness at random (MAR) was made. To assess accu-
racy, random values were removed from the set of complete cases in the variables of interest for imputation. Per-
centage of removed values mirrored the true missing proportions in the dataset to better mimic the missing data 
behavior of the data. Based on 100 iterations, missForest with mtry = 10 produce the highest average accuracy 
across the highest missing variables despite the larger variance in some cases, as seen in Supplementary Table S2 
and Supplementary Fig. S1. One potential reason for the large difference in accuracy, despite the fundamental 
difference in the ordering of the imputation between the two algorithms, missForest implements Random For-
est, which typically has better prediction accuracy than a decision tree given that it is an ensemble of trees. A 
detailed description of variables can be found in Supplementary Table S3.

The three main age groups of interest: pediatrics (n = 32,730), adolescents (n = 19,649), and young adults 
(n = 348,885), were separately modeled as cancer type prevalence and survival rates differ among the three groups. 
Table 1 shows the distributions of these three age groups in the final dataset. The imbalance in the proportion 
of censored records, particularly for the second tumor outcome, can pose a challenge to predictive modeling. 
This is because ML algorithms tend to consider minority class observations as outliers or noise, leading to lower 
predictive accuracy for the minority class27. One way to tackle this problem of imbalance is through balancing 
the dataset. In this study, synthetic minority oversampling technique (SMOTE) was used for the second tumor 
outcome RSF model. This technique oversamples from the minority classes by creating “synthetic” samples based 
on the k-nearest neighbors algorithm28. One-hot encoding from the mltools R package combined with 5-nearest 
neighbors SMOTE from the DMwR R package were adapted to balance the second tumor RSF model’s training 
data (85% of the data) to use for cross-validation. The test set was left untouched.

This study employs tree-based models, as opposed to deep learning and other more complex approaches, to 
explore the feasibility of long-term survival and second malignancy prediction in childhood, adolescent, and 
young adult cancer survivors for two main reasons: (1) physician skepticism of ML and (2) physician familiarity 
with decision trees. Firstly, the uptake of ML in medicine has been slow because they often fail to sufficiently show 
value for a clinician’s practice29–31. Therefore, one major consideration of this project is clinical value, especially 

Table 1.   Data distribution by age group.

Variable Description Pediatrics (n = 32,730) Adolescents (n = 19,649) Young adults (n = 348,885)

Site Tumor site

BREAST Breast 0.03% 0.29% 11.83%

Colrect Colon/rectum 0.21% 1.06% 3.03%

DIGOTHR Other digestive 3.39% 1.22% 2.45%

FEMGEN Female genital 1.36% 22.61% 35.13%

LYMLEUK Lymphoma/leukemia 40.61% 29.17% 10.55%

MALEGEN Male genital 1.04% 6.44% 5.36%

RESPIR Respiratory 1.40% 1.35% 1.94%

URINARY​ Urinary 6.24% 1.13% 2.04%

Other All other sites 45.71% 36.73% 27.67%

Total 100.00% 100.00% 100.00%

Censor Censor (death)

0 No 71.62% 76.30% 74.84%

1 Yes 28.38% 23.70% 25.16%

Total 100.00% 100.00% 100.00%

Tumor.2 Censor (2nd tumor)

0 No 96.81% 94.95% 90.46%

1 Yes 3.19% 5.05% 9.54%

Total 100.00% 100.00% 100.00%

Death.30 yr Died by year 30

0 No 38.36% 36.37% 38.76%

1 Yes 61.64% 63.63% 61.24%

Total 100.00% 100.00% 100.00%

Tumor2.30 yr Second tumor by year 30

0 No 97.16% 95.54% 91.23%

1 Yes 2.84% 4.46% 8.77%

Total 100.00% 100.00% 100.00%
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since current researchers working on deployment of ML models in clinical environments typically do not take 
into account implementation and adoption barriers32. While in recent years, adoption of ML in the clinical 
workflow has increased, as seen by over 50 FDA cleared algorithms33, physicians often do not trust models they 
do not understand and many have very little familiarity with them31,34–37. Therefore, in order for a model to have 
some clinical value, it is necessary to consider approaches that are not overly-complex. Secondly, doctors and 
nurses are familiar with the concept of decision trees from their medical education38,39. While they do not think 
of it in technical terms as statisticians would of CART, for example, the concept of decision trees is something 
they use heuristically on a day-to-day basis when considering treatment pathways for patients. Therefore, when 
combined with the above point, an average of decision trees (in the form of RSF) would be more palatable and 
intuitive for healthcare providers who already have familiarity with decision trees compared to more complex 
methods such as neural networks.

To address the two questions of the study, RSF models were built on a training set, with time in months from 
diagnosis to death as the primary outcome for the survival model and time in months from diagnosis of first 
tumor to diagnosis of second tumor as the primary outcome for the second malignancy model. Supplementary 
Table S4 lists the final predictors included in the two RSF models. A fivefold cross validation (CV) grid search was 
performed to tune the mtry, split rule, and sample fraction of the RSF survival and second malignancy models 
respectively to identify an optimal model. The metric used in the CV assessment was the out-of-bag (OOB) 
concordance index (C-index). The C-index estimates the probability that the individual who reaches an event 
(e.g. death or second tumor) earlier has a higher predicted probability of reaching the event based on the RSF 
model40,41. This estimate is calculated by taking the proportion of all possible pairs of individuals, except those 
whose shorter survival time is censored or whose survival times are equal and censored, who are concordant, 
thereby assessing the overall performance of the model22.

Given that the SEER database is the most comprehensive cancer data in the US, representing over 30 registries 
and covering approximately 47.9% of the U.S. population, a separate cancer dataset spanning over 30 years in the 
US from registries not involved in SEER will be extremely difficult (if not impossible) to obtain. In order to over-
come this data constraint and to ensure robustness of model results, 100 further iterations with random samples 
for training and testing were run and model performance metrics were averaged. This procedure of a repeated 
holdout test set (Monte Carlo Cross-Validation) produces a less overly optimistic (more conservative) and more 
stable estimate of the true performance of the model under any random test set42. In fact, this method may even 
overestimate the prediction error since only part of the data will be used for model training and calibration43.

In addition to the test C-index, time-dependent test area under the receiver operating curve (AUC) at 30-years 
was assessed using the R package, timeROC. The cumulative/dynamic time-dependent receiver operating curve 
(ROC) is calculated with inverse probability of censoring weighting (IPCW) estimation, which weights the cases 
and controls by the probability of being observed, estimated by the Kaplan–Meier (KM) estimator44. Unlike esti-
mating sensitivity and specificity with empirical true positives and true negatives, this method does not assume 
that all subjects can be classified as cases or control and instead takes into account censored data.

The traditional Cox proportional hazards approaches were also implemented for modeling survival and 
second malignancy risk. This will allow us to understand how our proposed RSF method performs directly com-
pared to a baseline approach. The assumption of proportional hazards using a score test of proportionality was 
conducted to confirm whether this method is appropriate. The null hypothesis tested is that the true population 
time-dependent coefficient of a covariate is 0, that is, the proportional hazards assumption is met. If this key 
assumption is not met, it can be concluded that the Cox regression may not be the best method as the results of 
the Cox regression could be biased, namely, the coefficient estimates and their interpretation are affected. The Cox 
models and score tests were run using the survival R package. Similar to the approach with the RSFs, 100 itera-
tions were run, with varying train/test splits to get a more representative assessment of performance of the model 
given that randomness in train/test splits affect the final AUC. The final averaged C-index and time dependent 
AUC at 30-years was then calculated. One difference from the respective RSF counterparts of the Cox models is 
the variables modeled. Unlike the RSF, the Cox model coefficients are calculated using a maximum likelihood 
estimation approach, and convergence may not be achieved under certain scenarios such as in the presence of 
categorical variables with low incidence of one of the levels. Therefore, certain variables were excluded so that 
the Cox regression can be feasible, as detailed in Supplementary Table S5.

In addition to the RSF model for second malignancy prediction, RF models were trained to predict the site 
of second tumor as a next step in a two stage process. In the first stage: a binary classification RF was trained 
to predict whether a patient’s second tumor is “site specific” (BREAST, DIG_COLRECT, FEMGEN_MALEGN, 
LYMLYEUK, RESPIR, URINARY) or “non-site specific” (OTHER) as defined by SEER. Then, the second stage: 
a multiclass probability model further predicted the risk of different sites among the “site specific” second tumor 
patients. This two-stage approach enabled better model training in the face of an imbalanced multiclass clas-
sification problem, since the majority of patient sites in the SEER data were marked “OTHER”. Supplementary 
Table S6 lists the final predictors included in the RF models for second tumor site prediction. Like the RSF models 
for survival and second malignancy, a fivefold cross validation (CV) grid search was performed, this time to 
tune the mtry, number of trees, minimum node size, split rule, and sample fraction. CV accuracy in the training 
set was assessed for final model selection. A generalized multiclass AUC metric as defined by Hand et al.45 was 
reported based on an average of 100 further iterations. Details on the hyperparameter tuning across all models 
including the range of searches (limited due to available computational resources) and final chosen parameters 
can be seen in Table 2.

Unlike the RSF models, the RF models for predicting the site of a second tumor were not broken out into pedi-
atrics, adolescents, and young adults due to small sample from the pediatric and adolescent group for most sites. 
Furthermore, unlike for survival, SMOTE could not have been applied here because there are multiple minor-
ity classes; the SMOTE algorithm is only applicable for binary class imbalance. However, age group (pediatric, 
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adolescent, young adult) was added as a variable to capture differences in distribution of tumor sites, as seen in 
Fig. 1. This Sankey diagram of patients who develop a second tumor within 30 years of first diagnosis is a network 
graph that illustrates the proportional distribution of first and second tumor sites. These sites are represented by 
each node on the left and right respectively. The flow illustrates the proportion of patients who start at one tumor 
site and then develop a second. This diagram illuminates the plethora paths a patient’s development can take, 
further increasing the need for a predictive model that can help a clinician better pinpoint second tumor location.

Results
Cox regression for modeling survival.  The proportional hazards assumption was checked for each 
respective case of pediatric, adolescent, and young adult survival. Supplementary Table S7 shows a summary of 
the results of the score test for proportionality for the 100 iterations.

For almost all the covariates, we reject the null hypothesis that there is a constant hazard ratio over time given 
the small p-values. Therefore, the Cox regression is, in fact, not an appropriate model to use as we cannot reliably 
interpret the coefficient results per usual due to potential bias. In fact, despite the Cox regression typically being 
favored for its interpretability, this advantage no longer holds if the proportional hazards assumption is not met. 
However, for the purpose of comparing prediction results of our proposed RSF method to a baseline method, 
since our goal is not inference, we proceeded with calculating the Cox regression coefficients and assessing the 
predictive performance at 30-years since first diagnosis. The following are the averaged results across the 100 
iterations: pediatric C-index of 80.0% (standard deviation of 0.6%) and time-dependent AUC at 30-years since 
first diagnosis of 83.7% (standard deviation of 0.6%), adolescent C-index of 85.3% (standard deviation of 0.7%) 
and time-dependent AUC at 30-years since first diagnosis of 89.4% (standard deviation of 0.9%), YA C-index of 
85.3% (standard deviation of 0.2%) and time-dependent AUC at 30-years since first diagnosis of 91.3% (standard 
deviation of 0.2%). Figure 2 illustrates the average time-dependent test AUC at 30-years since first diagnosis of 
the three age groups across 100 iterations.

Table 2.   Hyperparameters for RSF and RF.

Parameter Description

Survival (RSF)

Range

Selected

Pediatrics Adolescents Young adult

mtry Number of candidate variables 1–15 4 4 5

num.trees Number of trees 50, 60, 70, 80, 90, 100, 350, 400 50 80 100

min.node.size Minimum node size 1, 5, 10, 15–20 20 1 10

splitrule Split rule c, logrank logrank logrank logrank

sample.fraction Sample fraction 0.632, 1 0.632 0.632 0.632

Parameter Description

Second malignancy risk (RSF)

Range

Selected

Pediatrics Adolescents Young adult

mtry Number of candidate variables 2–8 6 6 7

num.trees Number of trees 100, 200, 300 200 200 100

min.node.size Minimum node size 1, 10 1 1 10

splitrule Split rule c, logrank logrank logrank logrank

sample.fraction Sample fraction 0.632, 1 0.632 0.632 0.632

Parameter Description

Second malignancy site (RF-binary)

Range

Selected

All

mtry Number of candidate variables 2, 3, 4, 5, 8, 10, 15 4

num.trees Number of trees 200, 300, 350, 400, 450, 500, 600, 700, 
800 350

min.node.size Minimum node size 10, 15, 20, 25, 26 26

splitrule Split rule gini, extratrees, hellinger gini

sample.fraction Sample fraction 0.632, 1 0.632

Parameter Description

Second malignancy site (RF-multiclass)

Range

Selected

All

mtry Number of candidate variables 5, 8, 10, 15 8

num.trees Number of trees 400, 450, 500 500

min.node.size Minimum node size 10, 15, 20, 30, 40 40

splitrule Split rule gini gini

sample.fraction Sample fraction 0.632, 1 0.632
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Figure 1.   (a) Pediatric first (left) to second (right) tumor site within 30 years of first diagnosis (n = 930); (b) 
Adolescent first (left) to second (right) tumor site within 30 years of first diagnosis (n = 876); (c) Young adult 
first (left) to second (right) tumor site within 30 years of first diagnosis (n = 30,595).

Figure 2.   (a) Pediatric 30-year Cox survival time-dependent ROC curve over 100 iterations; (b) Adolescent 
30-year Cox survival time-dependent ROC curve example over 100 iterations; (c) Young adult 30-year Cox 
survival time-dependent ROC curve over 100 iterations.
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Cox regression for modeling development of second tumor.  Similarly, we evaluate the hazard ratio 
over time for the second tumor development model for pediatrics, adolescents, and young adults. Based on the 
results of the score test seen in Supplementary Table S8 we reject the null hypothesis that there is a constant 
hazard ratio over time for most covariates; the Cox regression’s typical coefficient interpretations may be biased 
and unreliable.

However, for our prediction focused study, we build Cox models to likewise model the risk of second tumor 
development over time to compare with our proposed RSF model’s predictive performance. The averaged results 
over 100 iterations are as follows: pediatric C-index of 68.9% (standard deviation of 2.4%) and time-dependent 
AUC at 30-years since first diagnosis of 65.8% (standard deviation of 5.5%), adolescent C-index of 70.0% (stand-
ard deviation of 2.5%) and time-dependent AUC at 30-years since first diagnosis of 60.9% (standard deviation 
of 6.4%), YA C-index of 63.5% (standard deviation of 0.8%) and time-dependent AUC at 30-years since first 
diagnosis of 64.6% (standard deviation of 1.6%). Figure 3 presents the time-dependent test AUC at 30-years 
since first diagnosis of the three age groups. The high standard deviation across results, particularly among pedi-
atrics and adolescents from different test/train splits suggests a high variance in the data as it relates to second 
tumor development, and therefore a higher difficulty of predicting second tumor risk. It further highlights the 
importance of the 100 iterations we ran for robustness in results when reporting average AUC and C-index for 
this context. While the standard deviation across results for young adults is not small, there is less variance as it 
relates to second tumor development as compared to younger age groups.

Random Survival Forest for modeling survival.  Firstly, based on the final selected RSF for modeling 
survival per the CV grid search, the three survival models have the following average test metrics based on 100 
iterations: pediatric C-index of 92.9% (standard deviation of 0.4%) and time-dependent AUC at 30-years since 
first diagnosis of 90.8% (standard deviation of 1.0%); adolescent C-index of 94.2% (standard deviation of 0.2%) 
and time-dependent AUC at 30-years since first diagnosis of 93.6% (standard deviation of 0.8%); YA C-index of 
94.4% (standard deviation of 0.09%) and time-dependent AUC at 30-years since first diagnosis of 96.1% (stand-
ard deviation of 0.2%). Compared to the corresponding Cox model, this represents an improvement of 12.9% in 
C-index and 7.1% in time-dependent AUC at 30-years since first diagnosis for pediatrics, 8.9% in C-index and 

Figure 3.   (a) Pediatric 30-year Cox second tumor time-dependent ROC curve over 100 iterations; (b) 
Adolescent 30-year Cox second tumor time-dependent ROC curve over 100 iterations; (c) Young adult 30-year 
Cox second tumor time-dependent ROC curve over 100 iterations.
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4.2% in time-dependent AUC at 30-years since first diagnosis for adolescents, and 9.1% in C-index and 4.8% 
in time-dependent AUC at 30-years since first diagnosis for young adults. Figure 4 presents the AUC range of 
fivefold CV and test AUC for the first iteration of the 30-year RSF survival for the three age groups.

Random Survival Forest for modeling development of second tumor.  Secondly, the three final 
second malignant tumor RSF models have the following average test metrics based on 100 iterations: pediatric 
C-index of 86.8% (standard deviation of 0.4%) and time-dependent AUC at 30-years since first diagnosis of 
76.5% (standard deviation of 2.3%); adolescent C-index of 85.2% (standard deviation of 0.7%) and time-depend-
ent test AUC at 30-years since first diagnosis of 88.1% (standard deviation of 1.7%); YA C-index of 88.6% (stand-
ard deviation of 0.2%) and time-dependent AUC at 30-years since first diagnosis of 99.0% (standard deviation of 
0.1%). This is a large improvement in performance compared to the Cox regression for all age groups: 17.9% in 
C-index and 10.7% in time-dependent AUC at 30-years since first diagnosis for pediatrics, 15.2% in C-index and 
27.2% in time-dependent AUC at 30-years for adolescents, and 25.1% in C-index and 34.4% in time-dependent 
AUC at 30-years since first diagnosis for young adults. Figure 5 presents the AUC range of fivefold CV and test 
AUC for the first iteration of the 30-year RSF for 30-year second malignant tumor prediction across the three 
age groups.

Random forest for second tumor site classification.  Finally, the binary classification RF model for 
the first stage of the second tumor site prediction, site or non-site specific (“OTHER”), as defined by SEER tumor 
site classification, had an average test AUC of 78.2% (standard deviation of 0.7%), accuracy of 81.2% (standard 
deviation of 0.5%), average test positive predict value (PPV) of 70.6% (standard deviation of 2.8%), and average 
test negative predictive value (NPV) of 83.0% (standard deviation of 0.9%) from 100 iterations with random 
training and testing samples. The second stage of the second tumor site prediction (BREAST, DIG_COLRECT, 
FEMGEN_MALEGN, LYMLYEUK, RESPIR, or URINARY) involved a multiclass probability prediction. The 
final 6-class probability RF model had an average multiclass AUC of 75.9% (standard deviation of 0.5%) from 
100 iterations. Figure 6 illustrates an ROC curve for the first and second stages of second tumor site prediction 
of the first iteration.

Figure 4.   (a) Pediatric 30-year survival time-dependent ROC curve example; (b) Adolescent 30-year survival 
time-dependent ROC curve example; (c) Young adult 30-year survival time-dependent ROC curve example.
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Discussion
While time-to-event outcomes are typically evaluated at 5-years in most studies, with the availability of more 
healthcare data and improved medical treatments in recent decades that increased survival rates, long-term 
cancer survivor outcomes are meaningful to understand, particularly in younger age groups. The long-term 
outcome ML models developed in this study successfully predict survival and second tumor outcomes with high 
accuracy using easy to acquire, basic patient demographic and tumor information. All age groups’ RSF survival 
from first diagnosis had an average test C-index > 92% and all age groups’ RSF time-to-second malignancy from 
first diagnosis had an average test C-index > 86%, demonstrating the strength of ML extensions to traditional 
survival analysis, also seen in our comparison with respective Cox models’ performance. The comparison also 
illustrated that the interpretability of traditional Cox models, one of the big advantages compared to ML algo-
rithms, is lost in our context because the key proportionality assumption does not hold for most covariates 
in this complex data. Furthermore, as compared to traditional prediction models such as Cox regressions for 
time-to-event modeling or logistic regression for classification, forest models do not require parametric or other 
strong assumptions. In addition, another strength of the models in this study is that they are not cancer specific 
and therefore more applicable to the general pediatric, adolescent, and young adult cancer survivor population.

There are several ways the models can be extremely useful to a clinician. Firstly, the survival model can help 
physicians identify high risk individuals among their many patients by quickly navigating through overwhelming 
quantities of EHR data. Furthermore, upon identifying patients with high risk of second malignancy, physicians 
can use that information in their treatment decision making process given that certain treatment types elevate 
chances of second malignancy. Finally, the RSF models built in this study can be used for subtype discovery—
helping physicians learn about the subtypes among their cancer patients. For example, if two patients are “close” 
in terms of RF proximity, their outcome and features are similar. Methods such as community detection can 
then be applied to cluster on the proximity space and uncertainty can be characterized based on proximity to 
the training data.

However, the present study has some limitations. First, some vital longitudinal patient data linked to survival 
and second tumor development such as socioeconomic status, treatment history, or comorbidities were not avail-
able for modeling. Therefore, further studies can benefit from gathering additional data on clinically relevant 

Figure 5.   (a) Pediatric 30-year second tumor time-dependent ROC curve example; (b) Adolescent 30-year 
second tumor time-dependent ROC curve example; (c) Young adult 30-year second tumor time-dependent 
ROC curve example.
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variables. Next, while tree-based methods such as missForest, RF, and RSF can achieve high accuracy, the algo-
rithms build trees that suffer from high variance, although the ensemble can help reduce some variance46. Finally, 
one of the assumptions of the KM based estimation used in the ROC plots is independence between covariates 
and censoring. Therefore, the variable year of first diagnosis, may have introduced bias to the AUROC estimate 
since those who were diagnosed after 1984 are censored by definition. Further work can explore adapting the 
existing time-dependent ROC R package to use estimators without such an assumption such as censoring-robust 
estimation of AUC​47 or the doubly-robust censoring unbiased transformation48 instead of IPCW.

In future studies, additional patient level features from disparate sources can benefit continued work in sur-
vival and second malignant tumor prediction by tackling some of the aforementioned limitations. In addition, 
collaborations with practicing physicians would be an important component in improving prediction models to 
further increase clinical value of ML applied in practice. Furthermore, as the RSF extension of the RF exhibited, 
there is high potential for testing more survival analysis extensions of current ML algorithms.

As final remarks, the present study illustrated the ability of RSF and a multistage RF to predict 30-year sur-
vival and second malignant tumor risk and site in pediatric, adolescent, and young adult cancer survivors. These 
models demonstrated strong performance based on AUC. In the future, survival and second tumor models such 
as the ones developed in this study could help physicians navigate overwhelming quantities of patient data by 
quickly identifying highest risk individuals and ultimately improving young cancer survivor outcomes.

Data availability
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