

1 Running title: Isoprene measurement

2 Title: Isoprene Measurements to Assess Plant Hydrocarbon Emissions and the Methylerythritol

3 Pathway

4 Sarathi M. Werdauwage*, Bahtijor Rasulov[†], Abira Sahu*, Ülo Niinemets[†], and Thomas D.

5 Sharkey*

6 * MSU-DOE Plant Research Laboratory, Plant Resilience Institute, and Department of

7 Biochemistry and Molecular Biology, Michigan State University, East Lansing MI, USA

8 [†]Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006

9 Tartu

10 Estonia

11 Definition: Methods and strategies for measuring isoprene produced by plants and bacteria

12 Key Words: Head space assay, Isoprene, Isotopologues, Methylerythritol pathway, Proton

13 Transfer Reaction-Mass Spectrometer

14 Abstract

15 Isoprene is the most abundant non-methane hydrocarbon emitted to the atmosphere and
16 a target of biotechnology. Measurements of the amount of isoprene or the rate of production of
17 isoprene are important for atmospheric chemistry, evaluating biotechnology processes, and can
18 provide information on the capacity and regulation of the methyl erythritol 4-phosphate
19 pathway found in plants and bacteria. In this chapter we discuss techniques, and their strengths
20 and weaknesses, of methods in common use for measuring isoprene. There are many sources
21 of isoprene for measurements including emissions from leaves and head space analysis of
22 reactions involving recombinant enzymes or bacterial or fungal cultures. Similarly, there are a

23 variety of detection methods including several mass spectrometer methods that are useful for
24 examining rates of labeling of isoprene when carbon isotopes are used.

25 **Contents**

26	Abstract	1
27	Contents.....	2
28	1. Introduction	2
29	2. Methods for detecting and measuring isoprene.....	4
30	2.1 Gas chromatography.....	4
31	2.2 Fast Isoprene Sensor.....	5
32	2.3 Proton-transfer-reaction mass-spectrometry.....	6
33	3. Strategies for isoprene measurements	8
34	3.1 Continuous measurements	8
35	3.2 Discrete measurements	9
36	4. Examples	9
37	4.1 Analyzing isoprene production by bacterial cultures using GC-MS	9
38	4.1.1 Materials required:	10
39	4.1.2 Procedure:	10
40	4.1.3 Alternative	12
41	4.2 Analyzing isoprene emission from leaves using an FIS	13
42	4.2.1 Materials and equipment	14
43	4.2.2. Procedure	14
44	4.3 Measuring DMADP and MEcDP using post-illumination isoprene measurements	19
45	4.3.1. Use of a fast gas-exchange system for estimation of intermediate pool sizes	20
46	4.3.2. Use of a slower gas-exchange system for estimation of intermediate pool sizes	22
47	Safety considerations and standards	23
48		

49 **1. Introduction**

50 Isoprene is the root member of the isoprenoid family of compounds. Isoprenoids (also
51 known as terpenoids) have one to many isoprene units, a five-carbon branched chain. Isoprene
52 in the strict sense is 2-methyl 1,3-butadiene but is not the precursor to higher order isoprenoids.

53 The primary precursor of isoprenoids is dimethylallyl diphosphate (DMADP) with one- to
54 many- isopentenyl diphosphate (IDP) molecules added. For reasons not apparent to us,
55 molecules with two isoprenoid units are called monoterpenes, three units = sesqui-, four = di-.
56 Therefore, isoprene is a hemiterpene, half of a monoterpene. Other hemiterpenes are
57 isoamylene (2-methyl-2-butene) and 2-methyl-3-buten-2-ol, the latter being emitted from
58 several evergreen conifers (Lehnert et al., 2020; Schade et al., 2000).

59 Isoprene is made from DMADP by isoprene synthase (IspS) (Miller et al., 2001; Silver
60 & Fall, 1991). The enzyme found in angiosperm (flowering) plants is related to monoterpene
61 synthases in the TpsB family, especially β -ocimene synthase (Li et al., 2017; Sharkey et al.,
62 2005). Plants other than angiosperms do not have TpsB genes so the isoprene synthases
63 responsible for significant isoprene emissions from ferns and mosses are unknown. Some
64 bacteria make isoprene, especially *Bacillus* species. In at least one case isoprene is made by
65 hydroxymethylbutenyl diphosphate (HMBDP) reductase (also known as IspH and LytB).
66 Normally this enzyme converts HMBDP to a mix of DMADP and IDP but there is a report that
67 the enzyme can also convert HMBDP directly to isoprene (and convert DMADP to isoamylene)
68 (Ge et al., 2016). Humans and other animals exhale isoprene in their breath (~ 40 mg day $^{-1}$ for
69 an average human) but the mechanism is unknown (Karl et al., 2001; Miekisch et al., 2001;
70 Mochalski et al., 2011; Sharkey, 1996; Trovarelli et al., 2001).

71 In plants, DMADP for isoprene synthesis is made by the methyl erythritol 4-phosphate
72 (MEP) pathway. There is significant interest in engineering the MEP pathway in part because
73 it is more efficient than the mevalonic acid pathway used by animals to make DMADP.
74 Protocols for measuring metabolites of the MEP pathway have recently been published
75 (González-Cabanelas et al., 2016). Isoprene measurements can supplement LC-MS/MS
76 methods for measuring DMADP and another key pathway intermediate methylerythritol
77 cyclodiphosphate (MEcDP) using post-illumination isoprene emission characteristics.

78 Recombinant isoprene synthase can convert all DMADP in a sample to isoprene, which can
79 then be measured by one of several methods described below. Adding isopentenyl diphosphate
80 will ensure conversion of all DMADP and IDP to isoprene and allow separate determination
81 of IDP and DMADP (Zhou et al., 2013). Here we focus on how measuring isoprene can be
82 used to gain insight into the MEP pathway. Other methods for measuring these compounds
83 will not be presented here.

84

85 2. Methods for detecting and measuring isoprene

86 There are many methods for measuring isoprene (Cao & Hewitt, 1995) but we will
87 cover three methods in common usage in biology laboratories. Isoprene is highly volatile and
88 so is handled in the gas phase for most measurements. It is generally stable and does not
89 partition into water (and buffers etc.) to a great degree (Niinemets et al., 2010). It also does not
90 stick to walls of containers as much as many other isoprenoids.

91 2.1 Gas chromatography

92 Isoprene-containing gas samples can be introduced into a gas chromatograph (GC).
93 Typically, some form of cryofocusing is used in which air is passed through a cold trap, which
94 is then heated to quickly release all the isoprene into the GC. This can be done external to the
95 GC making use of a six-way valve (Hills et al., 1992; Loreto & Sharkey, 1990). This allows
96 very large air samples to be processed increasing the system sensitivity. On-column
97 cryofocusing is often used when samples are introduced using solid phase microextraction
98 systems (SPME). Cartridges are often used with GC (and other detection methods). Some care
99 is required when using cartridges to ensure that the packing material will retain the isoprene at
100 ambient temperature and release it upon moderate heating (Niinemets et al., 2011). Gas
101 chromatography relies on the chromatography to separate isoprene from other gases. Detection

102 can be by flame ionization (FID), photoionization detection (PID), or mass spectrometry (MS).
103 PID is typically more sensitive than FID and modern mass spectrometers are even more
104 sensitive. Both FID and PID are very quantitative and discreet measurements can be made
105 rapidly (less than 3 minutes per sample). MS detectors provide the mass spectrum of individual
106 compounds and as such provide a benchmark method for confirming the identity of the given
107 compound. FID and PID cannot separate among interfering compounds that have similar
108 retention time as isoprene in widely used GC columns for biogenic volatile separation.

109

110 2.2 Fast Isoprene Sensor

111 An instrument designed to measure isoprene using chemiluminescence is sold
112 commercially by Hills Scientific and is called the Fast Isoprene Sensor (FIS) (Hills et al., 1992;
113 Hills & Zimmerman, 1990) (<http://hills-scientific.com/>). This instrument combines a flow of
114 oxygen with very high ozone content with air being pulled through the instrument with a small
115 air pump. Isoprene in the air reacts with the ozone to make a chemiluminescent product in front
116 of a photomultiplier tube. The selectivity for isoprene depends on the wavelength of emitted
117 light and the timing of the reaction. This instrument was developed for measurements related
118 to atmospheric chemistry but is easily adapted to laboratory measurements. It has some
119 sensitivity to water vapor that is problematic when air humidity is varying during the
120 measurements as is often the case with plant measurements. The problem with water vapor
121 sensitivity can be handled by passing the air through an ice trap to maintain a constant low
122 humidity in the gas stream going into FIS or humidify the air to a constant humidity (Rasulov
123 et al., 2009). FIS also has some cross-sensitivity to other hydrocarbons, for example propene
124 (Hills & Zimmerman, 1990), but little cross reactivity to hydrocarbons likely to be present in
125 isoprene air samples. It has an especially strong cross-sensitivity to some sulfur gases. This
126 limits how much dithiothreitol can be used in enzyme assays when head space analysis using

127 an FIS is planned. Thus, regularly checking for the magnitude of other hydrocarbons by gas-
128 chromatography is recommended. The FIS has a very wide dynamic range and is very sensitive
129 to isoprene (Cao & Hewitt, 1995; Toda & Dasgupta, 2008). One of the key advantages of using
130 the FIS to measure isoprene is the fact that it provides high time resolution (as fast as 0.1 sec
131 sampling time).

132 2.3 Proton-transfer-reaction mass-spectrometry

133 Proton transfer reaction mass spectrometry (PTR-MS) uses chemical ionization of volatile
134 molecules with protonated water vapor (H_3O^+) followed by subsequent detection of protonated
135 molecules with a mass spectrometer (Hansel et al., 1995; Jordan, Haidacher, Hanel, Hartungen,
136 Märk, et al., 2009; Lindinger et al., 1998). Currently, two principal spectrometric detectors are
137 in use, quadrupole mass spectrometer (QMS, PTR-QMS) and time-of-flight mass spectrometer
138 (TOF-MS, PTR-TOF-MS). PTR-MS measurements are not confined to isoprene, but all
139 volatiles with a proton affinity greater than that of water vapor (691 kJ mol^{-1} , (Hunter & Lias,
140 1998)) can be measured. Several PTR-MS models also include selective reagent ion (SRI)
141 option that allows use of additional reagent ions, NO^+ , O_2^+ , NH_4^+ , thereby extending the range
142 of volatile compounds that can be measured (Jordan, Haidacher, Hanel, Hartungen, Herbig, et
143 al., 2009; Lehnert et al., 2020). The time resolution of PTR-MS systems is on the order of 0.1
144 s. However, for the highest sensitivity, the sampling rate may need to be decreased. In practice,
145 in laboratory measurements with a certain ambient air background isoprene concentration, a
146 time resolution of 0.5-1 s is typically used to measure plant isoprene emissions (Rasulov et al.,
147 2019).

148 In the case of PTR-QMS, the protonated masses measured are defined a priori before
149 the measurements, and they are measured by the QMS in sequence. Thus, the time-resolution
150 of the instrument depends on the number of compounds measured. In contrast, all protonated

151 masses present can be measured simultaneously with PTR-TOF-MS. The detection limit of
152 PTR-QMS systems is on the order of 0.1-0.5 ppb (Warneke et al., 2015). Modern PTR-TOF-
153 MS instruments are characterized by superior sensitivity, typically a few ppt (Jordan,
154 Haidacher, Hanel, Hartungen, Märk, et al., 2009), and the sensitivity of the newest instruments
155 even extends to less than 0.1 ppt (FUSION PTR-TOF, www.ionicon.com). Furthermore, PTR-
156 TOF-MS has a superior mass resolution, better than 0.1 amu that is important for distinguishing
157 among compounds with similar molecular mass.

158 PTR-MS systems only measure protonated ion concentrations and isoprene is detected as a
159 protonated parent mass (*m/z*) of 69⁺ (69.1⁺ for PTR-TOF-MS). There are no typical plant
160 volatiles that could provide the same parent ion. However, several plant species are significant
161 constitutive emitters of another C5 DMADP pathway compound 2-methyl-3-buten-2-ol (MBO
162 Gray et al., 2011; Gray et al., 2006). The protonated parent ion of MBO has a *m/z* of 87⁺,
163 however, even upon soft ionization, it fragments, yielding a main fragment ion with *m/z* of 69⁺
164 identical to isoprene (Karl et al., 2013). In addition, stressed plants might emit the C5 green
165 leaf volatile pentenol (e.g. 1-penten-3-ol) (Fisher et al., 2003; Rasulov et al., 2019) and some
166 plants species also emit significant amounts of another C5 volatile pentanone (Jardine et al.,
167 2010) that both also partly fragment to the ion with *m/z* 69⁺. Thus, for compound identification,
168 regular checks with GC-MS are advisable, especially when starting experiments with new
169 species or conducting experiments with stressed plants. Furthermore, in addition to the ion *m/z*
170 69⁺, it is important to simultaneously monitor the ions of relevant parent ions (e.g. *m/z* 87⁺ for
171 MBO) that could yield fragments ions *m/z* 69⁺, and also confirm the identity of detected
172 compounds by GC-MS. Provided there is only one interfering compound in the plant volatile
173 mixture, the share of the ion *m/z* 69⁺ between isoprene and the interfering compound can be
174 estimated based on the degree of fragmentation of the interfering volatile. For example, in the
175 case of MBO, the share of the ion *m/z* 69⁺ is ca. 75% of total (Karl et al., 2013), while it is on

176 the order of 1% for 3-pentanone (Malásková et al., 2019). However, simultaneous emission of
177 both isoprene and MBO by a C5 isoprenoid-emitting species is very rare (Lehnert et al., 2020).
178 Thus, unless heavily stressed plants are measured, interference due to other volatiles is typically
179 not a major issue in isoprene emission measurements by PTR-MS.

180 Compared with other methods of isoprene detection, a major advantage of PTR-MS
181 measurements is that it allows conduction of real-time quantitative isoprene ^{13}C -labelling
182 experiments (Karl et al., 2002). Upon $^{13}\text{CO}_2$ -feeding, isoprene molecules become progressively
183 enriched with ^{13}C , starting from m/z 70 $^+$ (one ^{13}C atom and four ^{12}C atoms) to m/z 74 $^+$ (fully
184 ^{13}C -labelled). Such measurements provide detailed insight into relationships among
185 photosynthesis, use of alternative carbon sources and MEP pathway activity (Sharkey et al.,
186 2020).

187

188 3. Strategies for isoprene measurements

189 Isoprene is measured for several reasons and specific measurement systems are better
190 for some strategies than others. On the other hand, there is a great deal of flexibility in matching
191 sample generation with detection methods.

192 3.1 Continuous measurements

193 A common reason to measure isoprene is to determine how fast plant leaves are
194 emitting isoprene. This is typically done with continuous measurements. Both the FIS and
195 PTR-MS continuously sample air to provide real-time, continuous data for isoprene emission.
196 This is particularly helpful for observing transients in isoprene emission, especially from leaves.
197 Continuous sampling is also used by the atmospheric chemistry community together with

198 sensitive wind measurements to measure isoprene emission from forests by an eddy covariance
199 technique, but these methods will not be covered here.

200 3.2 Discrete measurements

201 In many instances it is best to make discreet measurements of isoprene, for example
202 when sampling head space above an enzyme assay or bacterial production assay. To assess
203 candidate genes for improving the capacity for the MEP pathway or isoprene synthase, the
204 amount of isoprene accumulating in the head space above a closed culture can be measured at
205 a specific time point. However, this may miss important information about how quickly gene
206 expression is induced. A better measure is to leave the bacterial culture open (or sparged with
207 desired gas composition, for example with low oxygen or no oxygen). Then at specific time
208 points a small amount of the culture is removed and put into a sealed vial. This is incubated at
209 a specific temperature for a specified time and then the head space is sampled for isoprene.
210 This provides a measure of the rate of isoprene production by the culture.

211

212 4. Examples

213 Some examples will be described here but detection methods can be varied. Most
214 flexible is detection by PTR-MS because it can make continuous or discreet measurements,
215 can distinguish among isotopologues, and can measure other molecules in the gas sample. Least
216 flexible is GC-FID. Example protocols for using these methods applied to specific questions
217 are given here.

218 4.1 Analyzing isoprene production by bacterial cultures using GC-MS

219 When a mass-selective detector is used, both the chromatography and mass selection
220 are used to identify the isoprene signal. In addition, various isotopologues (differences in ^{13}C

221 amount) can be distinguished (Sharkey et al., 2020). Below is a protocol for measuring isoprene
222 production from a purified protein by GC-MS using a SPME fiber to introduce the sample into
223 the GC. This is a good method when the goal is to determine the degree of labeling. For
224 quantitation an alternative, making use of an FIS for detection, is presented.

225 *4.1.1 Materials required:*

- 226 • Purified protein
- 227 • Dimethylallyl diphosphate (DMADP) (Echelon Biosciences)
- 228 • Borosilicate glass vials (we use 2 mL volume vials)
- 229 • Aluminum crimp top with red rubber septa
- 230 • 20 mm Kebby Standard Crimper (20001-00-C01A) for aluminum seals
- 231 • Water bath
- 232 • Solid-phase microextraction (SPME) fused-silica fiber coated with Carboxen/
233 Polydimethylsiloxane (Cat # 57318, Supelco, PA)
- 234 • SPME fiber holder (Cat # 577330-U, Supelco, PA)
- 235 • Ring stand
- 236 • Agilent 7010B Triple Quadrupole GC/MS (Agilent, CA)
- 237 • EZ guard column (VF5 CP9013, Agilent, 30 m length, 10 m guard length, EZ Guard,
238 7 in cage, 0.25 mm inner diameter)

239 *4.1.2 Procedure:*

- 240 1. Before sampling, the SPME fiber needs to be conditioned. After the GC oven reaches
241 230°C place the SPME fiber holder in the GC injection port and carefully push the fiber
242 into the port. Make sure to lock the fiber in place.

243 2. Let the fiber condition for 20 minutes. Then retract the fiber and remove it from the GC

244 injection port.

245 3. Prepare the assay buffer that contains 50 mM HEPES buffer (pH 8.0), 10 mM MgCl₂,

246 20 mM KCl, 2 mM DTT, and 1 mM EDTA.

247 4. Put buffer into the glass vials, add DMADP to make the desired concentration, then

248 start the assay by adding the desired amount of enzyme solution. Adjust the amount of

249 buffer added to make the total volume 300 μ l.

250 5. Crimp seal the vial with an aluminum crimp top immediately and then vortex the vial

251 to ensure complete mixing.

252 6. Put the vial in 40°C water bath for 10 minutes.

253 7. Take out the vial from the water bath after 10 minutes.

254 8. Insert the needle at the end of the SPME fiber holder through the rubber septum of the

255 crimp top.

256 9. Insert the SPME fiber into the headspace making sure it doesn't touch the liquid and

257 lock it in place. Allow the fiber to absorb the analytes in the headspace for 10 minutes.

258 10. Clip the upper part of the SPME fiber holder to a ring stand to keep it steady.

259 11. At the end of 10 minutes, retract the fiber and immediately insert it into the GC injection

260 port.

261 12. Allow it to desorb for 2 minutes at 230°C. During this process, isoprene is collected in

262 a cryotrap in the GC cooled to -10°C using CO₂.

263 13. At the end of 2 minutes, start the Agilent QQQ/MassHunter program (which also warms

264 the cryotrap) and run it for 6.75 minutes. Isoprene should elute around 1.4 minutes.

265 14. At the end of the program, retract the SPME fiber and remove it from the GC injection
266 port.

267 15. Repeat the procedure for the rest of the gas samples.

268 *4.1.3 Alternative*

269 Instead of analyzing with GC-MS, the amount of isoprene can be analyzed with an FIS.
270 Starting at step 8, the head space gas is displaced into a one mL syringe by simultaneously
271 withdrawing the plunger of an empty syringe and injecting an equal amount of water to keep
272 the pressure inside the vial constant (**Figure 1**) (Weise et al., 2013). This one mL sample is
273 then injected into the air stream of an FIS instrument. The peak of isoprene is integrated by
274 summing the counts from the FIS for 15 seconds before and 15 seconds after the peak
275 (background) and subtracting that from the 30 second period that encompasses the signal from
276 the injection. This is compared to a standard curve to determine the amount of isoprene in the
277 head space. The standard curve can be established by mixing different concentrations of
278 isoprene in air or nitrogen and injecting one mL of these standards into the FIS air stream. We
279 have used glass flasks with a septum to mix standards (e.g. <https://chemglass.com/gas-sampling-tubes-ptfe-stopcocks-with-sampling-portand>) or Tedlar bags (e.g. ESS GD0707-
280 7000 Sampling Bags With Combination Valve, 1L, from Cole Parmer).
281

282 Isoprene dissolves in water better than some monoterpenes (Copolovici & Niinemets,
283 2005) and this can be accounted for using the Henry's constant (7780 Pa m³ L⁻¹ at 25°C)
284 (Copolovici & Niinemets, 2005; Weise et al., 2013). An example of this calculation is shown
285 below.

286 Example –In the gas phase:

287
$$I = \chi_I \cdot \frac{v_H}{v_M}$$

288 where I is the number of moles of isoprene, χ_I is the mole fraction of isoprene in the headspace air (mole
289 fraction is interchangeably nmol isoprene/mol air or nPa isoprene/Pa air), v_H is the volume of the head
290 space and v_M is the molar volume (22.4 L/mole corrected for temperature and pressure). For example,
291 in a 2 mL vial with 200 μ L liquid medium containing reactants, 1.8 mL gas phase, and assuming the
292 FIS returns a reading of 100 ppb, and the temperature is 25°C

$$293 \quad 100 \cdot 10^{-9} \frac{\text{mol}}{\text{mol}} \cdot 1.8 \cdot 10^{-3} \text{L} \cdot \frac{\text{mol}}{22.8 \text{ L}} = 7.89 \cdot 10^{-12} \text{ mol isoprene}.$$

294 In the liquid phase:

295

$$296 \quad I = \chi_I \cdot \frac{v_l \cdot P_H}{H}$$

297

298 where v_l is the volume of the liquid phase, P_H is the pressure in the head space, assumed to be 1
299 atmosphere or 101 kPa, and H is the Henry's constant in units of $\text{Pa m}^3 \text{ mol}^{-1}$. In the 2 mL vial with 200
300 μ L liquid phase

$$301 \quad 100 \cdot 10^{-9} \frac{\text{Pa}}{\text{Pa}} \cdot \frac{200 \cdot 10^{-6} \text{L} \cdot 101 \cdot 10^3 \text{Pa}}{7780 \text{ Pa m}^3} \frac{\text{mol}}{10^3 \text{ L}} = 0.26 \cdot 10^{-12} \text{ mol isoprene}.$$

302 Thus 3.3% (0.26/7.89) of the isoprene is in the liquid phase and the total isoprene in the vial is $7.89 +$
303 $0.26 = 8.15$ pmol. This can then be expressed relative to the incubation time and amount of material
304 (e.g., amount of protein) in the reaction.

305

306 4.2 Analyzing isoprene emission from leaves using an FIS

307 The rate of isoprene emission can be used as a proxy to measure the activity of the MEP
308 pathway and its regulation. An FIS coupled with the LI-6800 Portable Photosynthesis System

309 (LI-COR Biosciences, Lincoln, NE) can be used to measure isoprene and photosynthesis rates
310 simultaneously in leaves detached from plants (**Figure 2**) or intact leaves (**Figure 3**).

311

312 *4.2.1 Materials and equipment*

313 • A plant
314 • Bev-a-line tubing (BEV-IV 1/8" ID X1/4" OD, EW-06490-12 and 1/2" ID x 5/8" OD
315 EW-06490-19). Alternatives include Teflon tubing. Teflon is more inert but stiffer and
316 a little more difficult to handle. The differences are minor for isoprene but can be
317 significant if larger terpenoids are also being measured. The high ozone tube from the
318 ozonizer to the FIS must be Teflon.

319 • Swagelock connectors
320 • LI-6800 Portable Photosynthesis System (LI-COR Biosciences, Lincoln, NE). We most
321 often use a Multiphase FlashTM Fluorometer (6800- 01A) chamber but other chambers
322 work fine.
323 • A Fast Isoprene Sensor (FIS) with ozone generator
324 • Ultra-high purity oxygen

325

326 *4.2.2. Procedure*

327 *Setting up the FIS*

328 First, turn on the oxygen supply to the FIS, and power up the FIS and the ozonizer
329 following the manufacturer's instructions. After the ozone has been flowing for several minutes,
330 turn on the PMT and open the LabVIEW software program. We normally select the 5 second
331 averaging period, but a higher sampling rate is used when following transients. Start the

332 program. A file name is suggested that includes the date and time and can be modified so that
333 you can organize your data. The FIS has a flow controller that allows mixing in known amounts
334 of an isoprene standard gas (we use a 3 PPM standard from Airgas). Plot the photon counts per
335 ppb of isoprene. You will need this slope to analyze data from leaf measurements. It is
336 important to use the same flow rate during the calibration that you will use during the
337 measurements.

338 *Setting up the LI-6800*

339 Switch on the LI-6800 following the manufacturer's instructions. Go to the
340 'Environment' window and set environmental conditions. It is very helpful to synchronize the
341 clocks on the FIS and LI-COR so that gas exchange data and isoprene emission data can be
342 correlated.

343 Standard environmental conditions for isoprene measurements are: leaf chamber flow
344 rate¹ - 500 $\mu\text{mol s}^{-1}$; temperature - 30°C; sample CO₂ concentration - 420 $\mu\text{mol mol}^{-1}$; light
345 intensity - 1000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ is the preferred default.

346 The LI-COR 6800 instrument allows two methods for sampling the air that has passed
347 over the leaf. At the back of the head there is an outlet that allows the user to split the air leaving
348 the leaf change between the LI-COR analyzer and an external analyzer such as an FIS or PTR-
349 MS. At the front, users can take all the air that has flowed over the leaf and through the analyzer.
350 When sampling from the front it is important to impose the least possible resistance to flow
351 since this can change the pressure in the analyzer and introduce errors. To measure in the
352 exhaust air, assemble a sample-exhaust line using Bev-A-Line IV or Teflon tubing, and a

¹ Flow rate in the LI-COR is expressed in $\mu\text{mol s}^{-1}$ while flow meters in the FIS report standard cubic centimeters per minute (SCCM), also expressed as mL min^{-1} . There are 22.4 standard liters per mole (do not adjust for temperature and pressure because the flow meter has already made this adjustment). One SCCM = 0.744 $\mu\text{mol s}^{-1}$.

353 Swagelok union tee-joint (**Figure 2A** shows a leaf detached from the plant while **Figure 3**
354 shows a leaf still attached to the plant). The details shown in Figure 2B and C are the same for
355 the attached plant system shown in Figure 3.

356 Tee-joint-1 (**Figure 2A**) connects the LI-6800 sample-exhaust port A (**Figure 2A, B**)
357 with the ‘sample in’ port at the back of the FIS. We typically use a total flow rate of the FIS of
358 1200 mL min^{-1} and the O_2 flow rate of 800 mL min^{-1} , and so the sample flow rate into the FIS
359 is 400 mL min^{-1} (**Figure 2C**). The LI-6800 sample flow rate when set at $500 \mu\text{mol s}^{-1}$ is 672
360 mL min^{-1}). The excess flow from the leaf chamber will vent from the ‘tube for excess flow out’
361 at the tee-joint (**Figure 2A, C**). A length of tubing on this exhaust will prevent back diffusion
362 which would dilute the air entering the FIS, but it should not be too long to avoid back pressure
363 on the LI-COR analyzers. The FIS pulls in 400 mL min^{-1} or $\sim 295 \mu\text{mol s}^{-1}$ and so consumes
364 $295/500$ or approximately 60% of the air flow out of the LI-COR (but see below for the effect
365 of transpiration on total flow rate exiting the chamber). The excess flow protects against the
366 FIS pulling in room air. Increasing the flow to the FIS increases the signal but runs the risk of
367 pulling in room air, which would spoil the measurement and would require a recalibration at
368 the new flow rates.

369 *Measuring isoprene*

370 Clamp a leaf in the LI-6800 leaf chamber and close the chamber (**Figure 2A and 3**).
371 Zero readings can be made by switching the LI-COR to “Match” mode. There is little drift in
372 sensitivity of the FIS but significant zero drift. The background reading taken while in Match
373 mode will account for the baseline signal of the FIS, any isoprene in the supply air, and any
374 contaminating/cross reacting components of the air supplied to the LI-COR. It is important to
375 make the zero reading frequently, especially early in the day.

376 To measure isoprene and photosynthesis simultaneously, log photosynthesis on the
377 6800 manually or use the auto-program feature in the LI-6800. Record time units in the FIS
378 and the LI-6800 so that the FIS reading can be matched with the corresponding photosynthesis
379 measurements. Once isoprene and photosynthesis reach steady state, record start and end time
380 in the FIS for a one-minute period during which isoprene measurement is stable. For each
381 sample, record the start and stop times of the sampling period.

382 If using a large leaf that covers the entire area of the LI-6800-01A leaf chamber, the
383 area is 6 cm². If the leaf is smaller, photographing the section of the leaf that was inserted to
384 the leaf chamber, followed by analysis using imaging software will have to be carried out to
385 accurately estimate leaf area.

386 *Data analysis*

387 The slope (counts / isoprene ppb) from the calibration data of the FIS will be needed for data
388 analysis. Subtract the average number of photon counts of the background from the sample.
389 Using the slope (counts/isoprene ppb) of the calibration curve, divide the number of counts by
390 the calibration factor (slope) to give the mole fraction of isoprene in ppb (nanomoles of
391 isoprene per mole of air). Multiply the mole fraction of isoprene in the air exiting the chamber
392 by the flow out of the leaf chamber. This will be different from the flow entering the leaf
393 chamber reported by the LI-COR because transpiration is adding gas to the total flow. This is
394 the same effect that affects gas exchange measurements of photosynthesis (von Caemmerer &
395 Farquhar, 1981). Niinemets et al. (2011) provides the following equation that should be used:

396

397
$$F_{out} = F_{in} + \lambda \cdot A$$

398

399 where F is flow out or flow in, λ is transpiration rate and A is leaf area. With large leaf areas,
400 high transpiration rates, or slow flow rates the flow rate out can be 20% more than that reported
401 by the LI-COR but the effect is more typically 2 to 5% (Niinemets et al., 2011). In East Lansing
402 we sometimes use an ice trap before the FIS because of minor water sensitivity and this will
403 also affect the conversion of ingoing chamber flow rate to outgoing flow rate.

404

405
$$F_{out} = F_{in} \cdot (1 + W_{out} - W_{in}).$$

406

407 where W is the mole fraction of water vapor in the air entering the chamber (in) or leaving the
408 chamber (out). With an ice trap in place, W_{out} will be 0.006 Pa/Pa and if the dew point of the
409 ingoing air is 15°C then W_{in} is 0.016 and F_{out} (flow into the FIS) will be 1% less than the flow
410 reported by the LI-COR.

411 Use the concentration of isoprene in mol isoprene mol⁻¹ air and the LI-COR flow (corrected
412 for water vapor) (mol air s⁻¹) to calculate the rate of isoprene emission in mol isoprene s⁻¹. Then
413 divide by leaf area. Typical values are 1 to 60 nmol isoprene m⁻² s⁻¹. Niinemets et al. (2011)
414 provides much additional information on measuring isoprene (and other terpenes).

415

416 4.3 Labeling isoprene by feeding $^{13}\text{CO}_2$

417 *4.3.1. Method* To feed $^{13}\text{CO}_2$ to observe the rate and degree of labeling of isoprene by
418 photosynthesis, the LI-COR console is set to provide CO_2 free air to the LI-COR head.
419 Different isotopes are then fed through mass flow controllers and switched using a four-way
420 valve (**Figure 4 A, B, and C**). Most CO_2 analyzers have much reduced sensitivity to $^{13}\text{CO}_2$
421 compared to $^{12}\text{CO}_2$ so it is not possible to measure the rate of photosynthesis during feeding.

422 Also, it is necessary to calculate air flows to set the rate of flow of $^{13}\text{CO}_2$ during the feeding.
423 This should be set so that the concentration of CO_2 does not change regardless of which isotope
424 is being fed. The flow out of the chamber can be collected in a Tedlar bag (for example “ESS
425 GD0707-7000 Sampling Bags With Combination Valve” from Cole-Parmer). Be careful not
426 to impose back pressure on the LI-COR.

427 The degree of label in isoprene can be determined by GC-MS using a SPME fiber or PTR-MS
428 (**Figure 5D and E**). A PTR-MS provides real time readings and simplifies measuring time
429 courses.

430 Many publications have assumed that labeling to less than 100% indicates an alternative carbon
431 source for isoprene emission and hence the MEP pathway, but this assumes that the Calvin
432 Benson cycle labels to 100%. It does not (Sharkey et al., 2020). Isoprene, and so the MEP
433 pathway, label to the same degree as the Calvin-Benson cycle intermediates and so labeling of
434 isoprene can provide a window on photosynthetic carbon metabolism.

435 4.4 Measuring DMADP and MEcDP using post-illumination isoprene measurements
436 In vivo estimation of DMADP and MEcDP pools in plants leaves of isoprene-emitting species
437 rests on the observation that when light is switched off isoprene emission continues for about
438 10 min. at the expense of MEP pathway metabolites synthesized during the previous light
439 period (Li et al., 2011; Rasulov et al., 2009; Rasulov et al., 2011; Weise et al., 2013). The post-
440 illumination isoprene emission is biphasic. The first phase continues for about 300 s after
441 switching off the light, followed by a second rise of isoprene emission between about 300-1000
442 s. The first phase is used to estimate DMADP pool size and the second phase to estimate
443 MEcDP pool size. The intermediate pool sizes estimated by the in vivo method are in very
444 good agreement with separate destructive chemical measurements of the pool sizes (Rasulov
445 et al., 2009; Weise et al., 2013).

446 For in vivo estimation of isoprene precursor pool size, a real-time isoprene sensor is needed
447 (either FIS or PTR-MS), whereas the protocol of measurements depends on the system
448 response time, which depends on the chamber volume and air flow rate. For fast systems, the
449 measurements do not need to consider the chamber response time (as e.g. in Rasulov et al.,
450 2016), whereas for slow systems, the system response time should be separately estimated (as
451 e.g. in Rasulov et al., 2009). For example, the Rasulov et al. (2016) ultra-fast gas-exchange
452 system has a chamber volume of 2.4 mL and flow rate of 0.67 L min⁻¹, yielding a system half-
453 time (τ) of only 0.15 s and time to reach a steady state (4τ) of 0.6 s, whereas the volume of LI-
454 6400 standard 2 cm x 3 cm (6 cm² window area) chamber is 80 mL, and for the same flow rate,
455 4 τ is 20 s, and for the conifer chamber of LI-COR (volume of 155 mL) 4 τ is 39 s (Niinemets,
456 2012).

457 The gas exchange systems can have one (measurements switched between reference
458 measurement and sample measurement) or two measurement lines (reference and sample
459 measured continuously). For one-line systems, the time for switching and stabilization of gas
460 flows between the reference and sample measurement can further add to the whole system
461 response time.

462

463 4.4.1. Use of a fast gas-exchange system for estimation of intermediate pool sizes

464 Here we provide a sample protocol with the ultrafast gas-exchange system of Rasulov et al.
465 (2016) that includes two identical parallel gas lines that allow independent measurement of the
466 background and chamber isoprene concentrations. Isoprene concentration can be measured by
467 both FIS (see above for settings), or PTR-MS as explained here.

468 4.4.1.1. Materials

469 • A plant

470 • A PTR-TOF-MS

471 • An ultra-fast gas-exchange system with a 2.4 mL circular leaf chamber (3 mm height,

472 32 mm diameter) (Rasulov et al., 2016)

473 • Isoprene calibration standard (3.43 ppm isoprene in N₂)

474 4.4.1.2. Procedure

475 *Setting up PTR-TOF-MS*

476 Use the following PTR-TOF-MS setup through the measurements: the inlet and drift chamber

477 temperature: 60 °C, inlet flow 100: mL min⁻¹, flow of water vapor: 5.0 mL min⁻¹, ion current:

478 4 mA, drift chamber pressure: 2.1 mbar, drift tube field density ratio: 140 Td, pressure of the

479 TOF-MS module: 2.4·10⁻⁷ mbar (Rasulov et al., 2019). Calibrate the PTR-MS-TOF instrument

480 using the flow of the isoprene standard into the leaf measurement chamber.

481

482 *Setting up the gas exchange system*

483 In vivo MEP pool sizes can be estimated for any combination of environmental drivers. First,

484 enclose the leaf in the chamber and establish the desired environmental conditions in the

485 chamber (e.g., leaf temperature of 30 °C, air humidity of 60%, CO₂ concentration of 410 mol

486 mol⁻¹ and light intensity of 1000 µmol m⁻² s⁻¹, air flow rate of 0.67 L min⁻¹). Establish identical

487 ingoing gas concentrations in both lines of the gas exchange system.

488 *Measurement procedure*

489 Measure isoprene background concentration in the reference line with the PTR-TOF-MS at

490 400 ps sample interval and record averages at 1 Hz interval. Switch the channels and measure

491 isoprene concentration in the gas exchange chamber exhaust air. Wait until leaf isoprene

492 emission reaches a steady state, typically for 10-20 min after leaf enclosure. Switch back to

493 reference line and measure again isoprene background concentration. Simultaneously switch

494 to the sample line and switch off the light. Measure isoprene emission through both phases of
495 post-illumination kinetics (**Figure 5A**) for about 10-15 min after switching off the light. Switch
496 back to the reference line and measure again the background isoprene concentration. Calculate
497 isoprene emission rates through the post-illumination kinetics as explained above. Establish
498 the baseline through the post-illumination measurements using the reference line
499 measurements at different time points. Estimate the baseline for the first phase of the post-
500 illumination decay curve by extrapolating from the start of the emission rise to reference line
501 (between ca. 570 s to 200 s in **Fig. 5A**). Integrate the first phase of the dark decay kinetics
502 above the baseline (between ca. 200 to 410 s in **Fig. 5A**) and the second phase using the
503 trapezoidal rule. The first integral is the DMADP pool size and the second MEcDP pool size
504 supporting the isoprene emission rate prior to leaf darkening.

505

506 *4.4.2. Use of a slower gas-exchange system for estimation of intermediate pool sizes*

507 In the case of the slower system, all measurements are carried out identically to fast system
508 measurement. The only difference is the need to consider system delay effects. At the end of
509 the measurement, the leaf or plant is removed from the chamber and a flow of isoprene is fed
510 into the carrier air flow or directly into the leaf chamber (**Fig. 5B**) (Li et al., 2011). Once a
511 stable isoprene flow from the chamber is achieved, isoprene flow into the chamber is stopped
512 and isoprene flow from the chamber is measured until it reaches the background level. The
513 artificial isoprene release kinetics is scaled such that the value of isoprene release prior to
514 stopping isoprene flow is scaled to the level corresponding to steady-state isoprene emission
515 rate. The artificial isoprene kinetics is superimposed on the plant measurements and the
516 baseline for the first phase of the post-illumination kinetics is established as shown in **Fig. 5B**.
517 For plant measurements, the two peaks of isoprene emission are integrated as explained in 4.4.1
518 and the isoprene release without plant is also integrated. The DMADP pool size is the

519 difference between the integral of the first peak of plant measurements minus the integral of
520 isoprene release without the plant (**Fig. 5B**).

521

522 Safety considerations and standards

523 Many of these techniques require handling pressurized gases and care must be exercised
524 in handling gas tanks. At low concentrations in air, isoprene is not toxic (humans generally
525 exhale air with 25 to 100 ppb isoprene) but higher concentrations in air should be avoided. If
526 liquid isoprene is stored, it should be in an explosion-proof container and refrigerated because
527 the boiling point is 32°C. Care should be taken to avoid contact with liquid isoprene. Long-
528 term storage of liquid isoprene can lead to formation of impurities due to condensation
529 reactions, including formation of monoterpenes.

530

531 Summary

532

533 Measuring isoprene in air contributes to studies in atmospheric chemistry, plant physiology,
534 biotechnology, and biochemistry. There are many methods used to measure isoprene and
535 different methods of detection. Isoprene measurements can be made with bacterial cultures,
536 isolated enzymes, and attached or detached leaves. Isotopic labeling can add to the utility of
537 isoprene measurements. The Proton Transfer Reaction mass spectrometers are the most
538 versatile instruments for detection but also the most expensive (Table 1). Isoprene is relatively
539 easy to handle, it is relatively stable and does not stick to tubing and chamber walls as much as
540 other terpenes. It also is emitted from leaves as soon as it is made allowing insight into the
541 working of the methyl erythritol 4-phosphate pathway, the pathway in plants responsible for
542 isoprene emission.

543

544 Table 1. Pros and cons of the methods discussed here.

	Pros	Cons
Continuous	Can follow transients	Requires PTR-MS to follow isotopologues
Discrete	Flexibility, simplicity	Difficult to follow transients
Detection		
GC-PID	High sensitivity, good quantitation Easily adapted to large samples Other gases can be measured in single run	Less selective Discrete measurements only
GC-MS (SPME)	Good selectivity Other gases can be measured in single run	Discrete measurements only Poor quantitation
FIS	Large dynamic range Good quantitation High temporal resolution	Specialized instrument for isoprene measurements
PTR-MS (both quadrupole and time-of-flight)	High sensitivity and time resolution Many other gases can be measured simultaneously Continuous monitoring Isotopologue-specific	Expensive to acquire Some compound fragments might interfere with isoprene detection

545

546

547

548

549 Acknowledgements: Isoprene research at MSU is supported by the US National Science
550 Foundation under Grant No. 2022495. Partial salary support for TDS comes from Michigan
551 AgBioResearch.

References

Cao, X.-L., & Hewitt, C. N. (1995). Detection methods for the analysis of biogenic non-methane hydrocarbons in air. *Journal of Chromatography A*, 710(1), 39-50. [https://doi.org/https://doi.org/10.1016/0021-9673\(95\)00427-O](https://doi.org/https://doi.org/10.1016/0021-9673(95)00427-O)

Copolovici, L. O., & Niinemets, Ü. (2005). Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids. *Chemosphere*, 61(10), 1390-1400. <https://doi.org/10.1016/j.chemosphere.2005.05.003>

Fisher, A. J., Grimes, H. D., & Fall, R. (2003). The biochemical origin of pentenol emissions from wounded leaves. *Phytochemistry*, 62(2), 159-163. [https://doi.org/10.1016/s0031-9422\(02\)00521-6](https://doi.org/10.1016/s0031-9422(02)00521-6)

Ge, D., Xue, Y., & Ma, Y. (2016). Two unexpected promiscuous activities of the iron-sulfur protein IspH in production of isoprene and isoamylene. *Microb Cell Fact*, 15, 79. <https://doi.org/10.1186/s12934-016-0476-9>

González-Cabanelas, D., Hammerbacher, A., Raguschke, B., Gershenson, J., & Wright, L. P. (2016). Chapter Ten - Quantifying the Metabolites of the Methylerythritol 4-Phosphate (MEP) Pathway in Plants and Bacteria by Liquid Chromatography-Triple Quadrupole Mass Spectrometry. In S. E. O'Connor (Ed.), *Methods in Enzymology* (Vol. 576, pp. 225-249). Academic Press. <https://doi.org/https://doi.org/10.1016/bs.mie.2016.02.025>

Gray, D. W., Breneman, S. R., Topper, L. A., & Sharkey, T. D. (2011). Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants. *The Journal of Biological Chemistry*, 286, 20582-20590.

Gray, D. W., Goldstein, A. H., & Lerdau, M. (2006). Thermal history regulates methylbutenol basal emission rate in *Pinus ponderosa*. *Plant, Cell and Environment*, 29, 1298-1308.

Hansel, A., Jordan, A., Holzinger, R., Prazeller, P., Vogel, W., & Lindinger, W. (1995). Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. *International Journal of Mass Spectrometry and Ion Processes*, 149-150, 609-619.

Hills, A. J., Fall, R., & Monson, R. K. (1992). Methods for the analysis of isoprene from leaves. In H. F. Linskens & J. F. Jackson (Eds.), *Plant Toxin Analysis. Modern Methods of Plant Analysis* (Vol. 13, pp. 297-315). Springer-Verlag. https://doi.org/https://doi.org/10.1007/978-3-662-02783-7_12

Hills, A. J., & Zimmerman, P. R. (1990). Isoprene measurement by ozone-induced chemiluminescence. *Analytical Chemistry*, 62, 1055-1060. <https://doi.org/10.1021/ac00209a017>

Hunter, E. P., & Lias, S. G. (1998). Evaluated gas phase basicities and proton affinities of molecules: an update. *Journal of Physical and Chemical Reference Data*, 27(3), 413-656. <https://doi.org/https://doi.org/10.1063/1.556018>

Jardine, K., Abrell, L., Kurc, S. A., Huxman, T., Ortega, J., & Guenther, A. (2010). Volatile organic compound emissions from *Larrea tridentata* (creosotebush). *Atmospheric Chemistry and Physics*, 10(24), 12191-12206. <https://doi.org/DOI 10.5194/acp-10-12191-2010>

Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Herbig, J., Märk, L., Schottkowsky, R., Seehauser, H., Sulzer, P., & Märk, T. D. (2009). An online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+SRI-MS). *International Journal of Mass Spectrometry*, 286(1), 32-38. <https://doi.org/https://doi.org/10.1016/j.ijms.2009.06.006>

Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Märk, L., Seehauser, H., Schottkowsky, R., Sulzer, P., & Märk, T. D. (2009). A high resolution and high sensitivity proton-transfer-reaction time-

offlight mass spectrometer (PTR-TOF-MS). *International Journal of Mass Spectrometry*, 286, 122-128.

Karl, T., Fall, R., Rosenstiel, T. N., Prazeller, P., Larsen, B., Seufert, G., & Lindinger, W. (2002). On-line analysis of the $^{13}\text{CO}_2$ labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors. *Planta*, 215, 894-905.

Karl, T., Hansel, A., Cappellin, L., Kaser, L., Herndliger-Blatt, I., & Jud, W. (2013). BVOC measurements based on NO^+ ionization. In A. Hansel & J. Dunkl (Eds.), *6th International Conference on Proton Transfer Reaction Mass Spectrometry and its Applications, Obergurgl, Austria* February 3rd – February 8th, 2013 (pp. 84-88). Innsbruck University Press.

Karl, T., Prazeller, P., Mayr, D., Jordan, A., Rieder, J., Fall, R., & Lindinger, W. (2001). Human breath isoprene and its relation to blood cholesterol levels: new measurements and modeling. *Journal of Applied Physiology*, 91, 762-770.

Lehnert, A.-S., Perreca, E., Gershenzon, J., Pohnert, G., & Trumbore, S. E. (2020). Simultaneous real-time measurement of Isoprene and 2-methyl-3-buten-2-ol emissions from trees using SIFT-MS [Methods]. *Frontiers in Plant Science*, 11, 578204. <https://doi.org/10.3389/fpls.2020.578204>

Li, M., Xu, J., Algarra Alarcon, A., Carlin, S., Barbaro, E., Cappellin, L., Velikova, V., Vrhovsek, U., Loreto, F., & Varotto, C. (2017). In planta recapitulation of isoprene synthase evolution from ocimene synthases. *Molecular Biology and Evolution*, 34(10), 2583-2599. <https://doi.org/10.1093/molbev/msx178>

Li, Z., Ratliff, E. A., & Sharkey, T. D. (2011). Effect of temperature on postillumination isoprene emission in oak and poplar. *Plant Physiology*, 155(2), 1037-1046. <https://doi.org/10.1104/pp.110.167551>

Lindinger, W., Hansel, A., & Jordan, A. (1998). Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. *Chemical Society Reviews*, 27, 347-354.

Loreto, F., & Sharkey, T. D. (1990). A gas-exchange study of photosynthesis and isoprene emission in *Quercus rubra* L. *Planta*, 182, 523-531.

Malásková, M., Olivenza-León, D., Piel, F., Mochalski, P., Sulzer, P., Jürschik, S., Mayhew, C. A., & Märk, T. D. (2019). Compendium of the reactions of H_3O^+ with selected ketones of relevance to breath analysis using proton transfer reaction mass spectrometry. *Frontiers in chemistry*, 7, 401. <https://doi.org/10.3389/fchem.2019.00401>

Miekisch, W., Schubert, J. K., Vagts, D. A., & Geiger, K. (2001). Analysis of volatile disease markers in blood. *Clinical Chemistry*, 47, 1053-1060. <http://www.clinchem.org/content/47/6/1053.full.pdf>

Miller, B., Oschinski, C., & Zimmer, W. (2001). First isolation of an isoprene synthase gene from poplar and successful expression of the gene in *Escherichia coli*. *Planta*, 213(3), 483-487. <https://doi.org/10.1007/s004250100557>

Mochalski, P., King, J., Kupferthaler, A., Unterkofler, K., Hinterhuber, H., & Amann, A. (2011). Measurement of isoprene solubility in water, human blood and plasma by multiple headspace extraction gas chromatography coupled with solid phase microextraction. *Journal of Breath Research*, 5(4), 046010. <http://stacks.iop.org/1752-7163/5/i=4/a=046010> http://iopscience.iop.org/1752-7163/5/4/046010/pdf/1752-7163_5_4_046010.pdf

Ninemets, Ü. (2012). Whole plant photosynthesis. In J. Flexas, F. Loreto, & H. Medrano (Eds.), *Terrestrial photosynthesis in a changing environment. A molecular, physiological and ecological approach* (pp. 399-423). Cambridge University Press.

Ninemets, Ü., Kuhn, U., Harley, P. C., Staudt, M., Arneth, A., Cescatti, A., Ciccioli, P., Copolovici, L., Geron, C., Guenther, A., Kesselmeier, J., Lerdau, M. T., Monson, R. K., & Peñuelas, J. (2011).

Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. *Biogeosciences*, 8(8), 2209-2246. <https://doi.org/10.5194/bg-8-2209-2011>

Niinemets, Ü., Monson, R. K., Arneth, A., Ciccioli, P., Kesselmeier, J., Kuhn, U., Noe, S. M., Peñuelas, J., & Staudt, M. (2010). The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. *Biogeosciences*, 7(6), 1809-1832. <https://doi.org/10.5194/bg-7-1809-2010>

Rasulov, B., Copolovici, L., Laisk, A., & Niinemets, Ü. (2009). Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves. *Plant Physiology*, 149, 1609-1618.

Rasulov, B., Hüve, K., Laisk, A., & Niinemets, Ü. (2011). Induction of a longer-term component of isoprene release in darkened aspen leaves: origin and regulation under different environmental conditions. *Plant Physiology*, 156, 816-831.

Rasulov, B., Talts, E., & Niinemets, Ü. (2016). Spectacular oscillations in plant isoprene emission under transient conditions explain the enigmatic CO₂ response. *Plant Physiology*, 172, 2275-2285.

Rasulov, B., Talts, E., & Niinemets, Ü. (2019). A novel approach for real-time monitoring of leaf wounding responses demonstrates unprecedently fast and high emissions of volatiles from cut leaves. *Plant Science*, 283, 256-265. <https://doi.org/10.1016/j.plantsci.2019.03.006>

Schade, G. W., Goldstein, A. H., Gray, D. W., & Lerdau, M. T. (2000). Canopy and leaf level 2-methyl-3-buten-2-ol fluxes from a ponderosa pine plantation. *Atmospheric Environment*, 34(21), 3535-3544. <http://www.sciencedirect.com/science/article/B6VH3-40D0KTV-6/2/1b127c2c8fa624efa6ffb348e490ec73>

Sharkey, T. D. (1996). Isoprene synthesis by plants and animals. *Endeavor*, 20, 74-78.

Sharkey, T. D., Preiser, A. L., Weraduwage, S. M., & Gog, L. (2020). Source of ¹²C in Calvin-Benson cycle intermediates and isoprene emitted from plant leaves fed with ¹³CO₂. *Biochemical Journal*, 477(17), 3237-3252. <https://doi.org/10.1042/BCJ20200480>

Sharkey, T. D., Yeh, S., Wiberley, A. E., Falbel, T. G., Gong, D., & Fernandez, D. E. (2005). Evolution of the isoprene biosynthetic pathway in kudzu. *Plant Physiology*, 137, 700-712. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065370/pdf/pp1370700.pdf>

Silver, G. M., & Fall, R. (1991). Enzymatic synthesis of isoprene from dimethylallyl diphosphate in aspen leaf extracts. *Plant Physiology*, 97, 1588-1591.

Toda, K., & Dasgupta, P. K. (2008). Chapter 22 - Environmental applications: atmospheric trace gas analyses. In S. D. Kolev & I. D. McKelvie (Eds.), *Comprehensive Analytical Chemistry* (Vol. 54, pp. 639-683). Elsevier. [https://doi.org/https://doi.org/10.1016/S0166-526X\(08\)00622-3](https://doi.org/https://doi.org/10.1016/S0166-526X(08)00622-3)

Trovarelli, G., Brunori, F., De Medio, G. E., Timio, M., Lippi, G., Pelli, M. A., & Capodicasa, E. (2001). Onset, time course, and persistence of increased haemodialysis-induced breath isoprene emission. *Nephron*, 88, 44-47.

von Caemmerer, S., & Farquhar, G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. *Planta*, 153(4), 376-387. <http://dx.doi.org/10.1007/BF00384257>

Warneke, C., Veres, P., Murphy, S. M., Soltis, J., Field, R. A., Graus, M. G., Koss, A., Li, S. M., Li, R., Yuan, B., Roberts, J. M., & de Gouw, J. A. (2015). PTR-QMS versus PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013. *Atmos. Meas. Tech.*, 8(1), 411-420. <https://doi.org/10.5194/amt-8-411-2015>

Weise, S. E., Li, Z., Sutter, A. E., Corrion, A., Banerjee, A., & Sharkey, T. D. (2013). Measuring dimethylallyl diphosphate available for isoprene synthesis. *Analytical Biochemistry*, 435, 27-34.

Zhou, C., Li, Z., Wiberley-Bradford, A. E., Weise, S. E., & Sharkey, T. D. (2013). Isopentenyl diphosphate and dimethylallyl diphosphate/isopentenyl diphosphate ratio measured with

recombinant isopentenyl diphosphate isomerase and isoprene synthase. *Analytical Biochemistry*, 440(2), 130-136. <https://doi.org/10.1016/j.ab.2013.05.028>

Figure legends

Figure 1. Measuring isoprene production by bacterial cultures. A bacterial culture is grown until a desired concentration is achieved. If required, the culture is induced to express enzymes of interest. At any time point 200 μ L of culture are removed and put into a 2 mL crimp seal vial. The vial is incubated for a set time (we often use 10 min) and then the headspace is removed with a 1 mL syringe while water is injected to prevent formation of a vacuum. The sample is then injected into the airstream of a Fast Isoprene Sensor instrument (a PTR-MS either quadrupole or time-of-flight would also work well). We often use an ice bath to bring the water vapor in the gas sample to 0°C dew point. Because these are discreet measurements gas chromatographs would also work.

Figure 2. System for measuring isoprene emission from a leaf. In Panel A, a leaf detached from the plant is shown. This allows feeding poisons such as fosmidomycin or potential substrates. Panel B shows a closeup of the leaf chamber and the sample exhaust that is used for measurements as shown in panel C. PTR-MS instruments would also work well but gas chromatographs would be less convenient.

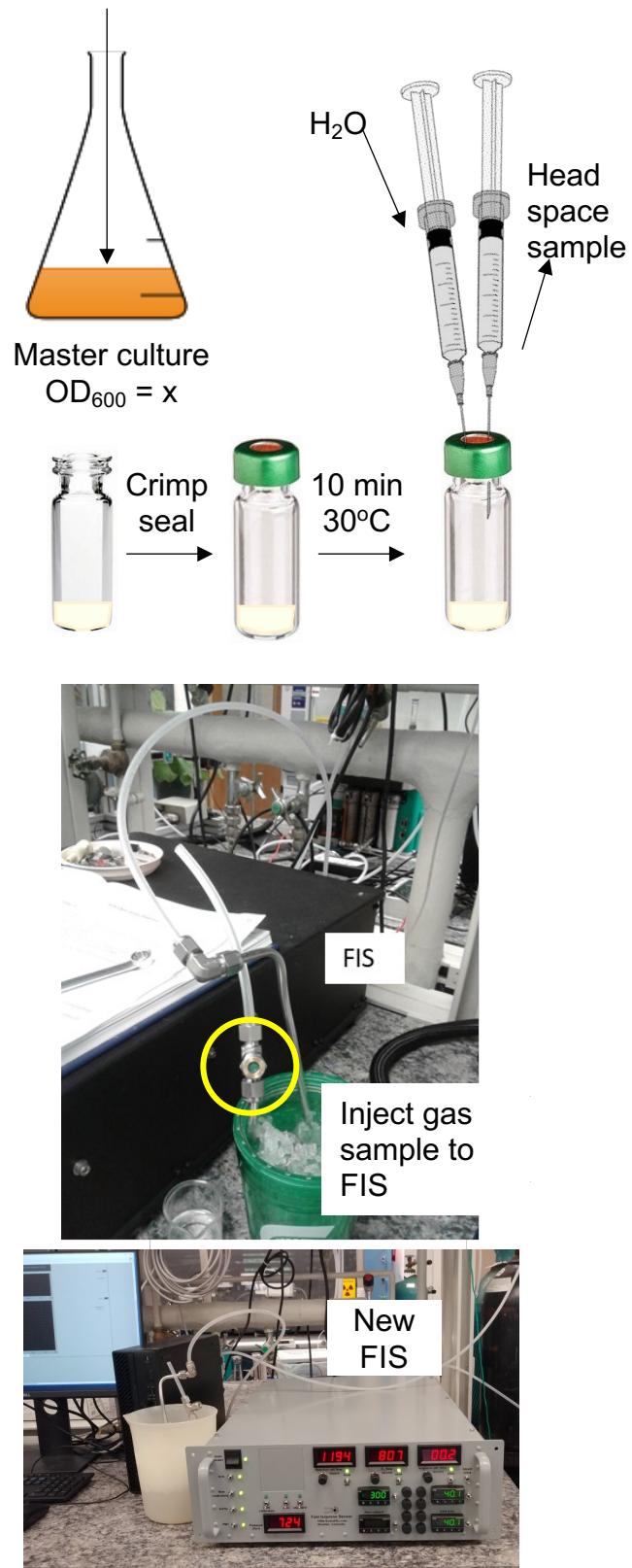
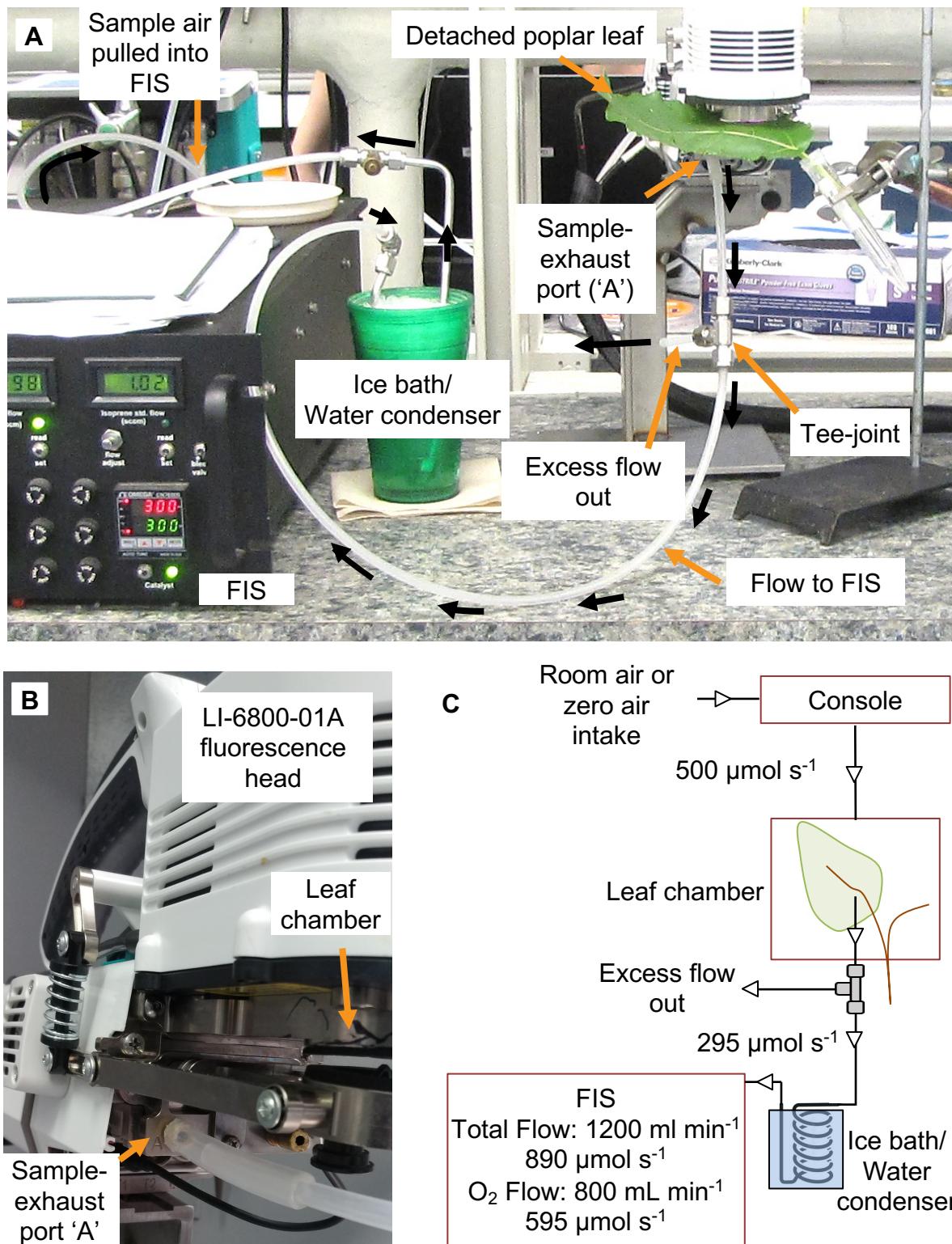

Figure 3. Measuring isoprene emitted from a leaf attached to the plant. This allows for repeated measurements in the days following a treatment. Many plants show little effect of detaching leaves but using attached leaves circumvents any possible problem associated with cutting the leaf off the plant. The flow path is the same as shown in Figure 2C.

Figure 4. Measuring labeling of isoprene when feeding $^{13}\text{CO}_2$. A system for rapid switching between $^{12}\text{CO}_2$ and $^{13}\text{CO}_2$ at the back of the LI-COR head is shown in Panel A. Panel B shows the mass flow controllers that are used to set the concentration of the two isotopes so that there is no change in CO_2 concentration when switching from one isotope to the other. Panel C shows exposing a Solid Phase Micro Extraction (SPME) element to a sample in a Tedlar bag and Panel D shows desorbing the sample into a GC-MS. This measurement is easier with a PTR-MS and the high resolution of a PTR-TOF-MS can help ensure that isoprene is being measured.


Figure 5. Measurements of the pool sizes of isoprene precursors DMADP and MEcDP using a two-channel ultra-fast gas exchange system (Rasulov et al., 2016) (chamber volume 2.4 mL, flow rate 0.67 L min^{-1} , system half-time 0.15 s) that does not require consideration of system delay effects (A) and a slower system where the system delay (amount of isoprene present within the chamber and system gas lines) needs to be taken into account (Rasulov et al., 2009) (chamber volume 1 L, flow rate 1.5 L min^{-1} , system half-time 28 s). In panel A, the leaf was first stabilized until steady-state conditions were reached, at time a, the reference line was measured (leaf switched from line 1 to line 2), and at time b, the leaf was switched from line 2 to line 1 and light was simultaneously switched off and the dark decay kinetics of isoprene release was followed until the emission reached to the background level. In B, the measurement protocol was similar. After measurement of the dark decay kinetics of isoprene release, the plant was removed from the chamber, and a stable isoprene flow was established through a calibrated capillary. After reaching a stable value, the supply of isoprene was interrupted and the artificial “isoprene release” was recorded again. This line was superimposed on the post-illumination emission kinetics. The baselines for DMADP pool sizes were determined as shown in the figure. In (a), the DMADP pool size was estimated as the integral of the first peak and the MEcDP pool size as the integral of the second peak. In (b), the DMADP pool size was

estimated as the integral of the first peak of the plant emissions minus the integral of artificial isoprene release, and the MEcDP pool size as the integral of the second peak with plant emissions.

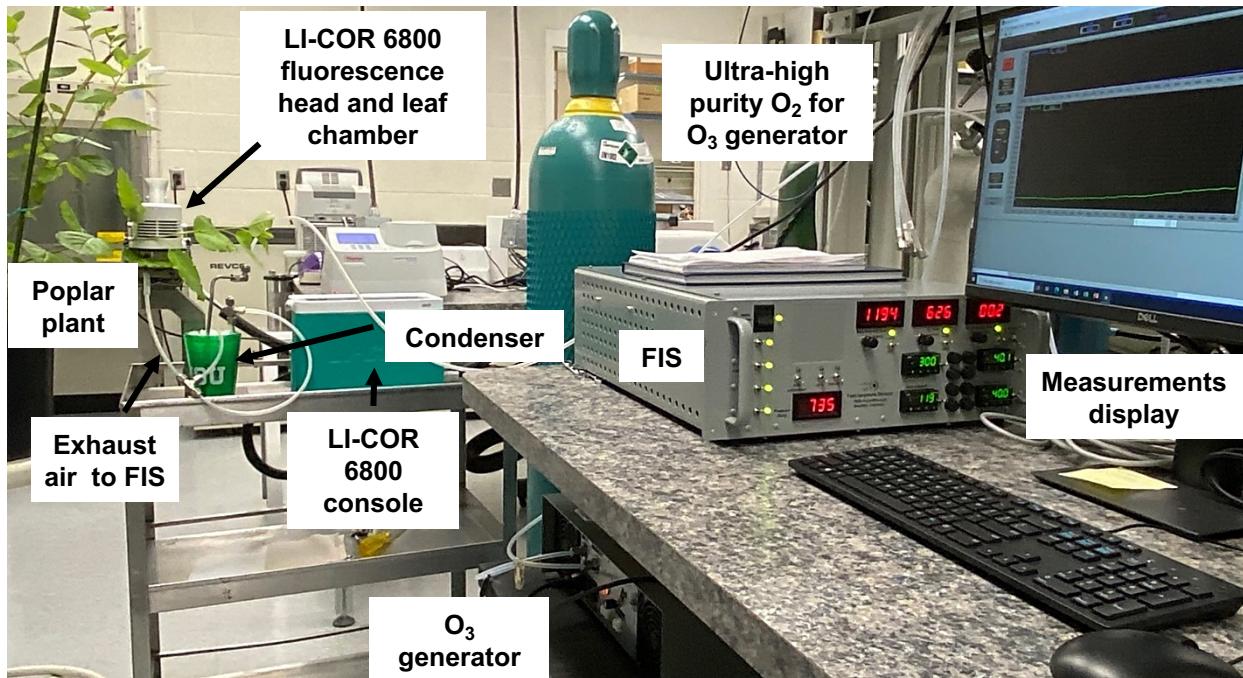

Figure 1

Figure 2

Figure 3

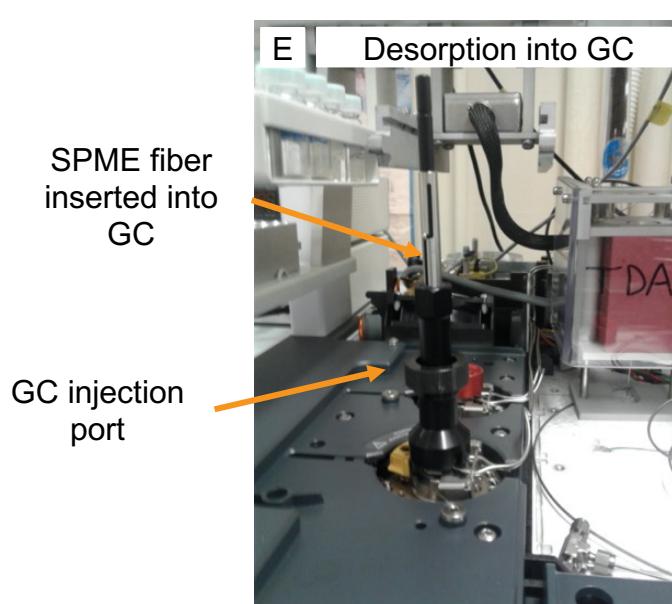
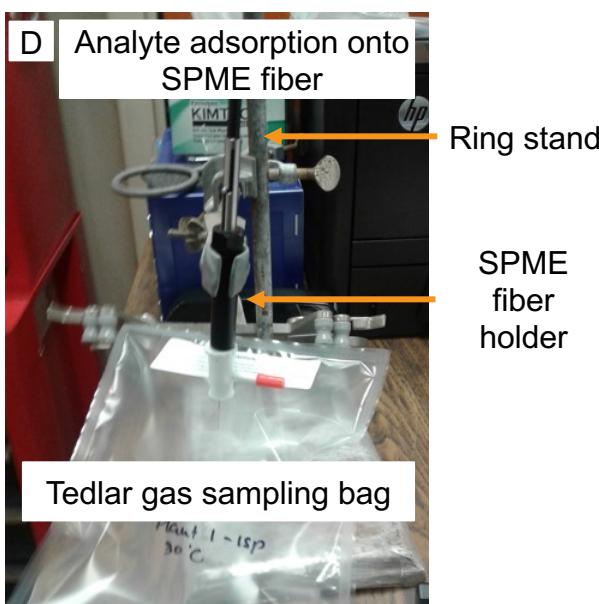
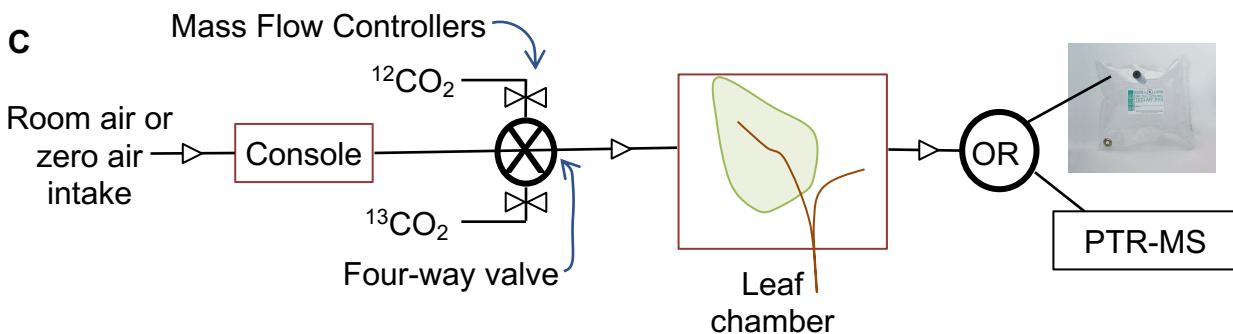
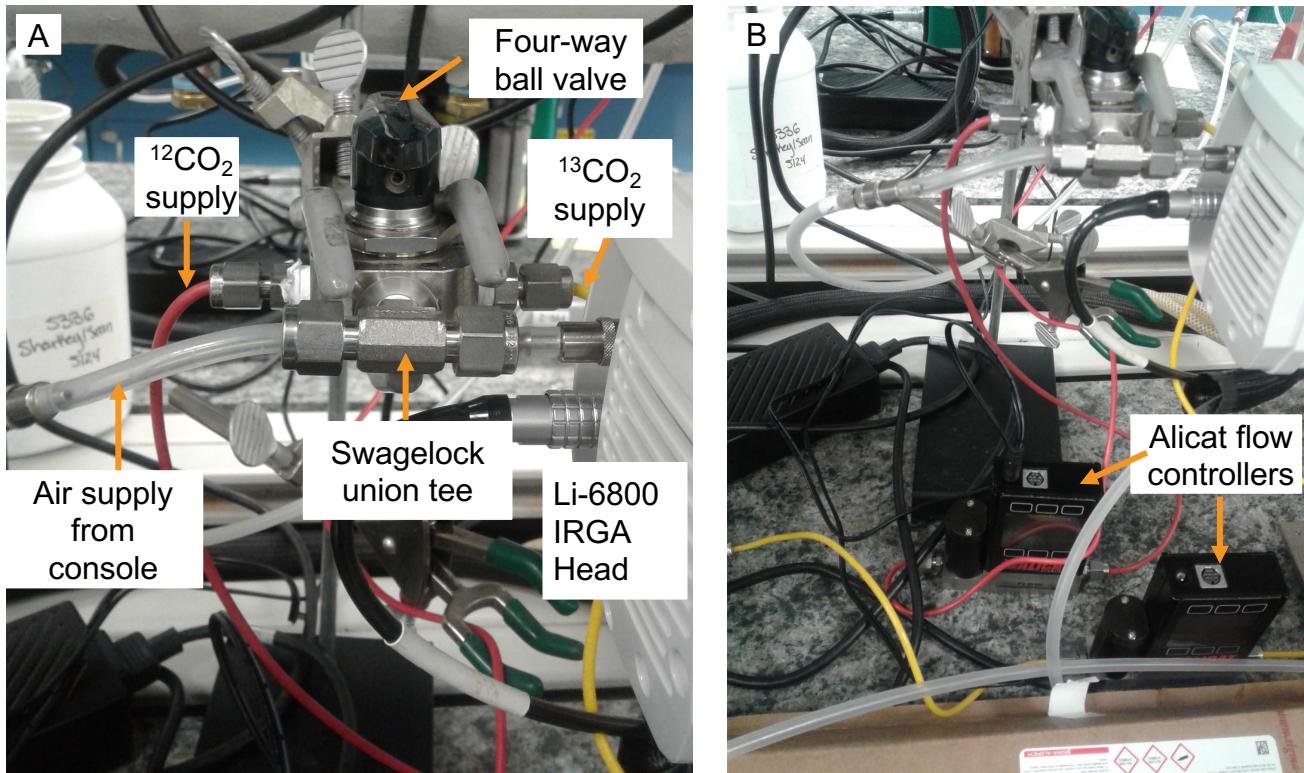
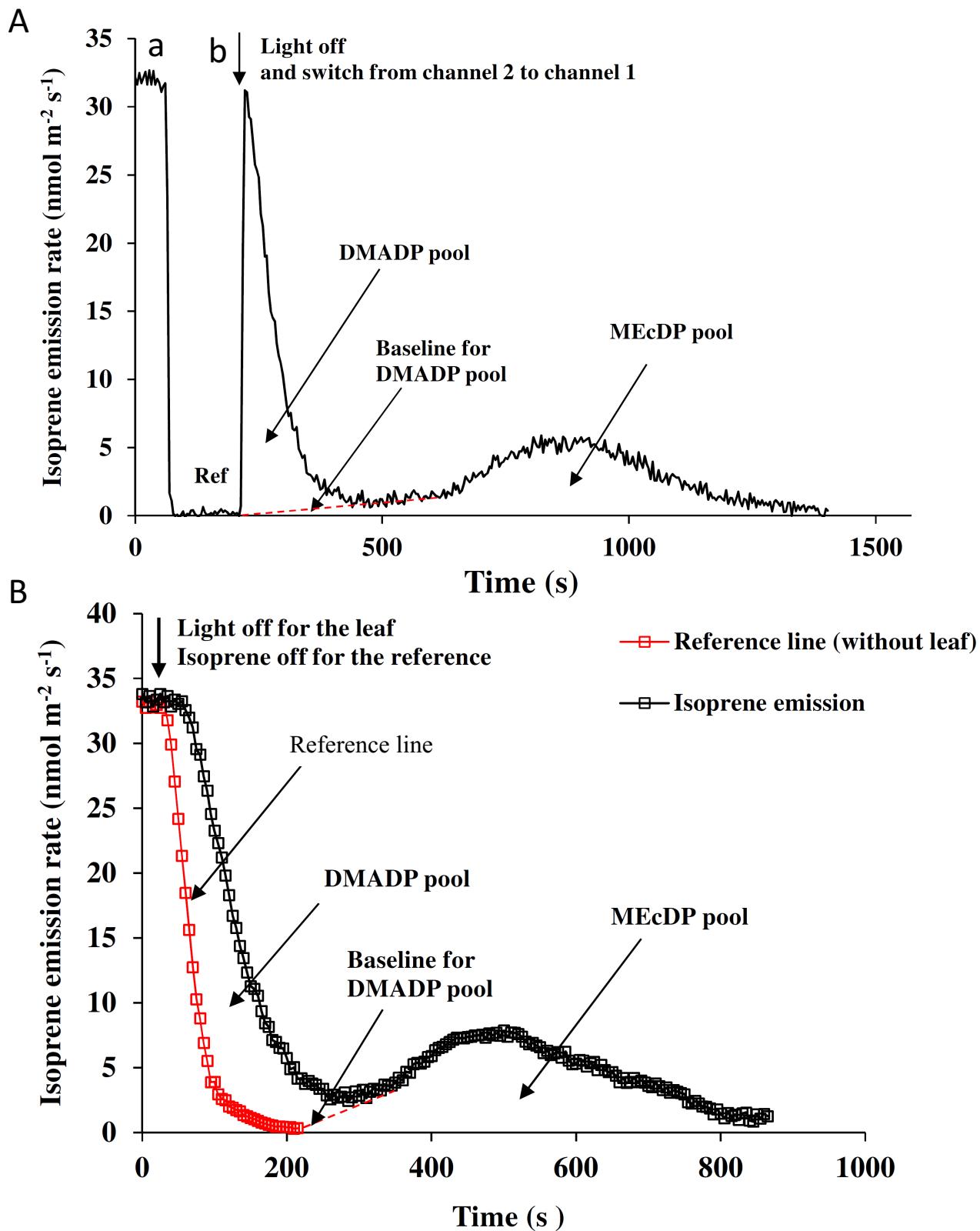






Figure 4

Figure 5

