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ABSTRACT

Digital twin technology has revolutionized the state-of-the-art prac-
tice in many industries, and digital twins have a natural application
to modeling cancer patients. By simulating patients at a more fun-
damental level than conventional machine learning models, digital
twins can provide unique insights by predicting each patient’s out-
come trajectory. This has numerous associated benefits, including
patient-specific clinical decision-making support and the potential
for large-scale virtual clinical trials. Historically, it has not been
feasible to use digital twin technology to model cancer patients
because of the large number of variables that impact each patient’s
outcome trajectory, including genotypic, phenotypic, social, and en-
vironmental factors. However, the path to digital twins in radiation
oncology is becoming possible due to recent progress, such as mul-
tiscale modeling techniques that estimate patient-specific cellular,
molecular, and histological distributions, and modern cryptographic
techniques that enable secure and efficient centralization of patient
data across multiple institutions. With these and other future sci-
entific advances, digital twins for radiation oncology will likely
become feasible. This work discusses the likely generalized archi-
tecture of patient-specific digital twins and digital twin networks,
as well as the benefits, existing barriers, and potential gateways to
the application of digital twin technology in radiation oncology.
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1 INTRODUCTION

Digital twin technology has recently innovated many industries,
such as transportation engineering (aerospace [1], automobile [2],
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and rail [3]), architectural design [4], and workplace safety [5].
Digital twins are aptly-named - they are virtual representations
of a complicated system’s components and environment. In each
industry, digital twins are used to robustly predict the state and
performance of the modeled system. For example, digital twins can
predict the fuel efficiency of a jet design, or the hazardousness of a
particular assembly line configuration in a warehouse.

Digital twin technology has a natural application to biomedical
science. Human beings are immensely complex, and this complexity
reduces the accuracy of statistical models that focus solely on a
subset of this complexity, such as macroscopic/systemic data or
histological data. As a result, it is difficult to predict the progression
of certain types of diseases despite medicine’s numerous scientific
advances, and the outcomes of existing treatment options can be
uncertain. Digital twins have the potential to provide superior
models to existing statistical or machine learning models by more
closely modeling the actual complexity of humans.

This is particularly true in radiation oncology. Cancer patients
are a wide cohort with great interpatient variability, and there
are numerous subtle differentiating factors between patients that
strongly impact clinical outcomes. Current clinical decision-making
does not completely account for this variability. As a result, many
cancer patients experience unexpected responses to radiation, such
as cancer recurrence and toxic side effects. To combat this chal-
lenging class of diseases, radiation oncology has become a field
of precision medicine, where each individual patient’s treatment
course is determined by patient-specific features [6]. In radiation
oncology, the oncologist’s team uses patient-specific data to craft
a custom-tailored radiation treatment plan designed to avoid criti-
cal organs-at-risk and maximally target the patient’s cancer. The
treatment planners use demographic data, histological biopsies, and
three-dimensional tomographic imaging (such as CT, PET, and MR
imaging) to create an optimal plan based on their experience. How-
ever, this data alone is not enough to precisely determine the results
of treatment, so clinical decisions are more strongly influenced by
the physician’s personal experience, which introduces bias into the
patient’s treatment according to the physician’s particular style.
This ultimately contributes to the unpredictable treatment results
in radiation oncology, decreasing cure rates and increasing toxic
side effect rates.

Human digital twins could change all of this. Digital twins excel
at modeling complex systems, so they are well-suited to model
patients by incorporating all the subtle features that cannot be
perfectly considered by another human. More importantly, human
digital twins could enable a new paradigm of predictive medicine,
where many clinical options are virtually explored to determine the
optimal treatment course. In the paradigm of predictive medicine,
human digital twins would go beyond the raw data by virtually
simulating each potential treatment course’s trajectory, producing
arange of predicted treatment results that thoroughly represent the
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range of possible trade-offs in treatment planning. Equipped with
this information, radiation oncologists can select the most optimal
plan based on their experience, and they can also communicate
with patients to determine the most appropriate trade-off between
cure rate and toxicity rate based on patient preferences.

The potential to model human beings with digital twins has
been suggested in broader categories, but no implementations have
come to fruition yet. This is due to the large amount of groundwork
that needs to be completed before generalized human digital twins
can become a reality. However, human digital twins become much
more feasible when restricted specifically to radiation oncology.
We hypothesize that it is possible to create digital twins for can-
cer patients (DT-CPs) that can be implemented in current clinical
practice. Currently, DT-CPs do not exist, and the field of medical
physics is far off from the creation of DT-CPs. To address the cur-
rent state of DT-CPs, this article presents a theoretical framework
for DT-CPs, investigates the potential benefits of DT-CPs in clinical
decision-making, discusses the existing barriers that prevent the
implementation of DT-CPs, and proposes several solutions to these
existing barriers.

2 NETWORK SYSTEMS OF DIGITAL TWINS

Although the details may vary, the eventual implementation of
a digital twin network system is likely to resemble the network
shown in Figure 1. In this network architecture, a central data-
base is maintained, either by the consumer hospital system or by
a central organization. Each time a new patient is to be added to
the system, the central database enables the creation of that dig-
ital twin by providing models that are applied to that patient’s
data. Once created, the patient’s digital twin predicts the expected
patient health trajectories that result from a range of possible clini-
cal decisions. For example, a physician could use the digital twin
to explore what would happen if a lung cancer patient received
only radiation therapy from a range of possible fractionations, or if
the patient received radiation plus chemotherapy from a range of
possible pharmaceuticals and doses, etc.

With this knowledge, the physician becomes much better
equipped to make the best clinical decision for each patient. Later,
the patient’s progress is recorded and used to update the digital
twin, which improves the accuracy of subsequent predictions for
that patient. When the twin is updated, the universal database is
also updated by the digital twin’s data to improve the models of
all digital twins in the system. This allows each digital twin in the
database to learn from each other’s baselines and progress. Figure
1 shows the cyclic flow of this network architecture, where each
digital twin and the database are all constantly improving as more
experience accrues. When there are many digital twins connected
to the universal database, the database’s models become much
stronger. Therefore, it is important to facilitate inter-institutional
data sharing to maximize the quality of all connected digital twins.

3 DIGITAL TWIN COMPONENTS

3.1 Patient Data

Patient data is the central component of a digital twin. The data
needed to establish an accurate digital twin will at least include
patient demographic and summarizing data, which can be used to

990

James Jensen and Jun Deng

fill in any other data gaps with demographic-specific averages. Dig-
ital twins will also require three-dimensional tomographic imaging
(CT, MR, etc.) to provide spatial data about the patient’s tissues and
anatomy. There will also be a need to transition from this physi-
cal spatial data (such as x-ray attenuation in CT images, magnetic
spin density in MR images, etc.) to biological spatial data (such
as tissue density, oxygenation values, histological profiling, etc.).
Recent advances in multiscale modeling are currently exploring
this possibility, and multiscale modeling is likely to advance in the
future [7]. Digital twins may also incorporate genomic data, which
can have a strong impact on treatment outcomes. In the future,
genomic data may be used to augment the capabilities of multiscale
modeling to provide better spatial tissue stratification.

3.2 Biophysical and Machine-Learned Modeling

Digital twin predictions will be enabled by a fusion of biophysical
modeling and machine learning. This modeling approach can incor-
porate analytically derived models for microbiological processes,
such as proliferation, cell death, cell repair, angiogenesis, mutation,
and immune system responses, with hyperparameters for these
models determined by modern deep learning methods. The poten-
tial to use this combination inference strategy has recently been
demonstrated [8-11]. Once equipped with patient data, a digital
twin can use these models to move forward in time to predict the re-
sults of treatment decisions. By directly simulating patient progress
rather than predicting results indirectly, this strategy is likely to
provide models with improved predictive performance. Importantly,
digital twin simulations can enable Monte-Carlo-like probabilis-
tic simulation, where many predictions are made to sample the
probability distribution of possible treatment outcomes.

3.3 High-Performance Computing

The computing power required to sustain a digital twin is likely
to be very high. As explained above, digital twins for radiation on-
cology will require patient data with dense sampling across many
patients, and the sheer volume of this data alone will be compu-
tationally intensive to process. Recent research has demonstrated
the impact of this volume of data, as well as the need for high-
performance computing to manage it [12]. This data will be even
larger when accounting for the model-specific parameters that are
generated, as well as the results created when propagating the
patient data forward in time repeatedly during treatment optimiza-
tion or virtual clinical trials (see sections 5.1 and 5.2 below). For
the universal database (see section 3), this data is multiplied by
the number of patients. Beyond the data processing requirements,
model training and validation for both the multiscale models and
machine learning involve intense algorithmic complexity. To ad-
dress these requirements, high-performance computing will be
needed. This computing power can be centralized along with the
universal database; therefore, individual institutions will not be
required to provide their own computing power.

4 THE BENEFITS OF DIGITAL TWINS

4.1 Greater Predictive Accuracy

The primary benefit of digital twins for cancer patients is the ability
to make more precise predictions for the course of each patient.
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Figure 1: Network Architecture of Digital Twins

While a large amount of cancer research has focused on predicting
the probabilities of patient outcomes and side effects using artificial
intelligence or statistical models, much of this research attempts
to predict the results directly from the patient’s imaging and phe-
notyping. As a result, these models are "synthetic", i.e. they ignore
all of the complex biological and physiological phenomena that
fundamentally determine the patient’s progress. Digital twins inno-
vate the current scientific paradigm by reflecting these biological
and physiological not just from Al or statistics but also through
mechanistic modeling, genetic, environmental, and social factors.
In doing so, digital twins progress away from synthetic inference
and move closer to actual simulation of the patient. This makes
digital twins much more likely to correctly predict the patient’s
outcome trajectory.

4.2 Treatment Plan Optimization

Digital twins can fundamentally change the paradigm of biological
optimization for radiation therapy treatment planning. Historically,
biological optimization relies solely on tumor volume and the deliv-
ered radiation dose distribution, discarding much of the information
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that influences cancer radiobiology such as oxygenation and vas-
culature density. With digital twins, biological optimization can
properly consider these factors, possibly greatly improving the re-
sulting treatment plans. Similarly, digital twins can provide much
more power to adaptive radiation therapy, a treatment paradigm in
which the patient’s radiation course is updated over the radiation
course to account for the patient’s anatomical changes. By using
digital twins, adaptive radiation therapy can not only improve ra-
diation dose homogeneity and conformality due to changes, but
it can also modify the course based on the changing probabilities
of cancer cure and toxic side effects. This can profoundly improve
patient outcomes from radiation therapy in a previously impossible
way.

4.3 Innovative Research Tools

Beyond the immense clinical side effects, digital twins can also be
powerful tools for cancer researchers. Because of their low-level
simulations of patients, digital twins are much easier to generalize
beyond their training data. This makes it easy for researchers to
investigate numerous possible combinations and ratios of thera-
peutic agents and strategies. Even further, digital twins will be able
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to extend their predictions to novel therapeutic strategies by simu-
lating the patient’s reaction to them. This goes beyond the typical
artificial intelligence limitation of being unable to predict results
that are significantly different from the training data. Because of
their virtual nature, digital twins could enable large-scale virtual
clinical trials that are more thorough and drastically faster than cur-
rent clinical trials, accelerating the translation from basic science
to clinical solutions.

5 THE BARRIERS TO DIGITAL TWINS

5.1 Centralized Data Commons

Historically, individual hospital systems have maintained their own
IT departments and databases in the interest of preserving the se-
curity of their patient health information. Therefore, it is likely
that the database powering the digital twins would be maintained
by the individual hospital systems that are using the digital twins
to improve the outcomes of their own patients. While this makes
it easier for patient information to be secure, hospitals would be
hampering the effectiveness of their digital twins by forcing their
digital twins to learn from only the hospital’s data. Artificial intel-
ligence and machine learning models improve significantly when
their training data increases, so we expect that digital twins should
become much more accurate and powerful if they were trained
from the data of many hospital systems rather than one. More-
over, this format would require each hospital system to have their
own high-performance computers in order to train and maintain
hospital-specific digitial twin models. This increases the difficulty
and cost of implementing digital twins on the hospital system’s
end.

However, with modern cryptography techniques and cloud com-
puting readily available, it would be possible for hospital systems
to anonymously share their patients’ de-identified data with some
central organization while still preserving the electronic key to
that patient. This would allow the hospital system to periodically
update the universal database with each patient’s progress and
clinical decisions, continuously improving the universal database
by enabling online learning techniques [13]. The universal database
would also be able to house the computers required to train the
models without requiring high-end computing power on the side
of the hospital systems. This would make it much easier and less
costly for each hospital system to start using digital twins for their
own patients, which incentivizes more hospital systems to join and
even further improve the universal database.

5.2 Patient-Specific Data Assembly

Regardless of how the digital twins are maintained and trained, they
will require an assembly of patient-specific data to make patient-
specific inferences. Some of this data may be commonly acquired in
typical patients, such as blood panels or MRI or CT imaging of the
relevant part of the body. Depending on the final technical imple-
mentation of the digital twins, less-common data may need to be
included, such as genetic sequencing of relevant genes. Even with
the assistance of a central universal database, novel data commons
and assembly methods need to be developed to minimize the num-
ber of additional tests needed to generate a digital twin. Moreover,
each digital twin would operate better with more of its patient’s
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data, so steps should be taken to increase the density of pre-existing
patient data. For example, a digital twin would be able to produce
better predictions for a patient undergoing lung radiation therapy
if that patient has previously undergone radiation therapy. In this
example, it would be ideal for the hospital to access all the data
associated with the prior radiation therapy, but this would be diffi-
cult if that data were secured in another hospital system’s database.
Naturally, this problem also vanishes in the presence of universal
databases because the hospital would be able to provide the pa-
tient’s anonymized key to the database and retrieve all the patient’s
historical data, maximizing the created digital twin’s predictive
performance.

5.3 Multiscale Modeling

Although artificial intelligence and digital twin technology have
been applied broadly to other industries, they have not been ex-
tensively investigated in the low-level human domain generated
by multiscale modeling. This is primarily because the relevant ad-
vancements in multiscale modeling are relatively new. Therefore,
there has not been enough time or awareness of researchers to de-
velop models in these domains yet. The domains also pose unique
traits due to their representation of lower-level human data. These
traits open the door to a new class of artificial intelligence models
that exploit the well-known mechanical, chemical, and biological
properties of materials. This will enable the path from high-level
empirical models that ignore the fine details of the human body to
fundamental, physically motivated models that perform realistic
human simulation. These models are an active area of research,
but because they are so new and underdeveloped, the coupling of
modern Al techniques with mechanistic models poses a unique
challenge to digital twin development. However, it is likely that
significant progress will be made on these models in the near future.

6 CONCLUSION

Digital twins would have an undeniably strong positive effect on
radiation therapy for cancer patients. While there are some barri-
ers that currently prevent digital twins from being developed and
implemented clinically, significant groundwork has being done to
overcome them. The recently developed multiscale, multimodal
models are primed to power and contribute to digital twins. In the
future, digital twins will significantly improve patient outcomes
and enable a new class of large-scale virtual clinical trials, bringing
us closer to a world where cancer has changed from being a deadly
disease to a mild inconvenience.
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