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A Simple Method for Estimating Gaussian Graphical Models

Yiyi Yin, Yang Song and Hui Zou

University of Minnesota

Abstract: The penalized likelihood estimator is the state-of-the-art method for

estimating a Gaussian graphical model, because it delivers a symmetric graph and

is efficient to compute, owing to the graphical lasso implementation. However,

the estimator requires a stringent irrepresentability condition in order to achieve

consistent recovery of the underlying graph. Another popular method, neighbor-

hood selection, does not offer a symmetric solution by itself, and also requires a

set of irrepresentability conditions for exact recovery. In this paper, we propose

a new method, called the simple graph maker, for estimating an underlying

graph. The simple graph maker produces a symmetric estimator by using a simple

`1-penalized quadratic problem, which is easily computed by coordinate descent.

Furthermore, it is shown to recover the underlying graph with overwhelming

probability, without assuming additional structure conditions on the variables.

The rates of convergence under various matrix norms are also established. The

new method is shown to exhibit excellent performance on simulated and real data.

Key words and phrases: Coordinate descent, Exact recovery, Gaussian graphical

model, Graphical lasso, Irrepresentable conditions, Sparsity.

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0273



2

1 Introduction

In this study, we examine the problem of constructing a Gaussian graph-

ical model from n independent and identically distributed observations

(i.i.d.) from a multivariate Gaussian distribution. Suppose that X =

(X1, X2, . . . , Xp)
T follows a multivariate Gaussian distribution Np(µ,Σ

∗).

Let Θ∗ = (θ∗ij) and Σ∗ = (Θ∗)−1 denote the precision matrix and the

covariance matrix, respectively. It is known that the (i, j) element of Θ∗ is

zero if and only if variables Xi and Xj are conditional independent, given

all the other variables (Lauritzen, 1996). Thus, data analysts often use

the sparsity pattern of an estimated sparse precision matrix to construct

a Gaussian graphical model that describes the dependence relationships

between variables. As a result, the problem of estimating a large sparse

precision matrix has received increased attention in the past decade, for

a comprehensive review, see Chapter 9 of Fan et al. (2020), and the refer-

ences therein. Currently, the two most popular methods are neighborhood

selection (Meinshausen and Bühlmann, 2006) and the penalized likelihood

estimator (i.e., the graphical lasso)(Yuan and Lin, 2007; Rothman et al.,

2008; Friedman et al., 2008; Ravikumar et al., 2011).

In this paper, we propose a new method for estimating an underlying

graph. In order to motivate our proposal, we first discuss the strengths
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and weaknesses of the two most popular existing methods. Neighborhood

selection was proposed prior to the penalized likelihood estimator. It is a

column-wise recovery method, in the sense that it estimates the columns

of Θ∗ one by one. As a result, the matrix estimation problem is cast

into p separate vector estimation problems, making the computation easy

by running a lasso linear regression. However, the solution is usually not

symmetric, and hence a post-processing step is necessary to make the

estimator symmetric. This was the major motivation for researchers to study

the penalized likelihood estimator. The graphical lasso delivers a sparse

symmetric precision matrix estimator by following the penalized likelihood

principle. In addition, the graphical lasso can be solved efficiently (Friedman

et al., 2008), making it the first choice for many users when a sparse precision

matrix estimator is needed. Theoretically, neighborhood selection requires

an irrepresentability condition (Zhao and Yu, 2006; Zou, 2006) in order to

estimate each column of Θ∗. A similar matrix-version of the irrepresentability

condition is required for the graphical lasso (Ravikumar et al., 2011). Because

these conditions are so stringent, theoretical support for the two methods is

not strong. Note that these issues cannot be removed by replacing the lasso

penalty with the adaptive lasso penalty or the concave penalty, because the

likelihood function or the “loss” function in neighborhood selection is a key
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factor in creating these theoretical obstacles. See the discussion in Section

2.3 for details.

Based on the above discussion, we develop a new method for estimating

a sparse precision matrix that has three desirable properties:

1. the proposed method yields a symmetric matrix estimator, as in the

case of the graphical lasso;

2. the proposed method is computationally efficient;

3. the theoretical justification for the proposed method does not require

the irrepresentability condition or other strong structure conditions.

In other words, the proposed method enjoys the advantages of existing

methods, but avoids their major drawbacks.

In Section 2, we present the technical details of the proposed method,

which we call the simple graph maker (SGM). The SGM estimator is

symmetric and easy to compute. In Section 3, we prove its sparse recovery

property and establish its rates of convergence under several common matrix

norms. In Section 4, we present a simulation study and real-data examples

to demonstrate the performance of the proposed method, and compare

it with Glasso, Galasso (Fan et al., 2009), CLIME (Cai et al., 2011) and

Dtrace (Zhang and Zou, 2014) methods. Technical proofs are relegated to
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the appendix.

2 Methodology

2.1 Notation

Here, we introduce the notation and definitions used throughout this paper.

For a vector v, ||v||max = maxi |vi|, ||v||min = mini |vi|, and |v|1 =
∑

i |vi|.

We use λmax(A) and λmin(A) to denote the largest and smallest eigenvalues,

respectively, of a matrix A. Denote by tr(A) the trace of a square matrix A.

For a real matrix A = (aij), ||A||max = maxi,j |aij|, ||A||min = mini,j |aij|,

||A||1 =
∑

i,j |aij|, ||A||`∞ = maxi
∑

j |aij|, ||A||`1 = maxj
∑

i |aij|, ||A||F =√∑
i,j |aij|2 , and ||A||2 =

√
λmax(ATA) . We use A � 0 to indicate that A

is a positive-definite matrix. We write A1 � A2 when A1 −A2 is a positive

semidefinite matrix. We use vec(A) to denote the vectorization of A in the

column by column order. Let ei be the ith column of the p-dimensional

identity matrix. We use A ◦B to denote the Hadamard product of matrices

A and B. Define Γ(Σ) = 1
2
(Σ ⊗ I + I ⊗ Σ), where ⊗ is the Kronecker

product. It is easy to see that Γ(Σ) is positive definite when Σ is positive

definite. Let S = {(i, j)|θ∗ij 6= 0} denote the support set of Θ∗, and Sc the

complement of S. For each j, let Sj = {(i, j)|θ∗ij 6= 0} be the support set of
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2.2 The SGM6

the jth column of Θ∗, and let Scj be the complement of Sj . Let d = maxj |Sj|

and s = |S|.

2.2 The SGM

Let Σ̂ be the sample covariance matrix, and define Σ̃ = Σ̂ + a
√

log p
n

I,

where a is a positive constant. If Σ̂ is positive definite, we can set a = 0.

The perturbation term a
√

log p
n

I is primarily used to improve the numeric

stability of the estimator when Σ̂ has a zero or near zero eigenvalue. The

theoretical upper bound on a is given in the next section. In practice, we

use a small a, such as a = 0.05.

The SGM Θ̂SGM is defined as follows:

Θ̂SGM = argmin
ΘT =Θ

1

2
tr(ΘT Σ̃Θ)− tr(Θ) + λ1||W ◦Θ||1, (2.1)

where λ1 is a penalization parameter, and the adaptive weight matrix

W = (wij) is computed from

wij =


(min{|θ̂0

ij|, |θ̂0
ji|}+ u(n, p))−1 for i 6= j

0 for i = j,

where (Θ̂0)ij = θ̂0
ij is a pilot estimator of Θ∗, and u(n, p) is a positive-valued

function of n and p. In theory, we can let u(n, p) = 0 and set the weight

wij =∞ if dividing by zero occurs. When wij =∞, it automatically implies
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that θ̂SGM
ij = 0. Any u(n, p) below a theoretical upper bound is good, in

theory. In practice, we use a small, but positive u(n, p) to avoid zero division,

for example, u(n, p) = (np)−2.

Given the weight matrix, it is easy to solve the optimization problem in

(2.1). In order to handle the symmetry constraint, we parametrize Θ = (θij)

with θij = θji. Then we recast the constrained optimization problem as an

unconstrained `1 penalization problem in which the unknowns are θii, for

1 ≤ i ≤ p, and θij, for j > i. Note that the objective function in (2.1) is

a quadratic function of the unknowns plus the weighted `1-penalty term.

Following Friedman et al. (2010), we use the coordinate descent algorithm

and computational tricks, such as active set update and warm start, to solve

(2.1) for a grid of λ1 values.

We now discuss the pilot estimator from which we compute the weight

matrix. The primary goal is to ensure that the SGM estimator recovers

the true graph with probability going to one as the sample size and the

dimension grow together. Our analysis of the SGM estimator reveals a

sufficient condition for the weight matrix under which the exact recovery

property of the SGM estimator holds. Based on that analysis, we design a

pilot estimator Θ̂0 as follows:

Θ̂0 = argmin
Θ

1

2
tr(ΘT Σ̃Θ)− tr(Θ) + λ0||Θ||1, (2.2)
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where λ0 is a tuning parameter.

Remark 1. A seemingly natural pilot estimator is

Θ̃0 = argmin
ΘT =Θ

1

2
tr(ΘT Σ̃Θ)− tr(Θ) + λ0||Θ||1. (2.3)

Although we do not deny the legitimacy of Θ̃0 as a pilot estimator for the

SGM estimator, we prefer to use Θ̂0, for computational convenience. We

can use the coordinate descent algorithm for solving (2.1) to solve (2.3). It

turns out that (2.2) is even easier to compute, owing to the removal of the

symmetry constraint. Let θj denote the jth column of Θ. Observe that

1

2
tr(ΘT Σ̃Θ)− tr(Θ) + λ0||Θ||1 =

p∑
j=1

(
1

2
θTj Σ̃θj − θjj + λ0|θj|1).

Therefore, if θ̂j is the minimizer of 1
2
θTj Σ̃θj−θjj+λ0|θj|1, then Θ̂ = [θ̂1 · · · θ̂p]

is the minimizer of 1
2

tr(ΘT Σ̃Θ) − tr(Θ) + λ0||Θ||1. Hence, we can solve

(2.2) by solving p `1-penalized quadratic problems in parallel.

The construction of the SGM estimator is traced back to the penalized

Dtrace loss estimator (Zhang and Zou, 2014),

min
Θ�εI

LD(Θ, Σ̂) + λ||Θ||1, (2.4)

where the loss function LD(Θ,Σ) = 1
2

tr(ΘTΣΘ)−tr(Θ) is called the Dtrace

loss. Note that the graphical lasso estimator is minΘ�0 LG(Θ, Σ̂) + λ||Θ||1,
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with LG(Θ,Σ) = tr(ΣΘ)− logdet(Θ). The LG loss function is essentially

the negative log-likelihood function (up to a scale factor and a constant

term). The Dtrace loss was originally proposed as a nonlikelihood-based

approach to estimate a large precision matrix. However, the penalized

Dtrace loss estimator also requires a kind of irrepresentability condition

in order to recover the true graph consistently. That motivated us to use

an adaptive lasso penalty (Zou, 2006) to replace the lasso penalty in (2.4).

Further, if we aim to recover the true graph, we need only have the symmetry

constraint, and can be free with the eigenvalue constraint. Thus, we remove

this constraint to explore the fact that LD is a quadratic function of Θ. As

a result, we can use the coordinate descent algorithm to compute a solution

path of the SGM estimator. If we choose to keep the eigenvalue constraint,

the state-of-the-art algorithm for (2.4) with an adaptive lasso penalty is the

alternating direction method of multipliers (ADMM) (Boyd et al., 2011). We

need to run the ADMM algorithm for each penalization parameter. Thus,

it is computationally much more expensive than the SGM estimator.

Remark 2. We comment on the tuning of the SGM estimator. Suppose

that we have a training set and a validation set. Denote by Θ̂tr
0 (λ0) the

pilot estimator, with λ0 as its penalization parameter. Let Σ̂v be the sample

covariance matrix from the validation data. Then, the validation error is
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2.3 Comparison with related estimators10

defined as ValErr(λ0) = LD(Θ̂tr
0 (λ0), Σ̂v), which we can use to compute the

cross-validation (CV) error, if necessary. After computing the solution path

of the pilot estimator for a grid of λ0 values, we can pick the one yielding

the smallest validation (or CV) error. Then, we fix λ0 (and hence the pilot

estimator and the weight matrix) when selecting λ1 in (2.1). Likewise, let

Θ̂SGM
tr (λ1) be the SGM estimator with λ1 as its penalization parameter. Then,

its validation error is defined as ValErr(λ1) = LD(Θ̂SGM
tr (λ1), Σ̂v), which we

can use to compute the CV error, if necessary. After computing the SGM

estimator for a grid of λ1 values, we pick the one with the smallest validation

(or CV) error. The procedure is similar to the tuning of the graphical lasso,

in which LG (instead of LD) is used to compute the validation (or CV) error.

2.3 Comparison with related estimators

In this section, we discuss several other related estimators. As noted earlier,

neighborhood selection and the graphical lasso require the irrepresentability

condition in order to be consistent in terms of recovering the true graph.

The irrepresentability condition is caused by the lasso penalty. A natural

remedy is to use the adaptive lasso penalty in these two methods. For

neighborhood selection, we can first fit the lasso regression, and then fit

an adaptive lasso regression to estimate the support of each column of the
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precision matrix. For j = 1, 2, . . . , p,

(N1). First solve minβ
∑n

i=1(Xi,j −
∑

l 6=j Xilβl)
2 + λ0

∑
l 6=j |βl| and let

wl = (|β̂l|+ u(n, p))−1.

(N2). Then, solve minβ
∑n

i=1(Xi,j −
∑

l 6=j Xilβl)
2 + λ1

∑
l 6=j wl|βl|.

For the graphical lasso, the modified procedure is as follows:

(G1). First solve minΘ�0 LG(Θ, Σ̂) + λ0||Θ||1 and let wij = (|θ̂ij| +

u(n, p))−1.

(G2). Then, solve minΘ�0 LG(Θ, Σ̂) + λ1||W ◦Θ||1.

For their theoretical justification, we need to show that the estimator is

good enough such that the next step delivers the right solution, in theory.

For the lasso regression, the rate of convergence of β can be established

without using the irrepresentability condition. Still, we need to assume other

conditions on the Gram matrix, such as the restricted eigenvalue condition

or the compatibility condition, that remain difficult to satisfy in practice;

see Bühlmann and van de Geer (2011) and Fan et al. (2020). For a more

general lasso problem, such conditions are imposed on the Hessian of the

loss function. In other words, the two estimators still require some structure

assumptions in addition to the sparsity assumption of Θ∗.
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In practice, the modified neighborhood selection estimator is still not

symmetric. Thus, the modified graphical lasso procedure is preferred, which

we refer to as Galasso, and include it in our numerical study.

An alternative is to use the folded concave penalty (Fan and Li, 2001)

in step (N2) and step (G2) (Fan et al., 2009). The theory for folded concave

penalized estimation also requires a reasonably good estimator (Fan et al.,

2014). There is no fundamental difference in theory between using the

folded concave penalty and the adaptive lasso penalty. We must deal with

the nonconvexity problem when using the folded concave penalty. When

applicable, the coordinate descent algorithm often finds a suboptimal local

solution of the folded concave penalized problem, as shown by examples

in Fan et al. (2014). A better algorithm is the local linear approximation

algorithm (Zou and Li, 2008), which is shown to find the oracle solution

within two iterations with a high probability under ultrahigh dimensions

(Fan et al., 2014). Each iteration is an adaptive lasso penalized problem.

3 Theory

Our analysis uses the following well-known proposition, which is shown under

the sub-Gaussian assumption for the distribution of X = (X1, X2, . . . , Xp)
T .

Statistica Sinica: Preprint 
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Proposition 1. For any 0 < ε < 1, there exists some c0 > 0, such that

P(||Σ̂−Σ∗||max > ε) ≤ p2 exp(−c0nε
2).

Proposition 1 is obtained by the union bound and the bound on |Σ̂ij−Σ∗ij|

by the sub-Gaussian assumption (Ravikumar et al., 2011).

First, we show the validity of the pilot estimator. The pilot estimator

is only used to compute the weight matrix in the SGM estimator. We do

not need to worry about whether it can recover the true graph with a high

probability. Because the weight matrix is defined entrywise from the pilot

estimator, the analysis of the SGM estimator shows that it is sufficient to

require the pilot estimator to be close to the true precision matrix under

the matrix max norm. This property of the pilot estimator is established in

Theorem 1.

Theorem 1. Let M = ||Θ∗||`1, and take 0 < a ≤ λ0

4M
. With probability at

least 1− p2 exp(− c0nλ2
0

16M2 ),

||Θ̂0 −Θ∗||max ≤
5

2
λ0M.

Based on Theorem 1, we can set λ0 = c1

√
log p
n

where c1 >
√

32+16t0
c0

M ,

and t0 > 0 is a constant. Pick any 0 < a ≤ c1
4M

. Then, with probability at

least 1− p−t0 , we have ||Θ̂0 −Θ∗||max ≤ 5
2
c1M

√
log p
n
.

Statistica Sinica: Preprint 
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The next theorem concerns the exact recovery property of the SGM

estimator and its rates of convergence under some matrix norms.

Theorem 2. Let Ψ = min(i,j)∈S |θ∗ij|, G = ||(Γ∗SS)−1||`∞ and H = ||Γ∗ScS(Γ∗SS)−1||`∞,

where Γ∗ = Γ(Σ∗). Take λ0 ≤ 1
5M

( Ψ
2H+1+dGΨ(1+H)

−2u(n, p)) where u(n, p) <

Ψ
2(2H+1+dGΨ(1+H))

, λ1 < min{ 1
2dG

, Ψ2

2G(2+dGΨ)
, λmin(Θ∗)

2 min{
√
s ,d}( 2

Ψ
+dG)G

}, and 0 <

a ≤ min{ λ0

4M
, λ1

2
}
√

n
log p

. Then, with probability at least 1−p2 exp(−c0nmin{ λ2
0

16M2 ,
λ2

1

4
}),

Θ̂SGM is positive definite and recovers the true graph, that is, {(i, j)|θ̂ij 6=

0} = S. Furthermore, we have

||Θ̂SGM −Θ∗||max < 2(
2

Ψ
+ dG)Gλ1,

||Θ̂SGM −Θ∗||F < 2
√
s (

2

Ψ
+ dG)Gλ1,

||Θ̂SGM −Θ∗||2 < 2 min{
√
s , d}( 2

Ψ
+ dG)Gλ1.

Remark 3. Based on Theorem 2, we can take λ0 = c1

√
log p
n
, λ1 = c2

√
log p
n

,

where √
32 + 16t0

c0

M < c1 <

√
n

log p

1

10M

Ψ

2H + 1 + dGΨ(1 +H)

and√
8 + 4t0
c0

< c2 <

√
n

log p
min{ 1

2dG
,

Ψ2

2G(2 + dGΨ)
,

λmin(Θ∗)

2 min{
√
s , d}( 2

Ψ
+ dG)G

}.

Further, let the small perturbations a and u(n, p) satisfy 0 < a ≤ min{ c1
4M
, c2

2
}

and u(n, p) < Ψ
4(2H+1+dGΨ(1+H))

, respectively. Then, with probability at least
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1− p−t0, Θ̂SGM is positive definite and recovers the true graph, with matrix

bounds ||Θ̂SGM−Θ∗||max < 2( 2
Ψ

+dG)Gc2

√
log p
n

, ||Θ̂SGM−Θ∗||F < 2
√
s ( 2

Ψ
+

dG)Gc2

√
log p
n

, and ||Θ̂SGM − Θ∗||2 < 2 min{
√
s , d}( 2

Ψ
+ dG)Gc2

√
log p
n

.

Comparing these with the results for the graphical lasso in Ravikumar et al.

(2011) under the irrepresentable condition, the SGM and the graphical lasso

have similar asymptotic rates of convergence under different matrix norms.

Remark 4. Although the SGM estimator is positive definite with overwhelm-

ing probability, it is not guaranteed to be positive definite for every data set.

In all of our numerical examples, we have checked that the computed SGM

estimator is positive definite. If the user only cares about recovering the

graph, then this is not important, as for neighborhood selection. On the other

hand, if the application demands using a positive-definite matrix estimator,

and Θ̂SGM happens to have a zero or negative eigenvalue, we can perform

an additional optimization by adding an eigenvalue constraint, as follows:

Θ̂SGM
+ = argmin

Θ�10−5I

1

2
tr(ΘT Σ̃Θ)− tr(Θ) + λ1||W ◦Θ||1, (3.1)

which can be solved efficiently using the ADMM algorithm in Zhang and Zou

(2014). Note too that we only solve (3.1) after tuning the SGM estimator,

which means that λ1 is the chosen penalization parameter in the final SGM

estimator and the weight matrix is given too. Thus, we run the ADMM

algorithm only once.
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4 Numerical Results

4.1 Simulations

In the simulation study, we generate n i.i.d. samples from Np(0,Σ
∗) under

four different Θ∗ generation processes:

Model 1: Θ∗ is fixed, with θ∗ii = 1, and θ∗ij = 0.3 for |i − j| = 1, and

θ∗ij = 0 otherwise.

Model 2: Θ∗ is fixed, with θ∗ii = 1, and θ∗ij = 0.4 for |i− j| = 1, θ∗ij = 0.3

for |i− j| = 2, θ∗ij = 0.2 for |i− j| = 3, and θ∗ij = 0 otherwise.

Model 3: Θ∗ is generated randomly. First, let B = (bi,j) be a p × p

matrix, such that bj,i = bi,j
i.i.d.∼ Bernoulli(q), ∀i > j. The diagonal elements

of B are zero. Next, select δ ∈ R such that M = B + δI is positive definite

and the condition number of M equals to p. Finally, select a > 0 and let

the precision matrix Θ∗ = aM such that the diagonal elements of Θ∗ are

equal to 1. We set q = 0.05 in the simulations.

Model 4: Θ∗ is generated randomly. Let Θ1,Θ2, ...,Θ5 be five p
5
× p

5

matrices generated independently by model 3, with q = 0.25. Then, the

precision matrix Θ∗ = diag{Θ1, ...,Θ5}.

Model 1 and model 2 are commonly used for precision matrix estimator

comparisons (Zhang and Zou, 2014). The generation process of model
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3 is based on that of model 2 in Cai, Liu and Luo (2011). Model 4 is

the block-diagonal version of model 3, corresponding to a graph with five

unconnected parts, with denser connections within each. We set q = 0.05

and 0.25 for model 3 and model 4, respectively, such that the overall sparsity

levels of the precision matrices are the same. In each model, we use three

n, p combinations: (i) n = 400, p = 100; (ii) n = 400, p = 500; and (iii)

n = 100, p = 500. We compare theSGM with Glasso, Galasso, the Dtrace

estimator (Zhang and Zou, 2014), and CLIME (Cai, Liu and Luo, 2011).

Glasso and CLIME are implemented using the R packages glasso and clime,

respectively. Dtrace is implemented using the code from Zhang and Zou

(2014). The performance of each estimator is evaluated by the following

measures:

• Frobenius risk E||Θ̂−Θ∗||F ; spectral risk E||Θ̂−Θ∗||2; the `1 risk

E||Θ̂−Θ∗||`1 ; the max risk E‖Θ̂−Θ∗‖max

• Sensitivity = TP
TP+FN

, and Specificity = TN
TN+FP

, where TP, FP, TN

and FN denote the numbers of true positives, false positives, true

negatives, and false negatives, respectively.

The results are summarized in Tables 1–12, where we report the mean

and standard error of each metric based on 100 independent repetitions. We
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also report the running time of each method, in seconds. Note that when

p = 500, the code for CLIME gives an error message or does not finish the

computation within one hour. For these cases, we record NA for CLIME.

Several observations can be made from these tables. For the quality of

the estimates, under model 1 with n = 400 and p = 100 or n = 400 and

p = 500, the SGM performs similarly to Galasso, and both outperform the

other methods. For model 2 with n = 400, and p = 100 or n = 400 and

p = 500, the SGM is a clear winner among all the methods. When the

precision matrices are generated randomly, in the n = 400 and p = 100

scenario (table 7 and 10), the SGM gives the best estimates, measured

by all the matrix norms, sensitivity, and specificity. When n = 400 and

p = 500, the SGM is the best measured by the l1-norm for model 3, and the

best measured by the spectral norm and the l1-norm for model 4. In the

scenario of n = 100 and p = 500, under all four data-generating models, the

SGM is among the best when measured by the l1-norm, and has a slightly

larger l2-norm. Overall, the simulation results provide numerical results

that confirm or complement the theoretical bounds for the SGM.

The SGM and Galasso have comparable computing time, and both are

much faster than Dtrace and CLIME. The ratio of the timing between the

SGM and Glasso is about five and the ratio of the timing between the SGM
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and Galasso is about two. The ratio stays stable when p increases from 100

to 500, suggesting that the SGM can scale as well as Glasso or Galasso for

practical applications. In addition, we observe that the SGM is the one of

the most stable methods. In some runs, CLIME, Glasso, and Galasso either

report error messages or cannot finish the computation within one hour.

When an error message occurred, we do not use that run to compute the

average and standard error for that method. In contrast, the SGM exhibits

no such an issue in our simulations.
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‖ · ‖F ‖ · ‖2 ‖ · ‖l1 ‖ · ‖max Sen. Spe. Time(s)

SGM 1.170 0.302 0.419 0.206 1.000 0.995 1.701

(0.007) (0.004) (0.006) (0.003) (0.000) (0.000) (0.002)

Glasso 1.808 0.409 0.710 0.213 1.000 0.905 0.432

(0.007) (0.002) (0.006) (0.002) (0.000) (0.002) (0.002)

Galasso 1.161 0.297 0.417 0.192 1.000 0.993 0.949

(0.006) (0.004) (0.005) (0.002) (0.000) (0.000) (0.004)

CLIME 1.581 0.311 0.443 0.217 1.000 0.967 353.795

(0.005) (0.003) (0.004) (0.002) (0.000) (0.001) (0.165)

Dtrace 1.620 0.366 0.626 0.202 1.000 0.921 2.942

(0.006) (0.003) (0.006) (0.002) (0.000) (0.001) (0.016)

Table 1: Model 1 with n = 400 and p = 100.
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‖ · ‖F ‖ · ‖2 ‖ · ‖l1 ‖ · ‖max Sen. Spe. Time(s)

SGM 2.863 0.374 0.538 0.256 1.000 0.998 197.519

(0.007) (0.003) (0.005) (0.003) (0.000) (0.000) (0.962)

Glasso 4.853 0.492 0.947 0.258 1.000 0.972 44.053

(0.007) (0.002) (0.008) (0.001) (0.000) (0.000) (0.234)

Galasso 2.789 0.370 0.538 0.249 1.000 0.98 78.001

(0.007) (0.003) (0.006) (0.003) (0.000) (0.000) (0.406)

CLIME NA NA NA NA NA NA NA

Dtrace 4.227 0.444 0.742 0.247 1.000 0.980 257.417

(0.006) (0.002) (0.004) (0.002) (0.000) (0.000) (3.967)

Table 2: Model 1 with n = 400 and p = 500. The code for CLIME gives an

error message or does not finish the computation within one hour.
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‖ · ‖F ‖ · ‖2 ‖ · ‖l1 ‖ · ‖max Sen. Spe. Time(s)

SGM 8.208 0.839 1.346 0.499 0.738 0.998 273.517

(0.014) (0.009) (0.018) (0.009) (0.002) (0.000) (1.875)

Glasso 8.434 0.776 1.670 0.381 0.896 0.976 98.188

(0.010) (0.001) (0.010) (0.003) (0.002) (0.000) (0.549)

Galasso 7.968 0.788 1.319 0.416 0.773 0.996 138.960

(0.013) (0.005) (0.011) (0.006) (0.002) (0.000) (0.653)

CLIME NA NA NA NA NA NA NA

Dtrace 8.287 0.766 1.310 0.473 0.860 0.990 437.238

(0.011) (0.004) (0.015) (0.008) (0.002) (0.000) (0.574)

Table 3: Model 1 with n = 100 and p = 500. The code for CLIME gives an

error message or does not finish the computation within one hour.
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‖ · ‖F ‖ · ‖2 ‖ · ‖l1 ‖ · ‖max Sen. Spe. Time(s)

SGM 1.939 0.580 0.958 0.216 0.991 0.978 1.848

(0.011) (0.007) (0.011) (0.002) (0.000) (0.000) (0.004)

Glasso 4.503 1.242 2.049 0.290 0.998 0.689 0.434

(0.02) (0.006) (0.008) (0.002) (0.000) (0.003) (0.002)

Galasso 2.759 0.832 1.333 0.242 0.989 0.934 1.021

(0.018) (0.007) (0.011) (0.003) (0.001) (0.001) (0.004)

CLIME 3.830 0.751 1.458 0.384 0.991 0.848 374.404

(0.011) (0.006) (0.009) (0.004) (0.001) (0.003) (0.445)

Dtrace 3.108 0.888 1.582 0.236 0.999 0.771 3.017

(0.016) (0.007) (0.011) (0.002) (0.000) (0.004) (0.017)

Table 4: Model 2 with n = 400 and p = 100.
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‖ · ‖F ‖ · ‖2 ‖ · ‖l1 ‖ · ‖max Sen. Spe. Time(s)

SGM 5.800 0.857 1.402 0.297 0.963 0.992 231.802

(0.017) (0.006) (0.009) (0.002) (0.000) (0.000) (2.34)

Glasso 13.397 1.630 2.758 0.368 0.975 0.897 46.049

(0.034) (0.004) (0.014) (0.001) (0.001) (0.002) (0.623)

Galasso 9.230 1.247 2 0.345 0.932 0.980 87.763

(0.035) (0.005) (0.010) (0.004) (0.001) (0.000) (1.064)

CLIME NA NA NA NA NA NA NA

Dtrace 9.678 1.243 2.036 0.315 0.991 0.938 218.368

(0.039) (0.006) (0.011) (0.002) (0.000) (0.001) (0.137)

Table 5: Model 2 with n = 400 and p = 500. The code for CLIME gives an

error message or does not finish the computation within one hour.
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‖ · ‖F ‖ · ‖2 ‖ · ‖l1 ‖ · ‖max Sen. Spe. Time(s)

SGM 18.136 2.130 2.382 0.541 0.204 0.999 364.245

(0.012) (0.001) (0.004) (0.002) (0.001) (0.000) (3.469)

Glasso 17.940 2.099 2.773 0.510 0.358 0.984 96.880

(0.007) (0.001) (0.010) (0.002) (0.002) (0.000) (0.476)

Galasso 18.128 2.126 2.517 0.526 0.212 0.999 140.462

(0.008) (0.001) (0.007) (0.002) (0.001) (0.000) (0.690)

CLIME NA NA NA NA NA NA NA

Dtrace 17.962 2.106 2.396 0.521 0.286 0.993 463.535

(0.009) (0.001) (0.004) (0.002) (0.002) (0.000) (1.098)

Table 6: Model 2 with n = 100 and p = 500. The code for CLIME gives an

error message or does not finish the computation within one hour.
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‖ · ‖F ‖ · ‖2 ‖ · ‖l1 ‖ · ‖max Sen. Spe. Time(s)

SGM 1.424 0.369 0.669 0.210 0.998 0.986 2.353

(0.009) (0.005) (0.009) (0.003) (0.000) (0.000) (0.017)

Glasso 2.284 0.645 1.353 0.249 1.000 0.811 0.370

(0.019) (0.007) (0.014) (0.003) (0.000) (0.006) (0.006)

Galasso 1.577 0.443 0.762 0.219 0.998 0.987 0.905

(0.018) (0.007) (0.012) (0.002) (0.000) (0.001) (0.012)

CLIME 5.251 2.020 3.200 1.581 0.832 0.901 344.889

(0.092) (0.044) (0.074) (0.068) (0.026) (0.008) (0.491)

Dtrace 1.950 0.534 1.129 0.210 1.000 0.856 9.840

(0.007) (0.004) (0.011) (0.002) (0.000) (0.002) (0.068)

Table 7: Model 3 with n = 400 and p = 100
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‖ · ‖F ‖ · ‖2 ‖ · ‖l1 ‖ · ‖max Sen. Spe. Time(s)

SGM 9.001 1.563 3.145 0.309 0.643 0.984 267.299

(0.018) (0.008) (0.014) (0.003) (0.003) (0.000) (1.779)

Glasso 9.313 1.924 3.847 0.338 0.898 0.866 73.949

(3 NAs) (0.047) (0.011) (0.02) (0.004) (0.003) (0.004) (1.679)

Galasso 8.518 1.475 3.154 0.280 0.769 0.963 131.181

(3 NAs) (0.031) (0.011) (0.016) (0.004) (0.004) (0.001) (2.131)

CLIME NA NA NA NA NA NA NA

Dtrace 8.829 1.863 3.431 0.309 0.842 0.924 1273.311

(0.013) (0.004) (0.014) (0.002) (0.002) (0.001) (4.490)

Table 8: Model 3 with n = 400 and p = 500. The code for CLIME gives an

error message or does not finish the computation within one hour.
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‖ · ‖F ‖ · ‖2 ‖ · ‖l1 ‖ · ‖max Sen. Spe. Time(s)

SGM 14.018 2.861 4.632 0.647 0.113 0.996 517.967

(0.020) (0.003) (0.022) (0.003) (0.001) (0.000) (8.861)

Glasso 12.684 2.676 4.958 0.480 0.405 0.934 125.451

(0.024) (0.005) (0.021) (0.003) (0.003) (0.001) (3.055)

Galasso 13.079 2.623 4.723 0.511 0.225 0.984 185.978

(0.017) (0.005) (0.021) (0.003) (0.002) (0.000) (3.349)

CLIME NA NA NA NA NA NA NA

Dtrace 13.071 2.795 4.624 0.565 0.269 0.934 1327.819

(0.018) (0.003) (0.022) (0.003) (0.002) (0.001) (6.106)

Table 9: Model 3 with n = 100 and p = 500. The code for CLIME gives an

error message or does not finish the computation within one hour.
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‖ · ‖F ‖ · ‖2 ‖ · ‖l1 ‖ · ‖max Sen. Spe. Time(s)

SGM 1.542 0.463 0.824 0.223 0.998 0.986 2.073

(0.011) (0.009) (0.016) (0.003) (0.000) (0.000) (0.005)

Glasso 2.693 0.916 1.700 0.271 0.999 0.799 0.424

(0.017) (0.011) (0.019) (0.002) (0.000) (0.003) (0.003)

Galasso 1.747 0.599 1.030 0.234 0.996 0.970 0.915

(0.016) (0.011) (0.019) (0.002) (0.000) (0.001) (0.004)

CLIME 5.130 1.583 2.511 1.313 0.987 0.901 394.392

(0.034) (0.022) (0.035) (0.024) (0.004) (0.004) (0.253)

Dtrace 2.202 0.710 1.325 0.222 1.000 0.848 6.912

(0.011) (0.009) (0.016) (0.003) (0.000) (0.001) (0.048)

Table 10: Model 4 with n = 400 and p = 100.
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‖ · ‖F ‖ · ‖2 ‖ · ‖l1 ‖ · ‖max Sen. Spe. Time(s)

SGM 10.745 2.266 4.007 0.336 0.525 0.986 245.181

(0.016) (0.008) (0.023) (0.003) (0.002) (0.000) (0.59)

Glasso 11.027 2.565 4.670 0.349 0.784 0.870 57.883

(0.028) (0.007) (0.023) (0.002) (0.003) (0.002) (0.419)

Galasso 10.797 2.330 4.152 0.329 0.590 0.971 111.813

(0.027) (0.010) (0.025) (0.003) (0.003) (0.001) (0.655)

CLIME NA NA NA NA NA NA NA

Dtrace 10.669 2.494 4.216 0.331 0.720 0.932 435.302

(0.011) (0.006) (0.022) (0.002) (0.002) (0.000) (1.566)

Table 11: Model 4 with n = 400 and p = 500. The code for CLIME gives

an error message or does not finish the computation within one hour.
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‖ · ‖F ‖ · ‖2 ‖ · ‖l1 ‖ · ‖max Sen. Spe. Time(s)

SGB 14.677 3.223 4.806 0.607 0.105 0.997 395.848

(0.021) (0.006) (0.022) (0.003) (0.001) (0.000) (2.776)

Glasso 13.992 3.144 5.096 0.501 0.322 0.953 96.147

(0.021) (0.006) (0.021) (0.002) (0.002) (0.001) (0.908)

Galasso 14.137 3.087 4.903 0.516 0.179 0.990 155.107

(0.018) (0.006) (0.021) (0.002) (0.001) (0.000) (1.029)

CLIME NA NA NA NA NA NA NA

Dtrace 14.025 3.186 4.768 0.546 0.211 0.945 697.595

(0.021) (0.006) (0.021) (0.002) (0.001) (0.002) (2.629)

Table 12: Model 4 with n = 100 and p = 500. The code for CLIME gives

an error message or does not finish the computation within one hour.

4.2 Real-data examples

We examine the performance of the SGM on two gene expression data sets.

Data set 1 contains data on prostate cancer, studied by Singh et al. (2002).

It contain 52 prostate tumor samples and 50 nontumor prostate samples,

with 12,600 gene expression levels. Data set 2 contains data on breast cancer,
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analyzed by Hess et al. (2006), and consists of 22,283 gene expressions of

133 subjects, among which, 34 have pathological complete response and 99

have residual disease. First, we randomly split each data set into training,

validation, and test sets of almost equal sizes. The splits are done in a

stratified way, such that the class proportions are preserved in each set.

Then, using the training and validation sets, we preprocess the data by

screening the genes (Fan and Fan, 2008; Fan et al., 2009) down to a subset

of size ps, containing the most significant genes, according to the two-sample

t-tests between the two classes, and standardizing the gene expressions.

To estimate the precision matrices, for each method, we fit it using the

training set on a grid of regularization parameter values, and choose the best

estimate by minimizing a loss function on the validation set. Here, the Dtrace

loss is used for the SGM and Dtrace, and the graphical lasso loss is used for

Glasso, Galasso, and CLIME. We report the ratios of nonzero entries in the

estimated precision matrices. A sparser estimate is usually more favorable,

for ease of interpretation. Because the true precision matrices are unknown,

we examine and compare the quality of the precision matrix estimates by

using a linear discriminant analysis (LDA) in which the resulting precision

matrix estimator can be used to fit the LDA rule. The rationale is that

a better precision matrix estimator leads to better classification accuracy.
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Similar comparison methods based on the LDA are used in other work

including Fan et al. (2009) and Cai et al. (2011). Here, we do not repeat

the LDA formula. The classification performance is evaluated using the

sensitivity, specificity, and Mathews correlation coefficient (MCC) metrics.

Let TP, FP, TN and FN denote the numbers of true positives, false positives,

true negatives and false negatives, respectively, on the test set. Then,

these metrics are defined as Sensitivity = TP
TP+FN

, Specificity = TN
TN+FP

, and

MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

.

In the variable screening step, both Fan et al. (2009) and Cai et al.

(2011) reduce the numbers of variables down to n+1, where n is the training

sample size. Typically, variable screening reduces the dimension from p

to n, n/ log(n), or 2n/ log(n) (Fan et al., 2020). Fan et al. (2009) and

Cai et al. (2011) set the reduced dimension to n + 1 to emphasize that

the sample covariance matrix for the reduced dimension is still singular.

Following their practice, we similarly set ps to be marginally larger than

the training sample size, letting ps = 35 for data set 1 and ps = 50 for data

set 2. The corresponding training sample sizes are 33 and 44, respectively.

Because ps is larger than the training sample size, we can examine the

performance of the methods when the input sample covariance matrices are

not invertible. The tumor group of data set 1 and the pathological complete
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response group of data set 2 are treated as “positive” when computing the

classification metrics. We performed 100 repetitions in order to have a more

stable comparison. The results are reported in Table 13 (prostate cancer

data) and Table 14 (breast cancer data). For the prostate cancer data, the

methods perform similarly in terms of classification performance, with the

SGM and Dtrace having the highest average MCC scores. The sparsity level

of the SGM is significantly better than those of the other methods. For

the breast cancer data, the SGM has a significantly higher sensitivity score

than Glasso, Galasso, and CLIME, and its specificity score is comparable

with those of the other methods. The MCC score of the SGM is the highest

among these methods. The SGM again achieves the best sparsity level.
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Sensitivity Specificity MCC Ratio of Nonzero Entries

SGM 0.899 0.920 0.822 0.095

(0.006) (0.008) (0.009) (0.004)

Glasso 0.900 0.899 0.806 0.330

(0.008) (0.009) (0.009) (0.004)

Galasso 0.902 0.904 0.812 0.143

(0.007) (0.009) (0.009) (0.002)

CLIME 0.894 0.904 0.803 0.822

(0.007) (0.008) (0.010) (0.007)

Dtrace 0.901 0.920 0.823 0.132

(0.006) (0.008) (0.009) (0.005)

Table 13: Performance comparison between SGM, Glasso, Galasso, CLIME,

and Dtrace on a prostate cancer data set.
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Sensitivity Specificity MCC Ratio of Nonzero Entries

SGM 0.753 0.736 0.448 0.063

(0.010) (0.008) (0.011) (0.002)

Glasso 0.543 0.800 0.339 0.266

(0.014) (0.008) (0.014) (0.003)

Galasso 0.626 0.779 0.387 0.102

(0.014) (0.008) (0.014) (0.002)

CLIME 0.663 0.766 0.403 0.653

(0.014) (0.008) (0.012) (0.008)

Dtrace 0.740 0.737 0.437 0.310

(0.010) (0.008) (0.012) (0.019)

Table 14: Performance comparison between SGM, Glasso, Galasso, CLIME,

and Dtrace on a breast cancer data set.

5 Conclusion

In this paper, we have introduced a simple method that we call the SGM

for recovering a Gaussian graphical model under ultrahigh dimensions. The

SGM is based on a simple quadratic loss function, and hence allows us to use

a simple coordinate descent algorithm to achieve excellent computational
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efficiency compared with that of the graphical lasso, which requires a much

more sophisticated algorithm. The SGM can easily handle the symmetry

constraint, which is an obvious advantage over methods such as CLIME

and neighborhood selection. Although the SGM does not guarantee that

the resulting precision matrix estimator is positive definite, we provide a

simple step to mitigate this issue, and in our numerical experiments we check

whether the SGM estimators are positive definite in each run. We compare

the rate of convergences of the SGM and the graphical lasso, but the SGM

does not require the irrepresentable condition necessary for the graphical

lasso. Our simulations confirm that the SGM exhibits excellent and often

improved performance over the graphical lasso. Based on our results, we

recommend using the SGM to estimate a large Gaussian graphical model.
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Appendix

In this appendix we present the proof of the main theorems and the link for

downloading the code used in this paper.
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Proofs

Proof of Theorem 1. We bound the difference between Θ̂0 and Θ∗ under

element-wise `∞ norm under the event ||Σ̂−Σ∗||max ≤ λ0

4M
. Then

||Σ̃−Σ∗||max ≤ ||Σ̂−Σ∗||max + a

√
log p

n
≤ λ0

2M
.

Firstly, we show ||Σ̃Θ̂0 − I||max ≤ λ0. Since Θ̂0 is the optimal solution, it

satisfies

Σ̃Θ̂0 − I + λ0Ẑ0 = 0,

where Ẑ0 = (ẑ0
ij) is the sub-gradient of |Θ̂0| and

ẑ0
ij


= sign(θ̂0

ij) if θ̂0
ij 6= 0

∈ [−1, 1] if θ̂0
ij = 0

where Θ̂0 = (θ̂0
ij). Thus, ||Σ̃Θ̂0−I||max = ||−λ0Ẑ0||max ≤ λ0. Then we show

||Θ̂0||`1 ≤ 3||Θ∗||`1 . To prove this, it is sufficient to prove |θ̂0
i |1 ≤ 3|θ∗i |1 for

i = 1, 2, . . . , p where Θ̂0 = (θ̂0
1, θ̂

0
2, . . . , θ̂

0
p) and Θ∗ = (θ∗1,θ

∗
2, . . . ,θ

∗
p). Let f

denote the function f(θi) = 1
2
θTi Σ̃θi − eTi θi + λ0|θi|1 and ∆i := θ̂0

i − θ∗i ,

f(θ̂0
i ) =

1

2
(θ̂0

i )
T Σ̃θ̂0

i − eTi θ̂0
i + λ0|θ̂0

i |1

=
1

2
(∆i + θ∗i )

T Σ̃(∆i + θ∗i )− eTi (∆i + θ∗i ) + λ0|∆i + θ∗i |1

= f(θ∗i ) +
1

2
∆T

i Σ̃∆i + ∆T
i Σ̃θ∗i − eTi ∆i + λ0|∆i + θ∗i |1 − λ0|θ∗i |1.
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Since θ̂0
i is the optimal solution, f(θ̂0

i ) ≤ f(θ∗i ). The term ∆T
i Σ̃∆i > 0

because of the positive definiteness of Σ̃. We have

λ0|θ̂0
i |1 − λ0|θ∗i |1 = λ0|∆i + θ∗i |1 − λ0|θ∗i |1

≤ eTi ∆i −∆T
i Σ̃θ∗i

= ∆T
i (Σ∗ − Σ̃)θ∗i .

Noticing

∆T
i (Σ∗ − Σ̃)θ∗i ≤ |∆i|1||(Σ∗ − Σ̃)θ∗i ||max

≤ |∆i|1||Σ∗ − Σ̃||max|θ∗i |1

≤ λ0

2
|∆i|1

≤ λ0

2
|θ̂0
i |1 +

λ0

2
|θ∗i |1,

it follows that |θ̂0
i |1 ≤ 3|θ∗i |1 for any i. Therefore,

||Θ̂0 −Θ∗||max = ||Θ∗(Σ∗Θ̂0 − Σ̃Θ̂0 + Σ̃Θ̂0 − I)||max

≤ ||Θ∗||`1 ||Σ∗ − Σ̃||max||Θ̂0||`1 + ||Θ∗||`1 ||Σ̃Θ̂0 − I||max

≤ 3

2
λ0M + λ0M

=
5

2
λ0M.

This completes the proof.

Proof of Theorem 2. For simplicity, we use Θ̂ to represent Θ̂SGM in this

proof. We first prove that Θ̂ recovers the true graph under the event
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||Σ̂−Σ∗||max ≤ min{ λ0

4M
, λ1

2
}. First, we note that

||Σ̃−Σ∗||max ≤ ||Σ̂−Σ∗||max + a

√
log p

n
≤ min{ λ0

2M
,λ1}.

Define Θ̃ as the optimal solution for the following problem:

Θ̃ = argmin
ΘSc=0,ΘT =Θ

1

2
tr(ΘT Σ̃Θ)− tr(Θ) + λ1||W ◦Θ||1.

It suffice to prove (i) Θ̃ recovers the true graph and (ii) Θ̃ = Θ̂. To show

(i) and (ii), we define two quantities ∆G = ||(Γ̃SS)−1 − (Γ∗SS)−1||`∞ and

∆H = ||Γ̃ScS(Γ̃SS)−1 − Γ∗ScS(Γ∗SS)−1||`∞ where Γ̃ = Γ(Σ̃). We first bound

∆G and ∆H .

∆G = ||(Γ̃SS)−1(Γ̃SS − Γ∗SS)(Γ∗SS)−1||`∞

≤ ||(Γ̃SS)−1||`∞ ||Γ̃SS − Γ∗SS||`∞ ||(Γ∗SS)−1||`∞

≤ (G+ ∆G)dλ1G,

where we use inequalities ||AB||`∞ ≤ ||A||`∞ ||B||`∞ and ||A + B||`∞ ≤

||A||`∞ + ||B||`∞ for any matrices A and B. It is easy to see

∆G ≤
dλ1G

2

1− dλ1G
. (5.1)
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The bound is larger than 0 since λ1 <
1

2dG
.

∆H ≤ ||(Γ̃ScS − Γ∗ScS)(Γ̃SS)−1||`∞ + ||Γ∗ScS((Γ̃SS)−1 − (Γ∗SS)−1)||`∞

≤ (||Γ̃ScS − Γ∗ScS||`∞ + ||Γ∗ScS(Γ∗SS)−1(Γ̃SS − Γ∗SS)||`∞)||(Γ̃SS)−1||`∞

≤ dλ1(1 +H)(G+ ∆G)

≤ dλ1G(1 +H)

1− dλ1G
.

(5.2)

Now we show (i). It is enough to show that none of the elements of Θ̃S

is zero. Note that Θ̃ satisfies the optimality condition

(
1

2
(Σ̃Θ̃ + Θ̃Σ̃)− I + λ1W ◦ Z̃)S = 0,

where Z̃ denote the sub-gradient of |Θ̃|, and ||Z̃||max ≤ 1. Or equivalently,

(Γ̃ vec(Θ̃)− vec(I) + λ1 vec(W ◦ Z̃))S = 0. (5.3)

Using partitions Θ̃ = (Θ̃S, Θ̃Sc) = (Θ̃S,0), I = (IS, ISc) = (IS,0),W =

(WS,WSc) and Z̃ = (Z̃S, Z̃Sc), we have

Γ̃SS vec(Θ̃S)− vec(IS) + λ1 vec(WS ◦ Z̃S) = 0.

Thus, we have

vec(Θ̃S) = (Γ̃SS)−1(vec(IS)− λ1 vec(WS ◦ Z̃S)). (5.4)

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0273



42

We rewrite (5.4) as follows:

vec(Θ̃S) =(Γ∗SS)−1(vec(IS)− λ1 vec(WS ◦ Z̃S))

+ ((Γ̃SS)−1 − (Γ∗SS)−1)(vec(IS)− λ1 vec(WS ◦ Z̃S)).

Because Γ∗SS vec(Θ∗S) = vec(IS) and ||AB||max ≤ ||A||`∞ ||B||max,

|| vec(Θ̃S)||min ≥ || vec(Θ∗S)||min − λ1G||WS||max −∆G(1 + λ1||WS||max)

≥ Ψ− 2λ1G(||WS||max + dG)

≥ Ψ− 2λ1G(
2

Ψ
+ dG)

> 0,

where the second inequality is due to (5.1) and the third inequality is due

to the following bound of ||WS||max:

||WS||max ≤
1

min(i,j)∈S |θ̂0
ij|
≤ 1

Ψ− 5Mλ0

2

≤ 2

Ψ
. (5.5)

Now we show (ii). The objective function in (2.1) is strictly convex

since its Hessian matrix Γ̃ is positive definite. So any solution that satisfies

optimality condition is the unique optimal solution. Since (5.3) is already

satisfied, we only need to show the following equation to prove Θ̃ = Θ̂.

(Γ̃ vec(Θ̃)− vec(I) + λ1 vec(W ◦ Z̃))Sc = 0,

which is equivalent to

|Γ̃ScS vec(Θ̃S)| ≤ λ1|WSc |.
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It is sufficient to have

||Γ̃ScS vec(Θ̃S)||max ≤ λ1||WSc ||min. (5.6)

Partition Γ∗ vec(Θ∗) = vec(I). We have Γ∗SS vec(Θ∗S) = vec(IS) and

Γ∗ScS vec(Θ∗S) = vec(ISc) = 0. So vec(ISc) = Γ∗ScS(Γ∗SS)−1 vec(IS) =

0. By (5.4), we have Γ̃ScS vec(Θ̃S) = Γ̃ScS(Γ̃SS)−1(−λ1 vec(WS ◦ Z̃S)) +

(Γ̃ScS(Γ̃SS)−1 − Γ∗ScS(Γ∗SS)−1) vec(IS), which implies

||Γ̃ScS vec(Θ̃S)||max ≤ (H + ∆H)λ1||WS||max + ∆H .

By (5.2), we get

||Γ̃ScS vec(Θ̃S)||max ≤
dλ1G+H

1− dλ1G
λ1||WS||max +

dλ1G(1 +H)

1− dλ1G

≤ (2H + 1)λ1||WS||max + 2dλ1G(1 +H).

(5.7)

On the other hand,

||WSc ||min =
1

max(i,j)∈Sc |θ̂0
ij|+ u(n, p)

≥ 1
5Mλ0

2
+ u(n, p)

. (5.8)

Then, (5.6) is obtained by combining (5.5), (5.7), (5.8) and λ0 ≤ 1
5M

( Ψ
2H+1+dGΨ(1+H)

−

2u(n, p)). This completes the proof that Θ̂ recovers the true graph.

Finally, we show results of various matrix norms. Because Θ̃ = Θ̂, it is
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easy to use (5.1), (5.4) and (5.5) to show that

||Θ̂−Θ∗||max = || vec(Θ̃S)− vec(Θ∗S)||max

= ||((Γ̃SS)−1 − (Γ∗SS)−1) vec(IS)− λ1(Γ̃SS)−1 vec(WS ◦ Z̃S)||max

≤ ∆G + λ1||WS||max||(Γ̃SS)−1||`∞

≤ ∆G + λ1
2

Ψ
(∆G +G)

< 2(
2

Ψ
+ dG)Gλ1.

Then

||Θ̂−Θ∗||F ≤
√
s ||Θ̂−Θ∗||max < 2

√
s (

2

Ψ
+ dG)Gλ1,

||Θ̂−Θ∗||2 ≤ min{
√
s , d}||Θ̂−Θ∗||max < 2 min{

√
s , d}( 2

Ψ
+ dG)Gλ1.

Because λ1 <
λmin(Θ∗)

2 min{
√
s ,d}( 2

Ψ
+dG)G

, ||Θ̂ −Θ∗||2 < λmin(Θ∗), so λmin(Θ̂) > 0.

This completes the proof.

Code

The code for implementing the SGM estimator is available at the following

Github link: https://github.com/songyng/A-Simple-Method-for-Estimating-

Gaussian-Graphical-Models .

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0273

https://github.com/songyng/A-Simple-Method-for-Estimating-Gaussian-Graphical-Models
https://github.com/songyng/A-Simple-Method-for-Estimating-Gaussian-Graphical-Models


REFERENCES45

References

Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. (2011), ‘Dis-

tributed optimization and statistical learning via the alternating direction

method of multipliers’, Foundations and Trends® in Machine Learning

3(1), 1–122.
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