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ABSTRACT 
Digital twin technology has revolutionized the state-of-the-art prac-
tice in many industries, and digital twins have a natural application 
to modeling cancer patients. By simulating patients at a more fun-
damental level than conventional machine learning models, digital 
twins can provide unique insights by predicting each patient’s out-
come trajectory. This has numerous associated benefts, including 
patient-specifc clinical decision-making support and the potential 
for large-scale virtual clinical trials. Historically, it has not been 
feasible to use digital twin technology to model cancer patients 
because of the large number of variables that impact each patient’s 
outcome trajectory, including genotypic, phenotypic, social, and en-
vironmental factors. However, the path to digital twins in radiation 
oncology is becoming possible due to recent progress, such as mul-
tiscale modeling techniques that estimate patient-specifc cellular, 
molecular, and histological distributions, and modern cryptographic 
techniques that enable secure and efcient centralization of patient 
data across multiple institutions. With these and other future sci-
entifc advances, digital twins for radiation oncology will likely 
become feasible. This work discusses the likely generalized archi-
tecture of patient-specifc digital twins and digital twin networks, 
as well as the benefts, existing barriers, and potential gateways to 
the application of digital twin technology in radiation oncology. 
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1 INTRODUCTION 
Digital twin technology has recently innovated many industries, 
such as transportation engineering (aerospace [1], automobile [2], 
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and rail [3]), architectural design [4], and workplace safety [5]. 
Digital twins are aptly-named - they are virtual representations 
of a complicated system’s components and environment. In each 
industry, digital twins are used to robustly predict the state and 
performance of the modeled system. For example, digital twins can 
predict the fuel efciency of a jet design, or the hazardousness of a 
particular assembly line confguration in a warehouse. 

Digital twin technology has a natural application to biomedical 
science. Human beings are immensely complex, and this complexity 
reduces the accuracy of statistical models that focus solely on a 
subset of this complexity, such as macroscopic/systemic data or 
histological data. As a result, it is difcult to predict the progression 
of certain types of diseases despite medicine’s numerous scientifc 
advances, and the outcomes of existing treatment options can be 
uncertain. Digital twins have the potential to provide superior 
models to existing statistical or machine learning models by more 
closely modeling the actual complexity of humans. 

This is particularly true in radiation oncology. Cancer patients 
are a wide cohort with great interpatient variability, and there 
are numerous subtle diferentiating factors between patients that 
strongly impact clinical outcomes. Current clinical decision-making 
does not completely account for this variability. As a result, many 
cancer patients experience unexpected responses to radiation, such 
as cancer recurrence and toxic side efects. To combat this chal-
lenging class of diseases, radiation oncology has become a feld 
of precision medicine, where each individual patient’s treatment 
course is determined by patient-specifc features [6]. In radiation 
oncology, the oncologist’s team uses patient-specifc data to craft 
a custom-tailored radiation treatment plan designed to avoid criti-
cal organs-at-risk and maximally target the patient’s cancer. The 
treatment planners use demographic data, histological biopsies, and 
three-dimensional tomographic imaging (such as CT, PET, and MR 
imaging) to create an optimal plan based on their experience. How-
ever, this data alone is not enough to precisely determine the results 
of treatment, so clinical decisions are more strongly infuenced by 
the physician’s personal experience, which introduces bias into the 
patient’s treatment according to the physician’s particular style. 
This ultimately contributes to the unpredictable treatment results 
in radiation oncology, decreasing cure rates and increasing toxic 
side efect rates. 

Human digital twins could change all of this. Digital twins excel 
at modeling complex systems, so they are well-suited to model 
patients by incorporating all the subtle features that cannot be 
perfectly considered by another human. More importantly, human 
digital twins could enable a new paradigm of predictive medicine, 
where many clinical options are virtually explored to determine the 
optimal treatment course. In the paradigm of predictive medicine, 
human digital twins would go beyond the raw data by virtually 
simulating each potential treatment course’s trajectory, producing 
a range of predicted treatment results that thoroughly represent the 
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range of possible trade-ofs in treatment planning. Equipped with 
this information, radiation oncologists can select the most optimal 
plan based on their experience, and they can also communicate 
with patients to determine the most appropriate trade-of between 
cure rate and toxicity rate based on patient preferences. 

The potential to model human beings with digital twins has 
been suggested in broader categories, but no implementations have 
come to fruition yet. This is due to the large amount of groundwork 
that needs to be completed before generalized human digital twins 
can become a reality. However, human digital twins become much 
more feasible when restricted specifcally to radiation oncology. 
We hypothesize that it is possible to create digital twins for can-
cer patients (DT-CPs) that can be implemented in current clinical 
practice. Currently, DT-CPs do not exist, and the feld of medical 
physics is far of from the creation of DT-CPs. To address the cur-
rent state of DT-CPs, this article presents a theoretical framework 
for DT-CPs, investigates the potential benefts of DT-CPs in clinical 
decision-making, discusses the existing barriers that prevent the 
implementation of DT-CPs, and proposes several solutions to these 
existing barriers. 

2 NETWORK SYSTEMS OF DIGITAL TWINS 
Although the details may vary, the eventual implementation of 
a digital twin network system is likely to resemble the network 
shown in Figure 1. In this network architecture, a central data-
base is maintained, either by the consumer hospital system or by 
a central organization. Each time a new patient is to be added to 
the system, the central database enables the creation of that dig-
ital twin by providing models that are applied to that patient’s 
data. Once created, the patient’s digital twin predicts the expected 
patient health trajectories that result from a range of possible clini-
cal decisions. For example, a physician could use the digital twin 
to explore what would happen if a lung cancer patient received 
only radiation therapy from a range of possible fractionations, or if 
the patient received radiation plus chemotherapy from a range of 
possible pharmaceuticals and doses, etc. 

With this knowledge, the physician becomes much better 
equipped to make the best clinical decision for each patient. Later, 
the patient’s progress is recorded and used to update the digital 
twin, which improves the accuracy of subsequent predictions for 
that patient. When the twin is updated, the universal database is 
also updated by the digital twin’s data to improve the models of 
all digital twins in the system. This allows each digital twin in the 
database to learn from each other’s baselines and progress. Figure 
1 shows the cyclic fow of this network architecture, where each 
digital twin and the database are all constantly improving as more 
experience accrues. When there are many digital twins connected 
to the universal database, the database’s models become much 
stronger. Therefore, it is important to facilitate inter-institutional 
data sharing to maximize the quality of all connected digital twins. 

3 DIGITAL TWIN COMPONENTS 
3.1 Patient Data 
Patient data is the central component of a digital twin. The data 
needed to establish an accurate digital twin will at least include 
patient demographic and summarizing data, which can be used to 

fll in any other data gaps with demographic-specifc averages. Dig-
ital twins will also require three-dimensional tomographic imaging 
(CT, MR, etc.) to provide spatial data about the patient’s tissues and 
anatomy. There will also be a need to transition from this physi-
cal spatial data (such as x-ray attenuation in CT images, magnetic 
spin density in MR images, etc.) to biological spatial data (such 
as tissue density, oxygenation values, histological profling, etc.). 
Recent advances in multiscale modeling are currently exploring 
this possibility, and multiscale modeling is likely to advance in the 
future [7]. Digital twins may also incorporate genomic data, which 
can have a strong impact on treatment outcomes. In the future, 
genomic data may be used to augment the capabilities of multiscale 
modeling to provide better spatial tissue stratifcation. 

3.2 Biophysical and Machine-Learned Modeling 
Digital twin predictions will be enabled by a fusion of biophysical 
modeling and machine learning. This modeling approach can incor-
porate analytically derived models for microbiological processes, 
such as proliferation, cell death, cell repair, angiogenesis, mutation, 
and immune system responses, with hyperparameters for these 
models determined by modern deep learning methods. The poten-
tial to use this combination inference strategy has recently been 
demonstrated [8–11]. Once equipped with patient data, a digital 
twin can use these models to move forward in time to predict the re-
sults of treatment decisions. By directly simulating patient progress 
rather than predicting results indirectly, this strategy is likely to 
provide models with improved predictive performance. Importantly, 
digital twin simulations can enable Monte-Carlo-like probabilis-
tic simulation, where many predictions are made to sample the 
probability distribution of possible treatment outcomes. 

3.3 High-Performance Computing 
The computing power required to sustain a digital twin is likely 
to be very high. As explained above, digital twins for radiation on-
cology will require patient data with dense sampling across many 
patients, and the sheer volume of this data alone will be compu-
tationally intensive to process. Recent research has demonstrated 
the impact of this volume of data, as well as the need for high-
performance computing to manage it [12]. This data will be even 
larger when accounting for the model-specifc parameters that are 
generated, as well as the results created when propagating the 
patient data forward in time repeatedly during treatment optimiza-
tion or virtual clinical trials (see sections 5.1 and 5.2 below). For 
the universal database (see section 3), this data is multiplied by 
the number of patients. Beyond the data processing requirements, 
model training and validation for both the multiscale models and 
machine learning involve intense algorithmic complexity. To ad-
dress these requirements, high-performance computing will be 
needed. This computing power can be centralized along with the 
universal database; therefore, individual institutions will not be 
required to provide their own computing power. 

4 THE BENEFITS OF DIGITAL TWINS 
4.1 Greater Predictive Accuracy 
The primary beneft of digital twins for cancer patients is the ability 
to make more precise predictions for the course of each patient. 
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Figure 1: Network Architecture of Digital Twins 

While a large amount of cancer research has focused on predicting 
the probabilities of patient outcomes and side efects using artifcial 
intelligence or statistical models, much of this research attempts 
to predict the results directly from the patient’s imaging and phe-
notyping. As a result, these models are "synthetic", i.e. they ignore 
all of the complex biological and physiological phenomena that 
fundamentally determine the patient’s progress. Digital twins inno-
vate the current scientifc paradigm by refecting these biological 
and physiological not just from AI or statistics but also through 
mechanistic modeling, genetic, environmental, and social factors. 
In doing so, digital twins progress away from synthetic inference 
and move closer to actual simulation of the patient. This makes 
digital twins much more likely to correctly predict the patient’s 
outcome trajectory. 

4.2 Treatment Plan Optimization 
Digital twins can fundamentally change the paradigm of biological 
optimization for radiation therapy treatment planning. Historically, 
biological optimization relies solely on tumor volume and the deliv-
ered radiation dose distribution, discarding much of the information 

that infuences cancer radiobiology such as oxygenation and vas-
culature density. With digital twins, biological optimization can 
properly consider these factors, possibly greatly improving the re-
sulting treatment plans. Similarly, digital twins can provide much 
more power to adaptive radiation therapy, a treatment paradigm in 
which the patient’s radiation course is updated over the radiation 
course to account for the patient’s anatomical changes. By using 
digital twins, adaptive radiation therapy can not only improve ra-
diation dose homogeneity and conformality due to changes, but 
it can also modify the course based on the changing probabilities 
of cancer cure and toxic side efects. This can profoundly improve 
patient outcomes from radiation therapy in a previously impossible 
way. 

4.3 Innovative Research Tools 
Beyond the immense clinical side efects, digital twins can also be 
powerful tools for cancer researchers. Because of their low-level 
simulations of patients, digital twins are much easier to generalize 
beyond their training data. This makes it easy for researchers to 
investigate numerous possible combinations and ratios of thera-
peutic agents and strategies. Even further, digital twins will be able 
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to extend their predictions to novel therapeutic strategies by simu-
lating the patient’s reaction to them. This goes beyond the typical 
artifcial intelligence limitation of being unable to predict results 
that are signifcantly diferent from the training data. Because of 
their virtual nature, digital twins could enable large-scale virtual 
clinical trials that are more thorough and drastically faster than cur-
rent clinical trials, accelerating the translation from basic science 
to clinical solutions. 

5 THE BARRIERS TO DIGITAL TWINS 
5.1 Centralized Data Commons 
Historically, individual hospital systems have maintained their own 
IT departments and databases in the interest of preserving the se-
curity of their patient health information. Therefore, it is likely 
that the database powering the digital twins would be maintained 
by the individual hospital systems that are using the digital twins 
to improve the outcomes of their own patients. While this makes 
it easier for patient information to be secure, hospitals would be 
hampering the efectiveness of their digital twins by forcing their 
digital twins to learn from only the hospital’s data. Artifcial intel-
ligence and machine learning models improve signifcantly when 
their training data increases, so we expect that digital twins should 
become much more accurate and powerful if they were trained 
from the data of many hospital systems rather than one. More-
over, this format would require each hospital system to have their 
own high-performance computers in order to train and maintain 
hospital-specifc digitial twin models. This increases the difculty 
and cost of implementing digital twins on the hospital system’s 
end. 

However, with modern cryptography techniques and cloud com-
puting readily available, it would be possible for hospital systems 
to anonymously share their patients’ de-identifed data with some 
central organization while still preserving the electronic key to 
that patient. This would allow the hospital system to periodically 
update the universal database with each patient’s progress and 
clinical decisions, continuously improving the universal database 
by enabling online learning techniques [13]. The universal database 
would also be able to house the computers required to train the 
models without requiring high-end computing power on the side 
of the hospital systems. This would make it much easier and less 
costly for each hospital system to start using digital twins for their 
own patients, which incentivizes more hospital systems to join and 
even further improve the universal database. 

5.2 Patient-Specifc Data Assembly 
Regardless of how the digital twins are maintained and trained, they 
will require an assembly of patient-specifc data to make patient-
specifc inferences. Some of this data may be commonly acquired in 
typical patients, such as blood panels or MRI or CT imaging of the 
relevant part of the body. Depending on the fnal technical imple-
mentation of the digital twins, less-common data may need to be 
included, such as genetic sequencing of relevant genes. Even with 
the assistance of a central universal database, novel data commons 
and assembly methods need to be developed to minimize the num-
ber of additional tests needed to generate a digital twin. Moreover, 
each digital twin would operate better with more of its patient’s 

data, so steps should be taken to increase the density of pre-existing 
patient data. For example, a digital twin would be able to produce 
better predictions for a patient undergoing lung radiation therapy 
if that patient has previously undergone radiation therapy. In this 
example, it would be ideal for the hospital to access all the data 
associated with the prior radiation therapy, but this would be dif-
cult if that data were secured in another hospital system’s database. 
Naturally, this problem also vanishes in the presence of universal 
databases because the hospital would be able to provide the pa-
tient’s anonymized key to the database and retrieve all the patient’s 
historical data, maximizing the created digital twin’s predictive 
performance. 

5.3 Multiscale Modeling 
Although artifcial intelligence and digital twin technology have 
been applied broadly to other industries, they have not been ex-
tensively investigated in the low-level human domain generated 
by multiscale modeling. This is primarily because the relevant ad-
vancements in multiscale modeling are relatively new. Therefore, 
there has not been enough time or awareness of researchers to de-
velop models in these domains yet. The domains also pose unique 
traits due to their representation of lower-level human data. These 
traits open the door to a new class of artifcial intelligence models 
that exploit the well-known mechanical, chemical, and biological 
properties of materials. This will enable the path from high-level 
empirical models that ignore the fne details of the human body to 
fundamental, physically motivated models that perform realistic 
human simulation. These models are an active area of research, 
but because they are so new and underdeveloped, the coupling of 
modern AI techniques with mechanistic models poses a unique 
challenge to digital twin development. However, it is likely that 
signifcant progress will be made on these models in the near future. 

6 CONCLUSION 
Digital twins would have an undeniably strong positive efect on 
radiation therapy for cancer patients. While there are some barri-
ers that currently prevent digital twins from being developed and 
implemented clinically, signifcant groundwork has being done to 
overcome them. The recently developed multiscale, multimodal 
models are primed to power and contribute to digital twins. In the 
future, digital twins will signifcantly improve patient outcomes 
and enable a new class of large-scale virtual clinical trials, bringing 
us closer to a world where cancer has changed from being a deadly 
disease to a mild inconvenience. 
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