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Transfer systems are combinatorial objects which classify N∞ operads up to 
homotopy. By results of A. Blumberg and M. Hill [2], every transfer system 
associated to a linear isometries operad is also saturated (closed under a particular 
two-out-of-three property). We investigate saturated and linear isometric transfer 
systems with equivariance group Cpmqn , the cyclic group of order pmqn for p, q
distinct primes and m, n ≥ 0. We give a complete enumeration of saturated transfer 
systems for Cpmqn . We also prove J. Rubin’s saturation conjecture for Cpqn ; this 
says that every saturated transfer system is realized by a linear isometries operad 
for p, q sufficiently large (greater than 3 in this case).

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Fix a finite group G. Highly structured commutative G-equivariant ring spectra can support multiplicative 
norm maps associated with a class of finite H-sets, H ranging through subgroups of G. The G-N∞ operads of 
A. Blumberg and M. Hill [2] parametrize ring structures with such an admissible family of norms. Following 
the work of [2,4,7,10], J. Rubin [11] and S. Balchin, D. Barnes, and C. Roitzheim [1] independently prove 
that the homotopy category of G-N∞ operads is equivalent to the combinatorially-defined category of G-
transfer systems (see Theorem 2.6). The structure of the lattice of transfer systems on an Abelian group 
was recently explored in [5].

The transfer systems induced by certain natural families of G-N∞ operads have additional special proper-
ties. In particular, any transfer system realized by an equivariant linear isometries operad (see Definition 2.3) 
is saturated (see Definition 2.5). It is not the case, though, that every saturated transfer system arises in 
this fashion, as shown in [11]. This raises two fundamental questions which we address in this paper:
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(1) For a given group G, how many saturated G-transfer systems exist?
(2) For a given group G, which saturated G-transfer systems can be realized by a linear isometries operad?

We say that a (necessarily saturated) transfer system realized by a linear isometries operad is linear isomet-
ric; thus the second question may be rephrased as asking “Which saturated G-transfer systems are linear 
isometric?”

Fix p, q distinct primes and let Cpmqn denote the cyclic group of order pmqn, for m, n ≥ 0. Let s(m, n)
denote the number of saturated Cpmqn-transfer systems.1 We provide the following answers to the above 
questions for G = Cpmqn :

Theorem 1.1 (see Theorem 4.9 and Theorem 4.13). For all m, n ≥ 0,

s(m,n) =
m+2∑
j=2

(−1)m−j

{
m + 1
j − 1

}
j!
2 jn,

where 
{
r
s

}
denotes the Stirling number of the second kind enumerating s-block partitions of a set of cardi-

nality r. Furthermore, the exponential generating function for s(m, n) takes the form

∑
m,n≥0

s(m,n)
m!n! xmyn = e2x+2y

(ex + ey − ex+y)3 .

Theorem 1.2 (see Theorem 5.5). Let n ≥ 0. For G = Cpqn , and p, q > 3, all saturated transfer systems are 
linear isometric.

The latter theorem verifies an instance of Rubin’s saturation conjecture, which loosely says that every 
saturated transfer system for a cyclic group of order n is linear isometric as long as the prime divisors of n
are sufficiently large; see Conjecture 2.8 for a precise statement.

Remark 1.3. E. Franchere, the third and fourth authors of this paper, W. Qin, and R. Waugh expose a 
surprising connection between transfer systems and weak factorization systems (in the sense of abstract 
homotopy theory) in [5]. Under this correspondence, it turns out that saturated transfer systems are in 
bijection with model structures on the poset category Sub(G) of subgroups of G for which all morphisms 
are fibrations. As such, Theorem 4.9 and Theorem 4.13 give a complete enumeration of such model structures 
as well. The details of the relation between transfer systems and model structures are explained in [3].

Organization

In Section 2, we recall the definitions of and fundamental theorems regarding N∞ operads and (saturated) 
transfer systems. In Section 3, we begin our study of saturated transfer systems on Cpmqn and prove some 
structural results about these objects. In particular, we reduce their study to a combinatorial game on the 
m ×n grid. We use this description in Section 4 to complete our enumeration of saturated transfer systems 
on Cpmqn . This takes three forms: a recurrence, a closed formula, and an exponential generating function. 
Finally, in Section 5 we prove the saturation conjecture for Cpqn .

1 After the definition is presented, it will be clear that this number is independent of p and q.
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2. N∞ operads and transfer systems

2.1. N∞ operads

In order to frame our work on transfer systems, we need to recall Blumberg–Hill’s notion of an N∞
operad [2], paying special attention to the example of linear isometry operads. We assume that the reader 
is familiar with the basic theory of (symmetric) operads. For n ≥ 0, we denote the symmetric group on n
letters by Sn.

Definition 2.1. A G-N∞ operad is a symmetric operad O in G-spaces satisfying the following three properties:

☞ for all n ≥ 0, the G ×Sn-space O(n) is Sn-free,
☞ for every Γ ≤ G ×Sn, the Γ-fixed point space O(n)Γ is empty or contractible, and
☞ for all n ≥ 0, O(n)G is nonempty.

A map of G-N∞ operads ϕ : O1 → O2 is a morphism of operads in G-spaces. We denote the associated 
category of G-N∞ operads by N∞-OpG.

For a map ϕ : O1 → O2 of G-N∞ operads, the map at level n is in particular G ×Sn-equivariant. We say 
that ϕ is a weak equivalence if ϕ : O1(n)Γ → O2(n)Γ is a weak homotopy equivalence of topological spaces 
for all n ≥ 0 and Γ ≤ G ×Sn. The associated homotopy category (formed by inverting weak equivalences) 
is denoted Ho(N∞-OpG).

Note that N∞ operads are, in particular, nonequivariant E∞ operads, and thus parametrize operations 
that are associative and commutative up to higher homotopies. Additionally, N∞ operads admit norms for 
particular finite H-sets, H ≤ G in the following sense. Given an H-set T , let Γ(T ) ≤ G ×S|T | denote the 
graph of a permutation representation of T .

Definition 2.2. A G-N∞ operad O admits norms for a finite H-set T when O(|T |)Γ(T ) is nonempty.

Particular examples of N∞ operads include linear isometries operads defined on G-universes [9]. We recall 
the definition.

Definition 2.3. A G-universe U is a countably infinite-dimensional real G-inner product space such that it 
contains each finite-dimensional subrepresentation infinitely often and contains the trivial representation. 
The linear isometries operad L(U) is given at level n by the space L(Un, U) of all (not necessarily equiv-
ariant) linear isometries, with G acting by conjugation, and Sn acting by permuting inputs. The operadic 
composition is given by composition of isometries.
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2.2. Transfer systems

A G-transfer system is a combinatorial object defined as a particular sub-poset of Sub(G), the subgroup 
lattice of G. For H ≤ G and g ∈ G, let gH = gHg−1 denote the g-conjugate of H.

Definition 2.4. A G-transfer system is a relation → on Sub(G) that refines the inclusion relation2 and 
satisfies the following properties:

☞ (reflexivity) H → H for all H ≤ G,
☞ (transitivity) K → H and L → K implies L → H,
☞ (closed under conjugation) K → H implies that gK → gH for all g ∈ G,
☞ (closed under restriction) K → H and M ≤ H implies (K ∩M) → M .

We denote the collection of transfer systems by Tr(G) and view it as a poset under the refinement relation.

In other words, a transfer system is a sub-poset of Sub(G) where the relation is closed under conjugation 
and restriction. Note that conjugation is trivial when G is Abelian; in this case transfer systems only depend 
on the lattice structure of Sub(G). Saturated transfer systems have an additional two-out-of-three property:

Definition 2.5. A G-transfer system → is saturated if it additionally satisfies the following property:

☞ (two-out-of-three) if L ≤ K ≤ H ≤ G and two of the three relations L → K, L → H, K → H hold, 
then so does the third.

We denote the collection of saturated transfer systems by STr(G).

By transitivity and closure under restriction, the two-out-of-three property may be rephrased as follows:

if L ≤ K ≤ H and L → H, then K → H.

The link between N∞ operads and transfer systems is provided by the following construction. Given a 
G-N∞ operad O, define the relation →O by the rule

K →O H if and only if K ≤ H and O([H : K])Γ(H/K) �= ∅

where Γ(H/K) is the graph of some permutation representation H → S[H:K] of H/K.

Theorem 2.6. The assignment

N∞-OpG −→ Tr(G)

O �−→ (→O)

induces an equivalence

Ho(N∞-OpG) 	 Tr(G)

(considering the poset Tr(G) as a category). Moreover, if O is a linear isometries operad, then →O is 
saturated.

2 This means that K → H implies K ≤ H.
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Remark 2.7. In [2], Blumberg and Hill defined G-indexing systems, which are collections of finite H-sets 
for varying subgroups H of G satisfying certain properties. These collections form a poset I(G) under 
inclusion. They proved that every N∞ operad O gives rise to an indexing system, and that this assignment 
gives a functor that descends to the homotopy category, with the resulting functor being full and faithful. 
Blumberg and Hill further conjectured that the functor is surjective, which was established independently 
by P. Bonventre and L. Pereira [4], J. Gutiérrez and D. White [7], and Rubin [10]. Both Rubin [11] and 
Balchin, Barnes, and Roitzheim [1] proved that the poset I(G) of indexing systems is isomorphic to the poset 
Tr(G) of transfer systems. The result about linear isometries operads is the translation of the corresponding 
statement for indexing systems (cf. [2, p. 678]) into the language of transfer systems (cf. [11, Theorem 3.7]).

Theorem 2.6 gives the precise link between N∞ operads and transfer systems, and explains the inclusion

{linear isometric G-transfer systems} ⊆ STr(G).

As Rubin points out in [11, §5.1], it was initially expected that the reverse inclusion would hold as well. As 
examples in op. cit. show, this is not generally true. Nonetheless, Rubin conjectures that when G is cyclic 
and |G| has large prime divisors, every saturated transfer system is linear isometric:

Conjecture 2.8 (Rubin). Fix a sequence of positive integers r1, . . . , rk. Then for distinct sufficiently large 
primes p1, . . . , pk, every saturated transfer system on Cp

r1
1 ···prk

k
can be realized by a linear isometries operad.

Rubin verified the conjecture for Cpn for all n ≥ 1 and for Cpq. In Section 5, we verify the conjecture for 
Cpqn for all n ≥ 1.

2.3. Generating (saturated) transfer systems

Recall that for a poset P , we say that x < y is a cover relation if there is no z ∈ P such that x < z < y. 
The saturation property implies that saturated transfer systems can be described in terms of the cover 
relations it contains.

Definition 2.9. Let R be a binary relation on Sub(G) that refines inclusion. The transfer system generated
by R, denoted by 〈R〉, is the minimal transfer system that contains R. An explicit description can be found 
in [11, Construction A.1].

Proposition 2.10 ([11, Proposition 5.8]). Let → be a saturated G-transfer system. Then → is generated by 
the relation

{(K,H) | K → H and (K,H) is a cover relation in Sub(G)}.

As a result, a saturated G-transfer system is uniquely determined by the cover relations in Sub(G) it 
contains.

Example 2.11. The saturated Cpq-transfer system

Cp Cpq

e Cq

is generated by its cover relations, i.e., the edges of the square.
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Note that a general G-transfer system is not necessarily generated by a set of cover relations, as the 
following example (“the chickenfoot”) illustrates for G = Cpq.

Cp Cpq

e Cq

3. Saturated transfer systems on Cpmqn

In this section we concentrate on studying transfer systems on the group Cpmqn . In what follows, for 
k ≥ 0, we denote by [k] the poset {0 < 1 < · · · < k}.

The subgroup lattice Sub(Cpmqn) is isomorphic to the grid [m] × [n], with the subgroup Cpiqj corre-
sponding to (i, j). For ease of notation, we will use this identification when referring to transfer systems on 
Cpmqn .

•
(0, 0)

•(0, 1)

•
(1, 0)

•(1, 1)

•
(m, 0)

• (m,n)•(0, n)

• (m, 1)

•(1, n)

...

. . .

...

. . .

. .
.

The following is meant to clarify how we will define and refer to rows and columns of the grid.

Notation 3.1. In a m × n grid, row j will refer to the edges between (i, j − 1) and (i, j) for i = 0, . . . , m. As 
such, there are n rows in the grid, numbered from 1 to n (there is no row 0). Row j is shown below.

•

•

•

•

•

•

•

•

(0, j − 1) (1, j − 1)

(0, j) (1, j)

. . .

(m − 1, j − 1) (m, j − 1)

(m − 1, j) (m, j)

Similarly, column i will refer to the edges between (i −1, j) and (i, j) for j = 0, . . . , n. There are m columns, 
numbered from 1 to m.

3.1. Characterizing saturated transfer systems for Cpmqn

We now characterize the sets of cover relations within saturated transfer systems for Cpmqn . As above, we 
denote the subgroup Cpiqj by the pair (i, j). The cover relations in this case are of the form (i, j) → (i +1, j)
and (i, j) → (i, j + 1), that is, the edges of the grid.

Theorem 3.2. Let S be a set of cover relations within the lattice [m] × [n] ∼= Sub(Cpmqn). Then S is the set 
of all cover relations within a saturated transfer system if and only if the following conditions are satisfied:
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(1) if (i, j) → (i + 1, j) is in S, then (i, k) → (i + 1, k) for all k < j;
(2) if (i, j) → (i, j + 1) is in S, then (k, j) → (k, j + 1) for all k < i;
(3) if three out of the four edges in the square

•
(i, j)

•(i, j + 1)

•
(i + 1, j)

•(i + 1, j + 1)

are in S, then so is the fourth.

Moreover, if S satisfies the above conditions and F = 〈S〉, then F is saturated and S is precisely the set of 
cover relations in F .

Proof. We first prove the forward direction. Let F = → be a saturated transfer system and let S be its 
set of cover relations. Conditions (1) and (2) follow from the restriction axiom on transfer systems. For 
condition (3), suppose that S contains three edges of the square. Then S either contains (i, j) → (i + 1, j)
and (i +1, j) → (i +1, j+1), or (i, j) → (i, j+1) and (i, j+1) → (i +1, j+1). In either case, by transitivity, 
F must contain (i, j) → (i + 1, j + 1). Thus, by restriction and saturation, F , and hence S, must contain 
all the edges of the square.

To prove the backwards direction, let S be a set of cover relations satisfying the conditions, and consider 
the transfer system F = 〈S〉 it generates. We will prove that F is saturated, and that S is precisely the 
set of cover relations within F .

Recall that F is constructed in general by first closing S under restriction, and then closing under 
transitivity. Conditions (1) and (2) imply that ignoring identities, S itself is already closed under restriction. 
Indeed, suppose (i, j) → (i + 1, j) is in S. Then restriction with respect to (a, b) for a ≤ i + 1 and b ≤ j

gives (i, b) → (i + 1, b) if a = i + 1, and gives (a, b) → (a, b) otherwise. A similar consideration follows for 
vertical edges. Thus F is constructed by closing S under transitivity, and hence, the set of cover relations 
in F is precisely S.

To prove F is saturated, it suffices to prove that if the edge (i, j) → (i + u, j + v) is in F , then all the 
horizontal and vertical edges of the corresponding u × v grid are in S. We proceed by induction on (u, v), 
with the base case (0, 0) being trivially satisfied. Suppose the statement is true for (u, v− 1) and (u − 1, v), 
unless v = 0 or u = 0, in which case we only assume the one that makes sense. If (i, j) → (i + u, j + v) is in 
F , then there is a path of cover relations in S that starts at (i, j) and ends at (i +u, j+v). Assume without 
loss of generality that the last step of the path is the horizontal edge (i + u − 1, j + v) → (i + u, j + v).

•
(i, j)

• • • •

• • • • •

•• • • •(i + u, j + v)

Then there is a path of cover relations from (i, j) to (i +u −1, j+v), which implies (i, j) → (i +u −1, j+v) is 
in F , and by the inductive hypothesis we have that all the edges of the (u −1) ×v grid are in S. Furthermore, 
by condition (1), all edges (i + u − 1, k) → (i + u, k) for k ≤ j + v are in S. Now, the squares in the last 
column of the grid have three of their edges in S, so by condition (3) the fourth edge must be in S as well, 
thus showing that all the edges of the u × v grid are in S. �
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Definition 3.3. Let S be a subset of cover relations within the lattice [m] × [n]. If S satisfies the conditions 
of Theorem 3.2, we say that S is a saturated cover. We denote the set of saturated covers for [m] × [n] by 
SCov(m, n).

Corollary 3.4. There is a bijection between saturated transfer systems on Cpmqn and SCov(m, n) given by 
S �→ 〈S〉.

Proof. This follows from Proposition 2.10 and Theorem 3.2. �
Remark 3.5. A set S of cover relations is a saturated cover if and only if the restriction of S to each of the 
1 × 1 squares in the grid is a saturated transfer system, i.e., it is one of the following seven options.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Note that by (1) and (2) of Theorem 3.2 it is sufficient to record the highest horizontal edge in each 
column and the rightmost vertical edge in each row. Equivalently, we can record the number of horizontal 
edges in each column and the number of vertical edges in each row. This along with (3) of Theorem 3.2
allows us to demonstrate a bijection which leads us to encode Cpmqn-saturated transfer systems much more 
compactly in terms of compatible codes as follows.

Definition 3.6. Let S be a saturated cover on [m] × [n]. For 1 ≤ i ≤ m, 1 ≤ j ≤ n,

ai = |{k : (i− 1, k) → (i, k) ∈ S}|

bj = |{k : (k, j − 1) → (k, j) ∈ S}|

In other words, ai is the number of horizontal edges in column i, which can range from 0 to n + 1, and bj
is the number of vertical edges in row j, which can range from 0 to m + 1. We call a = (a1, . . . , am) the 
horizontal code of S, and b = (b1, . . . , bn) the vertical code of S.

Example 3.7. Consider the following saturated cover S on [3] × [2].

• • • •

• • • •

• • • •

The horizontal code of S is (3, 1, 1) and the vertical code of S is (2, 3).

Definition 3.8. Let m, n ≥ 0. A pair of compatible codes on [m] × [n] is a pair (a1, . . . , am), (b1, . . . , bn) of 
tuples of integers such that 0 ≤ ai ≤ n + 1, 0 ≤ bj ≤ m + 1, and

bai
≤ i and abj ≤ j,

whenever these are defined.
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Example 3.9. Consider the same saturated cover S on [3] × [2] as in Example 3.7. In this case, the pair of 
codes (3, 1, 1), (2, 3) are compatible since ab1 = a2 = 1 ≤ 1 and ab2 = a3 = 1 ≤ 2. At the same time, ba1 = b3
but b3 is not defined. On the other hand, ba2 = b1 = 2 ≤ 2 and ba3 = b1 = 2 ≤ 3. The essential idea is 
to express Condition (3) of Theorem 3.2 for saturated transfer systems in terms of codes, as the following 
Proposition shows.

Proposition 3.10. There is a bijection between the set of saturated covers and pairs of compatible codes on 
[m] × [n].

Proof. Let (a1, . . . , am), (b1, . . . , bn) be the horizontal and vertical codes assigned to a saturated cover S, 
fix i = 1, . . .m, and let j = ai. If j = 0 or n + 1, bj is undefined. Otherwise, consider the following square 
in the grid.

•
(i − 1, j − 1)

•(i − 1, j)

•
(i, j − 1)

•(i, j)

The fact that ai = j implies that (i −1, j−1) → (i, j−1) is in S, while (i −1, j) → (i, j) is not, as indicated in 
the picture. If bj > i, then both vertical edges of the square must be in S, violating the 3-out-of-4 condition, 
thus bj ≤ i. The argument for the other inequality is symmetric, thus proving that horizontal and vertical 
codes are compatible.

Conversely, given compatible codes (a1, . . . , am), (b1, . . . , bm), consider the cover relation

S = {(i− 1, j) → (i, j) | 1 ≤ i ≤ m and j < ai} ∪ {(i, j − 1) → (i, j) | 1 ≤ j ≤ n and i < bj}.

By construction S satisfies conditions (1) and (2), and just as above, the inequality constraints imply 
condition (3). These two constructions are inverses of each other, thus establishing the bijection. �
4. Enumeration of saturated transfer systems on Cpmqn

The main result of this section is a closed formula for the number of saturated transfer systems on Cpmqn . 
Throughout we denote the number of saturated transfer systems for Cpmqn as s(m, n). We use the concept 
of saturated covers of Definition 3.3 and we denote the set of saturated covers for Cpmqn as SCov(m, n) so 
that s(m, n) = | SCov(m, n)|.

4.1. Recursive formula

We first prove a recursive formula for the number of saturated transfer systems. This recursive formula 
allows us to prove a closed formula for the number of saturated transfer systems that depends on m and n
in Section 4.2.

Theorem 4.1. Let m, n ≥ 0. Then

s(m,n + 1) = s(m,n) +
m∑

k=0

(
m + 1

k

)
s(k, n).

In essence, we build saturated covers on [m] × [n + 1] out of saturated covers on [k] × [n], where k ranges 
from 0 to m. In order to do so, we partition the set of saturated covers on [m] × [n + 1] using the following 
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construction. Let P[m] denote the power set of [m] = {0, 1, . . . , m}. For the remainder of the section, we fix 
m, n ≥ 0.

Construction 4.2. We construct a function c : SCov(m, n + 1) → P[m] as follows. Let S be a saturated 
cover, and suppose (k, n) → (k, n + 1) is the rightmost vertical edge on the (n + 1)-th row of S. That is, 
(k, n) → (k, n + 1) is in S, but (k + 1, n) → (k + 1, n + 1) is not. If S has no vertical edges on the (n + 1)-th 
row, we set k = −1. Then we define

c(S) = {0, 1, . . . , k} ∪ {i | k + 1 < i ≤ m and (i− 1, n + 1) → (i, n + 1) /∈ S}.

We will prove Theorem 4.1 by enumerating the fibers of c. We first give an example to explain the 
information encoded by c.

Remark 4.3. Let S be a saturated cover on [4] × [1] with c(S) = {0, 1, 4}. The figure below shows S, with 
edges that S must contain in solid black, and the edges S cannot contain in dashed red. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.) The vertices corresponding 
to the elements in c(s) are marked with a circle.

•

⊙•
•

⊙•
•

•

•

•

•

•⊙

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

Note that the minimal element in the complement of c(S), in this case 2, corresponds to k + 1 in the 
construction above, and as such, it is the leftmost vertex without a vertical edge. This explains the dashed 
red edges (i, 0) → (i, 1) for i = 2, 3, 4. For i > k + 1, (i, n + 1) is the target of a horizontal edge if and only 
if i is not in c(S), which explains the solid black edge (2, 1) → (3, 1). By the saturated condition, this last 
edge implies that S must contain (2, 0) → (3, 0). Moreover, note that (1, 1) → (2, 1) cannot be in S; indeed, 
if it is, then (1, 0) → (2, 0) must be in S as well, violating 3-out-of-4.

The rest of the horizontal edges may or may not be there, with the caveat that the edge (0, 1) → (1, 1)
is in S if and only if (0, 0) → (1, 0) is there too. Thus, the remaining bottom horizontal edges determine S.

Example 4.4. We will now illustrate a certain collapsing operation on saturated transfer systems to obtain 
saturated transfer systems for groups of smaller order. This will be key to the proof of Proposition 4.5. Let 
S be the saturated cover generating the following saturated transfer system on [5] × [2].

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

This saturated transfer cover S has c(S) = {0, 1} ∪ {3, 4} where {0, 1} results from rightmost vertical 
(1, 1) → (1, 2) and {3, 4} results since (2, 2) → (3, 2), (3, 2) → (4, 2) /∈ S. To obtain a smaller saturated 
transfer system, we collapse the top row to obtain the following.

•

•

•

•

•

•

•

•

•

•

•

•
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Then from the remaining column, we remove all columns which are indexed by i such that i > k+ 1 and 
in [m] �A = { 2, 5} to give the below saturated transfer system.

• •

• •

•

•

•

•

Proposition 4.5. Let A ⊆ [m] and c : SCov(m, n + 1) → P[m] as in Construction 4.2. Then

|c−1(A)| =
{
s(|A|, n) if A � [m],
s(m,n) if A = [m].

Proof. Fix A � [m]. For notational convenience, let � = |A|, and let k+1 be the minimal element in [m] �A. 
We construct a bijection between c−1(A) and saturated covers on the [�] × [n] grid.

Let T be a saturated cover on [�] × [n]. We construct a saturated cover T ∗ on [m] × [n + 1] as follows:

☞ For i > k + 1 in [m] �A and all j, include the horizontal edges (i − 1, j) → (i, j).
☞ Take T and expand it horizontally, so that the gaps coincide precisely with the columns filled in the 

previous step. When expanding, the vertical edges are repeated at both ends.
☞ For i = 0, . . . , k, include the vertical edges (i, n) → (i, n + 1).
☞ For i = 1, . . . , k, include the horizontal edge (i − 1, n + 1) → (i, n + 1) if and only if (i − 1, n) → (i, n)

is in T .

By construction, T ∗ is a saturated cover, c(T ∗) = A, and (T ∗)′ = T . For a saturated cover S ∈ c−1(A), the 
considerations in Remark 4.3 show that (S′)∗ = S, thus proving that ( )′ and ( )∗ are inverse bijections.

Conversely, to S ∈ c−1(A) we assign the set of cover relations S′ on [�] × [n] obtained by removing the top 
row and collapsing the columns indexed by all i > k + 1 such that (i − 1, n + 1) → (i, n + 1) ∈ S. As noted 
in Remark 4.3, the horizontal (i − 1, n + 1) → (i, n + 1) ∈ S, and thus, (i − 1, j) → (i, j) ∈ S for all j ∈ [n]. 
By the 3-out-of-4 condition, it follows that the left vertical boundary of the i-th column is identical to its 
right vertical boundary; thus this collapsing operation is well-defined. Note that we are collapsing precisely 
(m + 1) − |A| − 1 columns, to obtain a grid with |A| = � columns. Moreover, every 1 × 1 square in S′ was a 
square in S, and hence is saturated. This implies S′ is saturated.

In the case that A = [m], if S ∈ c−1(A), we have that S contains all the vertical edges (i, n) → (i, n + 1)
for i = 0, . . .m. Thus the horizontal edges (i − 1, n + 1) → (i, n + 1) are determined by (i − 1, n) → (i, n). 
Thus there is a bijection between c−1(A) and saturated covers on [m] × [n] obtained by removing the top 
row. �

We can now prove the recursion stated in Theorem 4.1:

s(m,n + 1) = s(m,n) +
m∑

k=0

(
m + 1

k

)
s(k, n).

Proof of Theorem 4.1. We partition the set of saturated covers on [m] × [n + 1] according to the fibers 
of the function c. Since there are 

(
m+1
k

)
subsets of [m] of cardinality k, the formula above follows from 

Proposition 4.5. �
Example 4.6. We now illustrate the above theorem using the saturated cover as in Remark 4.3. By the 
collapsing operation described above, we can see that we obtain the following saturated transfer system,
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• • • •

where the blank edges indicate the possibility for an edge. In this case, there are 8 possible saturated transfer 
systems on the above graph. In this case, we have that |c−1(A)| = s(3, 0).

4.2. Closed form

The recursion for the number of saturated transfer systems on Cpmqn from the previous section allows 
us to prove a closed form for s(m, n). We first recall the following definition.

Definition 4.7. For �, k ≥ 0, the Stirling number of the second kind
{
�
k

}
counts the number of partitions of 

a set with � elements into k non-empty subsets.

Remark 4.8. Stirling numbers of the second kind satisfy the recurrence
{
� + 1
k

}
= k

{
�
k

}
+
{

�
k − 1

}

for k > 0 with {
0
0

}
= 1 and

{
n
0

}
=

{
0
n

}
= 0

for n > 0. They are given by the closed formula

{
�
k

}
= 1

k!

k∑
i=0

(−1)k−i

(
k

i

)
i�.

Theorem 4.9. For all m, n ≥ 0, the sequence s(m, n) satisfies

s(m,n) =
m+2∑
j=2

(−1)m−j

{
m + 1
j − 1

}
j!
2 jn.

Proof. We prove this by induction. We begin by proving the base case, when n = 0. It can be seen that 
the saturated covers on [m] × [0] correspond to m-long bitstrings (because each column may have 0 or 1 
horizontal edges). Therefore, s(m, 0) = 2m. We need to prove that

s(m, 0) = 2m =
m+2∑
j=2

(−1)m−j

{
m + 1
j − 1

}
j!
2 .

From [12, (1.94d)], we know that

xm+1 =
m+1∑
k=0

{
m + 1

k

}
(x)k =

m+1∑
k=1

{
m + 1

k

}
(x)k +

{
m + 1

0

}
(x)0,

where (x)k := x(x − 1) . . . (x − (k − 1)). Recalling that 
{
m
0

}
= 0 for all m > 0 we have that

xm+1 =
m+1∑ {

m + 1
k

}
(x)k =

m+1∑ {
m + 1

k

}
(x)k.
k=0 k=1
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Dividing both sides by x and noting that (x)k/x = (x − 1)k−1, we have that,

xm =
m+1∑
k=1

{
m + 1

k

}
(x− 1)k−1.

In particular, when x = −2,

(−2)m =
m+1∑
k=1

{
m + 1

k

}
(−3)(−4) . . . (−k − 1) =

m+1∑
k=1

(−1)k+1
{
m + 1

k

}
(k + 1)!

2 ,

from which the base case follows.
For the inductive step we fix m, n ≥ 0, assume the statement for all (k, n) with k ≤ m, and prove the case 

for (m, n + 1). Using the recursive formula from Theorem 4.1 and the inductive hypothesis, and changing 
the order of summation, we have that

s(m,n + 1) =
m+2∑
j=2

⎡
⎣(−1)m−j

{
m + 1
j − 1

}
+

m∑
k=j−2

(−1)k−j

(
m + 1

k

){
k + 1
j − 1

}⎤⎦ j!
2 jn.

Thus, to prove the inductive step, we need to show that,

m+2∑
j=2

(−1)m−j

{
m + 1
j − 1

}
j!
2 jn =

m+2∑
j=2

⎡
⎣(−1)m−j

{
m + 1
j − 1

}
+

m∑
k=j−2

(−1)k−j

(
m + 1

k

){
k + 1
j − 1

}⎤
⎦ j!

2 jn−1,

where the right-hand side is obtained by computing s(m, n) using the previous formula and the left-hand 
side is the desired formula for s(m, n) to show. Thus, to prove the inductive step it suffices to prove that 
for all 2 ≤ j ≤ m + 2,

(−1)m−j

{
m + 1
j − 1

}
j!
2 jn = (−1)m−j

{
m + 1
j − 1

}
j!
2 jn−1 +

m∑
k=j−2

(−1)k−j

(
m + 1

k

){
k + 1
j − 1

}
j!
2 jn−1.

Collecting some terms together we have that,

{
m + 1
j − 1

}
j

(
(−1)m−j j!

2 jn−1
)

=
{
m + 1
j − 1

}(
(−1)m−j j!

2 jn−1
)

+
m∑

k=j−2

(−1)k−j

(
m + 1

k

){
k + 1
j − 1

}
j!
2 jn−1.

Dividing both sides by the quantity (−1)m−jjn−1j!/2, we obtain

{
m + 1
j − 1

}
· j =

{
m + 1
j − 1

}
+

m∑
k=j−2

(−1)m−k

(
m + 1

k

){
k + 1
j − 1

}
.

This follows directly by applying the combinatorial identity in Lemma 4.10 (see below), with � = m +1 and 
r = j − 1:

(�− r)
{
�
r

}
= (m + 1 − j + 1)

{
m + 1
j − 1

}

= (m− j + 2)
{
m + 1
j − 1

}
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=
m−j+2∑

t=1
(−1)t+1

(
m + 1
t + 1

){
m + 1 − t
j − 1

}
�

Lemma 4.10. Let �, r ∈ Z such that 0 ≤ r ≤ �. Then,

(�− r)
{
�
r

}
=

�−r∑
t=1

(−1)t+1
(

�

t + 1

){
�− t
r

}

Proof. We prove the above identity via a combinatorial proof. To do so, we consider marked partitions. 
Given two nonnegative integers � and r with r ≤ � a marked partition is a pair (P, q) consisting of a 
partition P of {1, . . . , �} into r nonempty subsets together with a distinguished q ∈ {1, · · · , �} such that q
is not the minimum of its subset. Note that the left hand side of the equation enumerates the number of 

marked partitions for given � and r, as there are 
{
�
r

}
ways to choose the partition P and (� −r) possibilities 

for q.
To prove the identity, we count the set of marked partitions using the inclusion-exclusion principle with 

the following subsets. For i < j ≤ �, we define the subset of the marked partitions

Aij := {(P, j) | i, j are in the same subset in P}.

The union of the Aij is the set of all marked partitions. For i < j and k < l, Aij ∩Akl is empty unless j = l, 
as the elements marked will be distinct. Thus the total number of marked partitions is

∑
1≤j≤�

∑
i1,...,it

(−1)t+1|Ai1j ∩ · · · ∩Aitj | (4.1)

where the second sum is over distinct i1, . . . , it < j.
We now show that for any j ≤ � and distinct i1, . . . , it < j,

|Ai1j ∩ · · · ∩Aitj | =
{
�− t
r

}
.

Indeed, suppose we have (P, j) ∈ Ai1j ∩ · · · ∩Aitj . Then i1, . . . , it are in the same subset as j in the marked 
partition. Thus, the number of such partitions is given by partitioning the remaining � − t − 1 numbers and 

the subset {i1, . . . , it, j} into r parts, which can be done in 
{
�− t
r

}
ways, proving the above identity.

Since the cardinality of the t-fold intersections is independent of j, we may group (4.1) according to the 
arity of the intersection. Each nonempty t-fold intersection is determined by the choice of 1 ≤ i1 < · · · <
it < j ≤ �, and there are exactly 

(
�

t+1
)

such choices. Since t-fold intersections are empty for t > � − r, (4.1)
reduces to

�−r∑
t=1

(−1)t+1
(

�

t + 1

){
�− t
r

}
.

This quantity and (� − r) 
{
�
r

}
both count marked partitions of {1, . . . , �} with r parts, we are done. �

Remark 4.11. Notably, the closed formula for s(m, n) in Theorem 4.9 is not symmetric in m and n, although 
by definition we know that s(m, n) = s(n, m).

The authors conjectured Theorem 4.9 via the following process. We first observed that for small cases of 
m and n, we could write
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s(m,n) =
m+2∑
j=2

bmjj
n,

for some integers bmj that were independent of n. To prove that is indeed the case, let Bm(x) denote the 
generating function for s(m, n) as a sequence in n. The recursion in Theorem 4.1 implies that

Bm(x) =
2m + x

∑m−1
k=0

(
m+1
k

)
Bk(x)

1 − (m + 2)x .

From this, one may prove that Bm(x) is a rational function with denominator 
∏m+2

j=2 (1 − jx), whence

Bm(x) =
m+2∑
j=2

bmj

1 − jx

for some bmj ∈ Q. It follows that

s(m,n) =
m+2∑
j=2

bmjj
n,

but we did not succeed in producing the values of bmj via this method. (The residue method for partial 
fractions would give the answer if we knew the numerator of Bm(x).) Instead, we computed the values of 
bmj in a range and guessed that

bmj = (−1)m−j

{
m + 1
j − 1

}
j!
2

via an act of OEIS-enabled perspicacity.

4.3. Exponential generating function

We now consider the two-variable exponential generating function corresponding to {s(m, n)}. The con-
tent of this section is mostly due to Igor Kriz [8].

Exponential generating functions are formal power series particularly well-suited to enumeration of la-
beled objects. We refer the interested reader to [6] for a recent textbook treatment of the subject that 
includes multivariate generating functions.

Definition 4.12. Let

f(x, y) =
∑

m,n≥0

s(m,n)
m!n! xmyn

be the exponential generating function corresponding to {s(m, n)}.

The recursive formula in Theorem 4.1 allows us to get a closed formula for f(x, y).

Theorem 4.13 ([8]). The exponential generating function for {s(m, n)} satisfies

f(x, y) = e2x+2y

x y x+y 3 .
(e + e − e )
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Proof. Using standard techniques for exponential generating functions together with Theorem 4.1 shows 
that f is a solution to the PDE

∂f

∂y
= (ex + 1)f + (ex − 1)∂f

∂x
,

subject to the initial conditions

f(x, 0) = e2x and f(0, y) = e2y.

These initial conditions follow from the fact that s(m, 0) = 2m and s(0, n) = 2n. The general solution is of 
the form

f(x, y) =
φ( e

x−1
ex−y )ex

(ex − 1)2 ,

with φ an arbitrary function. The initial conditions give the result. �
5. Saturation conjecture for Cpqn

In this section we show that the saturation conjecture is true for G = Cpqn for all n ≥ 0.
We first recall Rubin’s characterization of linear isometric transfer systems in the case of finite cyclic 

groups. Let k be a positive integer, and let G = Ck be the cyclic group of order k.

Definition 5.1. Call I ⊆ Z/kZ that contains 0 and is closed under additive inverses an index set. Given an 
index set I, define the I-modular transfer system FI , by the following condition: given d | e | k,

(Cd → Ce) ∈ FI ⇐⇒ (I mod e) + d = (I mod e).

We say I is an index set for FI .

Example 5.2. Consider the cyclic group Cpq with p = 5 and q = 7 and the set

I = {0, 5, 10, 15, 20, 25, 30} ⊆ Z/35Z.

Since 0 ∈ I and I is closed under additive inverses mod 35 it is an index set. We can see that

{0, 5, 10, 15, 20, 15, 20, 25, 30} mod 7 = {0, 5, 3, 1, 6, 4, 2},

so it is invariant under addition by 1. By definition, it follows that (Ce → C7) ∈ FI . Similarly I is also 
invariant under addition by 5 modulo 35 as the below computation shows,

{0, 5, 10, 15, 20, 15, 20, 25, 30} mod 35 = {0, 5, 3, 1, 6, 4, 2}.

As a result, (C5 → C35) ∈ FI as well. On the other hand, (I mod 5) +1 �= (I mod 5) and (I mod 35) +7 �=
(I mod 35) so altogether, the resulting transfer system is

•

•

•

•
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Proposition 5.3 ([11, Proposition 5.15]). A G-transfer system is I-modular for some I if and only if it is 
linear isometric.

The proof is done in two main steps. First, every G-universe can be expressed as the direct sum of 
infinitely many copies of the 2-dimensional representations given by rotation by 2πm/k for m ∈ I, for some 
set I that contains 0 is closed under additive inverses. Second, one translates the general characterization 
of the transfer system associated to a linear isometries operad of [2, Theorem 4.18] in terms of this specific 
decomposition.

Proposition 5.3 implies that to verify the saturation conjecture it is sufficient to build an index set I for 
each saturated transfer system. Note that the following proposition follows directly from definitions and will 
allow us to recursively construct index sets via the � = pqn, k = pqn+1 case.

Proposition 5.4. Let � | k, and suppose that J is an index set for Ck. Let I = (J mod �). Then I is an index 
set for C�, and

FI = (FJ)|C�
. �

Our task now is to recursively generate index sets for saturated transfer systems on Cpqn+1 from index 
sets for saturated transfer systems on Cpqn . We use the language of saturated covers from Definition 3.3, 
and follow the strategy of Section 4.1 to split SCov(1, n + 1) into four equivalence classes, based on the 
fibers of the map c of Construction 4.2.

The four equivalence classes have the following representative top rows. For a saturated cover S, the 
circles denote the vertices in c(S), the edges in solid black are the edges that must be in S, and the edges 
in dashed red are the edges that S doesn’t contain. The remaining edges may or may not be in S.

•

•

•

•

I
•

•�

•

•�

II
•

•�

•

•

III
•

•

•

•�

IV

As explained in Section 4.1, within class I, a saturated cover is determined by its restriction to [0] × [n], 
while for the other three it is determined by its restriction to [1] × [n].

In order for the inductive step to work in all cases, we need to prove the following stronger statement.

Theorem 5.5. Suppose p, q are primes greater than 3 and n ≥ 0, and let F be a saturated transfer system 
on Cpqn . Then there exists an index set I ⊆ Z/pqnZ such that F = FI and I contains a nonzero multiple 
of qn.

Remark 5.6. The nonzero multiple of qn in I is necessary to define our index sets and perform our induction 
for type III and IV index sets.

Proof. We first prove the statement for type I directly, and we then prove the cases for types II, III and 
IV by induction. The strategy for all cases is to take a saturated transfer system F , restrict it to a certain 
subgroup, take an index set for the restriction, and construct an index set for F based on the index set for 
the restriction. We will write (i, j) for the subgroup Cpiqj ≤ Cpqn when it is convenient.

Type I: Let F be a saturated transfer system on Cpqn of type I, and consider its restriction F |Cqn
. By 

[11, Theorem 5.18], this saturated transfer system on Cqn is induced by an index set I ⊆ Z/qnZ. Set

J := {αqn + i | 0 ≤ α < p, i ∈ I}.
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By construction we have that J mod qn = I, so Proposition 5.4 implies that the restrictions of FJ and F
to Cqn coincide. By construction again we have that J + qn = J , thus showing that (0, n) → (1, n) ∈ FJ . 
By the conditions on saturation these two facts imply that FJ = F . Moreover, taking α = 1 shows that 
qn ∈ J .

For the remainder of the proof, we proceed by induction. For the base case, when n = 0, we are considering 
the two saturated systems for Cp: the trivial and the complete one (which is of type I). The trivial one is 
induced by I = {0, 1, p − 1} as long as p > 3 and the complete one is induced by I = {0, 1, . . . , p − 1}. Note 
that the latter index set is the one we obtain from the direct proof above.

Our inductive hypothesis is that the statement of the theorem holds for some n ≥ 0. Let F be a saturated 
transfer system of type II, III or IV on Cpqn+1 , and consider its restriction to Cpqn . The inductive hypothesis 
implies that there exists and index set I ⊆ Z/pqnZ containing aqn for some 0 < a < p, and such that

FI = F |Cpqn
.

In all three cases, we will produce an index set J ⊆ Z/pqn+1Z such that J mod pqn = I, so that by 
Proposition 5.4 we get that FJ and F coincide in the restriction to Cpqn . We will then show that J does 
the right thing in the top square (depending on the type) and contains a nonzero multiple of qn+1.

Type II: Suppose F has type II and take I ⊆ Z/pqnZ as described above. Set

J := {αpqn + i | 0 ≤ α < q, i ∈ I}.

By direct inspection, J mod pqn = I, so FJ and F have the same restriction to Cpqn . Since

J + pqn = {(α + 1)pqn + i | 0 ≤ α < q, i ∈ I} = J

we have that (1, n) → (1, n + 1) ∈ FJ . By restriction, (0, n) → (0, n + 1) ∈ FJ as well. This proves that 
FJ has type II, whence FJ = F . To find a nonzero multiple of qn+1 in J , take α with residue class 
−ap−1 ∈ Z/qZ× and i = aqn. This completes the induction for type II.

Type III: Suppose F has type III and take I ⊆ Z/pqnZ and a such that aqn ∈ I as described above. 
We need to produce an index set J ⊆ Z/pqn+1Z such that J mod pqn = I, some 0 �= bqn+1 ∈ J , and — 
since F has type III — such that (1, n) → (1, n + 1) /∈ FJ and (0, n) → (0, n + 1) ∈ FJ . By the saturation 
axioms, these conditions are enough to ensure FJ = F .

Set

J ′ := {αpqn + i | 0 ≤ α < q, i ∈ I}

and

J := J ′ � {aqn, pqn+1 − aqn}.

Then J is an index set and it is clear that J mod pqn ⊆ I with only aqn and −aqn possibly in the set 
difference. For q > 2 and α = 1, the element pqn + aqn is in J and reduces to aqn mod pqn. Similarly, the 
mod pqn+1 negative of this element is in J and reduces to −aqn mod pqn.

We now check that (0, n) → (0, n + 1) ∈ FJ , which amounts to (J mod qn+1) + qn = J mod qn+1. 
We claim that J mod qn+1 = J ′ mod qn+1, which suffices for this result. To verify the claim, take α that 
reduces to ap−1 mod q. Then

aqn ≡ αpqn mod qn+1,
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so aqn ∈ (J mod qn+1) as needed.
To show that (1, n) → (1, n + 1) /∈ FJ , we must verify that

J + pqn �= J.

Note that aqn /∈ J , but (q − 1)pqn + aqn ∈ J , so aqn ∈ J + pqn.
Finally, we need to show that J contains some nonzero multiple bqn+1 of qn+1. If a �= q, then J contains

αpqn + aqn = (αp + a)qn

which is divisible by qn+1 for some 0 < α < q. If a = q (which is possible when q < p), then we actually 
must modify the definition of J , setting

J := J ′ � {aqn + pqn, pqn+1 − (aqn + pqn)}.

The above argument still goes through and we can then check that some 0 �= bqn+1 ∈ J .
Type IV: Suppose F has type IV and take I ⊆ Z/pqnZ as described above. We construct an index set 

J ⊆ Z/pqn+1Z containing a nonzero multiple of qn+1 such that J mod pqn = I, (0, n) → (0, n + 1) /∈ FJ

and (0, n + 1) → (1, n + 1) /∈ FJ . The fact that F is of type IV and the saturation axioms imply then that 
FJ = F .

Let i ∈ I�0. Then by Lemma 5.7 (stated and proved immediately after this proof), there exists 0 ≤ αi < q

such that αipq
n + i mod qn+1 lies in the interval [0, qn). By Sunzi’s theorem, there exists 0 < c < pq such 

that c is a multiple of q and c ≡ a mod p. We set

J := {0, cqn, pqn+1 − cqn} ∪
{
αipq

n + i, pqn+1 − (αipq
n + i) | i ∈ I � {0, aqn, pqn − aqn}

}
.

Since c is a nonzero multiple of q, we know cqn is a nonzero multiple of qn+1. The other condition on c
implies cqn ≡ aqn mod pqn, and we thus have that J mod pqn = I.

To prove that (0, n) → (0, n + 1) /∈ FJ we need to check that

(J mod qn+1) + qn �= (J mod qn+1).

We have that

(J mod qn+1) = {0} ∪ {αipq
n + i, qn+1 − (αipq

n + i) | i ∈ I � {0, aqn, pqn − aqn}}.

When considering this set in terms of representatives {0, 1, . . . , qn+1 − 1}, its elements are concentrated in 
the intervals [0, qn − 1] and [qn+1 − qn + 1, qn+1 − 1]. Basic arithmetic shows that if q > 2, the translation 
by qn of any element in the first interval does not land in either of the two intervals, showing our result.

A similar argument using that p, q > 3 can be used to prove that J + qn+1 �= J , thus showing that 
(0, n + 1) → (1, n + 1) /∈ FJ , as needed. This finishes the proof. �
Lemma 5.7. Let i be an integer such that 0 < i < pqn. Then there exists 0 ≤ α < q such that the residue of 
αpqn + i mod qn+1 lies in the interval [0, qn).

Proof. Let r be the residue class of i mod qn. Thus, 0 ≤ r < qn, and there exists 0 ≤ k < p such that 
i = kqn + r. By Bézout’s identity, there exist c, d ∈ Z such that cp + dq = 1. Let β = −ck ∈ Z. Then basic 
arithmetic shows that

βpqn + i ≡ r mod qn+1.
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Finally, letting α be the residue of β mod q achieves the result. �
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