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SUMMARY

The abundance of biomedical knowledge gained from biological experiments and
clinical practices is an invaluable resource for biomedicine. The emerging biomed-
ical knowledge graphs (BKGs) provide an efficient and effective way to manage
the abundant knowledge in biomedical and life science. In this study, we created
a comprehensive BKG called the integrative Biomedical Knowledge Hub (iBKH)
by harmonizing and integrating information from diverse biomedical resources.
To make iBKH easily accessible for biomedical research, we developed a web-
based, user-friendly graphical portal that allows fast and interactive knowledge
retrieval. Additionally, we also implemented an efficient and scalable graph
learning pipeline for discovering novel biomedical knowledge in iBKH. As a proof
of concept, we performed our iBKH-based method for computational in-silico
drug repurposing for Alzheimer’s disease. The iBKH is publicly available.

INTRODUCTION

Biomedicine is a discipline with enormous volume of highly specialized biomedical knowledge accumu-
lated from biological experiments and clinical practice. In the past decade, efforts have been drawn to
collect and manage the abundant biomedical knowledge. BKG (BKG) has emerged as a novel paradigm
for better management of large scale and heterogeneous biomedical knowledge and attracted significant
interests in biomedicine recently.' Typically, a BKG is a multi-relational graph or network that integrates,
harmonizes, and stores biomedical knowledge collected from single or multiple expert-derived knowledge
sources.>*’ A BKG contains a set of nodes that correspond to biomedical entities (e.g., diseases, drugs,
genes, biological processes, etc.) and a set of edges that are relations linking the biomedical entities (e.g.,
drug-treats-disease, disease-associates-gene, and drug-interacts-drug relations.)."”" In the past decade,
large amounts of efforts have been made to construct BKGs by integrating diverse expert curated knowl-

2477 and extracting knowledge from literature using natural language processing tech-

13-16

edge bases
niques.w’w2 As a result, many different BKGs have been built.

Despite the promising results achieved from existing BKG efforts, there are still limitations that hinder their
utility in modern biomedical research and clinical practice. First, most of the current BKGs focus on one ora
few sub-domains of biomedicine; hence they cannot characterize the human health holistically and
comprehensively.'™'® This makes it challenging for efficient exploration of cross-domain biomedical
knowledge to provide system-level understanding of diseases. Second, existing BKGs are mostly publicly
available as raw text information of the nodes and edges therein,"'® which requires informatics training for
the end users to make full utilization of them. Thus, there remains a need for a publicly available and
easy-to-use user interface (Ul) to facilitate knowledge exploration on these BKGs. Third, the reasoning
and inference capabilities available on existing BKGs are limited. With the revolution of deep learning tech-
nologies in NLP'” and reasoning in general domain knowledge graphs,'® there is a huge potential of mak-
ing high-quality reasoning/hypothesis generation with evidence support as an addition functionality of
BKG to accelerate new biomedical knowledge discovery.

To fill in the above gaps, this present study built a comprehensive BKG, termed the iBKH, through inte-
grating information from 18 high-quality and well-curated knowledge sources. We developed a
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web-based, easy-to-use, intelligent graphical portal for iBKH that facilitates fast and interactive knowledge
retrieval.

To enable high-quality knowledge discovery, we further integrated modern graph learning pipelines in
iBKH. In general, graph learning is an emerging branch of machine learning that aims at exploring knowl-
edge from graph structured data.'”?° In recent years, they have been applied in BKG to accelerate
biomedical hypothesis generation such as drug repurposing’”'~* and disease risk gene prioritization.”"*
In iBKH, we have implemented a knowledge discovery module based on DGL-KE (Deep Graph Library —
Knowledge Embedding),”® the python package for efficient and scalable graph learning. To demonstrate
its potentials, we conducted two proof-of-concept studies: 1) in-silico hypothesis generation for Alz-
heimer's disease (AD) drug repurposing and 2) enhancing data analysis of a patient cohort of older adults
with Apolipoprotein E (APOE) £4 genotype, which is a significant genetic risk factor of AD.

RESULTS

Figure 1 illustrates overall pipeline of the present study, which includes the following modules including: 1)
iBKH construction through biomedical knowledge integration, 2) development of graphical portal for fast
knowledge retrieval based on iBKH, and 3) iBKH-based computational knowledge discovery through deep
graph learning. Figure 2 illustrates the schema of our BKG, i.e., iBKH. The iBKH is publicly available at:
http://ibkh.ai/.

The integrative Biomedical Knowledge Hub

By collecting, harmonizing, and integrating data from 18 publicly available biomedical knowledge sources
(see Table 1), we curated a comprehensive BKG, named the iBKH. The knowledge sources include biomed-
ical ontologies such as the BRENDA Tissue Ontology,”” the Cell Ontology® the Disease Ontology,”” and
the Uberon®; manually curated biomedical knowledge bases for biomedical entity and relation data such
as the Bgee,*' the Comparative Toxicogenomics Database,* the DrugBank,*® the Kyoto Encyclopedia of
Genes and Genomes (KEGG),** the Pharmacogenetics Knowledge Base (PharmGKB),*® the Reactome,™
the Side effect resource,” and the TISSUE®; existing BKGs curated by integrating multiple knowledge
bases such as the drug repurposing knowledge graph (DRKG, https://github.com/gnn4dr/DRKG),*” the
Hetionet,” the Integrated Dietary Supplement Knowledge Base (integrated Dietary Supplements Knowl-
edge (iDISK)),** our curated knowledge graph that covers a variety of dietary supplements, including
vitamins, herbs, minerals, etc.; and other biomedical sources such as Human Genome Organisation
(HUGO) Gene Nomenclature Committee (HGNC),*" Chemical Biology Information Resource from EMBL
[European Molecular Biology Laboratory] (ChEMBL),"* and Chemical Entities of Biological Interest
(ChEBI).** More details of the sources can be found in Table 1.

After data management and necessary data cleaning, we integrated data from different sources through
biomedical entity term normalization and knowledge integration (more details can be found in the STAR
Methods section). Current version of the resulted iBKH contains a total of 2,384,501 entities of 11 types,
including 23,003 anatomy entities, 19,236 disease entities, 37,997 drug entities, 88,376 gene entities
(including human and other species), 2,065,015 molecule entities, 1,361 symptom entities, 2,988 pathway
entities, 4,251 side effect entities, 4,101 dietary supplement ingredient (DSI) entities, 137,568 dietary sup-
plement product (DSP) entities, and 605 dietary's therapeutic class (TC) entities (see Figure 2 and Table 2).
In addition, there are 45 relation types within 18 kinds of entity pairs, including Anatomy-Gene, Drug-
Disease, Drug-Drug, Drug-Gene, Disease-Disease, Disease-Gene, Disease-Symptom, Gene-Gene, DSI-
Disease, DSI-Symptom, DSI-Drug, DSI-Anatomy, DSI-DSP, DSI-TC, Disease-Pathway, Drug-Pathway,
Gene-Pathway, and Drug-Side Effect, which means multiple types of relations can exist between a pair
of biomedical entities (see Table 3). Specifically, 2 types of potential relations can exist between an
Anatomy-Gene pair, including “Expresses” and “Absent”; 6 relation types between a Drug-Disease pair,
such as “Treats” and "Effects”; 2 relation types between a Drug-Drug pair including “Interaction” and “Re-
sembles”; 10 relation types between a Drug-Gene pair, such as "Targets,” "Upregulates,” and “"Downre-
gulates”; 2 relation types between a Disease-Disease pair including “Is_A" and “Resembles”; 5 relation
types between a Disease-Gene pair, such as “Associates,” Upregulates,” and “Downregulates”; the “Pre-
sents” relation type between a Disease-Symptom pair; and 5 relation types between a Gene-Gene pair,
such as “"Covaries,” “Interacts,” and “Regulates”; the “"Has_Adverse Reaction” relation between a DSI-
Symptom pair; the “Is_Effective_For” relation type between a DSI-Disease pair; the “Interacts” relation
type between a DSI-Drug pair; the “Has_Adverse_Effect_On" relation type between a DSI-Anatomy
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Figure 1. An illustration of study pipeline

(A) Steps for curating iBKH. We first collected data from diverse biomedical data sources. Next, necessary data pre-
processing, such as data cleaning and data filtering were performed. After that, knowledge from diverse sources were
integrated to build an integrative knowledge graph, i.e., iBKH, which was deployed using Neo4j graph database.

(B) A web-based, easy-to-use graphical portal was developed for fast knowledge retrieval.

(C) A graph learning module was introduced to iBKH for novel knowledge discovery. Specifically, KGE was conducted to
learn compressed vector representations for entities and relations in iBKH, which were further used for link prediction. As
a proof of concept, we performed in-silicon drug repurposing for Alzheimer’s disease.

Abbreviations: AD = Alzheimer’s disease; CSS = Cascading Style Sheets; HTML5 = HyperText Markup Language Version
5; iBKH = integrative Biomedical Knowledge Hub; KGE = knowledge graph embedding.

pair; the “"Has_Ingredient” relation type between a DSI-DSP pair; the “Has_Therapeutic_Class” relation
type between a DSI-TC pair; the “Reaction” and "Associates” relation types between a Gene-Pathway
pair; the "Associates” relation between a Disease-Pathway pair; the “Associates” relation between a
Drug-pathway pair; the “Causes” relation type between Drug-Side Effect pair.

We deployed our iBKH using Neo4j (https://neodj.com), a robust graph database platform. We also
released entity and relation source files of iBKH in comma-separated values (CSV) format, available at:
https://github.com/wem-wanglab/iBKH. Of note, the deployed version of iBKH excluded data from
KEGG due to restriction.

An easy-to-use interactive online portal for fast knowledge retrieval

Knowledge retrieval is the most common application scenario for a BKG like iBKH in biomedical research.
In contrast to information query in the traditional databases, knowledge retrieval in the iBKH needs to
match the logical and structural patterns of entities and relations. This can be done by defining graph-
based queries.

To fill the gap between the iBKH and biomedical and clinical researchers to facilitate its usage, we devel-
oped a web-based graphical portal that allows users to design graph-based queries for fast knowledge
retrieval in a flexible, interactive manner and visualize the retrieved knowledge immediately (see Figure 1).
Specifically, our portal has two functional modules for knowledge retrieval, i.e., biomedical entity query and
path query. First, the biomedical entity query allows to retrieval information of the queried entity and its
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Figure 2. Schema of iBKH

Each circle denotes an entity type, and each link denotes a meta relation between a pair of entities. Of note, a meta
relation can represent multiple types of relations between a specific pair of entities. For example, five potential relations
including “Associates,” “Downregulates,” “Upregulates,” “Inferred_Relation,” and “Text_Semantic_Relation” can exist
between a pair of disease and gene entities.

one-hop context in the iBKH, i.e., neighboring entities that directly link to the queried entity. Figure 3A
illustrates an example of exploring biomedical context of the APOE gene, which produces APOE protein
and is the known major risk gene for AD.****> By choosing DrugBank and PharmGKB in the “Source”
section, we narrow down the query to explore entities that has relations connecting to APOE based on
knowledge from the two knowledge sources. For instance, besides AD, APOE is also associated with dis-
eases such depressive disorders, hyperlipidemia, atrial fibrillation, and hypertriglyceridemia, which have
been reported as comorbidities of AD. APOE also has relations with drugs like zinc medications (zinc,
zinc sulfate, zinc chloride, and zinc acetate) that target APOE to affect progression of AD.47

In addition, there is also a need for more sophisticated queries to retrieve multi-hop context information of the
queried entity, which may help discover inconspicuous but meaningful knowledge from iBKH. Figure 3B
illustrates an example of discovering drugs that connect to AD through the path disease—
[Associates_DiG] — gene — [Associats_-DG] — drug, where Associates_DiG and Associats_DG denote rela-
tions in terms of the “association” between a pair of disease and gene and the "association” between a pair
of gene and drug, respectively. Such a query path can be generated by iteratively defining entities and relations,
combined with constraints, in our portal (see Figure 3B). The retrieved information was illustrated in Figure 3B,
where we visualized 100 retrieved triplets (by setting Limit of Triplet as 100 in the portal). Centered around the
disease entity AD, genes associated with it were retrieved first. Then, drugs that had been associated with these
genes were retrieved, which can be considered as potential repurposable drugs for AD treatment. For instance,
cyclophosphamide, a medication used as chemotherapy and to suppress the immune system, is connected to
the AD through the shared neighbor INSR (insulin receptor) gene. This is in line with previous evidence that
cyclophosphamide may help reduce cognitive decline in AD.*®

A machine learning pipeline for iBKH-based biomedical knowledge discovery

Another important application scenario for iBKH is the discovery of unknown knowledge, e.g., missing
relations among entities, based on the existing, incomplete knowledge graph. In this study, we utilized
a computational method for knowledge discovery in iBKH based on the advanced graph learning ap-
proaches."'” Our pipeline contains two steps (see STAR Methods section and Figure 1C). First, we utilized
the knowledge graph embedding (KGE) algorithms which calculate machine-readable embedding vectors
for entities and/or relations in iBKH while preserving the graph structure.'”?%*” Here we utilized an efficient
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Table 1. Data sources integrated for constructing iBKH

92USIOGI

Entity Relation
Source Description Types Number  Types Number URL License
Bgee31 A database for retrieval Anatomy, Gene 60,072 Anatomy-Express 11,731,369  https://bgee.org/ https://creativecommons.
and Present-Gene, Anatomy- org/publicdomain/zero/1.
comparison of gene Express Absent-Gene 0/
expression patterns
across multiple animal
species.
BRENDA Tissue A tissue-specific ontology.  Tissue (Anatomy) 6,478 - - https://www.brenda- https://creativecommons.
Ontology?’ enzymes.org/index.php org/licenses/by/4.0/
Cell Ontology?® A structured controlled Cells (Anatomy) 2,200 - - http://obofoundry.org/ https://creativecommons.
vocabulary for cell types ontology/cl.html org/licenses/by/4.0/
in animals.
Comparative A knowledge base that Disease, Gene, Drug, 73,922 Chemical-Gene, 38,344,568  http://ctdbase.org/ Confirmed via e-mail.
Toxicogenomics relates toxicological Pathway Chemical-
Database (CTD)* information for Disease, Chemical-
chemicals, genes, Pathway,
phenotypes, and Gene-Disease, Gene-
diseases, as well as Pathway,
literature-based and Disease-Pathway
manually curated
interactions
ChEMBL*? A manually curated Molecular 1,940,733 - — https://www.ebi.ac.uk/ https://creativecommons.
database of bioactive chembl/ org/licenses/by-sa/3.0/
molecules with
drug-like properties.
Chemical Entities A freely available Molecular 155,342 - - https://www.ebi.ac.uk/ https://creativecommons.

of Biological
Interest (ChEBI)*®

dictionary of molecular
entities focused
on ‘small’ chemical

compounds

chebi/init.do

org/licenses/by/4.0/

(Continued on next page)
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Table 1. Continued

SS300V N3dO

Entity Relation
Source Description Types Number  Types Number URL License
Drug Repurposing A biological knowledge Anatomy, Pathway, 97,238 Gene-Gene, Compound- 5,874,261 https://github.com/ https://www.apache.
Knowledge graph. Compound (Drug), Gene, Disease-Gene, Atc- gnn4dr/DRKG org/licenses/LICENSE-2.0
Graph (DRKG)*? Disease, Gene, Compound, Compound-
Molecular Compound, Compound-
function, Pathway, Disease, Gene-Tax,
Pharmacologic Biological process-
class, Side effect, Gene, Disease-Symptom,
Symptom Anatomy-Disease,
Disease-Disease,
Anatomy-
Gene, Gene-Molecular
function, Compound-
Pharmacologic class,
Cellular component-Gene,
Gene-Pathway,
Compound-
Side effect
Disease Ontology®’ Standardized ontology for  Disease 10,648 - - https://disease- https://creativecommons.
human disease. ontology.org/ org/publicdomain/zero/1.
o/
DrugBank®* A web-enabled database Drug 15,128 Drug-Target, Drug- 28,014 https://go.drugbank.com/  http://creativecommons.

containing comprehensive
molecular information
about drugs, their
mechanisms,

their interactions, and their
targets.

Enzyme, Drug-Carrier,

Drug-Transporter

org/licenses/by-nc/4.0/

(Continued on next page)
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Table 1. Continued

Entity Relation
Source Description Types Number  Types Number ~ URL License
Hetionet” A biomedical knowledge Anatomy, Biological 47,031 Anatomy-downregulates- 2,250,197 https://github.com/ https://creativecommons.

graph
for drug repurposing.

process,

Cellular component,
Compound (Drug),
Disease,

Gene, Molecular function,
Pathway, Pharmacologic
class, Side effect,

Symptom

Gene, Anatomy-
expresses-Gene,
Anatomy-upregulates—
Gene, Compound-binds—
Gene,
Compound-causes-Side
Effect, Compound-
downregulates—

Gene, Compound-
palliates—

Disease, Compound-
resembles—

Compound, Compound-
treats-Disease,
Compound-upregulates—
Gene, Disease-associates-
Gene, Disease—
downregulates-Gene,
Disease-localizes—
Anatomy,
Disease-presents—
Symptom,
Disease-resembles—
Disease,
Disease-upregulates—
Gene, Gene—covaries—
Gene, Gene-interacts—
Gene, Gene—participates—
Biological Process, Gene-
participates—Cellular
Component, Gene-
participates—-Molecular
Function, Gene—
participates—Pathway,
Gene-regulates-Gene,
Pharmacologic
Class—includes—

Compound

hetio/hetionet

92USIOGI

org/publicdomain/zero/1.
0/
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Table 1. Continued

SS300V N3dO

Entity Relation

Source Description Types Number  Types Number URL License
HUGO Gene The resource for approved ~ Gene 41,439 - - https://www.genenames. No restriction
Nomenclature human org/
Committee (HGNC)*' gene nomenclature
Integrated Dietary Our curated knowledge Dietary Supplement 144,536 DSl-Anatomy, DSI- 705,075 https://conservancy.umn. Our copyright.
Supplement graph Ingredient, Symptom, edu/handle/11299/ https://creativecommons.
Knowledge that covers a variety of Dietary Supplement DSI-Disease, DSI-Drug, 204783 org/licenses/by-sa/3.0/us/
Base (iDISK)*° dietary Product, Disease, Drug, DSI-DSP,

supplements, including Anatomy, Symptom, DSI-TC

vitamins, Therapeutic Class

herbs, minerals, etc.
Kyoto Encyclopedia A biomedical knowledge Drug, Disease, Gene, 42,181 Drug-Gene, Disease- 65,505 https://www.kegg.jp/ KEGG forbids data
of Genes and base Pathway Gene, redistribution. The
Genomes (KEGG)** for systematic analysis of Gene-Pathway, Drug- deployed

gene Disease, version of iBKH excluded

functions, linking genomic Drug-Pathway, Disease- KEGG data.

information with higher Pathway

order

functional information.
Pharmacogenetics A biomedical knowledge Genes, Variant, Drug, 43,112 Disease-Gene, Drug/ 61,616 https://www.pharmgkb. https://creativecommons.
Knowledge base Phenotype Chemical - org/ org/licenses/by-sa/4.0/
Base (PharmGKB)*° containing genomic, Gene, Gene-Gene, Gene-

phenotype Variant,

and clinical information Disease-Variant, Drug/

collected Chemical-

from ongoing Variant

pharmacogenetic

studies.
Reactome® A knowledge base of Genes, Pathways 13,589 Gene-Pathway 13,732 https://reactome.org/ https://creativecommons.

molecular

details of signal
transduction,
transport, DNA
replication,
metabolism, and other
cellular

processes.

(H. sapiens)

org/licenses/by/4.0/

(Continued on next page)
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Table 1. Continued

Source

Entity

Relation

Description Types

Number

Types

Number

URL

License

Side effect resource
(SIDER)*’

TISSUE®®

Uberon®

A data resource of public
information

on drug side effects.
A public resource that
integrates

evidence on tissue
expression from
manually curated
literature, proteomics
and transcriptomics
screens, and
automatic text mining.

A cross-species anatomy Anatomy

ontology.

Drugs, Side effects

Genes, Tissues

5,681

26,260

14,944

Drug-Side effect

Tissue-Express-Gene

163,206

6,788,697

http://sideeffects.embl.
de/

https://tissues.jensenlab.
org/

https://www.ebi.ac.uk/ols/

ontologies/uberon

https://creativecommons.

org/licenses/by-nc-sa/4.0/

https://creativecommons.

org/licenses/by/4.0/

http://creativecommons.
org/licenses/by/3.0/
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Table 2. Statistics of biomedical entities in iBKH

Entity Type Number Included Identifiers®

Anatomy 23,003 Uberon ID, BTO ID, MeSH ID, Cell Ontology ID

Disease 19,236 Disease Ontology ID, KEGG ID, PharmGKB ID,
MeSH ID, OMIM ID

Drug 37,997 DrugBank ID, KEGG ID, PharmGKB ID, MeSH
ID

Gene 88,376 HGNC ID, NCBI ID, PharmGKB ID

Molecule 2,065,015 CHEMBL ID, CHEBI ID

Symptom 1,361 MeSH ID

Pathway 2,988 Reactome ID, KEGG ID, Gene Ontology ID

Side-effect 4,251 UMLS CUI

Dietary Supplement Ingredient 4,101 iDISK ID

Dietary Supplement Product 137,568 iDISK ID

(Dietary) Therapeutic Class 605 iDISK ID, UMLS CUI

Abbreviations: BTO = BRENDA Tissue Ontology; ChEBI = Chemical Entities of Biological Interest; HGNC = HUGO Gene
Nomenclature Committee; ID = identifier; KEGG = Kyoto encyclopedia of genes and genomes; iDISK = integrated dietary
supplement knowledge base; MeSH = Medical Subject Headings; NCBI = National Center for Biotechnology Information;
OMIM = Online Mendelian Inheritance in Man; UMLS CUI = Unified Medical Language System - Concept Unique Identifiers.
°The identifiers used for entity term normalization.

python package for graph learning, Deep Graph Library — Knowledge Embedding (DGL-KE).”® We used
four advanced KGE algorithms in DGL-KE including Transk,” TransR,”’ CompIEx,52 and DistMult.>® Sec-
ond, link prediction (predicting potential relations between a pair of entities) was performed based on
the learned embedding vectors calculated by each KGE algorithm. We split iBKH into 90% training and
10% testing sets, where the training set was used to train KGE models, and the testing set was used for eval-
uating link prediction performance of the models based on multiple metrics (see STAR Methods section).
Table 4 shows that the four KGE models can achieve desirable performance in link prediction in iBKH. After
that, we retrained KGE models using the entire iBKH to obtain entity and relation embeddings and applied
our iBKH-based knowledge discovery pipeline for in-silico hypothesis generation as detailed below.

In-silico hypothesis generation: a case study of Alzheimer’s disease drug repurposing

As a proof of concept, we performed in-silico hypothesis generation for AD drug repurposing, i.e., predict-
ing drugs that potentially connect to the AD entity (see STAR Methods section and Figure 1.).°*">” Such
analysis has been used to identify repurposable drug candidates for COVID-19 in our previous study.”’
In order to assess the effectiveness of our approach for predicting repurposable drugs for AD, we used
a ground truth consisting of FDA-approved drugs and drugs currently being tested in clinical trials for
AD treatment. This included a total of 10 FDA-approved drugs and 215 drugs in various stages of clinical
trials (30 in Phase IV, 43 in Phase Ill, 95 in Phase Il, and 47 in Phase I). To prevent any potential data leakage
during the prediction process, all connections between the AD entity and any drug in the ground truth list
were removed from the iBKH (see STAR Methods section). Figure 4 provides an overview of the perfor-
mance of our method, which involved generating predictions based on embedding vectors produced
by four different KGE algorithms (TransE, TransR, ComplEx, and DistMult), as well as an ensemble model
that combined all four algorithms (see the STAR Methods section for more details). Our approach achieved
strong prediction performance, with an AUC score over 0.83 for all methods in predicting FDA-approved
AD drugs and an AUC over 0.75 in predicting both FDA-approved drugs and drugs in Phase IV clinical trials
(n = 40). This suggests that our approach is particularly effective at ranking FDA-approved and Phase IV
clinical trial drugs for AD. Furthermore, our ensemble model achieved even better performance (e.g.,
AUC = 0.9 for FDA-approved drugs, AUC = 0.79 for FDA-approved plus Phase IV clinical trial drugs for
AD), indicating that it benefits from the use of multiple KGE algorithms.

Our model can also suggest potential drug candidates for AD, which have not been approved or involved

in clinical trials for AD treatment. As a proof of concept, we highlighted the top-10 ranked potential drugs
for AD treatment based on the ensemble model and iBKH (see Table 5).
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Table 3. Statistics of relations among entities in iBKH

Entity pair

Relation type

Number of relations of the specific type

Total Number

Anatomy-gene relation

Anatomy-DSl relation

Drug-disease relation

Drug-Drug

Drug-Gene

Drug-Pathway
Drug-Side effect
Drug-molecule
Drug-DSI

Disease-Disease

Disease-Gene

Disease-Symptom
Disease-Pathway
Disease-DS| relation

Gene-Gene

Gene-Pathway

Symptom-DSlI
DSI-DSP
DSI-TC

Anatomy-Expresses-Gene
Anatomy-Absent-Gene
DSlI-Has_Adverse_Effect_On-Anatomy
Drug-Palliates-Disease
Drug-Treats-Disease
Drug-Effects-Disease
Drug-Associates -Disease
Drug-Inferred_Relation-Disease
Drug-Text_Semantic_Relation-Disease
Drug-Interacts-Drug
Drug-Resembles -Drug
Drug-Targets-Gene
Drug-Transporter-Gene
Drug-Enzyme-Gene
Drug-Carrier-Gene
Drug-Downregulates-Gene
Drug-Upregulates-Gene
Drug-Associates-Gene
Drug-Binds-Gene
Drug-Interacts-Gene
Drug-Text_Semantic_Relation -Gene
Drug-Associates-Pathway
Drug-Causes-side-effect
Molecule-Is_A-Drug
DSl-Interacts-Drug
Disease-Is_A-Disease
Disease-Resembles-Disease
Disease-Associates-Gene
Disease-Downregulates-Gene
Disease-Upregulates -Gene
Disease-Inferred_Relation-Gene
Disease-Text_Semantic_Relation -Gene
Disease-Presents-Symptom
Disease-Associates-Pathway
DSl-Is_Effective_For-Disease
Gene-Covaries-Gene
Gene-Interacts-Gene
Gene-Regulates-Gene
Gene-Associates-Gene
Gene-Text_Semantic_Relation -Gene
Gene-Reaction-Pathway
Gene-Associates-Pathway
DSl-Has_Adverse_Reaction-Symptom
DSP-Has_ingredient-DSI
DSl-Has_therapeutic_class-TC

10,388,168
2,837,741
3,121

390

5,492
5,136
96,458
2,589,522
50,653
2,682,157
6,486
16,518
3,066
5,241

853
66,994
72,361
19,434
11,571
1,181,492
68,429
3,231
163,206
8,757
3,057
10,529
543
47,965
7,623
7,731
27,454,631
94,759
3,357
1,941
5,134
61,690
147,164
265,672
2,602
301,752
118,480
47,742
2,093
689,297
5,430

12,171,021

4,334
2,717,947

2,684,682

1,303,747

3,231
163,206
8,757
3,057
11,072

27,538,774

3,357
1,941
5,134
735,156

152,243

2,093
689,297
5,430

Abbreviations: DSI = Dietary Supplement Ingredient; DSP = Dietary Supplement Product; TC = Therapeutic Class.
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Figure 3. Examples of knowledge retrieval

(A) An example of entity query—retrieving neighborhood context of APOE gene in iBKH.

(B) An example of path query, retrieving drugs that connect to Alzheimer’s disease through the path disease —
[Associates_DiG] — gene — [Associats_DG] — drug, where Associates_DiG and Associats_DG denote relation types in
terms of the association between a pair of disease and gene as well as the association between a gene and a drug.

First, approach identified three anti-hypertensive drugs that ranked high as potential drug candidates for
AD treatment, including labetalol (DrugBank ID: DB00598), phenoxybenzamine (DrugBank ID: DB00925),
and mibefradil (DrugBank ID: DB01388). Labetalol belongs to the class of 8-blockers and there is evidence
suggesting that B-blockers may enhance cerebrospinal fluid flow, resulting in increased brain clearance of
certain metabolites. Recent studies have also reported that the use of B-blockers is associated with a
reduced risk of AD onset®' and functional decline in AD.%? Phenoxybenzamine is an a-blocker, which has
been reported to have neuroprotective activity.”> Additionally, recent drug repurposing studies have
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Table 4. Link prediction performance

Model
Measurement TranskE TransR DistMult ComplEx
Hit@1 0.74 0.81 0.39 0.42
Hit@3 0.88 0.92 0.62 0.64
Hit@10 0.95 0.98 0.80 0.82
MR 3.55 2.64 10.87 9.49
MRR 0.82 0.87 0.53 0.56

For Hit@k (k = 1, 3, or 10) and MRR, a value close to 1 indicates good link prediction performance, otherwise close to 0. For
MR, a smaller value, i.e., close to 1, indicates good link prediction performance.
Abbreviations: MR = Mean Rank; MRR = Mean Reciprocal Rank.

also suggested that phenoxybenzamine could be a promising candidate for AD treatment.®*® Although
mibefradil was withdrawn from the market in 1998 due to harmful interactions with other drugs, our findings
suggest that CCBs could be potential candidates for AD treatment because calcium dysregulation has
been implicated in AD®® and CCBs have demonstrated multiple beneficial effects in cell culture and animal

models of AD.®”:%®

Second, our analysis also identified two antipsychotic drugs as candidates for AD treatment: fluphenazine
(DrugBank ID: DB00623) and flupentixol (DrugBank ID: DB00875). Fluphenazine has been reported as a
drug candidate in a recent AD drug repurposing study based on integrated network and transcriptome
analysis.®® Flupentixol, on the other hand, is a 5-hydroxytryptamine receptor antagonist, which has been
suggested as a potential treatment for cognitive deficits in AD.”*7¢

We also identified other drugs as potential candidates for AD treatment, including loperamide (DrugBank
ID: DB00836), cyproheptadine (DrugBank ID: DB00434), peginterferon alfa-2b (DrugBank ID: DB00022),
apomorphine (DrugBank ID: DB00714), and enoxacin (DrugBank ID: DB00467). Loperamide, commonly
used to treat diarrhea, has been shown to target opioid receptors, which may be linked to AD pathol-
ogy,”®*” which has been suggested to be potentially linked to AD pathology.®’ Cyproheptadine, a hista-
mine antagonist, has been demonstrated to reduce cognitive symptoms in AD.®” Peginterferon alfa-2b is a
recombinant interferon, which is used in the treatment of hepatitis B and C, genital warts, and some can-
cers. Peginterferon alfa-2b has been reported to bind to and activate human type 1 interferon receptors.
Such a procedure activates the JAK/STAT (Janus Kinase/Signal Transducer and Activator of Transcription)
pathway, which has been suggested as a potential target for AD.”%”" Apomorphine, a dopamine receptor
agonist for Parkinson’s disease, has been shown to protect against oxidative stress, which plays a role in AD
pathology’? and improve memory function in AD.”*’* Enoxacin, a fluoroquinolone used to treat bacterial
infections, has been suggested to potentially decrease the risk of developing AD when used appropriately
with other antibiotics, such as macrolides and ﬂuoroquinolone&77

DISCUSSIONS

In this study, we built a comprehensive BKG called iBKH, through collecting, cleaning and normalizing raw data
from diverse information sources. To date, iBKH has incorporated biomedical knowledge from 18 diverse in-
formation sources. In addition to the entity types that are popular in existing BKGs, such as genes, diseases,
drugs, pathways, etc., iBKH also involves other complementary sources such as iDISK, "% the supplement knowl-
edge base we curated recently. We have made iBKH publicly available in both tabular format as CSV files for
sophisticated users who can work with these source files, as well as Neo4j based on which we developed a
web-based graphical portal to allow user-friendly knowledge retrieval and exploration. We would continuously
enrich the content of iBKH and improve its graphical user interface (GUI) in the future.

In addition, we have also implemented a graph inference engine based on DGL-KE (Deep Graph Library -
Knowledge Embedding)”® in iBKH to facilitate novel biomedical knowledge discovery. As a proof of concept,
we demonstrated the application of iBKH for in-silico hypothesis generation for AD drug repurposing. We
observed good quantitative performance of iBKH on drugs that have already been approved and on clinical
trial for treating AD. We have also identified novel potentially repurposable drugs for AD with evidence
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Figure 4. Model performance of in-silicon Alzheimer’s disease drug repurposing
We used the FDA-approved and clinical trial drugs for Alzheimer’s disease as ground truth. Abbreviations: AUC = area under the receiver operating
characteristic curve; FDA = Food and Drug Administration.

supported by existing literature. It is worthy of mentioning that iBKH can be flexibly extended to drug repur-
posing for other diseases, as well as predicting other types of biomedical relations, such as prioritizing risk
genes of disease (gene-disease relation prediction), predicting candidate target protein for drugs (drug-
gene relation prediction), identifying potential drug-drug interactions (drug-drug relation prediction), etc.

Limitations of the study

Our iBKH has a few limitations. First, the procedures of constructing and curating iBKH rely on extensive
efforts of raw data file extraction and pre-processing, data annotation, as well as terminology normaliza-
tion, which is not error free. To maximally reduce the probability of error in iBKH, we leveraged the well-
curated biomedical vocabularies such as the unified medical language system (UMLS) to facilitate entity
term normalization and conducted multiple rounds of manual review based on random sampling with
replacement. In addition, we will also conduct graph leaming-based knowledge graph refinement/

completion to address this issue.”®

Second, although iBKH has collected and integrated data from diverse sources, the information contained
therein can still be incomplete due to the volume and speed of the new biomedical knowledge that has
been generated day by day. In this context, efforts on deriving knowledge from biomedical literature’”!
or real-world data such as the EHR (electronic health records)®®” would be critical. Moreover, we will make
curating and adding new information into iBKH a continuous effort.

Third, like many existing BKGs, iBKH mainly focused on the general biomedical knowledge, which means it

may lack fine-grained knowledge for studying particular diseases. On this aspect, there has been research
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Table 5. List of the top ten drugs repurposable for Alzheimer’s disease treatment

92UBI0GI

Rank DrugBank ID Drug Name Category Description Notes

1 DB00836 Loperamide Diarrhea medication Loperamide is used to treat diarrhea. It is often Loperamide targets opioid receptors,”®>’
used for this purpose in inflammatory bowel which has been suggested to be potentially
disease. linked to AD pathology.*°

2 DB00598 Labetalol Anti-hypertensive drug, 8-blocker Labetalol is one of the medications called There has been evidence suggesting that
B-blockers, which is used to treat B-blockers increase brain clearance of these
cardiovascular diseases like hypertension. metabolites by enhancing cerebrospinal fluid

(CSF) flow. Recent studies have demonstrated
that the use of §-blockers is associated with
reduced risk of AD onset®' and functional
decline in AD.”

8 DB00925 Phenoxybenzamine Anti-hypertensive drug, a-blocker Phenoxybenzamine is an a-blocker for treating Phenoxybenzamine has been reported to have
hypertension, specifically that caused by neuroprotective activity.*® Recent drug
pheochromocytoma. repurposing studies have also suggested

phenoxybenzamine as repurposable drug
candidate to treat AD.**

4 DB01388 Mibefradil Calcium channel blocker (CCB) Mibefradil is CCB, which was used for the Previous studies have demonstrated that
treatment of hypertension and chronic angina calcium dysregulation plays an important role
pectoris. Mibefradil was withdrawn from the in AD.*® Though the usefulness of CCBs in AD
market in 1998 due to potentially harmful remains controversial, it has shown multiple
interactions with other drugs. beneficial effects cell culture and animal

models of AD.®/+®

5 DB00434 Cyproheptadine Antihistamine Cyproheptadine is used in the treatment of Cyproheptadine is a histamine antagonist,
allergic symptoms. which has been demonstrated to reduce

cognitive symptoms in AD.%?

6 DB00022 Peginterferon alfa-2b Recombinant interferon Peginterferon alfa-2b is used in the treatment Peginterferon alfa-2b binds to and activates
of hepatitis B and C, genital warts, and some human type 1 interferon receptors, activating
cancers the JAK/STAT pathway, which has been

suggested as a potential target for AD.”%”"

7 DB00714 Apomorphine Dopaminergic agonist Apomorphineis a type of dopaminergic Apomorphine is a dopamine receptor agonist
agonist medication used for Parkinson’s for Parkinson disease and also protects against
disease (PD) oxidative stress, which plays a role in AD.”?

Emerging evidence showed that Apomorphine
has a significant impact on improving memory
function in AD.”*7*

8 DB00623 Fluphenazine Antipsychotic Fluphenazine is a phenothiazine antipsychotic Fluphenazine is reported as a drug candidate

medication used for treatment of psychotic

disorders.

in a recent AD drug repurposing study based
on integrated network and transcriptome

analysis.®”

(Continued on next page)
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Table 5. Continued

Rank DrugBank ID Drug Name Category Description Notes
9 DB00875 Flupentixol Antipsychotic drug Flupentixol is a thioxanthene neuroleptic used Flupentixol is a 5-hydroxytryptamine receptor
to treat psychotic disorders such as antagonist which has been reported as
schizophrenia and depression. potential treatment for cognitive deficiency in
AD.7576
10 DB00467 Enoxacin Fluoroquinolones Enoxacin is a fluoroquinolone used for Arecent study reported that appropriate use of

treatment of bacterial infections.

antibiotics with macrolides and
fluoroquinolones may decrease the risk of
developing AD.”’
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on building disease specific BKGs. For instance, Coronavirus Disease-knowledge graph (COVID-KG)®® con-
tained knowledge on COVID-19; knowledge graph for Hepatocellular Carcinoma (KGHC)? is constructed
focusing on hepatocellular carcinoma. In the future, we will further enhance iBKH by incorporating more
detailed knowledge on specific diseases.

Last but not the least, it is important to validate the novel knowledge discovered from iBKH, which is not
supported in the current portal. As a related effort, we have built a biomedical evidence generation engine
based on literature mining,®" which can retrieve and synthesize evidence supporting particular hypotheses
from state-of-the-art scientific publications. We plan to add this new functionality to iBKH portal. On the
other hand, for drug repurposing hypothesis generation, we will validate treatment efficiency of the iden-
tified repurposable drug candidates for target disease, such as AD, using computational clinical trial
emulation approach based on real-world clinical data.®>®
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Materials availability

e The harmonized entity and relation source files for iBKH in CSV format are publicly available online at
https://github.com/wem-wanglab/iBKH.

e The iBKH online portal is publicly available at http://ibkh.ai/.
The deployed version of iBKH excluded data from KEGG, as it forbids data redistribution.

Data and code availability

® This paper integrates publicly available biomedical knowledge bases. These accession URLs for the
knowledge bases are listed in the key resources table.

® The computer codes for iBKH construction and iBKH-based knowledge discovery are publicly available
online at https://github.com/wecm-wanglab/iBKH.

® Any additional information required to reanalyze the data reported in this paper is available from the
lead contact upon request.

METHOD DETAILS

Overview

Our ultimate goal was to build a BKG via comprehensively incorporating biomedical knowledge as much as
possible. To date, we have collected and integrated 18 publicly available data sources, harmonized and

consolidated them into a comprehensive data compendium. Details of the used data sources were listed
in Table 1.

Raw data processing

Given the data sources, the first step was to pre-process the raw files of them and extract knowledge,
including entity information and relation information. Generally, the databases release their raw data files
in various formats, such as CSV, tab-separated values, TXT, EXCEL tablet, Hypertext Markup Language
(HTML), Resource Description Framework, and Web Ontology Language (OWL). To address this, for
each database, we parsed the raw files and extracted structured data, i.e., the descriptive files for each
type of biomedical entity and the files of each type of relation. Such procedure varies by databases or
even by files within the same database.

Term harmonization

To integrate data from diverse sources, there is a need for harmonizing the entity terms. To achieve this, we
utilized a greedy strategy. For a specific entity type, we first chose a database to initialize the entity vocab-
ulary. Next, we built a linkage pool, containing multiple identifiers of the given entity type, to map and
integrate entities from all databases to improve the entity vocabulary one by one. The process of construct-
ing the linkage pool for each entity type primarily depended on two procedures: 1) The term dictionary of
existing sources was utilized. For example, Disease Ontology’’ provides Disease Ontology ID, Medical
Subject Heading (Medical Subject Headings (MeSH)) ID, UMLS® Concept Unique Identifier (CUI) for
each disease entity. 2) The UMLS Application Program Interfaces served as the bridge for term normaliza-
tion for terms that could not be mapped with the existing term dictionary. To ensure data quality, synonyms
were obtained for each term with strict term types such as "preferred" and "abbreviation." Finally, multiple
rounds of manual quality checks were conducted.

For gene entity type, we used the HGNC gene repository”’ as the initial vocabulary of gene entities, as it
defines a standard nomenclature for human the genes. The linkage pool for normalization included HGNC
IDs, HGNC symbols, and National Center for Biotechnology Information (NCBI) IDs.

For drug entity type, we initialized our vocabulary using DrugBank®® as it provides the up-to-date list of
approved drugs and investigational drugs under clinical trials. The linkage pool for drug entity normaliza-
tion included DrubBank IDs, MeSH terms, MeSH term IDs, UMLS®’ Concept Unique Identifiers (CUIs), and
the drug names in UMLS.
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For molecule entity type, we used the ChEMBL," a manually curated database of molecules with drug

properties, for initializing the vocabulary. The linkage pool for the molecule entities normalization included
ChEMBL IDs and International Chemical |dentifier (InChi).

For Side-Effect entity type, we collected the side-effect entities from the SIDER® and described them by
using the UMLS CUIs.

For disease entity type, we used the Disease Ontology®’ for initializing the vocabulary, as it is a structured
database of diseases based on etiological classification. The linkage pool we used for the disease entity
normalization included Disease Ontology IDs, MeSH terms, MeSH term IDs, UMLS CUIs, and the disease
names in UMLS.

For symptom entity type, we collected the symptom entities from the Hetionet” and iDISK,*” and described
them by using the MeSH term and MeSH term ID. We used UMLS CUI as the linkage for symptom entities
normalization.

For Pathway entity type, we used the Reactome,*® a manually curated and peer-reviewed pathway data-
base, for initializing the vocabulary. The linkage pool for the pathway entities normalization contained
the Reactome IDs, Gene Ontology IDs, and KEGG IDs.

For anatomy entity type, we used the Uberon™ for initializing the vocabulary, as it is a cross-species
anatomical ontology based on traditional anatomical classification. The linkage pool for the anatomy
entities harmonization included Uberon IDs, MeSH terms, MeSH term IDs, UMLS CUls, and the anatomy
names in UMLS.

For DSI, DSP, and TC entities, data were collected from our previous curated iDISK.*” We used iDISK
concept IDs and UMLS CUIs (for TCs) to describe them.

Knowledge integration

After the above normalization procedures, we obtained a CSV file for each entity type, storing all normal-
ized entity terms of the specific entity type followed by their synonyms and detailed descriptions. We were
then able to integrate knowledge extracted from different knowledge bases to build iBKH. Specifically, in a
BKG, a basic knowledge unit is a triplet, typically defined as <head entity, relation, tail entity>, which in-
dicates that there exists a relation from the head entity to the tail entity in iBKH. Of note, for each pair of
head entity and tail entity, there can be multiple types of relations. For instance, we stored “targets”,

non

"Transporter”, “Enzyme”,

non "on "on

Carrier”, "downregulates”, “upregulates”, “associates”, “"binds”, “interacts”,
and “text_semantic” relations between drugs and genes. We also stored the data source information,
indicating from which data source(s) we acquired the specific triplet.

Integrative biomedical knowledge Hub deployment with Neo4j

We deployed our curated BKG, i.e., the iBKH, using Neo4j (https://neodj.com), a well-designed graph
database platform that allows structured queries in a grap. Specifically, Neo4j can take the CSV files of
entities and relations we generated above as input and automatically created a KG instance. In this way,
the iBKH can be updated efficiently and flexibly.

Graphical portal for fast knowledge retrieval

We developed a web-based graphical portal, which allows the users to design graph query paths visually
and flexibly and translates them into Cypher queries (query language provided by Neo4j) automatically in
the back end. Specifically, we built the back end (i.e., the server side) using Django (https://www.
djangoproject.com/), a high-level Python-based web framework. The iBKH, stored in Neo4j, was linked
to the back end. The front end (i.e., the web application side) was built based on HyperText Markup Lan-
guage Version 5 (HTML5), and Cascading Style Sheets. JavaScript-based software, the neovis (https://
github.com/neodj-contrib/neovis.js/) and D3.js (https://d3js.org/), were used for graph visualization and
data exploration and visualization, respectively.
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iBKH-based knowledge discovery

(A) Machine learning pipeline for knowledge discovery in the iBKH. We developed a machine learning
pipeline for knowledge discovery in the iBKH, which contains two steps as follows.

Step 1, KGE learning. The goal of KGE is to learn embeddings, i.e., meaningful and machine-readable vec-
tor-based representations for entities and/or relations in iBKH, while preserve the graph structure.'”*?%¢In
biomedicine, the learned embeddings (i.e., vector representations) of biomedical entities and relations can
be used in accelerating diverse down-stream research tasks, such as drug implication discovery,'’?"#?
multi-omics data analysis,w'2 clinical data (e.g., electronic healthcare record) ar‘nalysis,:a'g(J and knowledge
extraction from biomedical literature.®® In this work, we used the Deep Graph Library - Knowledge Embed-
ding (DGL-KE) (https://github.com/awslabs/dgl-ke),”® a Python-based implementation for the advanced
KGE algorithms, such as TransE,”” TransR,”’ ComplEx,”” and DistMult.” Using the advanced multi-pro-
cessing and multi-GPU (graphics processor unit) techniques, the DGL-KE accelerates the learning proced-
ures in large-scale graphs like iBKH.

Step 2, link prediction. The task can be formulated as predicting the probability that an unobserved triplet
<h,r, t> exists in the iBKH, where h and t are the head and tail entities, and r is the potential relation,
respectively. Specifically, we defined a possibility score of a candidate triplet <h,r,t> as PS( <h, r,
t >) = sigmoid(f(h,r,t)). The sigmoid function is defined as sigmoid(a) = 1/(1 +exp ( — a)). () is
the score function of the KGE algorithm we used to calculate the embedding vectors.

e Transk, f(h,r,t) = — |[h+r — th, where h, r, t are the embedding vectors of h, r, t, respectively.

e TransR, f(h,r,t) = — |[M:h+r — M,tHi, where M, is a projection matrix for each relation r that
project entities h and t to semantic space of the relation.

e ComplEx, f(h,r,t) = <Re(h),Re(r),Re(t) > + <Im(h),Im(r),Im(t) > + <Re(h),Im(r),Im(t) > — <
Im(h), Im(r), Re(t) >, where Re(x) and Im(x) are the real and imaginary parts of the complex
valued vector x, respectively.

e DistMult, f(h,r,t) = hTW,tT, where W, is relation matrix, which is restricted to a diagonal matrix.
Summarized details of the KGE algorithms can be found elsewhere (https://dglke.dgl.ai/doc/kg.html)

(B) In-silico hypothesis generation for Alzheimer’s disease drug repurposing. As a proof of concept,
we performed in-silico hypothesis generation for Alzheimer’s disease (AD) drug repurposing, which
is to predict potential drug entities that can be linked to the AD entity with a ‘treats’ relation in the
iBKH. To this end, we first downloaded all Food and Drug Administration approved drugs and drugs
in clinical trials (Phases I-IV) for AD from the DrugBank (https://go.drugbank.com/), constructing the
grand truth drug list. Specifically, we obtained a total of 10 FDA-approved drugs, 30 drugs in Phase
IV trials, 43 drugs in Phase lll trials, 95 drugs in Phase Il trials, and 47 drugs in Phase | trials for AD
treatment. Next, to avoid information leaking in prediction, all relations between the AD entity
and any drug in the grand truth drug list in the iBKH were removed. Then, entity and relation embed-
ding vectors were calculated using the KGE algorithms. After that, we calculated possibility scores
for potential all <ey, r, eap > triplets, where ey indicates any drug entity, eap indicates the AD entity,
and r indicates a relation between them. The drugs were ranked based on the possibility scores. In
this study, we calculated the possibility scores based on four KGE algorithms, i.e., TransE,*°
TransR,”" ComplEx,** and DistMult.>® To enhance prediction, we also proposed an ensemble
model. Specifically, the rank of drug ey in the ensemble model was defined as
pgensemble( <o r eap >) = 3,(NPT — Ranki( <ey,r,eap >)) where i indicates the i-th KGE algo-
rithm and NP’ indicates total number of drugs in iBKH.

To evaluate prediction performance, we compared the top K ranked drugs with the ground truth drugs. By
sliding the value of K, we were able to produce the receiver operating characteristic curve (ROC) and the
area under ROC (AUC) score.

Finally, we re-trained the KGE models without removing known relations between AD and drug entities and
used the embeddings to predict novel repurposable drug candidates for AD treatment. For the predicted
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drugs that potentially link to AD, we performed manual literature review to identify supporting evidence of
the prediction.

QUANTIFICATION AND STATISTICAL ANALYSIS
Evaluation of link prediction for KGE models

Model evaluation. We randomly split all triplets of iBKH into 90% training set and 10% testing set. The
training set was used to train the KGE algorithm and the testing set was used to evaluate model perfor-
mance. We assessed model performance in link prediction using the standard metrics including:

o Hijt@k = % Z?"rank, <k (k=1,3,0r10), which measures the average number of times the positive
triplet is among the k highest ranked triplets;

e MR =3 Z?rank,-, i.e., Mean Rank, is the average rank of the positive triplets;

e MRR = 437
stances.

raLk,’ i.e., Mean Reciprocal Rank, is the average reciprocal rank of the positive in-

where, Qiis the total number of positive triplets and [ a0, < & is 1 if rank; < k, otherwise it is 0. Higher values
of Hit@k and MRR and a lower value of MR indicate good performance, and vice versa.

After that, we re-trained KGE algorithms using all triplets in iBKH.

Evaluation of AD drug repurposing performance

To evaluate performance of AD drug repurposing, we used FDA-approved drugs as ground truth and pro-
duce the receiver operating characteristic curve (ROC) and the area under ROC (AUC) score.
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