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SUMMARY

The abundance of biomedical knowledge gained from biological experiments and
clinical practices is an invaluable resource for biomedicine. The emerging biomed-
ical knowledge graphs (BKGs) provide an efficient and effective way to manage
the abundant knowledge in biomedical and life science. In this study, we created
a comprehensive BKG called the integrative Biomedical Knowledge Hub (iBKH)
by harmonizing and integrating information from diverse biomedical resources.
To make iBKH easily accessible for biomedical research, we developed a web-
based, user-friendly graphical portal that allows fast and interactive knowledge
retrieval. Additionally, we also implemented an efficient and scalable graph
learning pipeline for discovering novel biomedical knowledge in iBKH. As a proof
of concept, we performed our iBKH-based method for computational in-silico
drug repurposing for Alzheimer’s disease. The iBKH is publicly available.

INTRODUCTION

Biomedicine is a discipline with enormous volume of highly specialized biomedical knowledge accumu-

lated from biological experiments and clinical practice. In the past decade, efforts have been drawn to

collect and manage the abundant biomedical knowledge. BKG (BKG) has emerged as a novel paradigm

for better management of large scale and heterogeneous biomedical knowledge and attracted significant

interests in biomedicine recently.1–6 Typically, a BKG is a multi-relational graph or network that integrates,

harmonizes, and stores biomedical knowledge collected from single or multiple expert-derived knowledge

sources.1,2,4,7 A BKG contains a set of nodes that correspond to biomedical entities (e.g., diseases, drugs,

genes, biological processes, etc.) and a set of edges that are relations linking the biomedical entities (e.g.,

drug-treats-disease, disease-associates-gene, and drug-interacts-drug relations.).1,2,4,7 In the past decade,

large amounts of efforts have been made to construct BKGs by integrating diverse expert curated knowl-

edge bases2,4,7–9 and extracting knowledge from literature using natural language processing tech-

niques.10–12 As a result, many different BKGs have been built.13–16

Despite the promising results achieved from existing BKG efforts, there are still limitations that hinder their

utility in modern biomedical research and clinical practice. First, most of the current BKGs focus on one or a

few sub-domains of biomedicine; hence they cannot characterize the human health holistically and

comprehensively.15,16 This makes it challenging for efficient exploration of cross-domain biomedical

knowledge to provide system-level understanding of diseases. Second, existing BKGs are mostly publicly

available as raw text information of the nodes and edges therein,1,15 which requires informatics training for

the end users to make full utilization of them. Thus, there remains a need for a publicly available and

easy-to-use user interface (UI) to facilitate knowledge exploration on these BKGs. Third, the reasoning

and inference capabilities available on existing BKGs are limited.With the revolution of deep learning tech-

nologies in NLP17 and reasoning in general domain knowledge graphs,18 there is a huge potential of mak-

ing high-quality reasoning/hypothesis generation with evidence support as an addition functionality of

BKG to accelerate new biomedical knowledge discovery.

To fill in the above gaps, this present study built a comprehensive BKG, termed the iBKH, through inte-

grating information from 18 high-quality and well-curated knowledge sources. We developed a
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web-based, easy-to-use, intelligent graphical portal for iBKH that facilitates fast and interactive knowledge

retrieval.

To enable high-quality knowledge discovery, we further integrated modern graph learning pipelines in

iBKH. In general, graph learning is an emerging branch of machine learning that aims at exploring knowl-

edge from graph structured data.19,20 In recent years, they have been applied in BKG to accelerate

biomedical hypothesis generation such as drug repurposing7,21–23 and disease risk gene prioritization.24,25

In iBKH, we have implemented a knowledge discovery module based on DGL-KE (Deep Graph Library –

Knowledge Embedding),26 the python package for efficient and scalable graph learning. To demonstrate

its potentials, we conducted two proof-of-concept studies: 1) in-silico hypothesis generation for Alz-

heimer’s disease (AD) drug repurposing and 2) enhancing data analysis of a patient cohort of older adults

with Apolipoprotein E (APOE) ε4 genotype, which is a significant genetic risk factor of AD.

RESULTS

Figure 1 illustrates overall pipeline of the present study, which includes the following modules including: 1)

iBKH construction through biomedical knowledge integration, 2) development of graphical portal for fast

knowledge retrieval based on iBKH, and 3) iBKH-based computational knowledge discovery through deep

graph learning. Figure 2 illustrates the schema of our BKG, i.e., iBKH. The iBKH is publicly available at:

http://ibkh.ai/.

The integrative Biomedical Knowledge Hub

By collecting, harmonizing, and integrating data from 18 publicly available biomedical knowledge sources

(see Table 1), we curated a comprehensive BKG, named the iBKH. The knowledge sources include biomed-

ical ontologies such as the BRENDA Tissue Ontology,27 the Cell Ontology28 the Disease Ontology,29 and

the Uberon30; manually curated biomedical knowledge bases for biomedical entity and relation data such

as the Bgee,31 the Comparative Toxicogenomics Database,32 the DrugBank,33 the Kyoto Encyclopedia of

Genes and Genomes (KEGG),34 the Pharmacogenetics Knowledge Base (PharmGKB),35 the Reactome,36

the Side effect resource,37 and the TISSUE38; existing BKGs curated by integrating multiple knowledge

bases such as the drug repurposing knowledge graph (DRKG, https://github.com/gnn4dr/DRKG),39 the

Hetionet,4 the Integrated Dietary Supplement Knowledge Base (integrated Dietary Supplements Knowl-

edge (iDISK)),40 our curated knowledge graph that covers a variety of dietary supplements, including

vitamins, herbs, minerals, etc.; and other biomedical sources such as Human Genome Organisation

(HUGO) Gene Nomenclature Committee (HGNC),41 Chemical Biology Information Resource from EMBL

[European Molecular Biology Laboratory] (ChEMBL),42 and Chemical Entities of Biological Interest

(ChEBI).43 More details of the sources can be found in Table 1.

After data management and necessary data cleaning, we integrated data from different sources through

biomedical entity term normalization and knowledge integration (more details can be found in the STAR

Methods section). Current version of the resulted iBKH contains a total of 2,384,501 entities of 11 types,

including 23,003 anatomy entities, 19,236 disease entities, 37,997 drug entities, 88,376 gene entities

(including human and other species), 2,065,015 molecule entities, 1,361 symptom entities, 2,988 pathway

entities, 4,251 side effect entities, 4,101 dietary supplement ingredient (DSI) entities, 137,568 dietary sup-

plement product (DSP) entities, and 605 dietary’s therapeutic class (TC) entities (see Figure 2 and Table 2).

In addition, there are 45 relation types within 18 kinds of entity pairs, including Anatomy-Gene, Drug-

Disease, Drug-Drug, Drug-Gene, Disease-Disease, Disease-Gene, Disease-Symptom, Gene-Gene, DSI-

Disease, DSI-Symptom, DSI-Drug, DSI-Anatomy, DSI-DSP, DSI-TC, Disease-Pathway, Drug-Pathway,

Gene-Pathway, and Drug-Side Effect, which means multiple types of relations can exist between a pair

of biomedical entities (see Table 3). Specifically, 2 types of potential relations can exist between an

Anatomy-Gene pair, including ‘‘Expresses’’ and ‘‘Absent’’; 6 relation types between a Drug-Disease pair,

such as ‘‘Treats’’ and ‘‘Effects’’; 2 relation types between a Drug-Drug pair including ‘‘Interaction’’ and ‘‘Re-

sembles’’; 10 relation types between a Drug-Gene pair, such as ‘‘Targets,’’ ’’Upregulates,’’ and ‘‘Downre-

gulates’’; 2 relation types between a Disease-Disease pair including ‘‘Is_A’’ and ‘‘Resembles’’; 5 relation

types between a Disease-Gene pair, such as ‘‘Associates,’’‘‘Upregulates,’’ and ‘‘Downregulates’’; the ‘‘Pre-

sents’’ relation type between a Disease-Symptom pair; and 5 relation types between a Gene-Gene pair,

such as ‘‘Covaries,’’ ‘‘Interacts,’’ and ‘‘Regulates’’; the ‘‘Has_Adverse Reaction’’ relation between a DSI-

Symptom pair; the ‘‘Is_Effective_For’’ relation type between a DSI-Disease pair; the ‘‘Interacts’’ relation

type between a DSI-Drug pair; the ‘‘Has_Adverse_Effect_On’’ relation type between a DSI-Anatomy
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pair; the ‘‘Has_Ingredient’’ relation type between a DSI-DSP pair; the ‘‘Has_Therapeutic_Class’’ relation

type between a DSI-TC pair; the ‘‘Reaction’’ and ‘‘Associates’’ relation types between a Gene-Pathway

pair; the ‘‘Associates’’ relation between a Disease-Pathway pair; the ‘‘Associates’’ relation between a

Drug-pathway pair; the ‘‘Causes’’ relation type between Drug-Side Effect pair.

We deployed our iBKH using Neo4j (https://neo4j.com), a robust graph database platform. We also

released entity and relation source files of iBKH in comma-separated values (CSV) format, available at:

https://github.com/wcm-wanglab/iBKH. Of note, the deployed version of iBKH excluded data from

KEGG due to restriction.

An easy-to-use interactive online portal for fast knowledge retrieval

Knowledge retrieval is the most common application scenario for a BKG like iBKH in biomedical research.

In contrast to information query in the traditional databases, knowledge retrieval in the iBKH needs to

match the logical and structural patterns of entities and relations. This can be done by defining graph-

based queries.

To fill the gap between the iBKH and biomedical and clinical researchers to facilitate its usage, we devel-

oped a web-based graphical portal that allows users to design graph-based queries for fast knowledge

retrieval in a flexible, interactive manner and visualize the retrieved knowledge immediately (see Figure 1).

Specifically, our portal has two functional modules for knowledge retrieval, i.e., biomedical entity query and

path query. First, the biomedical entity query allows to retrieval information of the queried entity and its

A

B C

Figure 1. An illustration of study pipeline

(A) Steps for curating iBKH. We first collected data from diverse biomedical data sources. Next, necessary data pre-

processing, such as data cleaning and data filtering were performed. After that, knowledge from diverse sources were

integrated to build an integrative knowledge graph, i.e., iBKH, which was deployed using Neo4j graph database.

(B) A web-based, easy-to-use graphical portal was developed for fast knowledge retrieval.

(C) A graph learning module was introduced to iBKH for novel knowledge discovery. Specifically, KGE was conducted to

learn compressed vector representations for entities and relations in iBKH, which were further used for link prediction. As

a proof of concept, we performed in-silicon drug repurposing for Alzheimer’s disease.

Abbreviations: AD = Alzheimer’s disease; CSS = Cascading Style Sheets; HTML5 = HyperText Markup Language Version

5; iBKH = integrative Biomedical Knowledge Hub; KGE = knowledge graph embedding.
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one-hop context in the iBKH, i.e., neighboring entities that directly link to the queried entity. Figure 3A

illustrates an example of exploring biomedical context of the APOE gene, which produces APOE protein

and is the known major risk gene for AD.44,45 By choosing DrugBank and PharmGKB in the ‘‘Source’’

section, we narrow down the query to explore entities that has relations connecting to APOE based on

knowledge from the two knowledge sources. For instance, besides AD, APOE is also associated with dis-

eases such depressive disorders, hyperlipidemia, atrial fibrillation, and hypertriglyceridemia, which have

been reported as comorbidities of AD. APOE also has relations with drugs like zinc medications (zinc,

zinc sulfate, zinc chloride, and zinc acetate) that target APOE to affect progression of AD.46,47

In addition, there is also a need for more sophisticated queries to retrieve multi-hop context information of the

queried entity, which may help discover inconspicuous but meaningful knowledge from iBKH. Figure 3B

illustrates an example of discovering drugs that connect to AD through the path disease�

½Associates DiG� � gene � ½Associats DG� � drug; where Associates DiG and Associats DG denote rela-

tions in terms of the ‘‘association’’ between a pair of disease and gene and the ‘‘association’’ between a pair

of gene anddrug, respectively. Such a query path can begenerated by iteratively defining entities and relations,

combined with constraints, in our portal (see Figure 3B). The retrieved information was illustrated in Figure 3B,

where we visualized 100 retrieved triplets (by setting Limit of Triplet as 100 in the portal). Centered around the

disease entity AD, genes associated with it were retrieved first. Then, drugs that had been associated with these

genes were retrieved, which can be considered as potential repurposable drugs for AD treatment. For instance,

cyclophosphamide, a medication used as chemotherapy and to suppress the immune system, is connected to

the AD through the shared neighbor INSR (insulin receptor) gene. This is in line with previous evidence that

cyclophosphamide may help reduce cognitive decline in AD.48

A machine learning pipeline for iBKH-based biomedical knowledge discovery

Another important application scenario for iBKH is the discovery of unknown knowledge, e.g., missing

relations among entities, based on the existing, incomplete knowledge graph. In this study, we utilized

a computational method for knowledge discovery in iBKH based on the advanced graph learning ap-

proaches.1,19 Our pipeline contains two steps (see STAR Methods section and Figure 1C). First, we utilized

the knowledge graph embedding (KGE) algorithms which calculate machine-readable embedding vectors

for entities and/or relations in iBKH while preserving the graph structure.19,20,49Here we utilized an efficient

Figure 2. Schema of iBKH

Each circle denotes an entity type, and each link denotes a meta relation between a pair of entities. Of note, a meta

relation can represent multiple types of relations between a specific pair of entities. For example, five potential relations

including ‘‘Associates,’’ ‘‘Downregulates,’’ ‘‘Upregulates,’’ ‘‘Inferred_Relation,’’ and ‘‘Text_Semantic_Relation’’ can exist

between a pair of disease and gene entities.
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Table 1. Data sources integrated for constructing iBKH

Source Description

Entity Relation

URL LicenseTypes Number Types Number

Bgee31 A database for retrieval

and

comparison of gene

expression patterns

across multiple animal

species.

Anatomy, Gene 60,072 Anatomy-Express

Present-Gene, Anatomy-

Express Absent-Gene

11,731,369 https://bgee.org/ https://creativecommons.

org/publicdomain/zero/1.

0/

BRENDA Tissue

Ontology27
A tissue-specific ontology. Tissue (Anatomy) 6,478 – – https://www.brenda-

enzymes.org/index.php

https://creativecommons.

org/licenses/by/4.0/

Cell Ontology28 A structured controlled

vocabulary for cell types

in animals.

Cells (Anatomy) 2,200 – – http://obofoundry.org/

ontology/cl.html

https://creativecommons.

org/licenses/by/4.0/

Comparative

Toxicogenomics

Database (CTD)32

A knowledge base that

relates toxicological

information for

chemicals, genes,

phenotypes, and

diseases, as well as

literature-based and

manually curated

interactions

Disease, Gene, Drug,

Pathway

73,922 Chemical-Gene,

Chemical-

Disease, Chemical-

Pathway,

Gene-Disease, Gene-

Pathway,

Disease-Pathway

38,344,568 http://ctdbase.org/ Confirmed via e-mail.

ChEMBL42 A manually curated

database of bioactive

molecules with

drug-like properties.

Molecular 1,940,733 – – https://www.ebi.ac.uk/

chembl/

https://creativecommons.

org/licenses/by-sa/3.0/

Chemical Entities

of Biological

Interest (ChEBI)43

A freely available

dictionary of molecular

entities focused

on ‘small’ chemical

compounds

Molecular 155,342 – – https://www.ebi.ac.uk/

chebi/init.do

https://creativecommons.

org/licenses/by/4.0/
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Table 1. Continued

Source Description

Entity Relation

URL LicenseTypes Number Types Number

Drug Repurposing

Knowledge

Graph (DRKG)39

A biological knowledge

graph.

Anatomy, Pathway,

Compound (Drug),

Disease, Gene,

Molecular

function, Pathway,

Pharmacologic

class, Side effect,

Symptom

97,238 Gene-Gene, Compound-

Gene, Disease-Gene, Atc-

Compound, Compound-

Compound, Compound-

Disease, Gene-Tax,

Biological process-

Gene, Disease-Symptom,

Anatomy-Disease,

Disease-Disease,

Anatomy-

Gene, Gene-Molecular

function, Compound-

Pharmacologic class,

Cellular component-Gene,

Gene-Pathway,

Compound-

Side effect

5,874,261 https://github.com/

gnn4dr/DRKG

https://www.apache.

org/licenses/LICENSE-2.0

Disease Ontology29 Standardized ontology for

human disease.

Disease 10,648 – – https://disease-

ontology.org/

https://creativecommons.

org/publicdomain/zero/1.

0/

DrugBank33 A web-enabled database

containing comprehensive

molecular information

about drugs, their

mechanisms,

their interactions, and their

targets.

Drug 15,128 Drug-Target, Drug-

Enzyme, Drug-Carrier,

Drug-Transporter

28,014 https://go.drugbank.com/ http://creativecommons.

org/licenses/by-nc/4.0/
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Table 1. Continued

Source Description

Entity Relation

URL LicenseTypes Number Types Number

Hetionet4 A biomedical knowledge

graph

for drug repurposing.

Anatomy, Biological

process,

Cellular component,

Compound (Drug),

Disease,

Gene, Molecular function,

Pathway, Pharmacologic

class, Side effect,

Symptom

47,031 Anatomy–downregulates–

Gene, Anatomy–

expresses–Gene,

Anatomy–upregulates–

Gene, Compound–binds–

Gene,

Compound–causes–Side

Effect, Compound–

downregulates–

Gene, Compound–

palliates–

Disease, Compound–

resembles–

Compound, Compound–

treats–Disease,

Compound–upregulates–

Gene, Disease-associates-

Gene, Disease–

downregulates–Gene,

Disease–localizes–

Anatomy,

Disease–presents–

Symptom,

Disease–resembles–

Disease,

Disease–upregulates–

Gene, Gene–covaries–

Gene, Gene–interacts–

Gene, Gene–participates–

Biological Process, Gene–

participates–Cellular

Component, Gene–

participates–Molecular

Function, Gene–

participates–Pathway,

Gene–regulates–Gene,

Pharmacologic

Class–includes–

Compound

2,250,197 https://github.com/

hetio/hetionet

https://creativecommons.

org/publicdomain/zero/1.

0/

(Continued on next page)
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Table 1. Continued

Source Description

Entity Relation

URL LicenseTypes Number Types Number

HUGO Gene

Nomenclature

Committee (HGNC)41

The resource for approved

human

gene nomenclature

Gene 41,439 – – https://www.genenames.

org/

No restriction

Integrated Dietary

Supplement

Knowledge

Base (iDISK)40

Our curated knowledge

graph

that covers a variety of

dietary

supplements, including

vitamins,

herbs, minerals, etc.

Dietary Supplement

Ingredient,

Dietary Supplement

Product, Disease, Drug,

Anatomy, Symptom,

Therapeutic Class

144,536 DSI-Anatomy, DSI-

Symptom,

DSI-Disease, DSI-Drug,

DSI-DSP,

DSI-TC

705,075 https://conservancy.umn.

edu/handle/11299/

204783

Our copyright.

https://creativecommons.

org/licenses/by-sa/3.0/us/

Kyoto Encyclopedia

of Genes and

Genomes (KEGG)34

A biomedical knowledge

base

for systematic analysis of

gene

functions, linking genomic

information with higher

order

functional information.

Drug, Disease, Gene,

Pathway

42,181 Drug-Gene, Disease-

Gene,

Gene-Pathway, Drug-

Disease,

Drug-Pathway, Disease-

Pathway

65,505 https://www.kegg.jp/ KEGG forbids data

redistribution. The

deployed

version of iBKH excluded

KEGG data.

Pharmacogenetics

Knowledge

Base (PharmGKB)35

A biomedical knowledge

base

containing genomic,

phenotype

and clinical information

collected

from ongoing

pharmacogenetic

studies.

Genes, Variant, Drug,

Phenotype

43,112 Disease-Gene, Drug/

Chemical -

Gene, Gene-Gene, Gene-

Variant,

Disease-Variant, Drug/

Chemical-

Variant

61,616 https://www.pharmgkb.

org/

https://creativecommons.

org/licenses/by-sa/4.0/

Reactome36 A knowledge base of

molecular

details of signal

transduction,

transport, DNA

replication,

metabolism, and other

cellular

processes.

Genes, Pathways

(H. sapiens)

13,589 Gene-Pathway 13,732 https://reactome.org/ https://creativecommons.

org/licenses/by/4.0/

(Continued on next page)
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Table 1. Continued

Source Description

Entity Relation

URL LicenseTypes Number Types Number

Side effect resource

(SIDER)37
A data resource of public

information

on drug side effects.

Drugs, Side effects 5,681 Drug-Side effect 163,206 http://sideeffects.embl.

de/

https://creativecommons.

org/licenses/by-nc-sa/4.0/

TISSUE38 A public resource that

integrates

evidence on tissue

expression from

manually curated

literature, proteomics

and transcriptomics

screens, and

automatic text mining.

Genes, Tissues 26,260 Tissue-Express-Gene 6,788,697 https://tissues.jensenlab.

org/

https://creativecommons.

org/licenses/by/4.0/

Uberon30 A cross-species anatomy

ontology.

Anatomy 14,944 – – https://www.ebi.ac.uk/ols/

ontologies/uberon

http://creativecommons.

org/licenses/by/3.0/
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python package for graph learning, Deep Graph Library – Knowledge Embedding (DGL-KE).26 We used

four advanced KGE algorithms in DGL-KE including TransE,50 TransR,51 ComplEx,52 and DistMult.53 Sec-

ond, link prediction (predicting potential relations between a pair of entities) was performed based on

the learned embedding vectors calculated by each KGE algorithm. We split iBKH into 90% training and

10% testing sets, where the training set was used to train KGEmodels, and the testing set was used for eval-

uating link prediction performance of the models based on multiple metrics (see STAR Methods section).

Table 4 shows that the four KGEmodels can achieve desirable performance in link prediction in iBKH. After

that, we retrained KGEmodels using the entire iBKH to obtain entity and relation embeddings and applied

our iBKH-based knowledge discovery pipeline for in-silico hypothesis generation as detailed below.

In-silico hypothesis generation: a case study of Alzheimer’s disease drug repurposing

As a proof of concept, we performed in-silico hypothesis generation for AD drug repurposing, i.e., predict-

ing drugs that potentially connect to the AD entity (see STAR Methods section and Figure 1.).54–57 Such

analysis has been used to identify repurposable drug candidates for COVID-19 in our previous study.57

In order to assess the effectiveness of our approach for predicting repurposable drugs for AD, we used

a ground truth consisting of FDA-approved drugs and drugs currently being tested in clinical trials for

AD treatment. This included a total of 10 FDA-approved drugs and 215 drugs in various stages of clinical

trials (30 in Phase IV, 43 in Phase III, 95 in Phase II, and 47 in Phase I). To prevent any potential data leakage

during the prediction process, all connections between the AD entity and any drug in the ground truth list

were removed from the iBKH (see STAR Methods section). Figure 4 provides an overview of the perfor-

mance of our method, which involved generating predictions based on embedding vectors produced

by four different KGE algorithms (TransE, TransR, ComplEx, and DistMult), as well as an ensemble model

that combined all four algorithms (see the STARMethods section for more details). Our approach achieved

strong prediction performance, with an AUC score over 0.83 for all methods in predicting FDA-approved

AD drugs and an AUC over 0.75 in predicting both FDA-approved drugs and drugs in Phase IV clinical trials

(n = 40). This suggests that our approach is particularly effective at ranking FDA-approved and Phase IV

clinical trial drugs for AD. Furthermore, our ensemble model achieved even better performance (e.g.,

AUC = 0.9 for FDA-approved drugs, AUC = 0.79 for FDA-approved plus Phase IV clinical trial drugs for

AD), indicating that it benefits from the use of multiple KGE algorithms.

Our model can also suggest potential drug candidates for AD, which have not been approved or involved

in clinical trials for AD treatment. As a proof of concept, we highlighted the top-10 ranked potential drugs

for AD treatment based on the ensemble model and iBKH (see Table 5).

Table 2. Statistics of biomedical entities in iBKH

Entity Type Number Included Identifiersa

Anatomy 23,003 Uberon ID, BTO ID, MeSH ID, Cell Ontology ID

Disease 19,236 Disease Ontology ID, KEGG ID, PharmGKB ID,

MeSH ID, OMIM ID

Drug 37,997 DrugBank ID, KEGG ID, PharmGKB ID, MeSH

ID

Gene 88,376 HGNC ID, NCBI ID, PharmGKB ID

Molecule 2,065,015 CHEMBL ID, CHEBI ID

Symptom 1,361 MeSH ID

Pathway 2,988 Reactome ID, KEGG ID, Gene Ontology ID

Side-effect 4,251 UMLS CUI

Dietary Supplement Ingredient 4,101 iDISK ID

Dietary Supplement Product 137,568 iDISK ID

(Dietary) Therapeutic Class 605 iDISK ID, UMLS CUI

Abbreviations: BTO = BRENDA Tissue Ontology; ChEBI = Chemical Entities of Biological Interest; HGNC = HUGO Gene

Nomenclature Committee; ID = identifier; KEGG = Kyoto encyclopedia of genes and genomes; iDISK = integrated dietary

supplement knowledge base; MeSH = Medical Subject Headings; NCBI = National Center for Biotechnology Information;

OMIM = Online Mendelian Inheritance in Man; UMLS CUI = Unified Medical Language System - Concept Unique Identifiers.
aThe identifiers used for entity term normalization.
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Table 3. Statistics of relations among entities in iBKH

Entity pair Relation type Number of relations of the specific type Total Number

Anatomy-gene relation Anatomy-Expresses-Gene 10,388,168 12,171,021

Anatomy-Absent-Gene 2,837,741

Anatomy-DSI relation DSI-Has_Adverse_Effect_On-Anatomy 3,121 4,334

Drug-disease relation Drug-Palliates-Disease 390 2,717,947

Drug-Treats-Disease 5,492

Drug-Effects-Disease 5,136

Drug-Associates -Disease 96,458

Drug-Inferred_Relation-Disease 2,589,522

Drug-Text_Semantic_Relation-Disease 50,653

Drug-Drug Drug-Interacts-Drug 2,682,157 2,684,682

Drug-Resembles -Drug 6,486

Drug-Gene Drug-Targets-Gene 16,518 1,303,747

Drug-Transporter-Gene 3,066

Drug-Enzyme-Gene 5,241

Drug-Carrier-Gene 853

Drug-Downregulates-Gene 66,994

Drug-Upregulates-Gene 72,361

Drug-Associates-Gene 19,434

Drug-Binds-Gene 11,571

Drug-Interacts-Gene 1,181,492

Drug-Text_Semantic_Relation -Gene 68,429

Drug-Pathway Drug-Associates-Pathway 3,231 3,231

Drug-Side effect Drug-Causes-side-effect 163,206 163,206

Drug-molecule Molecule-Is_A-Drug 8,757 8,757

Drug-DSI DSI-Interacts-Drug 3,057 3,057

Disease-Disease Disease-Is_A-Disease 10,529 11,072

Disease-Resembles-Disease 543

Disease-Gene Disease-Associates-Gene 47,965 27,538,774

Disease-Downregulates-Gene 7,623

Disease-Upregulates -Gene 7,731

Disease-Inferred_Relation-Gene 27,454,631

Disease-Text_Semantic_Relation -Gene 94,759

Disease-Symptom Disease-Presents-Symptom 3,357 3,357

Disease-Pathway Disease-Associates-Pathway 1,941 1,941

Disease-DSI relation DSI-Is_Effective_For-Disease 5,134 5,134

Gene-Gene Gene-Covaries-Gene 61,690 735,156

Gene-Interacts-Gene 147,164

Gene-Regulates-Gene 265,672

Gene-Associates-Gene 2,602

Gene-Text_Semantic_Relation -Gene 301,752

Gene-Pathway Gene-Reaction-Pathway 118,480 152,243

Gene-Associates-Pathway 47,742

Symptom-DSI DSI-Has_Adverse_Reaction-Symptom 2,093 2,093

DSI-DSP DSP-Has_ingredient-DSI 689,297 689,297

DSI-TC DSI-Has_therapeutic_class-TC 5,430 5,430

Abbreviations: DSI = Dietary Supplement Ingredient; DSP = Dietary Supplement Product; TC = Therapeutic Class.
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First, approach identified three anti-hypertensive drugs that ranked high as potential drug candidates for

AD treatment, including labetalol (DrugBank ID: DB00598), phenoxybenzamine (DrugBank ID: DB00925),

andmibefradil (DrugBank ID: DB01388). Labetalol belongs to the class of b-blockers and there is evidence

suggesting that b-blockers may enhance cerebrospinal fluid flow, resulting in increased brain clearance of

certain metabolites. Recent studies have also reported that the use of b-blockers is associated with a

reduced risk of AD onset61 and functional decline in AD.62 Phenoxybenzamine is an a-blocker, which has

been reported to have neuroprotective activity.63 Additionally, recent drug repurposing studies have

Figure 3. Examples of knowledge retrieval

(A) An example of entity query—retrieving neighborhood context of APOE gene in iBKH.

(B) An example of path query, retrieving drugs that connect to Alzheimer’s disease through the path disease �

½Associates DiG� � gene � ½Associats DG� � drug, where Associates DiG and Associats DG denote relation types in

terms of the association between a pair of disease and gene as well as the association between a gene and a drug.
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also suggested that phenoxybenzamine could be a promising candidate for AD treatment.64,65 Although

mibefradil was withdrawn from themarket in 1998 due to harmful interactions with other drugs, our findings

suggest that CCBs could be potential candidates for AD treatment because calcium dysregulation has

been implicated in AD66 and CCBs have demonstrated multiple beneficial effects in cell culture and animal

models of AD.67,68

Second, our analysis also identified two antipsychotic drugs as candidates for AD treatment: fluphenazine

(DrugBank ID: DB00623) and flupentixol (DrugBank ID: DB00875). Fluphenazine has been reported as a

drug candidate in a recent AD drug repurposing study based on integrated network and transcriptome

analysis.65 Flupentixol, on the other hand, is a 5-hydroxytryptamine receptor antagonist, which has been

suggested as a potential treatment for cognitive deficits in AD.75,76

We also identified other drugs as potential candidates for AD treatment, including loperamide (DrugBank

ID: DB00836), cyproheptadine (DrugBank ID: DB00434), peginterferon alfa-2b (DrugBank ID: DB00022),

apomorphine (DrugBank ID: DB00714), and enoxacin (DrugBank ID: DB00467). Loperamide, commonly

used to treat diarrhea, has been shown to target opioid receptors, which may be linked to AD pathol-

ogy,58,59 which has been suggested to be potentially linked to AD pathology.60 Cyproheptadine, a hista-

mine antagonist, has been demonstrated to reduce cognitive symptoms in AD.69 Peginterferon alfa-2b is a

recombinant interferon, which is used in the treatment of hepatitis B and C, genital warts, and some can-

cers. Peginterferon alfa-2b has been reported to bind to and activate human type 1 interferon receptors.

Such a procedure activates the JAK/STAT (Janus Kinase/Signal Transducer and Activator of Transcription)

pathway, which has been suggested as a potential target for AD.70,71 Apomorphine, a dopamine receptor

agonist for Parkinson’s disease, has been shown to protect against oxidative stress, which plays a role in AD

pathology72 and improve memory function in AD.73,74 Enoxacin, a fluoroquinolone used to treat bacterial

infections, has been suggested to potentially decrease the risk of developing AD when used appropriately

with other antibiotics, such as macrolides and fluoroquinolones.77

DISCUSSIONS

In this study, we built a comprehensive BKGcalled iBKH, through collecting, cleaning and normalizing rawdata

from diverse information sources. To date, iBKH has incorporated biomedical knowledge from 18 diverse in-

formation sources. In addition to the entity types that are popular in existing BKGs, such as genes, diseases,

drugs, pathways, etc., iBKH also involves other complementary sources such as iDISK,40 the supplement knowl-

edge base we curated recently. We have made iBKH publicly available in both tabular format as CSV files for

sophisticated users who can work with these source files, as well as Neo4j based on which we developed a

web-basedgraphical portal to allow user-friendly knowledge retrieval and exploration.Wewould continuously

enrich the content of iBKH and improve its graphical user interface (GUI) in the future.

In addition, we have also implemented a graph inference engine based on DGL-KE (Deep Graph Library -

Knowledge Embedding)26 in iBKH to facilitate novel biomedical knowledge discovery. As a proof of concept,

we demonstrated the application of iBKH for in-silico hypothesis generation for AD drug repurposing. We

observed good quantitative performance of iBKH on drugs that have already been approved and on clinical

trial for treating AD. We have also identified novel potentially repurposable drugs for AD with evidence

Table 4. Link prediction performance

Measurement

Model

TransE TransR DistMult ComplEx

Hit@1 0.74 0.81 0.39 0.42

Hit@3 0.88 0.92 0.62 0.64

Hit@10 0.95 0.98 0.80 0.82

MR 3.55 2.64 10.87 9.49

MRR 0.82 0.87 0.53 0.56

For Hit@k (k = 1, 3, or 10) and MRR, a value close to 1 indicates good link prediction performance, otherwise close to 0. For

MR, a smaller value, i.e., close to 1, indicates good link prediction performance.

Abbreviations: MR = Mean Rank; MRR = Mean Reciprocal Rank.
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supported by existing literature. It is worthy of mentioning that iBKH can be flexibly extended to drug repur-

posing for other diseases, as well as predicting other types of biomedical relations, such as prioritizing risk

genes of disease (gene-disease relation prediction), predicting candidate target protein for drugs (drug-

gene relation prediction), identifying potential drug-drug interactions (drug-drug relation prediction), etc.

Limitations of the study

Our iBKH has a few limitations. First, the procedures of constructing and curating iBKH rely on extensive

efforts of raw data file extraction and pre-processing, data annotation, as well as terminology normaliza-

tion, which is not error free. To maximally reduce the probability of error in iBKH, we leveraged the well-

curated biomedical vocabularies such as the unified medical language system (UMLS) to facilitate entity

term normalization and conducted multiple rounds of manual review based on random sampling with

replacement. In addition, we will also conduct graph learning-based knowledge graph refinement/

completion to address this issue.78

Second, although iBKH has collected and integrated data from diverse sources, the information contained

therein can still be incomplete due to the volume and speed of the new biomedical knowledge that has

been generated day by day. In this context, efforts on deriving knowledge from biomedical literature79–81

or real-world data such as the EHR (electronic health records)6,82 would be critical. Moreover, we will make

curating and adding new information into iBKH a continuous effort.

Third, like many existing BKGs, iBKHmainly focused on the general biomedical knowledge, which means it

may lack fine-grained knowledge for studying particular diseases. On this aspect, there has been research

Figure 4. Model performance of in-silicon Alzheimer’s disease drug repurposing

We used the FDA-approved and clinical trial drugs for Alzheimer’s disease as ground truth. Abbreviations: AUC = area under the receiver operating

characteristic curve; FDA = Food and Drug Administration.
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Table 5. List of the top ten drugs repurposable for Alzheimer’s disease treatment

Rank DrugBank ID Drug Name Category Description Notes

1 DB00836 Loperamide Diarrhea medication Loperamide is used to treat diarrhea. It is often

used for this purpose in inflammatory bowel

disease.

Loperamide targets opioid receptors,58,59

which has been suggested to be potentially

linked to AD pathology.60

2 DB00598 Labetalol Anti-hypertensive drug, b-blocker Labetalol is one of the medications called

b-blockers, which is used to treat

cardiovascular diseases like hypertension.

There has been evidence suggesting that

b-blockers increase brain clearance of these

metabolites by enhancing cerebrospinal fluid

(CSF) flow. Recent studies have demonstrated

that the use of b-blockers is associated with

reduced risk of AD onset61 and functional

decline in AD.62

3 DB00925 Phenoxybenzamine Anti-hypertensive drug, a-blocker Phenoxybenzamine is an a-blocker for treating

hypertension, specifically that caused by

pheochromocytoma.

Phenoxybenzamine has been reported to have

neuroprotective activity.63 Recent drug

repurposing studies have also suggested

phenoxybenzamine as repurposable drug

candidate to treat AD.64,65

4 DB01388 Mibefradil Calcium channel blocker (CCB) Mibefradil is CCB, which was used for the

treatment of hypertension and chronic angina

pectoris. Mibefradil was withdrawn from the

market in 1998 due to potentially harmful

interactions with other drugs.

Previous studies have demonstrated that

calcium dysregulation plays an important role

in AD.66 Though the usefulness of CCBs in AD

remains controversial, it has shown multiple

beneficial effects cell culture and animal

models of AD.67,68

5 DB00434 Cyproheptadine Antihistamine Cyproheptadine is used in the treatment of

allergic symptoms.

Cyproheptadine is a histamine antagonist,

which has been demonstrated to reduce

cognitive symptoms in AD.69

6 DB00022 Peginterferon alfa-2b Recombinant interferon Peginterferon alfa-2b is used in the treatment

of hepatitis B and C, genital warts, and some

cancers

Peginterferon alfa-2b binds to and activates

human type 1 interferon receptors, activating

the JAK/STAT pathway, which has been

suggested as a potential target for AD.70,71

7 DB00714 Apomorphine Dopaminergic agonist Apomorphineis a type of dopaminergic

agonist medication used for Parkinson’s

disease (PD)

Apomorphine is a dopamine receptor agonist

for Parkinson disease and also protects against

oxidative stress, which plays a role in AD.72

Emerging evidence showed that Apomorphine

has a significant impact on improving memory

function in AD.73,74

8 DB00623 Fluphenazine Antipsychotic Fluphenazine is a phenothiazine antipsychotic

medication used for treatment of psychotic

disorders.

Fluphenazine is reported as a drug candidate

in a recent AD drug repurposing study based

on integrated network and transcriptome

analysis.65

(Continued on next page)
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Table 5. Continued

Rank DrugBank ID Drug Name Category Description Notes

9 DB00875 Flupentixol Antipsychotic drug Flupentixol is a thioxanthene neuroleptic used

to treat psychotic disorders such as

schizophrenia and depression.

Flupentixol is a 5-hydroxytryptamine receptor

antagonist which has been reported as

potential treatment for cognitive deficiency in

AD.75,76

10 DB00467 Enoxacin Fluoroquinolones Enoxacin is a fluoroquinolone used for

treatment of bacterial infections.

A recent study reported that appropriate use of

antibiotics with macrolides and

fluoroquinolones may decrease the risk of

developing AD.77
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on building disease specific BKGs. For instance, Coronavirus Disease-knowledge graph (COVID-KG)83 con-

tained knowledge on COVID-19; knowledge graph for Hepatocellular Carcinoma (KGHC)9 is constructed

focusing on hepatocellular carcinoma. In the future, we will further enhance iBKH by incorporating more

detailed knowledge on specific diseases.

Last but not the least, it is important to validate the novel knowledge discovered from iBKH, which is not

supported in the current portal. As a related effort, we have built a biomedical evidence generation engine

based on literature mining,84 which can retrieve and synthesize evidence supporting particular hypotheses

from state-of-the-art scientific publications. We plan to add this new functionality to iBKH portal. On the

other hand, for drug repurposing hypothesis generation, we will validate treatment efficiency of the iden-

tified repurposable drug candidates for target disease, such as AD, using computational clinical trial

emulation approach based on real-world clinical data.85,86
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med.cornell.edu).

REAGENT or RESOURCE SOURCE IDENTIFIER
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Reactome Fabregat et al., 201836 https://reactome.org/
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TISSUE Palasca et al., 201838 https://tissues.jensenlab.org/

Uberon Mungall et al., 201230 https://www.ebi.ac.uk/ols/ontologies/uberon

Unified Medical Language System (UMLS) Bodenreider, 200487 https://www.nlm.nih.gov/research/umls/

index.html

iBKH source files This paper https://github.com/wcm-wanglab/iBKH/tree/

main/iBKH

iBKH portal This paper http://ibkh.ai/

Software and algorithms

Neo4j Neo4j, Inc. https://neo4j.com

Python Python Software Foundation https://www.python.org

Django Django Software Foundation https://www.djangoproject.com

neovis.js Neo4j Contrib https://github.com/neo4j-contrib/neovis.js
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DGL-KE (Deep Graph Library – Knowledge
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Materials availability

� The harmonized entity and relation source files for iBKH in CSV format are publicly available online at

https://github.com/wcm-wanglab/iBKH.

� The iBKH online portal is publicly available at http://ibkh.ai/.

The deployed version of iBKH excluded data from KEGG, as it forbids data redistribution.

Data and code availability

d This paper integrates publicly available biomedical knowledge bases. These accession URLs for the

knowledge bases are listed in the key resources table.

d The computer codes for iBKH construction and iBKH-based knowledge discovery are publicly available

online at https://github.com/wcm-wanglab/iBKH.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Overview

Our ultimate goal was to build a BKG via comprehensively incorporating biomedical knowledge asmuch as

possible. To date, we have collected and integrated 18 publicly available data sources, harmonized and

consolidated them into a comprehensive data compendium. Details of the used data sources were listed

in Table 1.

Raw data processing

Given the data sources, the first step was to pre-process the raw files of them and extract knowledge,

including entity information and relation information. Generally, the databases release their raw data files

in various formats, such as CSV, tab-separated values, TXT, EXCEL tablet, Hypertext Markup Language

(HTML), Resource Description Framework, and Web Ontology Language (OWL). To address this, for

each database, we parsed the raw files and extracted structured data, i.e., the descriptive files for each

type of biomedical entity and the files of each type of relation. Such procedure varies by databases or

even by files within the same database.

Term harmonization

To integrate data from diverse sources, there is a need for harmonizing the entity terms. To achieve this, we

utilized a greedy strategy. For a specific entity type, we first chose a database to initialize the entity vocab-

ulary. Next, we built a linkage pool, containing multiple identifiers of the given entity type, to map and

integrate entities from all databases to improve the entity vocabulary one by one. The process of construct-

ing the linkage pool for each entity type primarily depended on two procedures: 1) The term dictionary of

existing sources was utilized. For example, Disease Ontology29 provides Disease Ontology ID, Medical

Subject Heading (Medical Subject Headings (MeSH)) ID, UMLS87 Concept Unique Identifier (CUI) for

each disease entity. 2) The UMLS Application Program Interfaces served as the bridge for term normaliza-

tion for terms that could not bemapped with the existing term dictionary. To ensure data quality, synonyms

were obtained for each term with strict term types such as "preferred" and "abbreviation." Finally, multiple

rounds of manual quality checks were conducted.

For gene entity type, we used the HGNC gene repository41 as the initial vocabulary of gene entities, as it

defines a standard nomenclature for human the genes. The linkage pool for normalization included HGNC

IDs, HGNC symbols, and National Center for Biotechnology Information (NCBI) IDs.

For drug entity type, we initialized our vocabulary using DrugBank33 as it provides the up-to-date list of

approved drugs and investigational drugs under clinical trials. The linkage pool for drug entity normaliza-

tion included DrubBank IDs, MeSH terms, MeSH term IDs, UMLS87 Concept Unique Identifiers (CUIs), and

the drug names in UMLS.
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For molecule entity type, we used the ChEMBL,42 a manually curated database of molecules with drug

properties, for initializing the vocabulary. The linkage pool for the molecule entities normalization included

ChEMBL IDs and International Chemical Identifier (InChi).

For Side-Effect entity type, we collected the side-effect entities from the SIDER37 and described them by

using the UMLS CUIs.

For disease entity type, we used the Disease Ontology29 for initializing the vocabulary, as it is a structured

database of diseases based on etiological classification. The linkage pool we used for the disease entity

normalization included Disease Ontology IDs, MeSH terms, MeSH term IDs, UMLS CUIs, and the disease

names in UMLS.

For symptom entity type, we collected the symptom entities from the Hetionet4 and iDISK,40 and described

them by using the MeSH term and MeSH term ID. We used UMLS CUI as the linkage for symptom entities

normalization.

For Pathway entity type, we used the Reactome,36 a manually curated and peer-reviewed pathway data-

base, for initializing the vocabulary. The linkage pool for the pathway entities normalization contained

the Reactome IDs, Gene Ontology IDs, and KEGG IDs.

For anatomy entity type, we used the Uberon30 for initializing the vocabulary, as it is a cross-species

anatomical ontology based on traditional anatomical classification. The linkage pool for the anatomy

entities harmonization included Uberon IDs, MeSH terms, MeSH term IDs, UMLS CUIs, and the anatomy

names in UMLS.

For DSI, DSP, and TC entities, data were collected from our previous curated iDISK.40 We used iDISK

concept IDs and UMLS CUIs (for TCs) to describe them.

Knowledge integration

After the above normalization procedures, we obtained a CSV file for each entity type, storing all normal-

ized entity terms of the specific entity type followed by their synonyms and detailed descriptions. We were

then able to integrate knowledge extracted from different knowledge bases to build iBKH. Specifically, in a

BKG, a basic knowledge unit is a triplet, typically defined as <head entity, relation, tail entity>, which in-

dicates that there exists a relation from the head entity to the tail entity in iBKH. Of note, for each pair of

head entity and tail entity, there can be multiple types of relations. For instance, we stored ‘‘targets’’,

‘‘Transporter’’, ‘‘Enzyme’’, ‘‘Carrier’’, ‘‘downregulates’’, ‘‘upregulates’’, ‘‘associates’’, ‘‘binds’’, ‘‘interacts’’,

and ‘‘text_semantic’’ relations between drugs and genes. We also stored the data source information,

indicating from which data source(s) we acquired the specific triplet.

Integrative biomedical knowledge Hub deployment with Neo4j

We deployed our curated BKG, i.e., the iBKH, using Neo4j (https://neo4j.com), a well-designed graph

database platform that allows structured queries in a grap. Specifically, Neo4j can take the CSV files of

entities and relations we generated above as input and automatically created a KG instance. In this way,

the iBKH can be updated efficiently and flexibly.

Graphical portal for fast knowledge retrieval

We developed a web-based graphical portal, which allows the users to design graph query paths visually

and flexibly and translates them into Cypher queries (query language provided by Neo4j) automatically in

the back end. Specifically, we built the back end (i.e., the server side) using Django (https://www.

djangoproject.com/), a high-level Python-based web framework. The iBKH, stored in Neo4j, was linked

to the back end. The front end (i.e., the web application side) was built based on HyperText Markup Lan-

guage Version 5 (HTML5), and Cascading Style Sheets. JavaScript-based software, the neovis (https://

github.com/neo4j-contrib/neovis.js/) and D3.js (https://d3js.org/), were used for graph visualization and

data exploration and visualization, respectively.
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iBKH-based knowledge discovery

(A) Machine learning pipeline for knowledge discovery in the iBKH.We developed a machine learning

pipeline for knowledge discovery in the iBKH, which contains two steps as follows.

Step 1, KGE learning. The goal of KGE is to learn embeddings, i.e., meaningful andmachine-readable vec-

tor-based representations for entities and/or relations in iBKH, while preserve the graph structure.19,49,88 In

biomedicine, the learned embeddings (i.e., vector representations) of biomedical entities and relations can

be used in accelerating diverse down-stream research tasks, such as drug implication discovery,1,7,21,89

multi-omics data analysis,1,2 clinical data (e.g., electronic healthcare record) analysis,3,90 and knowledge

extraction from biomedical literature.83 In this work, we used the Deep Graph Library - Knowledge Embed-

ding (DGL-KE) (https://github.com/awslabs/dgl-ke),26 a Python-based implementation for the advanced

KGE algorithms, such as TransE,50 TransR,51 ComplEx,52 and DistMult.53 Using the advanced multi-pro-

cessing and multi-GPU (graphics processor unit) techniques, the DGL-KE accelerates the learning proced-

ures in large-scale graphs like iBKH.

Step 2, link prediction. The task can be formulated as predicting the probability that an unobserved triplet

<h; r; t > exists in the iBKH, where h and t are the head and tail entities, and r is the potential relation,

respectively. Specifically, we defined a possibility score of a candidate triplet <h; r; t > as PSð <h; r;

t > Þ = sigmoidðf ðh; r; tÞÞ. The sigmoid function is defined as sigmoidðaÞ = 1=ð1 +exp ð � aÞÞ. f ð$Þ is

the score function of the KGE algorithm we used to calculate the embedding vectors.

� TransE, f ðh;r;tÞ = � kh+ r � tkp, where h, r, t are the embedding vectors of h, r, t, respectively.

� TransR, f ðh; r; tÞ = � kMrh+ r � Mrtk
2
p, where Mr is a projection matrix for each relation r that

project entities h and t to semantic space of the relation.

� ComplEx, f ðh;r;tÞ = <ReðhÞ;ReðrÞ;ReðtÞ> + < ImðhÞ; ImðrÞ; ImðtÞ> + <ReðhÞ; ImðrÞ; ImðtÞ> � <

ImðhÞ; ImðrÞ; ReðtÞ>, where ReðxÞ and ImðxÞ are the real and imaginary parts of the complex

valued vector x, respectively.

� DistMult, f ðh;r;tÞ = hTWrt
T , whereWr is relation matrix, which is restricted to a diagonal matrix.

Summarized details of the KGE algorithms can be found elsewhere (https://dglke.dgl.ai/doc/kg.html)

(B) In-silico hypothesis generation for Alzheimer’s disease drug repurposing. As a proof of concept,

we performed in-silico hypothesis generation for Alzheimer’s disease (AD) drug repurposing, which

is to predict potential drug entities that can be linked to the AD entity with a ‘treats’ relation in the

iBKH. To this end, we first downloaded all Food and Drug Administration approved drugs and drugs

in clinical trials (Phases I-IV) for AD from the DrugBank (https://go.drugbank.com/), constructing the

grand truth drug list. Specifically, we obtained a total of 10 FDA-approved drugs, 30 drugs in Phase

IV trials, 43 drugs in Phase III trials, 95 drugs in Phase II trials, and 47 drugs in Phase I trials for AD

treatment. Next, to avoid information leaking in prediction, all relations between the AD entity

and any drug in the grand truth drug list in the iBKHwere removed. Then, entity and relation embed-

ding vectors were calculated using the KGE algorithms. After that, we calculated possibility scores

for potential all <ed ; r; eAD > triplets, where ed indicates any drug entity, eAD indicates the AD entity,

and r indicates a relation between them. The drugs were ranked based on the possibility scores. In

this study, we calculated the possibility scores based on four KGE algorithms, i.e., TransE,50

TransR,51 ComplEx,52 and DistMult.53 To enhance prediction, we also proposed an ensemble

model. Specifically, the rank of drug ed in the ensemble model was defined as

PSensembleð <ed ; r;eAD > Þ =
P

iðN
Dr �Rankið <ed ; r;eAD > ÞÞ where i indicates the i-th KGE algo-

rithm and NDr indicates total number of drugs in iBKH.

To evaluate prediction performance, we compared the top K ranked drugs with the ground truth drugs. By

sliding the value of K , we were able to produce the receiver operating characteristic curve (ROC) and the

area under ROC (AUC) score.

Finally, we re-trained the KGEmodels without removing known relations between AD and drug entities and

used the embeddings to predict novel repurposable drug candidates for AD treatment. For the predicted
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drugs that potentially link to AD, we performed manual literature review to identify supporting evidence of

the prediction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation of link prediction for KGE models

Model evaluation. We randomly split all triplets of iBKH into 90% training set and 10% testing set. The

training set was used to train the KGE algorithm and the testing set was used to evaluate model perfor-

mance. We assessed model performance in link prediction using the standard metrics including:

� Hit@k =
1
Q

PQ
1 Iranki % k (k = 1, 3, or 10), which measures the average number of times the positive

triplet is among the k highest ranked triplets;

� MR =
1
Q

PQ
1 ranki, i.e., Mean Rank, is the average rank of the positive triplets;

� MRR =
1
Q

PQ
1

1
ranki

, i.e., Mean Reciprocal Rank, is the average reciprocal rank of the positive in-

stances.

where,Q is the total number of positive triplets and Iranki % k is 1 if ranki % k, otherwise it is 0. Higher values

of Hit@k and MRR and a lower value of MR indicate good performance, and vice versa.

After that, we re-trained KGE algorithms using all triplets in iBKH.

Evaluation of AD drug repurposing performance

To evaluate performance of AD drug repurposing, we used FDA-approved drugs as ground truth and pro-

duce the receiver operating characteristic curve (ROC) and the area under ROC (AUC) score.
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