Statistica Sinica Preprint No: SS-2021-0273

Title

A Simple Method for Estimating Gaussian Graphical
Models

Manuscript ID

SS-2021-0273

URL

http://www.stat.sinica.edu.tw/statistica/

DOI

10.5705/ss.202021.0273

Complete List of Authors

Yiyi Yin,
Yang Song and
Hui Zou

Corresponding Authors

Hui Zou

E-mails

zouxx019@umn.edu

Statistica Sinica

A Simple Method for Estimating Gaussian Graphical Models
Yiyi Yin, Yang Song and Hui Zou

University of Minnesota

Abstract: The penalized likelihood estimator is the state-of-the-art method for
estimating a Gaussian graphical model, because it delivers a symmetric graph and
is efficient to compute, owing to the graphical lasso implementation. However,
the estimator requires a stringent irrepresentability condition in order to achieve
consistent recovery of the underlying graph. Another popular method, neighbor-
hood selection, does not offer a symmetric solution by itself, and also requires a
set of irrepresentability conditions for exact recovery. In this paper, we propose
a new method, called the simple graph maker, for estimating an underlying
graph. The simple graph maker produces a symmetric estimator by using a simple
f1-penalized quadratic problem, which is easily computed by coordinate descent.
Furthermore, it is shown to recover the underlying graph with overwhelming
probability, without assuming additional structure conditions on the variables.
The rates of convergence under various matrix norms are also established. The

new method is shown to exhibit excellent performance on simulated and real data.

Key words and phrases: Coordinate descent, Exact recovery, Gaussian graphical

model, Graphical lasso, Irrepresentable conditions, Sparsity.

1 Introduction

In this study, we examine the problem of constructing a Gaussian graph-
ical model from n independent and identically distributed observations
(ii.d.) from a multivariate Gaussian distribution. Suppose that X =
(X1, Xy,...,X,)T follows a multivariate Gaussian distribution N, (u, X*).
Let ©* = (67;) and X* = (©*)~! denote the precision matrix and the
covariance matrix, respectively. It is known that the (i, 7) element of @* is
zero if and only if variables X; and X; are conditional independent, given
all the other variables (Lauritzen, 1996). Thus, data analysts often use
the sparsity pattern of an estimated sparse precision matrix to construct
a Gaussian graphical model that describes the dependence relationships
between variables. As a result, the problem of estimating a large sparse
precision matrix has received increased attention in the past decade, for
a comprehensive review, see Chapter 9 of Fan et al. (2020), and the refer-
ences therein. Currently, the two most popular methods are neighborhood
selection (Meinshausen and Biihlmann, 2006) and the penalized likelihood
estimator (i.e., the graphical lasso)(Yuan and Lin, 2007; Rothman et al.,
2008; Friedman et al., 2008; Ravikumar et al., 2011).

In this paper, we propose a new method for estimating an underlying

graph. In order to motivate our proposal, we first discuss the strengths

and weaknesses of the two most popular existing methods. Neighborhood
selection was proposed prior to the penalized likelihood estimator. It is a
column-wise recovery method, in the sense that it estimates the columns
of ®* one by one. As a result, the matrix estimation problem is cast
into p separate vector estimation problems, making the computation easy
by running a lasso linear regression. However, the solution is usually not
symmetric, and hence a post-processing step is necessary to make the
estimator symmetric. This was the major motivation for researchers to study
the penalized likelihood estimator. The graphical lasso delivers a sparse
symmetric precision matrix estimator by following the penalized likelihood
principle. In addition, the graphical lasso can be solved efficiently (Friedman
et al., 2008), making it the first choice for many users when a sparse precision
matrix estimator is needed. Theoretically, neighborhood selection requires
an irrepresentability condition (Zhao and Yu, 2006; Zou, 2006) in order to
estimate each column of ®*. A similar matrix-version of the irrepresentability
condition is required for the graphical lasso (Ravikumar et al., 2011). Because
these conditions are so stringent, theoretical support for the two methods is
not strong. Note that these issues cannot be removed by replacing the lasso
penalty with the adaptive lasso penalty or the concave penalty, because the

likelihood function or the “loss” function in neighborhood selection is a key

factor in creating these theoretical obstacles. See the discussion in Section
2.3 for details.
Based on the above discussion, we develop a new method for estimating

a sparse precision matrix that has three desirable properties:

1. the proposed method yields a symmetric matrix estimator, as in the

case of the graphical lasso;

2. the proposed method is computationally efficient;

3. the theoretical justification for the proposed method does not require

the irrepresentability condition or other strong structure conditions.

In other words, the proposed method enjoys the advantages of existing
methods, but avoids their major drawbacks.

In Section 2, we present the technical details of the proposed method,
which we call the simple graph maker (SGM). The SGM estimator is
symmetric and easy to compute. In Section 3, we prove its sparse recovery
property and establish its rates of convergence under several common matrix
norms. In Section 4, we present a simulation study and real-data examples
to demonstrate the performance of the proposed method, and compare
it with Glasso, Galasso (Fan et al., 2009), CLIME (Cai et al., 2011) and

Dtrace (Zhang and Zou, 2014) methods. Technical proofs are relegated to

the appendix.

2 Methodology

2.1 Notation

Here, we introduce the notation and definitions used throughout this paper.
For a vector v, ||V||max = max; |v;], ||[V]|min = min; |v;], and |[v|; = >, vyl
We use Apax(A) and Ayin(A) to denote the largest and smallest eigenvalues,
respectively, of a matrix A. Denote by tr(A) the trace of a square matrix A.
For a real matrix A = (@), ||A||max = max;; |aij|, ||A||min = min; ; |a;;],
A =220 i), [[Alle, = max; 37 g, [[Ally, = max; 37, |ag], ||Allp =
\/W’ and [|All2 = v/ Amaz(ATA). We use A = 0 to indicate that A
is a positive-definite matrix. We write A; = A, when A; — A, is a positive
semidefinite matrix. We use vec(A) to denote the vectorization of A in the
column by column order. Let e; be the ith column of the p-dimensional
identity matrix. We use A o B to denote the Hadamard product of matrices
A and B. Define I'(2) = (X ® I +1® X), where ® is the Kronecker
product. It is easy to see that I'(X) is positive definite when X is positive
definite. Let S = {(i,)|0;; # 0} denote the support set of @*, and S the

complement of S. For each j, let S; = {(i,7)|;; # 0} be the support set of

2.2 The SGM6

the jth column of ®*, and let S§ be the complement of .S;. Let d = max; |5}

and s = |S].

2.2 The SGM

Let 3 be the sample covariance matrix, and define S=%+a 10% I,
where a is a positive constant. If 3 s positive definite, we can set a = 0.
The perturbation term a 10% I is primarily used to improve the numeric
stability of the estimator when 3 has a zero or near zero eigenvalue. The
theoretical upper bound on a is given in the next section. In practice, we
use a small a, such as a = 0.05.

The SGM O©5SM ig defined as follows:

N 1 =
O5“M — argmin 5 tr(@720) — tr(®) + \,|[W o O], (2.1)
er-e

where \; is a penalization parameter, and the adaptive weight matrix
W = (w;;) is computed from

(min{‘é?ﬂ, |921|} +u(n,p))”t fori#j

wij =
0 for ¢ = 7,
where (0y);; = é?j is a pilot estimator of ®*, and wu(n, p) is a positive-valued

function of n and p. In theory, we can let u(n,p) = 0 and set the weight

w;; = oo if dividing by zero occurs. When w;; = oo, it automatically implies

2.2 The SGM7

that észGM = 0. Any u(n,p) below a theoretical upper bound is good, in
theory. In practice, we use a small, but positive u(n, p) to avoid zero division,
for example, u(n,p) = (np)~2.

Given the weight matrix, it is easy to solve the optimization problem in
(2.1). In order to handle the symmetry constraint, we parametrize © = (6;;)
with 6;; = 0;;. Then we recast the constrained optimization problem as an
unconstrained ¢, penalization problem in which the unknowns are 6;;, for

1 < i< p,and 6, for j > i. Note that the objective function in (2.1) is

ijs
a quadratic function of the unknowns plus the weighted ¢;-penalty term.
Following Friedman et al. (2010), we use the coordinate descent algorithm
and computational tricks, such as active set update and warm start, to solve
(2.1) for a grid of A\; values.

We now discuss the pilot estimator from which we compute the weight
matrix. The primary goal is to ensure that the SGM estimator recovers
the true graph with probability going to one as the sample size and the
dimension grow together. Our analysis of the SGM estimator reveals a
sufficient condition for the weight matrix under which the exact recovery

property of the SGM estimator holds. Based on that analysis, we design a

pilot estimator O, as follows:

A 1 ~
©(, = argmin 3 tr(@7X0) — tr(®) + \||®||1, (2.2)
®

2.2 The SGM3

where)\ is a tuning parameter.

Remark 1. A seemingly natural pilot estimator is

~ 1 ~
O = argmin - t(07$O) — tr(O) + Aol O] (2.3)
0Tr=0e

Although we do not deny the legitimacy of ©q as a pilot estimator for the
SGM estimator, we prefer to use O,, for computational convenience. We
can use the coordinate descent algorithm for solving (2.1) to solve (2.3). It
turns out that (2.2) is even easier to compute, owing to the removal of the

symmetry constraint. Let 8; denote the jth column of ®. Observe that
1 ~ 1 re
5 tr(@7E0) — tr(®) + \||®||, = 2(5(9;293- —0;; 4 Xo|0;1).
j=1

~

Therefore, if 0; is the minimizer of $0T%60;—0,;+o|0;|1, then © = [0, - - -,
is the minimizer of 5 tr(@TX0) — tr(®) + \o||®||:. Hence, we can solve

(2.2) by solving p ¢1-penalized quadratic problems in parallel.

The construction of the SGM estimator is traced back to the penalized

Dtrace loss estimator (Zhang and Zou, 2014),

min Lp(©,3) + \||0][1, (2.4)

Orel

where the loss function Lp(©, X) = 5 tr(©7X0)—tr(O) is called the Dtrace

loss. Note that the graphical lasso estimator is ming, o Lg(O), f]) + A19]|1,

2.2 The SGM9

with Lg(0,X) = tr(X0) — logdet(®). The Lg loss function is essentially
the negative log-likelihood function (up to a scale factor and a constant
term). The Dtrace loss was originally proposed as a nonlikelihood-based
approach to estimate a large precision matrix. However, the penalized
Dtrace loss estimator also requires a kind of irrepresentability condition
in order to recover the true graph consistently. That motivated us to use
an adaptive lasso penalty (Zou, 2006) to replace the lasso penalty in (2.4).
Further, if we aim to recover the true graph, we need only have the symmetry
constraint, and can be free with the eigenvalue constraint. Thus, we remove
this constraint to explore the fact that Lp is a quadratic function of @. As
a result, we can use the coordinate descent algorithm to compute a solution
path of the SGM estimator. If we choose to keep the eigenvalue constraint,
the state-of-the-art algorithm for (2.4) with an adaptive lasso penalty is the
alternating direction method of multipliers (ADMM) (Boyd et al., 2011). We
need to run the ADMM algorithm for each penalization parameter. Thus,

it is computationally much more expensive than the SGM estimator.

Remark 2. We comment on the tuning of the SGM estimator. Suppose
that we have a training set and a validation set. Denote by (:)67"()\0) the
pilot estimator, with Ny as its penalization parameter. Let 35, be the sample

covariance matrix from the validation data. Then, the validation error is

2.3 Comparison with related estimators10

defined as ValErr(\) = Lp(©F (o), %,), which we can use to compute the
cross-validation (CV) error, if necessary. After computing the solution path
of the pilot estimator for a grid of Ay values, we can pick the one yielding
the smallest validation (or CV) error. Then, we fix Ay (and hence the pilot
estimator and the weight matriz) when selecting Ay in (2.1). Likewise, let
OSSM(\,) be the SGM estimator with Ay as its penalization parameter. Then,
its validation error is defined as ValErr(\y) = Lp(@$SM(\), %,), which we
can use to compute the CV error, if necessary. After computing the SGM
estimator for a grid of Ay values, we pick the one with the smallest validation
(or CV) error. The procedure is similar to the tuning of the graphical lasso,

in which Lg (instead of Lp) is used to compute the validation (or CV) error.

2.3 Comparison with related estimators

In this section, we discuss several other related estimators. As noted earlier,
neighborhood selection and the graphical lasso require the irrepresentability
condition in order to be consistent in terms of recovering the true graph.
The irrepresentability condition is caused by the lasso penalty. A natural
remedy is to use the adaptive lasso penalty in these two methods. For
neighborhood selection, we can first fit the lasso regression, and then fit

an adaptive lasso regression to estimate the support of each column of the

2.3 Comparison with related estimatorsi1

precision matrix. For j =1,2,...,p,

(N1). First solve ming Y7 (Xij — 7,5 Xafi)® + Ao Do, 11| and let

wi = (|41 + u(n,p)) 7.
(N2). Then, solve ming Y ", (Xi; — >, Xafi)® + M Do wil Bl

For the graphical lasso, the modified procedure is as follows:

(G1). First solve mineyo L (0, 2) 4+ Ao||©||; and let wi; = (6] +

u(n, p))~".

(G2). Then, solve mingyo La(©,X) + \i||[W 0 ©)];.

For their theoretical justification, we need to show that the estimator is
good enough such that the next step delivers the right solution, in theory.
For the lasso regression, the rate of convergence of 3 can be established
without using the irrepresentability condition. Still, we need to assume other
conditions on the Gram matrix, such as the restricted eigenvalue condition
or the compatibility condition, that remain difficult to satisfy in practice;
see Bithlmann and van de Geer (2011) and Fan et al. (2020). For a more
general lasso problem, such conditions are imposed on the Hessian of the
loss function. In other words, the two estimators still require some structure

assumptions in addition to the sparsity assumption of @*.

12

In practice, the modified neighborhood selection estimator is still not
symmetric. Thus, the modified graphical lasso procedure is preferred, which
we refer to as Galasso, and include it in our numerical study.

An alternative is to use the folded concave penalty (Fan and Li, 2001)
in step (N2) and step (G2) (Fan et al., 2009). The theory for folded concave
penalized estimation also requires a reasonably good estimator (Fan et al.,
2014). There is no fundamental difference in theory between using the
folded concave penalty and the adaptive lasso penalty. We must deal with
the nonconvexity problem when using the folded concave penalty. When
applicable, the coordinate descent algorithm often finds a suboptimal local
solution of the folded concave penalized problem, as shown by examples
in Fan et al. (2014). A better algorithm is the local linear approximation
algorithm (Zou and Li, 2008), which is shown to find the oracle solution
within two iterations with a high probability under ultrahigh dimensions

(Fan et al., 2014). Each iteration is an adaptive lasso penalized problem.

3 Theory

Our analysis uses the following well-known proposition, which is shown under

the sub-Gaussian assumption for the distribution of X = (X1, Xy, ..., X,)7.

13

Proposition 1. For any 0 < € < 1, there exists some cq > 0, such that
P(||Z — Z*||max > €) < p° exp(—cone?).

Proposition 1 is obtained by the union bound and the bound on |§A]ij—2§j|
by the sub-Gaussian assumption (Ravikumar et al., 2011).

First, we show the validity of the pilot estimator. The pilot estimator
is only used to compute the weight matrix in the SGM estimator. We do
not need to worry about whether it can recover the true graph with a high
probability. Because the weight matrix is defined entrywise from the pilot
estimator, the analysis of the SGM estimator shows that it is sufficient to
require the pilot estimator to be close to the true precision matrix under
the matrix max norm. This property of the pilot estimator is established in

Theorem 1.

Theorem 1. Let M = ||©*||,,, and take 0 < a < 2%. With probability at

con)\g
16 M2) ’

least 1 — p? exp(—

~ >
[|©0 — OF|max < 5)\0M.

1
Based on Theorem 1, we can set \g = ¢4/ 22 where ¢; > % M,

and £y > 0 is a constant. Pick any 0 < a < §5;. Then, with probability at

least 1 — p~', we have ||(:)0 — O | pax < gclM 10% :

14

The next theorem concerns the exact recovery property of the SGM

estimator and its rates of convergence under some matrix norms.

Theorem 2. Let ¥ = min; jecs]9 , G =||(T%g)” ngoo and H = HI‘SCS(I‘*SS)_IHgW

where T* = T'(X*). Take Ay < =37 (—2u(n, p)) where u(n,p) <

v
2H+1+dGVU(1+H)

\1’2 >\min(®
(2H+1+dG\I'(1+H) At < mm{2dG’2G(2+dG\P)’Qmin{x/?,d}(20G)G Gy and 0 <

a < min{ % ek 21 DD - Then, with probability at least 1—p* exp(—con min{ 16]\342, ’\4—%}),

OSSM s positive definite and recovers the true graph, that is, {(z,j)|é” o

0} = S. Furthermore, we have
1€ — ©||unax < 2(% +dG)GA,,
|©5M — @ < 2\/‘(+ dG)G\y,
|©5M — ©*||, < 2min{/s, d}(+dG)G).

1 N
Remark 3. Based on Theorem 2, we can take Ao = c14/ =28 | \| = ¢4/ 22,

where

32 + 16t n 1 \
VM < <
Co logp 10M 2H + 1+ dGY(1+ H)

and

8+4t0 <oy < n m]n{ 1 \1[2)\mln(@*) }
Co ? log p 2dG7 2G(2 + dG¥)’ 2min{ /s, d} (2 + dG)G

Further, let the small perturbations a and u(n, p) satisfy 0 < a < min{5;, ¢

v
12H+1+dGYU(1+H))’

and u(n,p) < respectively. Then, with probability at least

15

1—pilo, OSCM g positive definite and recovers the true graph, with matriz
bounds ||(:)SGM—@*||maX < 2(%+dG)Gcz log” ||@SGM (CHIIRS Qf(%

dG)Gey 152 | and ||©M — ©°[|, < 2min{y/5,d}(3 + dG)Gey /2.

Comparing these with the results for the graphical lasso in Ravikumar et al.
(2011) under the irrepresentable condition, the SGM and the graphical lasso

have similar asymptotic rates of convergence under different matriz norms.

Remark 4. Although the SGM estimator is positive definite with overwhelm-
ing probability, it is not guaranteed to be positive definite for every data set.
In all of our numerical ezamples, we have checked that the computed SGM
estimator is positive definite. If the user only cares about recovering the
graph, then this is not important, as for neighborhood selection. On the other
hand, if the application demands using a positive-definite matrix estimator,
and @5EM happens to have a zero or negative eigenvalue, we can perform

an additional optimization by adding an eigenvalue constraint, as follows:

R 1 S
O™ = argmin - tr(©@"X0) — tr(©) + A, |[W 0 6|, (3.1)

©+10-51

which can be solved efficiently using the ADMM algorithm in Zhang and Zou
(2014). Note too that we only solve (3.1) after tuning the SGM estimator,
which means that A1 is the chosen penalization parameter in the final SGM
estimator and the weight matrixz is given too. Thus, we run the ADMM

algorithm only once.

16

4 Numerical Results

4.1 Simulations

In the simulation study, we generate n i.i.d. samples from N,(0,X*) under
four different ®* generation processes:

Model 1: ©* is fixed, with 0;; = 1, and 6;; = 0.3 for |[i — j| = 1, and
07; = 0 otherwise.

Model 2: ©" is fixed, with 8; = 1, and 0;; = 0.4 for |i — j| = 1,0;; = 0.3

for [i — j| = 2,0}, = 0.2 for [— j| = 3, and 8;; = 0 otherwise.

Vg

Model 3: ©* is generated randomly. First, let B = (b; ;) be a p x p
matrix, such that b;; = b; ; i Bernoulli(q), Vi > j. The diagonal elements
of B are zero. Next, select § € R such that M = B + 41 is positive definite
and the condition number of M equals to p. Finally, select a > 0 and let
the precision matrix ®* = aM such that the diagonal elements of ®* are
equal to 1. We set ¢ = 0.05 in the simulations.

Model 4: ©* is generated randomly. Let ©',©%,...,©° be five & x £
matrices generated independently by model 3, with ¢ = 0.25. Then, the
precision matrix ©* = diag{©!, ..., ©°}.

Model 1 and model 2 are commonly used for precision matrix estimator

comparisons (Zhang and Zou, 2014). The generation process of model

4.1 Simulations17

3 is based on that of model 2 in Cai, Liu and Luo (2011). Model 4 is
the block-diagonal version of model 3, corresponding to a graph with five
unconnected parts, with denser connections within each. We set ¢ = 0.05
and 0.25 for model 3 and model 4, respectively, such that the overall sparsity
levels of the precision matrices are the same. In each model, we use three
n,p combinations: (i) n = 400,p = 100; (ii) n = 400,p = 500; and (iii)
n = 100,p = 500. We compare theSGM with Glasso, Galasso, the Dtrace
estimator (Zhang and Zou, 2014), and CLIME (Cai, Liu and Luo, 2011).
Glasso and CLIME are implemented using the R packages glasso and clime,
respectively. Dtrace is implemented using the code from Zhang and Zou
(2014). The performance of each estimator is evaluated by the following

measures:

e Frobenius risk E||® — @*||p; spectral risk E||@ — ©*||,; the £, risk

EH(:) — ©*||,; the max risk E||@ — O max

e Sensitivity = and Specificity = where TP, FP, TN

TP TN
TPFFN’ TN+FP>
and FN denote the numbers of true positives, false positives, true

negatives, and false negatives, respectively.

The results are summarized in Tables 1-12, where we report the mean

and standard error of each metric based on 100 independent repetitions. We

4.1 Simulations18

also report the running time of each method, in seconds. Note that when
p = 500, the code for CLIME gives an error message or does not finish the
computation within one hour. For these cases, we record NA for CLIME.

Several observations can be made from these tables. For the quality of
the estimates, under model 1 with n = 400 and p = 100 or n = 400 and
p = 500, the SGM performs similarly to Galasso, and both outperform the
other methods. For model 2 with n = 400, and p = 100 or n = 400 and
p = 500, the SGM is a clear winner among all the methods. When the
precision matrices are generated randomly, in the n = 400 and p = 100
scenario (table 7 and 10), the SGM gives the best estimates, measured
by all the matrix norms, sensitivity, and specificity. When n = 400 and
p = 500, the SGM is the best measured by the [;-norm for model 3, and the
best measured by the spectral norm and the /;-norm for model 4. In the
scenario of n = 100 and p = 500, under all four data-generating models, the
SGM is among the best when measured by the /;-norm, and has a slightly
larger lo-norm. Overall, the simulation results provide numerical results
that confirm or complement the theoretical bounds for the SGM.

The SGM and Galasso have comparable computing time, and both are
much faster than Dtrace and CLIME. The ratio of the timing between the

SGM and Glasso is about five and the ratio of the timing between the SGM

4.1 Simulations19

and Galasso is about two. The ratio stays stable when p increases from 100
to 500, suggesting that the SGM can scale as well as Glasso or Galasso for
practical applications. In addition, we observe that the SGM is the one of
the most stable methods. In some runs, CLIME, Glasso, and Galasso either
report error messages or cannot finish the computation within one hour.
When an error message occurred, we do not use that run to compute the
average and standard error for that method. In contrast, the SGM exhibits

no such an issue in our simulations.

4.1 Simulations20

I-lle Al - llw I llmae Sen. Spe. Time(s)

SGM

Glasso

Galasso

CLIME

Dtrace

1.170 0302 0419 0206 1.000 0995 1.701
(0.007) (0.004) (0.006) (0.003) (0.000) (0.000) (0.002)
1.808 0.409 0.710 0213 1.000 0905 0.432
(0.007) (0.002) (0.006) (0.002) (0.000) (0.002) (0.002)
1161 0.297 0417 0.192 1.000 0.993 0.949
(0.006) (0.004) (0.005) (0.002) (0.000) (0.000) (0.004)
1581 0311 0443 0217 1.000 0.967 353.795
(0.005) (0.003) (0.004) (0.002) (0.000) (0.001) (0.165)
1.620 0366 0.626 0.202 1.000 00921 2.942

(0.006) (0.003) (0.006) (0.002) (0.000) (0.001) (0.016)

Table 1: Model 1 with n = 400 and p = 100.

4.1 Simulations21

I-lle Al - llw I llmae Sen. Spe. Time(s)

SGM | 2.863 0.374 0538 0256 1.000 0.998 197.519
(0.007) (0.003) (0.005) (0.003) (0.000) (0.000) (0.962)
Glasso | 4.853 0492 0947 0258 1000 0972 44.053
(0.007) (0.002) (0.008) (0.001) (0.000) (0.000) (0.234)
Galasso | 2.789 0.370 0538 0249 1.000 0.98 78.001
(0.007) (0.003) (0.006) (0.003) (0.000) (0.000) (0.406)
CLIME | NA NA NA NA NA NA NA
Dtrace | 4.227 0444 0742 0.247 1.000 0980 257.417

(0.006) (0.002) (0.004) (0.002) (0.000) (0.000) (3.967)

Table 2: Model 1 with n = 400 and p = 500. The code for CLIME gives an

error message or does not finish the computation within one hour.

4.1 Simulations22

I-lle Al - llw I llmae Sen. Spe. Time(s)

SGM | 8208 0.839 1.346 0499 0.738 0.998 273.517
(0.014) (0.009) (0.018) (0.009) (0.002) (0.000) (1.875)
Glasso | 8434 0.776 1.670 0381 0.896 0.976 93.188
(0.010) (0.001) (0.010) (0.003) (0.002) (0.000) (0.549)
Galasso | 7.968 0.788 1.319 0416 0.773 0.996 138.960
(0.013) (0.005) (0.011) (0.006) (0.002) (0.000) (0.653)
CLIME | NA NA NA NA NA NA NA
Dtrace | 8287 0.766 1.310 0473 0.860 0990 437.238

(0.011) (0.004) (0.015) (0.008) (0.002) (0.000) (0.574)

Table 3: Model 1 with n = 100 and p = 500. The code for CLIME gives an

error message or does not finish the computation within one hour.

4.1 Simulations23

I-lle Al - llw I llmae Sen. Spe. Time(s)

SGM

Glasso

Galasso

CLIME

Dtrace

1.939 0580 0958 0216 0991 0978 1.848
(0.011) (0.007) (0.011) (0.002) (0.000) (0.000) (0.004)
4503 1.242 2.049 0290 0.998 0.689 0.434
(0.02) (0.006) (0.008) (0.002) (0.000) (0.003) (0.002)
2759 0.832 1.333 0242 0989 0.934 1.021
(0.018) (0.007) (0.011) (0.003) (0.001) (0.001) (0.004)
3830 0751 1458 0.384 0.991 0.848 374.404
(0.011) (0.006) (0.009) (0.004) (0.001) (0.003) (0.445)
3.108 0.888 1.582 0236 0.999 0.771 3.017

(0.016) (0.007) (0.011) (0.002) (0.000) (0.004) (0.017)

Table 4: Model 2 with n = 400 and p = 100.

4.1 Simulations24

I-lle Al - llw I llmae Sen. Spe. Time(s)

SGM | 5800 0.857 1.402 0.297 0.963 0.992 231.802
(0.017) (0.006) (0.009) (0.002) (0.000) (0.000) (2.34)
Glasso | 13.397 1.630 2758 0.368 0975 0.897 46.049
(0.034) (0.004) (0.014) (0.001) (0.001) (0.002) (0.623)
Galasso | 9.230 1.247 2 0.345 0932 0980 87.763
(0.035) (0.005) (0.010) (0.004) (0.001) (0.000) (1.064)
CLIME | NA NA NA NA NA NA NA
Dtrace | 9.678 1243 2036 0315 0991 00938 218.368

(0.039) (0.006) (0.011) (0.002) (0.000) (0.001) (0.137)

Table 5: Model 2 with n = 400 and p = 500. The code for CLIME gives an

error message or does not finish the computation within one hour.

4.1 Simulations2s

I-lle Al - llw I llmae Sen. Spe. Time(s)

SGM | 18.136 2.130 2.382 0.541 0.204 0.999 364.245
(0.012) (0.001) (0.004) (0.002) (0.001) (0.000) (3.469)
Glasso | 17.940 2099 2773 0510 0358 0.984 96.880
(0.007) (0.001) (0.010) (0.002) (0.002) (0.000) (0.476)
Galasso | 18.128 2126 2517 0.526 0.212 0.999 140.462
(0.008) (0.001) (0.007) (0.002) (0.001) (0.000) (0.690)
CLIME | NA NA NA NA NA NA NA

Dtrace | 17.962 2.106 2.396 0.521 0.28¢ 0.993 463.535

(0.009) (0.001) (0.004) (0.002) (0.002) (0.000) (1.098)

Table 6: Model 2 with n = 100 and p = 500. The code for CLIME gives an

error message or does not finish the computation within one hour.

4.1 Simulations26

I-lle Al - llw I llmae Sen. Spe. Time(s)

SGM

Glasso

Galasso

CLIME

Dtrace

1424 0369 0.669 0210 0998 00986 2.353
(0.009) (0.005) (0.009) (0.003) (0.000) (0.000) (0.017)
2284 0645 1.353 0249 1.000 0811 0.370
(0.019) (0.007) (0.014) (0.003) (0.000) (0.006) (0.006)
1577 0443 0762 0219 0998 0987 0.905
(0.018) (0.007) (0.012) (0.002) (0.000) (0.001) (0.012)
5251 2.020 3.200 1.581 0.832 0.901 344.889
(0.092) (0.044) (0.074) (0.068) (0.026) (0.008) (0.491)
1.950 0534 1129 0210 1.000 0.856 9.840

(0.007) (0.004) (0.011) (0.002) (0.000) (0.002) (0.068)

Table 7: Model 3 with n = 400 and p = 100

4.1 Simulations27

F-Ale Al Il - e Sen. Spe. Time(s)

SGM | 9.001 1563 3.145 0.309 0.643 0.984 267.299
(0.018) (0.008) (0.014) (0.003) (0.003) (0.000) (1.779)
Glasso | 9.313 1.924 3847 0338 0.898 0.866 73.949
(3 NAs) | (0.047) (0.011) (0.02) (0.004) (0.003) (0.004) (1.679)
Galasso | 8518 1475 3.154 0280 0.769 0.963 131.181
(3 NAs) | (0.031) (0.011) (0.016) (0.004) (0.004) (0.001) (2.131)
CLIME | NA NA NA NA NA NA NA

Dtrace | 8.829 1.863 3431 0309 0842 0924 1273.311

(0.013) (0.004) (0.014) (0.002) (0.002) (0.001) (4.490)

Table 8: Model 3 with n = 400 and p = 500. The code for CLIME gives an

error message or does not finish the computation within one hour.

4.1 Simulations28

e Al -l I llmae Sen. Spe. Time(s)

SGM | 14.018 2861 4.632 0.647 0.113 0.996 517.967
(0.020) (0.003) (0.022) (0.003) (0.001) (0.000) (8.861)
Glasso | 12.684 2.676 4.958 0480 0405 0934 125451
(0.024) (0.005) (0.021) (0.003) (0.003) (0.001) (3.055)
Galasso | 13.079 2.623 4.723 0511 0225 0984 185.978
(0.017) (0.005) (0.021) (0.003) (0.002) (0.000) (3.349)
CLIME | NA NA NA NA NA NA NA
Dtrace | 13.071 2795 4.624 0565 0269 0934 1327.819

(0.018) (0.003) (0.022) (0.003) (0.002) (0.001) (6.106)

Table 9: Model 3 with n = 100 and p = 500. The code for CLIME gives an

error message or does not finish the computation within one hour.

4.1 Simulations29

I-lle Al - llw I llmae Sen. Spe. Time(s)

SGM

Glasso

Galasso

CLIME

Dtrace

1542 0463 0.824 0223 0998 00986 2.073
(0.011) (0.009) (0.016) (0.003) (0.000) (0.000) (0.005)
2.693 0916 1.700 0271 0999 0.799 0.424
(0.017) (0.011) (0.019) (0.002) (0.000) (0.003) (0.003)
1.747 0599 1.030 0234 0996 0970 0.915
(0.016) (0.011) (0.019) (0.002) (0.000) (0.001) (0.004)
5130 1.583 2511 1.313 0.987 0.901 394.392
(0.034) (0.022) (0.035) (0.024) (0.004) (0.004) (0.253)
2202 0710 1.325 0222 1.000 0.848 6.912

(0.011) (0.009) (0.016) (0.003) (0.000) (0.001) (0.048)

Table 10: Model 4 with n = 400 and p = 100.

4.1 Simulations30

I-lle Al - llw I llmae Sen. Spe. Time(s)

SGM | 10.745 2266 4.007 0.336 0.525 0.986 245.181
(0.016) (0.008) (0.023) (0.003) (0.002) (0.000) (0.59)
Glasso | 11.027 2565 4.670 0349 0.784 0.870 57.883
(0.028) (0.007) (0.023) (0.002) (0.003) (0.002) (0.419)
Galasso | 10.797 2330 4.152 0.329 0.590 0.971 111.813
(0.027) (0.010) (0.025) (0.003) (0.003) (0.001) (0.655)
CLIME | NA NA NA NA NA NA NA
Dtrace | 10.669 2494 4216 0331 0.720 0932 435.302

(0.011) (0.006) (0.022) (0.002) (0.002) (0.000) (1.566)

Table 11: Model 4 with n = 400 and p = 500. The code for CLIME gives

an error message or does not finish the computation within one hour.

4.2 Real-data examples31

I-lle Al - llw I llmae Sen. Spe. Time(s)

SGB | 14.677 3.223 4.806 0.607 0.105 0.997 395.848
(0.021) (0.006) (0.022) (0.003) (0.001) (0.000) (2.776)
Glasso | 13.992 3.144 5096 0501 0.322 0953 96.147
(0.021) (0.006) (0.021) (0.002) (0.002) (0.001) (0.908)
Galasso | 14.137 3.087 4.903 0516 0179 0.990 155.107
(0.018) (0.006) (0.021) (0.002) (0.001) (0.000) (1.029)
CLIME | NA NA NA NA NA NA NA
Dtrace | 14.025 3.186 4.768 0546 0211 0.945 697.595

(0.021) (0.006) (0.021) (0.002) (0.001) (0.002) (2.629)

Table 12: Model 4 with n = 100 and p = 500. The code for CLIME gives

an error message or does not finish the computation within one hour.

4.2 Real-data examples

We examine the performance of the SGM on two gene expression data sets.
Data set 1 contains data on prostate cancer, studied by Singh et al. (2002).
It contain 52 prostate tumor samples and 50 nontumor prostate samples,

with 12,600 gene expression levels. Data set 2 contains data on breast cancer,

4.2 Real-data examples32

analyzed by Hess et al. (2006), and consists of 22,283 gene expressions of
133 subjects, among which, 34 have pathological complete response and 99
have residual disease. First, we randomly split each data set into training,
validation, and test sets of almost equal sizes. The splits are done in a
stratified way, such that the class proportions are preserved in each set.
Then, using the training and validation sets, we preprocess the data by
screening the genes (Fan and Fan, 2008; Fan et al., 2009) down to a subset
of size py, containing the most significant genes, according to the two-sample
t-tests between the two classes, and standardizing the gene expressions.
To estimate the precision matrices, for each method, we fit it using the
training set on a grid of regularization parameter values, and choose the best
estimate by minimizing a loss function on the validation set. Here, the Dtrace
loss is used for the SGM and Dtrace, and the graphical lasso loss is used for
Glasso, Galasso, and CLIME. We report the ratios of nonzero entries in the
estimated precision matrices. A sparser estimate is usually more favorable,
for ease of interpretation. Because the true precision matrices are unknown,
we examine and compare the quality of the precision matrix estimates by
using a linear discriminant analysis (LDA) in which the resulting precision
matrix estimator can be used to fit the LDA rule. The rationale is that

a better precision matrix estimator leads to better classification accuracy.

4.2 Real-data examples33

Similar comparison methods based on the LDA are used in other work
including Fan et al. (2009) and Cai et al. (2011). Here, we do not repeat
the LDA formula. The classification performance is evaluated using the
sensitivity, specificity, and Mathews correlation coefficient (MCC) metrics.
Let TP, FP, TN and FN denote the numbers of true positives, false positives,

true negatives and false negatives, respectively, on the test set. Then,

_TP
TP+FN’

TN

7ntrps and

these metrics are defined as Sensitivity = Specificity =
MCC — TPXTN—FPxFN

\/(TP+FP)(ITP+FN)(TN+FP)(TN+FN) '

In the variable screening step, both Fan et al. (2009) and Cai et al.
(2011) reduce the numbers of variables down to n+ 1, where n is the training
sample size. Typically, variable screening reduces the dimension from p
to n, n/log(n), or 2n/log(n) (Fan et al., 2020). Fan et al. (2009) and
Cai et al. (2011) set the reduced dimension to n + 1 to emphasize that
the sample covariance matrix for the reduced dimension is still singular.
Following their practice, we similarly set ps to be marginally larger than
the training sample size, letting p, = 35 for data set 1 and p, = 50 for data
set 2. The corresponding training sample sizes are 33 and 44, respectively.
Because p, is larger than the training sample size, we can examine the
performance of the methods when the input sample covariance matrices are

not invertible. The tumor group of data set 1 and the pathological complete

4.2 Real-data examples34

response group of data set 2 are treated as “positive” when computing the
classification metrics. We performed 100 repetitions in order to have a more
stable comparison. The results are reported in Table 13 (prostate cancer
data) and Table 14 (breast cancer data). For the prostate cancer data, the
methods perform similarly in terms of classification performance, with the
SGM and Dtrace having the highest average MCC scores. The sparsity level
of the SGM is significantly better than those of the other methods. For
the breast cancer data, the SGM has a significantly higher sensitivity score
than Glasso, Galasso, and CLIME, and its specificity score is comparable
with those of the other methods. The MCC score of the SGM is the highest

among these methods. The SGM again achieves the best sparsity level.

4.2 Real-data examples35s

Sensitivity Specificity

MCC Ratio of Nonzero Entries

SGM

Glasso

Galasso

CLIME

Dtrace

0.899
(0.006)
0.900
(0.008)
0.902
(0.007)
0.894
(0.007)
0.901

(0.006)

0.920
(0.008)
0.899
(0.009)
0.904
(0.009)
0.904
(0.008)
0.920

(0.008)

0.822
(0.009)
0.806
(0.009)
0.812
(0.009)
0.803
(0.010)
0.823

(0.009)

0.095
(0.004)
0.330
(0.004)
0.143
(0.002)
0.822
(0.007)
0.132

(0.005)

Table 13: Performance comparison between SGM, Glasso, Galasso, CLIME;,

and Dtrace on a prostate cancer data set.

36

Sensitivity Specificity MCC Ratio of Nonzero Entries
SGM 0.753 0.736 0.448 0.063
(0.010) (0.008) (0.011) (0.002)
Glasso 0.543 0.800 0.339 0.266
(0.014) (0.008) (0.014) (0.003)
Galasso 0.626 0.779 0.387 0.102
(0.014) (0.008) (0.014) (0.002)
CLIME 0.663 0.766 0.403 0.653
(0.014) (0.008) (0.012) (0.008)
Dtrace 0.740 0.737 0.437 0.310
(0.010) (0.008) (0.012) (0.019)

Table 14: Performance comparison between SGM, Glasso, Galasso, CLIME;,

and Dtrace on a breast cancer data set.

5 Conclusion

In this paper, we have introduced a simple method that we call the SGM
for recovering a Gaussian graphical model under ultrahigh dimensions. The
SGM is based on a simple quadratic loss function, and hence allows us to use

a simple coordinate descent algorithm to achieve excellent computational

37

efficiency compared with that of the graphical lasso, which requires a much
more sophisticated algorithm. The SGM can easily handle the symmetry
constraint, which is an obvious advantage over methods such as CLIME
and neighborhood selection. Although the SGM does not guarantee that
the resulting precision matrix estimator is positive definite, we provide a
simple step to mitigate this issue, and in our numerical experiments we check
whether the SGM estimators are positive definite in each run. We compare
the rate of convergences of the SGM and the graphical lasso, but the SGM
does not require the irrepresentable condition necessary for the graphical
lasso. Our simulations confirm that the SGM exhibits excellent and often
improved performance over the graphical lasso. Based on our results, we
recommend using the SGM to estimate a large Gaussian graphical model.
Acknowledgments We sincerely thank the editor, associate editor, and

referees for their helpful comments. Zou’s work was supported, in part, by

NSF DMS 1915842 and 2015120.

Appendix

In this appendix we present the proof of the main theorems and the link for

downloading the code used in this paper.

38

Proofs

Proof of Theorem 1. We bound the difference between ©, and ©* under

element-wise (,, norm under the event || — 3*||max < 20 Then

S 3 logp _ Ao
E_E* max< 2_2* max S anNs
12 = 2l < 115 = = + 0y 22 < 22

Firstly, we show ||£0) — I||max < Ao. Since @y is the optimal solution, it

satisfies

i@o —I+)\Ozo = O,

where Zy = (2);) is the sub-gradient of 16| and

0 = sign(é?j) if é?j # 0
tj

e[-11 ifék=0
where ©g = (6%). Thus, || —I||imax = ||~ A0Zo||max < Ao. Then we show
1©0||¢, < 3]|©*||,. To prove this, it is sufficient to prove |0°|; < 3|0%|; for
i=1,2,...,p where ©; = (é?,ég,...,ég) and © = (67,03,...,07). Let f

denote the function f(6;) = 10750, — 0, + X\o|60;|, and A, := 69 — 67,

-2
~ 1 - o o ~ o
FOY) = S(00)7200 — 700 + 3|6,
1 ~
* 1 Tv T n* T * *
= f(0;) + §Ai A+ A X0 —e; A+ N|A; + 071 — No|O] ;.

39

Since 0? is the optimal solution, f(8%) < f(67). The term ATZA; > 0
because of the positive definiteness of 3. We have
Xol6711 — Xol67 11 = No Ai + 6711 — Xo|6; s
<elA;— ATS0;
= ATz -)6

Noticing
AT (E" = £)67 < [AL]|(Z* = 2)6; [max
< ANZ" = 3 |nax |67 1
Ao

< Na,

<5 |Aly

o
- 2
it follows that |6°]; < 3|07|; for any i. Therefore,

. e
167], + 70|9¢\17

1©0 — O |max = [|O*(Z*O, — 2O + 2O) — I)||max
<1070, [12* = Zllimax | [Oolle, + 101, [|ZO0 — T ma

3
< 5/\0M + Ao M

5
= =\ M.
50
This completes the proof. O]
Proof of Theorem 2. For simplicity, we use © to represent ©3M in this

proof. We first prove that © recovers the true graph under the event

40

112 — 3% lax < min{4%, 2 }. First, we note that

- . 1 A
12 = 3l < 12 = 3o + @/ ij < min{27 A}

Define © as the optimal solution for the following problem:

- 1 -
© = argmin = tr(@7XO) — t1(O) + \||W 0 O]|;.
©5c=0,07=0

It suffice to prove (i) © recovers the true graph and (i) ® = ©. To show
(i) and (ii), we define two quantities Ag = ||(Tgg)™" — (Ig)™"|s. and
Ap = ||[Tses(Tgs) ™! — Theg(Thg) e, where T' = I'(X). We first bound
Ag and Agy.
Ag =|(Tss) ™ (Fss — Tsg)(Tis) ™o

< |(Tss) " lewl Tss = sl 1(T55) ™ Mo

< (G + Ag)dMG,
where we use inequalities |[AB||,. < [|Alle||Blle., and [|A + Bl <

||Alle., + ||B]|e,, for any matrices A and B. It is easy to see

A\ G2
A 5.1
Ag < rwe (5.1)

41

The bound is larger than 0 since \; < %.

A < |[(Tses — Theg) (Tss) lew + [T Ees(Tss) ™ = (Thg) ™) lew

< (|ITses — Thegllew + [T5es(Tsg) ™ (Tss — Tig)lle) | (Tss) e

<dM(1+ H)(G+ Ag)

< d>\1G(1 + H)

- 1—-d\G
(5.2)

Now we show (i). It is enough to show that none of the elements of g

is zero. Note that © satisfies the optimality condition

(Z(ZO@+0%) 1+ \WoZ)s =0,

1
2
where Z denote the sub-gradient of |©], and ||Z||max < 1. Or equivalently,

(T vee(©) — vec(I) + A vec(W o Z))g = 0. (5.3)

Using partitions © = (@g,@g) = (0g,0),1 = (I, Ig) = (I5,0), W =

(Wgs, W) and Z = (Zg, Zg.), we have

Tss VeC((:)s) —vec(Ig) + Ay vec(Wg o ZS) =0.

Thus, we have

vec(©g) = (Tgg) (vec(Is) — A vec(Wg o Zg)). (5.4)

42

We rewrite (5.4) as follows:
vee(©g) =(T%g) ~(vee(Is) — A vee(Ws o Zg))
+((Fss) ™" = (i) ™) (vee(Is) — A vee(Wss o Zs)).
Because I'ig vec(©%) = vec(Is) and ||AB||max < ||A]]e [|B||maxs
1 vec(©s)|min > || vec(®F)|min — MGl Ws|lmax = A (1 + At||[W] [mas)

> U — 20\ G(||[Wsl|max + dG)
>0 — 2A1G(% +dQG)
> 0,

where the second inequality is due to (5.1) and the third inequality is due

to the following bound of ||Wg||max:

1 1 2
(W max < — — < <= (5.5)
ming jes [0 ~ ¥ — 27 T

Now we show (ii). The objective function in (2.1) is strictly convex
since its Hessian matrix T is positive definite. So any solution that satisfies
optimality condition is the unique optimal solution. Since (5.3) is already

A

satisfied, we only need to show the following equation to prove 0 =0.

(T vec(©) — vec(I) + A vec(W o Z))ge = 0,

which is equivalent to

‘f‘SCS VeC(és)‘ <)\1’W5c|‘

43

It is sufficient to have

(5.6)

min-

|| T ses vec(©s)|lmax < Ar||[Wie

Partition I'*vec(®*) = vec(I). We have I'igvec(®%) = vec(Ig) and
T%egvec(©F) = vec(Ige) = 0. So vec(Ise) = Theg(Thg) ' vec(Is) =
0. By (54), we have fSCS VGC(és) = f‘scs(f‘gs)_l(—Al VGC(WS o Zs)) al

(Tses(Tgs) ™" — Thes(Thg) ™) vee(Is), which implies

Hf‘SCS Vec(éS)Hrnax S (H + AH))\lHWSHmax + AH

By (5.2), we get

~ < d\MG + H dMG(1+ H)
Lge © max < ———AN||W max N o o~
||ITses vec(®g)|| 1= dnG 1[[Wsl| + 1 —dnG 57
< (2H + DM||Wis|max + 2dNG(1 + H).
On the other hand,
1 1
||\R75c min — ~ > . (58)
max; jese |05 +u(n,p) ~ 23 +u(n,p)
Then, (5.6) is obtained by combining (5.5), (5.7), (5.8) and A\g < ﬁ(2H+1+dg\IJ(1+H) _

2u(n,p)). This completes the proof that © recovers the true graph.

Finally, we show results of various matrix norms. Because ® = O, it is

44

easy to use (5.1), (5.4) and (5.5) to show that
1© — O [max = || vec(Og) — vec(OF)||max

= |I((Tss)™" = (Tgs) ") vee(Is) — A1(Tss) ™" vee(Ws © Zs)||max

< Ag A+ MW maxl|(Tss) ™ |leae

2
< Ag +)\IE(AG +G)
2
2(6 + dG)G).
Then
16 = O%[|r < V5|0 = O||max < QW(+dG)GA,

|© — ©%||5 < min{/s, d}|® — O"||max < 2min{+/s, d}(+ dG)G\.

)\mm e* * * A
Because \; < 2mm{fd(}(cawrarel H@ OF|2 < Amin(©), 80 Apin(©) > 0
This completes the proof. n
Code

The code for implementing the SGM estimator is available at the following
Github link: https://github.com/songyng/A-Simple-Method-for-Estimating-

Gaussian-Graphical-Models .

https://github.com/songyng/A-Simple-Method-for-Estimating-Gaussian-Graphical-Models
https://github.com/songyng/A-Simple-Method-for-Estimating-Gaussian-Graphical-Models

REFERENCES45

References

Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. (2011), ‘Dis-
tributed optimization and statistical learning via the alternating direction

method of multipliers’, Foundations and Trends®) in Machine Learning

3(1), 1-122.

Biithlmann, P. and van de Geer, S. (2011), Statistics for High-Dimensional

Data, Springer, New York.

Cai, T., Liu, W. and Luo, X. (2011), ‘A Constrained l; Minimization
Approach to Sparse Precision Matrix Estimation’, Journal of the American

Statistical Association 106(494), 594-607.

Fan, J. and Fan, Y., ‘High-dimensional classification using features annealed

independence rules’, The Annals of Statistics 36, 2605—-2637.

Fan, J., Feng, Y. and Wu, Y. (2009), ‘Network exploration via the adaptive

LASSO and SCAD penalties’, The Annals of Applied Statistics 3, 521-541.

Fan, J. and Li, R. (2001), ‘Variable selection via nonconcave penalized
likelihood and its oracle properties’, Journal of the American Statistical

Association 96(456), 1348-1360.

REFERENCES46

Fan, J., Li, R., Zhang, C.-H. and Zou, H. (2020), Statistical Foundations of

Data Sciences, Chapman & Hall, CRC Press, Boca Raton, Florida.

Fan, J., Xue, L. and Zou, H. (2014), ‘Strong oracle optimality of folded

concave penalized estimation’, The Annals of Statistics 42(3), 819-849.

Friedman, J., Hastie, T. and Tibshirani, R. (2008), ‘Sparse inverse covariance

estimation with the graphical lasso’, Biostatistics 9(3), 432-441.

Friedman, J., Hastie, T. and Tibshirani, R. (2010), ‘Regularization paths for
generalized linear models via coordinate descent’, Journal of Statistical

Software 33(1), 1-22.

Hess, K. R., Anderson, K., Symmans, W. F., Valero, V., Ibrahim, N., Mejia,
J. A., Booser, D., Theriault, R. L., Buzdar, A. U., Dempsey, P. J., Rouzier,
R., Sneige, N., Ross, J. S., Vidaurre, T., Gémez, H. L., Hortobagyi, G. N.,
and Pusztai, L. (2006), ‘Pharmacogenomic Predictor of Sensitivity to Pre-
operative Chemotherapy With Paclitaxel and Fluorouracil, Doxorubicin,
and Cyclophosphamide in Breast Cancer’, Journal of Clinical Oncology,

24, 4236-4244.

Lauritzen, S. L. (1996), Graphical Models, Vol. 17, Clarendon Press.

Meinshausen, N. and Biithlmann, P. (2006), ‘High-dimensional graphs and

REFERENCES47

variable selection with the lasso’, The Annals of Statistics 34(3), 1436—

1462.

Ravikumar, P., Wainwright, M. J., Raskutti, G. and Yu, B. (2011),
‘High-dimensional covariance estimation by minimizing ¢;-penalized log-

determinant divergence’, Electronic Journal of Statistics 5, 935-980.

Rothman, A., Bickel, P., Levina, E. and Zhu, J. (2008), ‘Sparse permutation

invariant covariance estimation’, Flectronic Journal of Statistics 2, 494—

515.

Singh, D., Febbo, P. J., Ross, K., Jackson, D. G., Manola, J., Ladd, C.,
Tamayo, P., Renshaw, A. A., D’Amico, A. V., Richie, J. P., Lander, E. S.
Loda, M., Kantoff, P. W., Golub T. R., and Sellers, W. R. (2002), ‘Gene
expression correlates of clinical prostate cancer behavior’, Cancer Cell

1(2), 203-209.

Yuan, M. and Lin, Y. (2007), ‘Model selection and estimation in the Gaussian

graphical model’, Biometrika 94(1), 19-35.

Zhang, T. and Zou, H. (2014), ‘Sparse precision matrix estimation via lasso

penalized D-trace loss’, Biometrika 101(1), 103-120.

REFERENCES48

Zhao, P. and Yu, B. (2006), ‘On model selection consistency of lasso’, Journal

of Machine Learning Research 7(17), 2541-2567.

Zou, H. (2006), ‘The adaptive lasso and its oracle properties’, Journal of

the American Statistical Association 101(476), 1418-1429.

Zou, H. and Li, R. (2008), ‘One-step sparse estimates in nonconcave penalized

likelihood models’, The Annals of Statistics 36(4), 1509-1533.

Yiyi Yin

School of Statistics, University of Minnesota, Minneapolis, MN 55455, USA
E-mail: (yinxx307@Qumn.edu)

Yang Song

School of Statistics, University of Minnesota, Minneapolis, MN 55455, USA

E-mail: (song0214@Qumn.edu)

Hui Zou
School of Statistics, University of Minnesota, Minneapolis, MN 55455 USA

E-mail: (zouxx019@Qumn.edu)

	Introduction
	Methodology
	Notation
	The SGM
	Comparison with related estimators

	Theory
	Numerical Results
	Simulations
	Real-data examples

	Conclusion

