
ORIGINAL ARTICLE

Liver cancer risk quantification through an artificial neural network based on
personal health data

Afrouz Ataeia,b, Jun Dengc and Wazir Muhammada

aDepartment of Physics, Florida Atlantic University, Boca Raton, FL, USA; bDepartment of Radiology, Medical Physics, University of Texas
Southwestern Medical Center, Dallas, TX, USA; cDepartment of Therapeutic Radiology, School of Medicine, Yale University, New Haven,
CT, USA

ABSTRACT
Background: Liver cancer is one of the most common types of cancer and the third leading cause of
cancer-related deaths globally. The most common type of primary liver cancer is called hepatocellular
carcinoma (HCC) which accounts for 75–85% of cases. HCC is a malignant disease with aggressive pro-
gression and limited therapeutic options. While the exact cause of liver cancer is not known, habits/li-
festyles may increase the risk of developing the disease.
Material and methods: This study is designed to quantify the liver cancer risk through a multi-para-
meterized artificial neural network (ANN) based on basic health data including habits/lifestyles. In add-
ition to input and output layers, our ANN model has three hidden layers having 12, 13, and 14
neurons, respectively. We have used the health data from the National Health Interview Survey (NHIS)
and Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) datasets to train and test our ANN model.
Results: We have found the best performance of the ANN model with an area under the receiver
operating characteristic curve of 0.80 and 0.81 for training and testing cohorts, respectively.
Conclusion: Our results demonstrate a method that can predict liver cancer risk with basic health
data and habits/lifestyles. This novel method could be beneficial to high-risk populations by enabling
early detection.
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Introduction

Liver cancer, the third main cause of cancer-related deaths, is
placed as the sixth most common type of cancer worldwide
[1,2]. The Centers for Disease Control and Prevention esti-
mates 33,000 new cases of liver cancer and 27,000 liver-can-
cer-related deaths each year in the United States.
Consequently, the attention of the public to liver cancer has
gradually increased and many resources have been devoted
to its research.

Anything that causes an increase in the chance of catch-
ing a disease such as cancer is called a risk factor and each
cancer has its risk factors. The main risk factors for liver can-
cer (i.e., hepatocellular carcinoma (HCC)) are a high occur-
rence of hepatitis B and C [3], a history of diabetes mellitus
(DM), and environmental exposure to aflatoxin B1 [4].
Furthermore, a strong correlation exists between certain life-
style habits including cardiovascular metrics [5], and the
occurrence of liver cancer [6]. These include but are not lim-
ited to alcohol consumption [7], smoking [8], obesity/body
mass index (BMI) [9], inadequate physical activity [5], hyper-
tension [10], and diet [5,11], etc. However, still, the causes
may be different across the populations. In endemic areas
such as China and Africa, chronic infection of the hepatitis B
virus (HBV) is the major risk factor. While chronic alcohol

consumption, obesity, and hepatitis C virus (HCV) are the
main risk factors in low-risk areas such as western countries
[12–14]. Some risk factors such as smoking are independent
of geography and race-ethnicity [14–16]. Cigarettes have
destructive effects on most of the body’s organs by carrying
over 4000 toxic substances [17]. While the liver has no direct
contact with smoking, recent studies have shown the
adverse effect of smoking on the liver [16], longitudinal stud-
ies have correlated smoking with liver cancer occurrence in
the United States [18], and smokers are at higher risk of get-
ting liver cancer [19]. There is now enough evidence to state
that smoking causes liver cancer, according to the
International Agency for Research on Cancer (IARC)
Monograph on smoking [20]. Considering this research, it is
important to make healthy lifestyle choices to reduce the
risk of developing liver cancer.

Artificial neural networks (ANNs) are influenced by the
functioning of the brain [21]. In other words, ANNs are com-
puting systems with mathematical algorithms which enable
the neural networks to learn from the standard data and find
patterns contained in the data. ANNs have a broad range of
applications in different fields. One of the major applications
of ANNs is in the field of medicine. A recent survey shows a
major impact of artificial intelligence (AI) in healthcare [22]. It
has caught the attention of the scientific community in
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medicine due to its usefulness in the prediction and detec-
tion of disease [23–25]. Nowadays, ANNs have an important
role in medical diagnoses to detect patterns in medical
images, classify diseases, and monitor patient health. These
are cost-effective machine learning techniques for healthcare
providers because they enable automated decision-making,
provide analysis faster than traditional methods, and can be
scaled to large datasets to provide better patient outcomes
[26,27].

It has been shown that HCC screening is impactful [28].
However, the real-world utilization rate of screening is below
20% due to multiple patient- and provider-related factors
[29]. The vast size of the at-risk population is another con-
cern. It would be useful if machine learning-based methods
could better identify the group that would benefit most
from screening. Therefore, in the presented study, we have
used an ANN to model liver cancer risk quantitatively. We
foresee that our model can predict liver cancer risks and sug-
gest interventions to reduce liver cancer risks by changing
lifestyles. Such a model may provide clinicians with a novel
approach to determining individuals with a higher chance of
getting liver cancer and provide chances for interventions.

Material and methods

Datasets

Interviews of personal households in the United States on a
broad range of health topics are conducted annually by the
Centers for Disease Control and Prevention since 1957 and
are maintained electronically for free download [30]. This
study used the National Health Interview Survey (NHIS) [30]
data from 1997 to 2019. Basic health data of 671,697 persons
including 256 with liver cancer were acquired from NHIS
data and the details of the datasets are given in Table 1. The
other population that we used is the Prostate, Lung,
Colorectal, and Ovarian cancer screening trial (PLCO) [31]
dataset. The PLCO dataset is defined as the randomized, con-
trolled trial that investigates if specific test evaluations
reduce mortality from prostate, lung, colorectal, and ovarian
cancer. Between November 1993 and July 2001, 154,897 par-
ticipants were enrolled, 225 of whom developed liver cancer
during 13 years of follow-up. We used the PLCO dataset to
check the diversity and predictive power of our model.

The features (risk predictors) that are used as model input
include age, smoking habits, exercise habits, diabetes, race,
body mass index (BMI), heart disease, stroke, other heart
conditions, emphysema, arthritis, asthma, hypertension,
drinking habits, and cancers other than liver cancer. These
risk predictors are selected based on literature review, bio-
logical plausibility, and clinical judgment [32]. PubMed know-
ledge was used to give weight to the various risk factors.
These weights were calculated independently from fits on
training datasets. Moreover, the input features to the model
are time-dependent because a persons’ health condition can
change over time. For example, the data for people who
were diagnosed with cancer long ago may not be useful.
Therefore, we considered only data for people who received

a positive liver cancer diagnosis. Therefore, we have used a
4-year, cutoff for the liver cancer group.

We defined the PLCO dataset as DataSet1 (DS1), and the
NHIS dataset as DataSet2 (DS2). We used DS1 and DS2 to
measure the performance of the model. The different data-
sets were used to find the optimum performance of the
model. Firstly, the constructed datasets were randomized to
be used as a train/test scheme. Our ANN model was trained
on 70% of datasets and tested on the remaining 30% using
10-fold cross-validation. We calculated cancer risk, sensitivity,
and specificity for both the training and testing datasets.

Missing data

Participants did not necessarily respond to every question
and so, there are some missing data entries in our datasets.
Since our variables have no ordinal relationship, the integer
encoding will not be able to address the missing data and
we might get unpredictable results. To impute the missing
data, a one-hot encoding idea was used [33]. This method
has broad applications in engineering and sciences [34] it is
proposed [35]. In this method, for each feature, a new binary
variable is created [27] indicating whether a respondent has
a value for that feature. Then the missing value is set to �1,
outside of the range of the ‘real’ data [36].

Artificial neural network

We used ANN models along with other machine learning
tools (e.g., Support Vector Machine, Decision Tree, Naive
Bayes, Linear Discriminant Analysis, and Logistic Regression)
to investigate other cancer types, such as lung cancer [37],
prostate cancer [38], endometrial cancer [39], colorectal can-
cer [40,41], and pancreatic cancer [36]. Following these stud-
ies, we also used the ANN model for this study. In these
studies, the ANN model showed the best performance in
terms of measuring the sensitivity, specificity, and area under
the receiver operating characteristic curve (AUC) [36,41].
Therefore, we adopted our previous ANN model for estab-
lishing our model for this study. In addition to the first (i.e.,
input) and last (i.e., output) layers, our multilayer ANN has
three hidden layers with 12,13, and 14 neurons, respectively
to reach to the optimum architecture of our model. Our pre-
diction model provided better accuracy and performance
with this architecture. Three hidden layers have more neu-
rons that help to reduce bias and improve the overall accur-
acy of the model. A schematic of the used neural network is
shown in Figure 1. We used 15 personal health features as
input including age, BMI, race, smoking habits, exercise hab-
its, drinking habits, diabetes, stroke, other heart condition,
heart disease, hypertension, emphysema, asthma, arthritis,
and other cancers.

The output of our ANN model is a fractional number
between 0 and 1, with a higher number indicative of a
higher risk of liver cancer. This fractional number can be con-
verted to a binary prediction status (‘yes’ or ‘no’) by selecting
a threshold value above which the model will give a positive
prediction.
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We trained the model on the full training dataset by using
the standard backpropagation algorithm with simple gradi-
ent descent that produced the best results for this study. A
10-fold stratified cross-validation, 8000 iterations within the
training dataset, and the meaning of the performance on the
validation dataset were used to evaluate the model. After
choosing the best model, the testing dataset was used to
evaluate the model performance, using the AUC curves. In
addition, sensitivity and specificity were calculated for all the
datasets (training and testing).

Statistical analysis

Our prediction model was developed using the logistic acti-
vation and sum of squared errors cost function. The standard
backpropagation algorithm is used to train the model. We
used an in-house MATLAB code to develop, analyze, and
minimize the fitting error of our five-layered ANN model.

Results

Model selection

To quantify the performance of the ANN model, the AUC for
DS1 and DS2 were calculated. The AUCs for DS1 are 0.74
and 0.75 for training and testing sets respectively (Figure
2(a)), while 0.80 for training and 0.81 for testing for DS2
(Figure 2(b)). We have found the best model performance for
the DS2. The proximity of AUC values between training and
testing indicated no overfitting in our model.

Final model performance

The training dataset of DS2 is applied to train and afterward,
the testing dataset is used to evaluate the training perform-
ance. We plotted the sensitivity and specificity as functions
of the threshold risk to evaluate the performance of our

Table 1. Description of the datasets.

NHIS PLCO

Cancer No cancer Cancer No cancer
Mean (SD) % Missing Mean (SD) % Missing Mean (SD) % Missing Mean (SD) % Missing

Continuous variables
Age 55.6 (17.3) 0.0 48.2 (17.6) 0.0 70.5 (6.1) 0.0 72.6 (5.7) 0.0
Diabetes age 47.2 (17.3) 8.1 48.3 (17.3) 2.7 N/A 100 N/A 100
Smoking age 18.8 (6.4) 0.9 19.4 (7.4) 1.8 19.2 (5.4) 0.9 18.8 (5.4) 0.8
Years quit 10.6 (13.1) 0.8 17.5 (13.6) 1.5 26.6 (13.2) 0.7 31.2 (12.7) 2.3
Pack-years 21.6 (22.5) 54 17.7 (18.1) 55.1 28.1 (23.1) 2.2 30.7 (25.6) 2.4
Vigorous exercise 55.4 (222.1) 3.4 66.2 (190.6) N/A 100 N/A 100
Moderate exercise 109.1 (285.8 4.5 105.3 (264.6 5.8 N/A 100 N/A 100
Drinking frequency 62.3 (102.8) 0.9 64.4 (92.7) 1.5 N/A 100 N/A 100
Drinking amount 2.4 (1.6) 22.1 2.4 (1.9) 12.1 N/A 100 N/A 100
Binging frequency 6.9 (27.2) 22.3 6.7 (29.1) 12.7 N/A 100 N/A 100
BMI 29.3 (7.8) 3.9 28.6 (7.1) 6.1 28.1 (5.8) 3.9 28.4 (5.9) 4.8

Discrete variables
Emphysema 4.90% 0.3 1.90% 0.3 1.10% 390.00% 2.40% 3.50%
Asthma 20.70% 0.3 13.10% 0.3 N/A 100 N/A 100
Stroke 8.10% 0.5 3.50% 0.3 2.40% 4.1 2.70% 3.9
Coronary heart disease 9.30% 0.7 3.80% 0.4 4.10% 4.3 5.10% 3.8
Angina pectoris 6.20% 0.7 2.60% 0.4 N/A 100 N/A 100
Heart attack 8.70% 0.7 2.80% 0.2 4.10% 4.1 5.10% 3.80%
Other heart disease 17.70% 0.4 8.60% 0.2 N/A 100 N/A 100
Ulcer 21.10% 0.3 8.20% 0.4 N/A 100 N/A 100
Drink 76.10% 0.8 72.40% 1.4 N/A 100 N/A 100
Other cancer 8.10% 0.00 0.00% 0.00 3.10% 0.00 0.30% 0.00
Hypertension 46.20% 0.00 33.20% 0.00 35.30% 3.6 37.10% 3.4
Hispanic 11.60% 0.00 17.10% 0.0 1.80% 4.6 1.90% 5.3
Diabetes: 0.1 0.1 3.5
Diabetic 6.40% 8.70% 4.90% 6.70%
Prediabetic 0.00% 1.60% N/A N/A
Not Diabetic 93.60% 89.70% 95.10% 93.30%
Smoking: 0.7 0.9 0 0
current 22.10% 18.60% 9.10% 9.70%
Former 27.30% 19.10% 35.30% 34.10%
Never 49.30% 62.70% 57.10% 57.60%
Race: 0 0 0 0
White 83.60% 75.30% 89.80% 87.10%
Black 11.10% 13.80% 3.80% 4.70%
AINA 0.70% 0.40% 0.20% 0.30%
Asian Indian 0.00% 0.00% 2.10% 3.50%
Chinese 0.80% 0.70% 2.10% 3.50%
Filipino 0.40% 0.60% 2.10% 3.50%
Other 3% 8.80% 0.40% 0.50%
Multiracial 0.30% 0.20% N/A N/A
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model for DS2 (Figure 3(a)). The threshold risk was selected
to maximize the sum of the sensitivity and specificity. Both
sensitivity and specificity values are plotted in Figure 3(b).
We also created plots for positive predictive value (PPV) and
negative predictive value (NPV). These were plotted as a
function of the threshold value (see Figure 4).

Risk stratification

To demonstrate the capability of our model for clinical use,
we assessed a scheme to manage risk. The scheme stratifies
the studied population into low-, medium-, and high-risk cate-
gories. The training dataset was used to choose boundaries so
that no more than 1% of applicants without/with cancer were
categorized as high/low risk, respectively. Once the bounda-
ries were selected, the testing dataset was used for applying

the stratification scheme to show the possible use of the
model clinically. Through this stratification, we could screen
positive high-risk individuals at once [42] and recommend
common screenings for medium-risk individuals. The output
of the presented model stratified the DS2 dataset into low,
medium, and high risk. The results are summarized in Table 2.

Compared to having a normal BMI, being overweight is
associated with a 21% increased risk of liver cancer [43]. As
people become heavier, they develop fatty infiltration in their
liver which leads to chronic inflammation. In the United
States, this is now becoming the most rapidly developing
cause of liver cancer [43], since there are better treatments to
control hepatitis C and hepatitis B. In Figure 5, we repeated
the analysis of our dataset (DS2) by considering the group of
people who were never diagnosed with hepatitis, and the
remaining population by considering their BMI.

Figure 1. A schematics of an ANN [42]. Circles and lines represent a neuron and a weight, respectively.
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Discussion

The presented ANN model predicted and stratified the liver
cancer risk using personal health data. To optimize the per-
formance of the model, the training and testing datasets were
used. An AUC of 0.80 (95%CI 0.77–0.84) and 0.81 (95%CI 0.76–
0.87) for training and testing, accordingly (Figure 2), were the
best values acquired from the model. The model’s sensitivity
hovered around 60% ± 1.13% and 40% ± 1.10% on the train-
ing and testing dataset, respectively. For both the training
and testing datasets, the specificity remains above 99.5% ±
1.13% for most threshold values. The NPV value of 99.55%
was found for the testing dataset, meaning the model predic-
tion of when someone does not have cancer is wrong by
0.45%. For our testing dataset, the PPV value is 0.11%.

According to the American Cancer Society [44], the com-
monly promising modalities for HCC screening are (1) a
blood test to find a substance produced by cancer cells
called alpha-fetoprotein (AFP) and (2) imaging such as

ultrasound, computed tomography (CT), or magnetic reson-
ance imaging (MRI). It has been shown that HCC surveillance
is cost-effective [45]. It has been reported that these

Figure 2. (a) Receiver operating characteristic (ROC) plots for the training and
testing datasets of DS1. (b) Receiver operating characteristic (ROC) plots for the
training and testing datasets of DS2.

Figure 3. (a) Sensitivity and specificity curves for both training and testing as
functions of the threshold risk (b) Comparison of sensitivity and specificity val-
ues between training and testing datasets for DS2.

Figure 4. Positive predictive value (PPV) and negative predictive value (NPV)
for training and testing datasets.
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screening techniques (i.e., Biannual AFP, annual abdominal
ultrasound, triple-phase CT) are cost-effective compared to
no surveillance [46,47]. While effective, these common
screening techniques are mainly used when the symptoms
start appearing. Most commonly, the signs and symptoms of
liver cancer will appear when the cancer reaches its later
stages, when screening may no longer be helpful.

According to the American cancer society [44], the early
diagnosis of liver cancer is quite challenging. The liver is
located under the rib cage and that makes the physical
exam quite hard for the early detection of cancer. Once the
tumor can be felt by physical exam, it might be quite large.
The presented model is designed to help with the early pre-
diction of HCC risk before overt symptoms while considering
the lifestyle. Moreover, we emphasize readily available data
in the electronic medical record to obtain this level of sensi-
tivity and specificity.

Recently, there have been studies that suggest different
models to predict HCC risk. These models were developed in
chronic hepatitis B (CHB) cohorts and are common in some
limitations [48–50]. The group of patients who were signed
up for hospital-based studies in China, Hong Kong, and
Korea had active disease. Therefore, a higher rate of HCC
was found in the training cohort compared to patients with
CHB infection [51]. However, based on the primary care
setting, patients with chronic HBV would be categorized as
low-risk, causing an increase in NPV [51]. There is another
constraint that causes limitations of these models. The only
ethnicity considered in the mentioned model was West
Asians HCC risk may vary in different ethnic groups [51].
Another limitation of existing ANN models is that they are
often limited to a single dataset or a small number of data-
sets. This can limit the model’s ability to accurately learn the

complex relationships between the input and output varia-
bles, leading to a decrease in predictive accuracy [52].

Most of the existing models for HCC risk prediction con-
sider only the high-risk population who were carrying HBV. It
is important to develop better biomarkers and models that
can quantify the risk not only based on hepatitis status but
also on lifestyle-related factors [51]. Therefore, there is a
growing need to develop an easy model that can predict the
risk based on available general population data. To our
knowledge, the clinical data for people who are at unknown
risk are less available compared to a high-risk population.
Additionally, other than considering the existing factors for
prediction models for high-risk individuals, other risk factors
(i.e., physical activity, diabetes, smoking, body mass index
(BMI), alcohol consumption) should be considered in predic-
tion models for different populations. Our ANN model per-
forms well with the medical records that are available online,
and it uses general population data as opposed to a smaller
population dataset. This model has the potential to be
accessible on portable devices, such as tablets and mobile
phones. The clinicians will benefit from this feature because
they can enter the patient’s self-reported data and calculate
the risk immediately.

The inputs for this model were selected based on the
availability in both NHIS and PLCO datasets. Some sets of
variables only exist in one of the datasets which may cause a
limitation that is called a statistical file-matching problem
[53]. In order to overcome the file-matching problem and
construct a micro-analytical model such as ANN, the input
variables should be available in all the datasets [53]. This
variable selection limited us to including stronger factors
such as hepatitis B with a higher correlation with liver can-
cer. To overcome this limitation, we used large datasets that
contain a greater variety of input variables. Note that for a
risk prediction model that is data-based, it is suggested to
record strong predictor factors more regularly.

Conclusion

This study investigated a novel approach to predicting liver
cancer risk for individuals. We developed an ANN model
based on personal health data with an AUC of 0.81. This
model is easy to apply to readily available personal health
data and it is noninvasive and cost-effective. Our results indi-
cate that the developed ANN based on general population
health data can be used to quantify the liver cancer risk with
differing characteristics and lifestyles.
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No potential conflict of interest was reported by the author(s).

Table 2. Risk stratification results on the DS2 dataset.

#Low risk %Low risk #Medium risk %Medium risk #High risk %High risk

Cancer 15 21.74 32 46.38 22 31.88
Non-Cancer 50058 24.84 143651 71.29 7800 3.87

Figure 5. Receiver operating characteristic (ROC) plots for three scenarios: HEP
& no BMI, HEP & BMI, and BMI & no HEP.
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