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Abstract

Wang et al. (2020, JASA) studied the high-dimensional sparse penalized rank regression and5

established its nice theoretical properties. Compared with the least squares, rank regression can

have a substantial gain in estimation efficiency while maintaining a minimal relative efficiency

of 86.4%. However, the computation of penalized rank regression can be very challenging for

high-dimensional data, due to the highly nonsmooth rank regression loss. In this work we view

the rank regression loss as a non-smooth empirical counterpart of a population level quantity,10

and a smooth empirical counterpart is derived by substituting a kernel density estimator for

the true distribution in the expectation calculation. This view leads to the convoluted rank

regression loss and consequently the sparse penalized convoluted rank regression (CRR) for

high-dimensional data. Under the same key assumptions for sparse rank regression, we establish

the rate of convergence of the `1-penalized CRR for a tuning free penalization parameter and15

prove the strong oracle property of the folded concave penalized CRR. We further propose

a high-dimensional Bayesian information criterion for selecting the penalization parameter

in folded concave penalized CRR and prove its selection consistency. We derive an efficient

algorithm for solving sparse convoluted rank regression that scales well with high dimensions.

Numerical examples demonstrate the promising performance of the sparse convoluted rank20
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regression over the sparse rank regression. Our theoretical and numerical results suggest that

sparse convoluted rank regression enjoys the best of both sparse least squares regression and

sparse rank regression.

Keywords: Convolution, Efficiency, High dimensions, Information criterion, Rank regression

1 Introduction5

Over the past two decades, there has been a surge of literature on high dimensional statistics. We

refer to Bühlmann and Van De Geer (2011) and Fan et al. (2020) for a comprehensive review of the

existing work on this topic. In particular, many penalization methods have been proposed for high-

dimensional regression, including `1-penalized regression (Tibshirani, 1996), the Dantzig selector

(Candes and Tao, 2007), concave-penalized regression (Fan and Li, 2001), among others. These10

techniques are also applicable in other statistical models. The penalized least squares method is at

the center of the stage in terms of theoretical and computational developments in high-dimensional

regression. The theoretical setup typically assumes that the true model is a linear regression model

with homoscedastic variance. As long as the error is sub-Gaussian, the penalized least squares

estimator enjoys nice theoretical guarantees even if the number of covariates grows at a nearly15

exponential rate with sample size.

An approach for achieving a higher efficiency is the penalized Wilcoxon rank regression (or rank

regression for short). Wilcoxon rank regression is well studied in the classical robust nonparametric

statistics (Hettmansperger and McKean, 2010). The penalized rank regression was studied by several

authors (Wang and Li, 2009) for the low dimension setting. Recently, penalized rank regression in

high dimensional setting was fully investigated in Wang et al. (2020). The penalized rank regression

solves the estimator of regression coefficient through minimizing

1
n(n−1)∑∑

i6= j
|(yi−xT

i β )− (y j−xT
jβ )|+ pλ (|β j|) (1.1)

over β ∈ Rp, where pλ (·) is some penalty function. The penalized rank regression has several
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advantages compared with the penalized least squares regression. First, penalized rank regression is

shown to possess better efficiency than the least squares approach when error has a heavy-tailed

distribution, while maintaining a good relative efficiency when error is normally distributed. Second,

penalized rank regression enjoys tuning free property, which means the theoretical correct tuning

parameter can be easily estimated from the dataset without any cross validation. Although tuning5

free property can be also obtained through other methodologies such as the square-root Lasso

(Belloni, Chernozhukov and Li, 2012) and penalized quantile regression (Wang, Wu and Li, 2012),

these methods do not necessarily have the first aforementioned efficiency property.

Although penalized rank regression has the aforementioned nice theoretical advantages, it can

be difficult to use in practice due to computational challenges, especially when the number of10

covariates in the dataset is very large. It is known that high dimensional penalized regression

with a smooth loss function can be efficiently computed by cyclical coordinate descent algorithm

(Friedman, Hastie and Tibshirani, 2010). However, the loss function in penalized rank regression is

highly non-smooth. In principle, coordinate descent may fail to deliver the right solution due to

the non-smoothness of the objective function. A similar problem is quantile regression in which15

the check loss is nonsmooth. The computation of quantile regression is done by using interior

point algorithms. One way of computing the penalized rank regression is to transform it into linear

programming and then apply the interior point algorithm. However, the interior point algorithm does

not scale well with high dimensions. Gu et al. (2018) developed an alternating directional method

of multipliers for computing the high-dimensional quantile regression. Computationally speaking,20

sparse penalized rank regression is more challenging than penalized quantile regression. The interior

point algorithm is not a suitable choice for solving high-dimensional sparse rank regression.

It is natural to ask whether the aforementioned good theoretical properties possessed by rank

regression can be shared with good computational efficiency for practical applications. If one

focuses on (1.1), then the only solution is to develop an efficient algorithm for solving (1.1) exactly25

for large p problems. Recently, Fernades, Guerre and Horta (2021) proposed an interesting

smoothing technique for solving quantile regression with statistical guarantees. They showed
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that the smoothing quantile regression can even have a smaller mean squared error than the exact

quantile regression for estimating the same conditional quantile function. Their work is more

interesting from a statistical perspective, because fast computation for the quantile regression has

already been solved in Gu et al. (2018). Their work motivated us to develop a smooth version

of sparse rank regression from the statistical perspective, as opposed to trying to solve it exactly.5

For easy discussion, we call the first term in (1.1) the rank regression loss, although it is not like

the empirical average of a loss function in empirical risk minimization. If we could replace the

rank regression loss in (1.1) with a smooth loss such that the resulting estimator still has the nice

theoretical properties of sparse rank regression, then we should focus on solving the smooth problem

instead of (1.1). This is what Fernades, Guerre and Horta (2021) did for quantile regression. To10

this end, we consider the expectation of the rank regression loss with respect to the true distribution.

The rank regression loss is viewed as the expectation of a random variable with respect to some

empirical distribution assigning uniform discrete probability to each observed realization. If we

estimate the true distribution by using a smoothed kernel density estimator, then we can take the

expectation of the same random variable with respect to the smoothed kernel density estimator. The15

resulting quantity is shown to be smooth, convex and has a Lipschitz continuous derivative. We

name it convoluted rank loss because the kernel density estimator has a convolution interpretation.

We then replace the rank regression loss in (1.1) with the convoluted rank loss and the resulting

estimator is called sparse convoluted rank regression. By its convexity and smoothness, the sparse

convoluted rank regression can be efficiently solved by using the generalized coordinate descent20

algorithm (Yang and Zou, 2013).

We systematically study the theoretical properties of the sparse convoluted rank regression.

The goal is to show that it maintains all the essential theoretical properties of rank regression.

Specifically, we first establish the rate of convergence of the `1-penalized convoluted rank regression

in ultra-high dimensions without assuming a strong moment condition on the error and the `1-25

penalized convoluted regression is also shown to enjoy the asymptotic tuning free property. Second,

we analyze the folded concave penalized convoluted rank regression and establish its strong oracle
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property without imposing strong moment conditions on the error. The folded concave penalized

regression involves a tuning parameter. We thus further propose a high dimensional Bayesian

information criterion (HBIC) and establish its consistency for the selection of the theoretically

optimal tuning parameter.

The rest of this paper is organized as follows. In section 2, we introduce convoluted rank5

regression loss and the sparse convoluted rank regression estimator. In section 3, we present the

theoretical justifications for the proposed estimators. We also present the HBIC criterion and its

theoretical results. In section 4, we derive an efficient algorithm for solving sparse convoluted rank

regression for high-dimensional data. In section 5, we use simulations and a real data example to

compare sparse convoluted rank regression and sparse rank regression. The technical proofs are10

given in the supplement file.

2 Convoluted Rank Regression

In this section we present the main idea that leads to the convoluted rank regression loss and the

sparse convoluted rank regression.

2.1 Notation and definitions15

We begin with some necessary definitions. For an arbitrary index set A⊂ {1, . . . , p}, any vector c =

(c1, . . . ,cp) and any n× p matrix U, let cA = (ci, i ∈ A), and let UA be the submatrix with columns

of U whose indices are in A. The complement of an index set A is denoted as Ac = {1, . . . , p}\A.

For any finite set B, let |B| be the number of elements in B. For a vector c = (c1, . . . ,cp)
T and

q ∈ [1,∞), let ‖c‖q = (∑
p
j=1 |c j|q)

1
q be its `q norm, let ‖c‖∞ (or ‖c‖max) = max j |c j| be its `∞ norm,20

let ‖c‖0 = |{ j : c j 6= 0}| be its `0 norm, and let ‖c‖min = min j |c j| be its minimum absolute value.

For a matrix M, let λmin(M) and λmax(M) be its eigenvalue with smallest absolute value and largest

absolute value, respectively. This is the common notation for eigenvalues of a matrix, and λmin, λmax

should not be confused with the penalization parameter used in a penalty function. For any matrix G,
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let ‖G‖=
√

λmax(GTG) be its spectral norm. In particular, for a vector c, ‖c‖= ‖c‖2. For a,b ∈R,

let a∧b = min{a,b} and a∨b = max{a,b}. For a sequence {an} and another nonnegative sequence

{bn}, we write an = O(bn) if there exists a constant c > 0 such that |an| ≤ cbn for all n≥ 1. And

we write an � bn if an = O(bn) and bn = O(an). Also, we use an = o(bn), or an� bn, to represent

limn→∞
an
bn

= 0. We write bn� an if an� bn. Let (Ω,G ,P) be a probability space on which all the5

random variables that appear in this paper are defined. Let E[·] be the expectation with respect to

the probability measure P. For a sequence of random variables {Zn}n≥1, we write Zn = Op(1) if

limM→∞ limsupn→∞ P(|Zn|> M) = 0, and we write Zn = op(1) if limn→∞ P(|Zn|> ε) = 0,∀ε > 0.

For two sequences of random variables Zn and Z′n, we write Zn = Op(Z′n) if Zn
Z′n

= Op(1), and we

write Zn = op(Z′n) if Zn
Z′n

= op(1).10

2.2 Canonical Convoluted Rank Regression

Suppose we have the observed data {(yi,xi)}n
i=1 where yi ∈ R is the response value and xi ∈ Rp is

the p-dimensional covariate vector for the ith subject. Let X = (X1, . . . ,Xp) ∈ Rn×p be the design

matrix, with X j = (x1 j, . . . ,xn j)
T containing observations for the jth variable, j = 1, . . . , p. The ith

row of X can be written as xT
i , where xi = (xi1, . . . ,xip)

T. Let y = (y1, . . . ,yn)
T be the n-dimensional

response vector. For the sake of brevity, we adopt the fixed design setting in the sequel, although

our methodology can also be justified under the random design setting. Assume that the data are

generated from the following linear regression model {(yi,xi)}n
i=1,

yi = xT
i β
∗+ εi, (2.1)

where {εi}n
i=1 are i.i.d. random errors, β ∗ ∈ Rp is the unknown vector to be estimated. Note that

we do not assume the errors in (2.1) have mean zero. Consequently, the intercept can be absorbed

into the error term.

The canonical rank regression (Jaeckel, 1972; Hettmansperger and McKean, 2010) in the fixed
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dimension setting proposes to estimate β ∗ through

min
β∈Rp

1
n(n−1)∑∑

i6= j
|(yi−xT

i β )− (y j−xT
jβ )|. (2.2)

Compared with the standard least squares method, the rank regression estimator of β ∗ can have

arbitrarily high relative efficiency when error distribution is heavy-tailed, while having at least

86.4% asymptotic relative efficiency under arbitrary symmetric error distribution with finite Fisher

information (Hettmansperger and McKean, 2010).

For each (i, j) pair, define {ζi j}i6= j with ζi j = (yi− xT
i β )− (y j− xT

jβ ). For the discussion in5

this part, we treat (yi,xi)
n
i=1 as independent and identically distributed. Although ζi js are not

independent, they still follow an identical distribution. For any β , let F(t,β ) denote its cumulative

distribution function. After taking the expectation of the objective function in (2.2) with respect to

the true distribution of ζi j, the population level objective function is
∫

∞

−∞
|t|dF(t,β ). Then, we can

view the objective function in (2.2) as
∫

∞

−∞
|t|dF̂(t,β ), where F̂(t,β ) = 1

n(n−1) ∑∑i6= j 1{ζi j≤t} is the10

estimated cumulative distribution function for {ζi j}i6= j. Since the estimated CDF is discontinuous,

it causes the objective function in (2.2) to have the same degree of smoothness as the absolute

value function. This statistical view of the objective function in rank regression suggests us to

use an alternative estimator for the distribution of ζi j. If we use a smooth estiamtor F̃(t,β ), then∫
∞

−∞
|t|dF̃(t,β ) can be the new objective function and become smooth.15

Specifically, we consider using the kernel density estimator

F̃(t,β ) =
∫ t

−∞

1
n(n−1)∑∑

i6= j

1
h

K(
v−ζi j

h
)dv

with some kernel function K : R→ [0,∞) satisfying K(−t) = K(t),
∫

∞

−∞
K(t)dt = 1, and h > 0.

Replacing F̂ with F̃ , we obtain a new objective function

∫
∞

−∞

|t|dF̃(t,β ) =
1

n(n−1)∑∑
i6= j

∫
∞

−∞

1
h

K(
ζi j− t

h
)|t|dt ,

1
n(n−1)∑∑

i6= j
Lh
(
(yi−xT

i β )− (y j−xT
jβ )
)
,
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where Lh(u) =
∫

∞

−∞
|u− v|1hK( v

h)dv. It is worth noting that Lh(·) is a smooth convex function. The

function Lh satisfies the relation Lh = L∗Kh, where L(u) = |u|, Kh(u) = 1
hK(u

h) and “∗” stands for

convolution.

Thus, in the fixed dimension setting, we propose the canonical convoluted rank regression

min
β∈Rp

1
n(n−1)∑∑

i6= j
Lh
(
yi−xT

i β )− (y j−xT
jβ )
)
. (2.3)

It turns out that the rank regression (2.2) and the convoluted rank regression (2.3) shares interesting

connection in the population sense. In fact, let (y,x) and (y′,x′) be i.i.d. random vectors with5

continuous distribution in Rp+1 satisfying y = xTβ ∗+ε and y′ = x′Tβ ∗+ε ′, where ε is independent

from x, and ε ′ is independent from x′. For rank regression, it is well known that the minimizer of the

population version of its loss function, i.e. argminβ∈Rp E[|ε− ε ′− (x−x′)T(β −β ∗)|], is exactly

the same as β ∗, the true regression coefficients. This simple fact justifies that rank regression is

valid in the population sense, which is necessary in order for its sample version to aim at estimating10

the true regression coefficients. One may naturally ask if the population version of (2.3) also has

such property. Let β ∗h = argminβ∈Rp E[Lh(y− y′− (x−x′)Tβ )]. We have the following theorem,

stating that smoothing via convolution does not incur any bias at all in the population sense.

Theorem 1. For any h > 0 and any kernel K(·) satisfying
∫

∞

−∞
K(u)du = 1 and K(u) = K(−u),∀u∈

R, we have β ∗h = β ∗.15

Remark 1. Note that the smoothing quantile regression (Fernades, Guerre and Horta , 2021) does

not have the good property of zero smoothing bias as shown in Theorem 1. In fact, the proof of

Theorem 1 crucially relies on the fact that the distributions of ε− ε ′ and x−x′ are symmetric about

zero, which can only be taken advantage of given the special form of rank regression.

2.3 Sparse Convoluted Rank Regression20

When p is large, we consider designing the estimator under a sparsity assumption that β ∗ in the

data generating model has many zero components. Let A= { j : β ∗j 6= 0} be the support set of β ∗,
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i.e., the set of indices of the important covariates. Let s = |A|. Throughout this paper, we allow

p = pn and s = sn to diverge with n, and we assume sn ≥ 1 and pn goes to infinity as n goes to

infinity. For convenience, we still use p and s to represent these quantities since no confusion is

caused. In ultra-high dimensions, the dimension p is allowed to increase exponentially with the

sample size n, and we assume that s is relatively of smaller order compared to n. Otherwise, no5

consistent estimator is possible.

To estimate β ∗, we propose the sparse Convoluted Rank Regression (CRR) by solving

min
β∈Rp

1
n(n−1)

n

∑
i=1

∑
j 6=i

Lh(yi− y j− (xi−x j)
T
β )+

p

∑
j=1

pλ (|β j|).

Here pλ (·) is some sparsity-inducing penalty function with a tuning parameter λ > 0, Lh(u) =∫
∞

−∞
|u− v|1hK( v

h)dv, where K : R→ [0,∞) is a kernel function satisfying
∫

∞

−∞
K(u)du = 1 and

K(u) = K(−u),∀u, and h > 0 is a constant.

Remark 2. There can be a lot of choices for the kernel function K(·) satisfying the conditions in our10

theory presented in section 3. In the numerical studies of this work, we focus on the Epanechnikov

kernel K(u) = 3
4(1−u2)I(−1≤ u≤ 1) for illustration purposes, where I(·) is the indicator function.

Intuitively, h should be small such that the sparse convoluted rank regression is very close to the

sparse rank regression. As suggested by the theoretical results in Section 3, h = O(1) is sufficient

for our method to achieve optimal rate and oracle property. According to density estimator, the15

optimal rate for h is O(n−1/5). So, we use h = 2.5n−1/5 as the default value in our implementation.

3 Theoretical Justifications for Sparse CRR

In this section we study the theoretical properties of the `1-penalized convoluted rank regression

(CRR) and the folded concave penalized CRR under the same key regularity conditions for the rank

regression in Wang et al. (2020).20
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3.1 `1-penalized CRR

For a tuning parameter λ0 > 0, we define the `1-penalized CRR estimator as

β̃
λ0 = argmin

β∈Rp

1
n(n−1)

n

∑
i=1

∑
j 6=i

Lh(yi− y j− (xi−x j)
T
β )+λ0

p

∑
j=1
|β j|.

We now state the assumptions needed throughout this paper. We make the following assumptions

for the kernel function K(·).

Assumption 1. K : R→ [0,∞) is a function satisfying the following properties: (i), K(−t) =

K(t), ∀t ∈ R; (ii), ∃δ0 > 0 s.t. κl := inft∈[−δ0,δ0]K(t) > 0; (iii),
∫

∞

−∞
K(t)dt = 1; (iv), κ1 :=5 ∫

∞

−∞
|t|K(t)dt < ∞.

For the error distribution, we impose the following assumption.

Assumption 2. The errors {εi}n
i=1 are independent and identically distributed with density function

f (·) with respect to the Lebesgue measure on R. Besides, let ςi j = εi− ε j,1≤ i 6= j ≤ n. Let g(·)

denote the probability density function of ςi j, we assume supt∈R g(t) = µ0 < ∞. Meanwhile, there10

exist positive constants δ1,µ1 such that g(t)≥ µ1,∀t ∈ [−δ1,δ1].

For any index set A⊂ {1, . . . , p}, let SA := {u ∈ Rp : ‖uAc‖1 ≤ 3‖uA‖1 6= 0}. We also impose

the following conditions on the design matrix.

Assumption 3. There exists a constant M > 0 such that max1≤i≤n,1≤ j≤p |xi j| ≤ M. Also, the

covariates are centered, i.e. ∑
n
i=1 xi j = 0,∀ j = 1, . . . , p.15

Assumption 4. There exists a constant ρ > 0 such that minu∈SA
‖Xu‖2

2
n‖u‖2

2
≥ ρ . In particular, this

implies λmin(
XT
AXA
n )≥ ρ .

Assumption 3 is common in the fixed design case. It can be relaxed with M increasing with n

at a suitable rate, without much difficulty. We keep it here for the sake of brevity. We can center

the design matrix when estimating the β ∗ vector because centering only affects the intercept part20

which is a nuisance parameter in our method as well as in rank regression. Assumption 4, which is
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known as the restricted eigenvalue condition (RE), is needed to establish `2-type error bound for

`1-penalized estimator. It is a commonly used assumption in the literature (Bühlmann and Van De

Geer, 2011; Fan et al., 2020).

Theorem 2. Assume assumptions 1-4 hold, and s= o(
√

n
log p). Let 0< λ0 = c0

√
log p

n with 8
√

2M <

c0 = O(1), and let 0 < h = O(1). Then the `1-penalized CRR estimator β̃ λ0 satisfies

‖β̃ λ0−β
∗‖2 ≤

96M+4c0

µ2ρ

√
s log p

n

with probability at least 1−2p−
( c2

0
128M2−1

)
−2p−2, where µ2 := κlµ1(2δ0∧ δ1

h ).

Notice that the probabilistic bound in Theorem 2 does not depend on unknown quantities,5

since with the design matrix at hand, M and p are both available. This means that in principle,

the λ0 in `1-penalized CRR estimator is tuning-free. As long as c0 is a constant which is larger

than 8
√

2M, the probabilistic lower bound in Theorem 2 converges to 1, and as a result we have

‖β̃ λ0−β ∗‖2 =Op(
√

s log p
n ), which means the `1-penalized CRR estimator achieves the near-optimal

rate.10

3.2 Folded concave penalized CRR

It has been well established in the literature that folded concave penalized estimators can enjoy

strong oracle property. We prove the same is true for convoluted rank regression. Define

β̂
ora := argmin

β∈Rp:βAc=0

1
n(n−1)

n

∑
i=1

∑
j 6=i

Lh(yi− y j− (xi−x j)
T
β ) (3.1)

as the CRR oracle estimator. It can be directly verified that β̂ ora exists due to the convexity of Lh(·),

assumption 3 and assumption 4. We establish the following property for the oracle estimator.

Theorem 3. Assume assumptions 1-4 hold, s = o(
√

n) and h = O(1). Then we have ‖β̂ ora−β ∗‖2 =

Op
(√ s

n

)
.15
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Remark 3. In the case where β̂ ora is not unique, one may take any solution to (3.1), and our theory

about CRR oracle estimator still holds.

We now propose the concave penalized convoluted rank regression. It solves the following

problem:

min
β∈Rp

1
n(n−1)

n

∑
i=1

∑
j 6=i

Lh(yi− y j− (xi−x j)
T
β )+

p

∑
j=1

pλ (|β j|). (3.2)

For the choice of pλ (·), we adopt the folded concave penalty (Fan et al., 2014b), i.e. pλ (·) is a

function defined on (−∞,∞) satisfying: (i), pλ (−z) = pλ (z); (ii), pλ (z) is increasing and concave

in z ∈ [0,∞), and pλ (0) = 0; (iii), pλ (z) is differentiable in z ∈ (0,∞), and p′
λ
(0) := p′

λ
(0+)≥ a1λ ;

(iv), p′
λ
(z)≥ a1λ for z ∈ (0,a2λ ]; (v) p′

λ
(z) = 0 for z ∈ [aλ ,∞) with some pre-specified constant

a > a2. Here a1 and a2 are two fixed positive constants. Special cases of folded concave penalty are

SCAD (Fan and Li, 2001) and MCP (Zhang, 2010). The SCAD penalty has the form

pλ (|t|) =λ |t|I(0≤ |t|< λ )+
aλ |t|−

(
t2 +λ 2)/2

a−1
I(λ ≤ |t| ≤ aλ )

+
(a+1)λ 2

2
I(|t|> aλ ), for some a > 2,

which corresponds to a1 = a2 = 1. The MCP penalty function is defined as

pλ (|t|) = λ

(
|t|− t2

2aλ

)
I(0≤ |t|< aλ )+

aλ 2

2
I(|t| ≥ aλ ), for some a > 1,

which corresponds to a1 = 1− 1
a ,a2 = 1.

We adopt the local linear approximation (LLA) (Zou and Li, 2008) algorithm to solve (3.2).

The LLA algorithm iteratively solves

β̂
(k+1) = argmin

β∈Rp

1
n(n−1)

n

∑
i=1

∑
j 6=i

Lh(yi− y j− (xi−x j)
T
β )+

p

∑
j=1

p′
λ

(
|β (k)

j |
)
|β j|, k = 0,1,2, . . . ,

(3.3)
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where β̂ (0) is some initial estimator. We use β̂ λ to denote the folded concave penalized CRR

estimator computed by the LLA algorithm, with tuning parameter λ . Below we establish theory for

the folded concave penalized CRR estimator.

Theorem 4. Let the conditions of Theorem 2 and Theorem 3 hold. Assume that h = O(1). Let

a0 = min{1,a2} where a2 is the constant associated with the folded-concave penalty function.5

Choose the tuning parameter so that min j∈A |β ∗j |> (a+1)λ .

(i) Suppose s = o(log p). Let the tuning parameter be chosen as λ = c1

√
s log p

n such that

96M+4c0
a0µ2ρ

∨ 32
√

2M
a1

< c1 = O(1), where c0 is defined in Theorem 2. Then the LLA algorithm in (3.3)

initialized by β̂ (0) = β̃ λ0 , with λ0 being defined in Theorem 2, converges to β̂ ora in two iterations

with probability converging to 1 as n→ ∞.10

(ii) Consider the SCAD or MCP as the penalty function. Suppose s = o(
√

log p). Let the

tuning parameter be chosen as λ = c1

√
log p

n such that (96M+4c1)
√

s
a0µ2ρ

∨ 32
√

2M
a1
∨8
√

2M < c1 = O(1).

Then the LLA algorithm in (3.3) initialized by β̂ (0) = 0 converges to β̂ ora in three iterations with

probability converging to 1 as n→ ∞.

Theorem 4 shows that the folded concave penalized CRR estimator equals to the oracle estimator15

with overwhelming probability, which is typically referred to as strong oracle property. It means

that our estimator can perform as well as if the true set of important covariates was given.

Remark 4. Throughout our theory, we only need h = O(1), which is a weaker condition on the

smoothing bandwidth h than that is required for smoothing quantile regression (Fernades, Guerre

and Horta , 2021) in which h should be O((n/ logn)−1/3) and h= o(1). Again, this is a consequence20

of the delicate form of rank regression which makes important first order terms vanish, as can be

seen from our theoretical proofs.

3.3 Consistent tuning parameter selection

For the folded concave penalization, Theorem 4 guarantees that there exists a good tuning parameter

in principle. Since the tuning parameter depends on unknown quantities, a data-driven approach is

13



needed to specify the tuning parameter in practice. Motivated by Wang et al. (2013), we propose a

modified high dimensional Bayesian information criteria, defined as

HBIC(λ ) = log
(

1
n(n−1)

n

∑
i=1

∑
j 6=i

Lh
(
yi− y j− (xi−x j)

T
β̂

λ
))

+ |Mλ |
Cn log p

n
,

where Mλ := { j : β̂ λ
j 6= 0}, and the choice of Cn is discussed in Theorem 5. The corresponding

tuning parameter for the folded concave penalty is chosen by minimizing the proposed HBIC.

Theorem 5. Let λ̂ = argminλ∈Λ HBIC(λ ), where Λ = {λ > 0 : |Mλ | ≤ Kn}, and Kn > s is

allowed to diverge to infinity. Under the conditions of Theorem 4, assume that E[|ςi j|] < ∞,

φ := min|S|≤2Kn λmin(
XT
SXS
n ) > 0. If

√
Cn
√

s log p
n ∨ Cn log p

√
sKn

n = o(‖β ∗A‖min),
Cns log p

n = o(1) and5

Kn = o
(√

n∧
√

Cn log p
)
, then we have P(M

λ̂
= A)→ 1 as n→ ∞.

Remark 5. The condition min|S|≤2Kn λmin(
XT
SXS
n )> 0 in Theorem 5 is known as the sparse Riesz

condition and is widely used in literature on high dimensional statistics (Zhang and Huang, 2008).

In our implementation, the sequence Cn is chosen such that Cn � log logn. This is the same choice

as in the HBIC for the penalized rank regression (Wang et al., 2020).10

Theorem 5 shows that with proposed HBIC, our method can exactly identify the important

variables with probability approaching to 1. Unlike cross validation, the HBIC criterion does not

require sample splitting or repeated evaluation of the test error on each sub-dataset. As a result, our

method requires no extra computation for tuning.

4 Computation15

We have shown that we need to solve the folded concave penalized CRR by running the LLA

iteration 2-3 times. In each LLA iteration, we need to solve a weighted `1-penalized CRR problem.

In this section, we develop an efficient algorithm for computing the solution path of a weighted

`1-penalized CRR.

14



Consider the following “weighted" `1-penalized CRR problem:

argmin
β∈Rp

1
n(n−1)

n

∑
i=1

∑
j 6=i

Lh(yi− y j− (xi−x j)
T
β )+

p

∑
k=1

wk|βk|, (4.1)

where each wk ≥ 0. In contrast to the sparse rank regression, the density convolution gives a smooth

loss function Lh. To see this, recall Lh(u) =
∫

∞

−∞
|u−v|1hK( v

h)dv,u∈R, and a direct calculation gives

L′h(u) = 2
∫ u
−∞

1
hK( v

h)dv−1 and L′′h(u) =
2
hK(u

h), ∀u ∈ R. We thus establish some basic properties5

of Lh(·).

Lemma 1. Under assumption 1, for any t1, t2, t ∈ R, we have L′h(−t) = −L′h(t) and |Lh(t1)−

Lh(t2)| ≤ |t1− t2|. If we use a kernel such that supt∈RK(t) = κu < ∞, then |L′h(t1)− L′h(t2)| ≤
2
hκu|t1− t2|.

Therefore, the objective function in problem (4.1) is the summation of a convex and smooth10

loss function and a convex and separable penalty term. It turns out that a coordinate descent-type

algorithm usually works well in this situation (Tseng, 2001).

In a coordinate-wise manner, suppose we have updated the coordinates β1,β2, . . . ,βk−1 and we

now need to update βk. Denote by β̃ the current solution and let vi j = yi− y j− (xi−x j)
Tβ̃ . The

standard coordinate descent algorithm cyclically updates βk by minimizing

F(βk|β̃ ) =
1

n(n−1)

n

∑
i=1

∑
j 6=i

Lh(vi j− (xik− x jk)(βk− β̃k))+wk|βk|.

We observe that minimizing the above function does not have a close-form solution, so we consider

a generalized coordinate descent algorithm (Yang and Zou, 2013). The idea is to perform a

majorization-minimization update rather than directly minimize F(βk|β̃ ). Specifically, we need to15

find a quadratic function G such that F(βk|β̃ ) = G(βk|β̃ ) and F(γ|β̃ )< G(γ|β̃ ) for any γ 6= βk.

From the last inequality of Lemma 1, we can obtain a quadratic majorization condition for CRR:

Lh(t1)< Lh(t2)+L′h(t2)(t1− t2)+
κu

h
(t1− t2)2,

15



for t1 6= t2. For each pair of i 6= j, by letting t1 = vi j− (xik− x jk)(βk− β̃k) and t2 = vi j, we have the

quadratic majorization function for F(βk|β̃ ):

G(βk|β̃ ) =
∑

n
i=1 ∑ j 6=i Lh(vi j)

n(n−1)
+ak(βk− β̃k)+

ckκu

h
(βk− β̃k)

2 +wk|βk|,

where ak = − 1
n(n−1) ∑

n
i=1 ∑ j 6=i L′h(vi j)(xik− x jk) and ck =

1
n(n−1) ∑

n
i=1 ∑ j 6=i(xik− x jk)

2. Hence, we

update βk using the minimizer of G
(

βk|β̃
)

:

β̂k = sgn
(

β̃k−
hak

2ckκu

)(∣∣∣∣β̃k−
hak

2ckκu

∣∣∣∣− hwk

ckκu

)
+

.

Therefore, we solve problem (4.1) by cyclically performing the above update for each k = 1,2, . . . , p.

In our implementation, we directly compute the solution path problem (4.1) at a sequence of

tuning parameters, λ [1], λ [2], . . . ,λ [L] instead of calling the algorithm L times for each individual

parameter. We let

λ
[1] =

∥∥∥∥∥ 1
n(n−1) ∑

i6= j
L′h
(
yi− y j

)(
xi−x j

)∥∥∥∥∥
∞

,

which is the smallest penalization parameter to make all β̂k = 0. We then choose other λ -values

such that they are uniformly distributed on a logarithm scale. In addition, we also employ the warm

start and active set strategies to further accelerate the GCD algorithm; see details of these two

strategies in Friedman, Hastie and Tibshirani (2010).5

5 Numerical Examples

5.1 Simulation Study

In this section, we demonstrate the performance of the sparse convoluted rank regression in terms of

estimation accuracy and variable selection using simulations. Because the most attractive property

of rank regression is its efficiency argument, we focus on estimators with strong oracle properties

such as the SCAD-penalized convoluted rank regression (denoted by CRR-SCAD) and SCAD-

16



penalized rank regression (denoted by RR-SCAD). We use zero vector as the initial value in the

LLA algorithm for computing CRR-SCAD, so that we do not have to compute the `1-penalized

CRR in order to compute CRR-SCAD. We used the code from Wang et al. (2020) to compute

RR-SCAD. In our numerical studies, we used Epanechnikov kernel as the density convolution

kernel, K(u) = 3
4(1−u2)I(−1≤ u≤ 1), where I(·) is the indicator function, and the loss function

is

Lh(u) =


u, u≥ h,

3u2

4h −
u4

8h3 +
3h
8 , −h < u < h,

−u, u≤−h.

Both the RR-SCAD and CRR-SCAD are tuned based on HBIC. For comparison, we also include

the SCAD-penalized least squares (denoted by LS-SCAD) and tune it by its corresponding HBIC

(Wang et al., 2013).

We consider a model y = xTβ ?+ ε , where β ? = (
√

3,
√

3,
√

3,0,0, . . . ,0) ∈ Rp, x is indepen-

dently generated from N(0,Σ), and ε is independently generated from some certain distributions.5

We fix the sample size n = 100 and use the dimensions p = 400 and 3000. We consider four

situations for the correlation structure of x: CS (0.2), CS (0.5), CS (0.8), and AR (0.5), where each

CS (ρ) represents the compound symmetry correlation, i.e., Σi, j = ρ if i 6= j or 1 otherwise, and

AR (ρ) indicates the autoregressive correlation, that is, Σ = (ρ |i− j|)p×p.

We compare these methods based on five criteria: `1 error (E‖β̂ −β ?‖1), `2 error (E‖β̂ −β ?‖2),10

model error, (E(β̂ −β ?)TΣ(β̂ −β ?)), the number of false positive variables, and the number of

false negative variables. All the quantities are averaged over 200 independent runs and the standard

errors are provided.

Table 1 exhibits the simulation results when ε is from N(0,1). In each situation, we use boldface

to indicate the best performance that is evaluated based on each of the five criteria. When p = 400,15

we observe that the estimation accuracy of LS-SCAD and CRR-SCAD is similar and better than

that of RR-SCAD; when p = 3000, the estimation accuracy of CRR-SCAD is the best. In addition,

both LS-SCAD and CRR-SCAD have perfect performance in variable selection and RR-SCAD is
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Table 1: Comparison of least-square regression with SCAD (LS-SCAD), rank regression with SCAD (RR-SCAD) and
convoluted rank regression with SCAD (CRR-SCAD). The comparison criteria are `1 error, `2 error, model error (ME),
number of false positive variables (FP) and number of false negative variables (FN). In each example, the best method
evaluated based on each criterion is in boldface. All the quantities are averaged over 200 independent runs and standard
errors are given in parentheses. In all the examples shown in this table, the error term in the data generating model is

drawn from the standard normal distribution.

p = 400 p = 3000

Σ criterion LS-SCAD RR-SCAD CRR-SCAD LS-SCAD RR-SCAD CRR-SCAD

CS (0.2) `1 0.31 (0.01) 0.37 (0.01) 0.32 (0.01) 0.36 (0.01) 0.53 (0.01) 0.33 (0.01)

`2 0.18 (0.00) 0.21 (0.01) 0.18 (0.00) 0.22 (0.01) 0.29 (0.01) 0.19 (0.00)

ME 0.03 (0.00) 0.04 (0.00) 0.03 (0.00) 0.05 (0.00) 0.09 (0.00) 0.04 (0.00)

FP 0 (0) 0 (0) 0 (0) 0 (0) 1 (0) 0 (0)

FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

CS (0.5) `1 0.36 (0.01) 0.38 (0.01) 0.36 (0.01) 0.39 (0.01) 0.46 (0.01) 0.37 (0.01)

`2 0.21 (0.01) 0.23 (0.01) 0.21 (0.01) 0.23 (0.01) 0.27 (0.01) 0.22 (0.01)

ME 0.03 (0.00) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.03 (0.00)

FP 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

AR (0.5) `1 0.35 (0.01) 0.45 (0.01) 0.35 (0.01) 0.39 (0.01) 0.62 (0.02) 0.37 (0.01)

`2 0.20 (0.01) 0.23 (0.01) 0.21 (0.01) 0.23 (0.01) 0.34 (0.01) 0.22 (0.01)

ME 0.03 (0.00) 0.05 (0.00) 0.03 (0.00) 0.04 (0.00) 0.09 (0.00) 0.04 (0.00)

FP 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0)

FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

the only method that makes mistakes. By comparing the performance of CRR-SCAD when p = 400

and 3000, we see the performance of CRR-SCAD is less prone to the increase in p.

Table 2 summarizes the simulation results when ε is from a mixture normal distribution:

ε ∼ 0.95N(0,1)+0.05N(0,100). From Table 2, we find that LS-SCAD fails to work well in this

situation. For both p = 400 and p = 3000, RR-SCAD and CRR-SCAD perform similarly. Table5

3 shows the results when ε/
√

2 follows the t-distribution with four degrees of freedom. In all

situations, CRR-SCAD performs better than the other two methods, in terms of both estimation

accuracy and variable selection. When p is increased from 400 to 3000, CRR-SCAD suffers

minimal impact, while RR-SCAD shows a significant loss in estimation accuracy.
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Table 2: Comparison of least-square regression with SCAD (LS-SCAD), rank regression with SCAD (RR-SCAD) and
convoluted rank regression with SCAD (CRR-SCAD). The comparison criteria are `1 error, `2 error, model error (ME),
number of false positive variables (FP) and number of false negative variables (FN). In each example, the best method
evaluated based on each criterion is in boldface. All the quantities are averaged over 200 independent runs and standard

errors are given in parentheses. In all the examples shown in this table, the error term in the data generating model
follows a mixture normal distribution: ε ∼ 0.95N(0,1)+0.05N(0,100).

p = 400 p = 3000

Σ criterion LS-SCAD RR-SCAD CRR-SCAD LS-SCAD RR-SCAD CRR-SCAD

CS (0.2) `1 1.51 (0.08) 0.18 (0.01) 0.22 (0.01) 3.18 (0.14) 0.19 (0.01) 0.21 (0.01)

`2 0.79 (0.04) 0.16 (0.01) 0.17 (0.01) 1.68 (0.07) 0.16 (0.01) 0.16 (0.01)

ME 0.67 (0.06) 0.03 (0.00) 0.03 (0.00) 5.18 (0.33) 0.03 (0.00) 0.03 (0.00)

FP 1 (0) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0)

FN 0 (0) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0)

CS (0.5) `1 1.86 (0.11) 0.21 (0.01) 0.24 (0.01) 3.72 (0.15) 0.25 (0.01) 0.21 (0.01)

`2 0.90 (0.05) 0.16 (0.01) 0.18 (0.01) 1.84 (0.08) 0.18 (0.01) 0.17 (0.01)

ME 0.47 (0.04) 0.03 (0.00) 0.03 (0.00) 7.82 (0.51) 0.03 (0.00) 0.03 (0.00)

FP 2 (0) 0 (0) 0 (0) 2 (0) 0 (0) 0 (0)

FN 0 (0) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0)

AR (0.5) `1 1.22 (0.05) 0.19 (0.01) 0.26 (0.01) 1.72 (0.07) 0.20 (0.01) 0.22 (0.01)

`2 0.73 (0.03) 0.16 (0.01) 0.18 (0.01) 1.03 (0.04) 0.16 (0.01) 0.16 (0.01)

ME 0.50 (0.04) 0.03 (0.00) 0.03 (0.00) 1.44 (0.10) 0.03 (0.00) 0.03 (0.00)

FP 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

5.2 A real data application

We illustrate our proposed method on a microarray gene expression data reported in (Scheetz et al.,

2006). The dataset contains RNA expression levels of more than 31,000 gene probes from 120

twelve-week-old laboratory rats. Following Scheetz et al. (2006), we include 18,976 genes that

have sufficient variation and are considered expressed in mammalian eyes. Among these genes,5

TRIM32 has genetic influences on a rare genetic disorder, the Bardet-Biedl syndrome (Chiang et al.,

2006). Thus TRIM32 is chosen as the target variable and our goal is to identify the genes that are

associated with TRIM32.

In our experiments, we randomly split the original data into a training set and a test set in

the ratio 1:1. On the training set, we apply the fused Kolmogorov filter (Mai and Zou, 2015) to10

obtain a reduced set of 300 probes and retained the same 300 probes on the test set. We then
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Table 3: Comparison of least-square regression with SCAD (LS-SCAD), rank regression with SCAD (RR-SCAD), and
convoluted rank regression with SCAD (CRR-SCAD). The comparison criteria are `1 error, `2 error, model error (ME),
number of false positive variables (FP) and number of false negative variables (FN). In each example, the best method
evaluated based on each criterion is in boldface. All the quantities are averaged over 200 independent runs and standard

errors are given in parentheses. In all the examples shown in this table, the error term in the data generating model
ε ∼
√

2t(4).

p = 400 p = 3000

Σ criterion LS-SCAD RR-SCAD CRR-SCAD LS-SCAD RR-SCAD CRR-SCAD

CS (0.2) `1 1.13 (0.03) 0.79 (0.02) 0.58 (0.02) 3.33 (0.10) 1.69 (0.06) 0.63 (0.02)

`2 0.63 (0.02) 0.43 (0.01) 0.34 (0.01) 1.74 (0.05) 0.82 (0.02) 0.37 (0.01)

ME 0.42 (0.02) 0.19 (0.01) 0.12 (0.01) 4.70 (0.26) 0.64 (0.03) 0.14 (0.01)

FP 1 (0) 0 (0) 0 (0) 2 (0) 5 (0) 0 (0)

FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

CS (0.5) `1 1.33 (0.05) 0.72 (0.02) 0.70 (0.02) 4.01 (0.12) 1.10 (0.03) 0.72 (0.02)

`2 0.69 (0.02) 0.41 (0.01) 0.40 (0.01) 1.95 (0.06) 0.63 (0.02) 0.41 (0.01)

ME 0.34 (0.02) 0.14 (0.01) 0.13 (0.01) 7.53 (0.47) 0.26 (0.01) 0.14 (0.01)

FP 2 (0) 0 (0) 0 (0) 4 (0) 0 (0) 0 (0)

FN 0 (0) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0)

AR (0.5) `1 1.12 (0.03) 0.89 (0.03) 0.62 (0.02) 1.56 (0.04) 1.50 (0.04) 0.71 (0.02)

`2 0.66 (0.02) 0.46 (0.01) 0.37 (0.01) 0.93 (0.02) 0.86 (0.03) 0.41 (0.01)

ME 0.37 (0.02) 0.18 (0.01) 0.12 (0.01) 1.00 (0.05) 0.64 (0.03) 0.15 (0.01)

FP 0 (0) 1 (0) 0 (0) 0 (0) 1 (0) 0 (0)

FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

fit SCAD-penalized least squares (SCAD), rank regression (RR-SCAD) and our convoluted rank

regression (CRR-SCAD) on the training set and compute the prediction error on the test set. To

illustrate the performance in higher dimensions, we repeat the same above procedure except that the

reduced set from the fused Kolmogorov filter has 5,000 probes.

Based on 200 random partitions, we report the prediction error and run time in Table 4. We5

observe CRR-SCAD has the lowest prediction error whereas LS-SCAD has the highest error. When

p grows from 300 to 5000, both RR-SCAD and CRR-SCAD become more accurate; this may be

because some important variables are discarded in the screening step. In terms of speed, we see

the smoothed rank loss offers some obvious benefits in the computational efficiency: CRR-SCAD

is as fast as LS-SCAD and it is about two orders of magnitude faster than RR-SCAD. LS-SCAD10

is implemented in a standard way by using the LLA algorithm with the glmnet package. When
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Table 4: Real data analysis. Comparison of prediction error and run time using least-square regression with SCAD
(LS-SCAD), rank regression with SCAD (RR-SCAD), and convoluted rank regression with SCAD (CRR-SCAD). The
data is split into a training and a test set in the ratio of 1:1 and the fused Kolmogorov filter is applied to reduced the
dimension to 300 and 5000. All the quantities are averaged over 200 random partitions. The lowest prediction errors

are in boldface, and standard errors are given in parentheses.

p = 300 p = 5000

method prediction error time (sec) prediction error time (sec)

LS-SCAD 1.027 (0.018) 2.52 1.061 (0.017) 8.76

RR-SCAD 0.942 (0.015) 20.86 0.865 (0.012) 487.91

CRR-SCAD 0.898 (0.010) 1.86 0.825 (0.009) 7.81

we implemented CRR-SCAD, we made some efforts to integrate the GCD and LLA algorithms

by avoiding some repeated computation, thus our CRR-SCAD is even faster than LS-SCAD when

p = 5000. Without such implementation efforts, our CRR-SCAD would be slower than LS-SCAD.
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