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Machine learning enabled subgroup 
analysis with real‑world data 
to inform clinical trial eligibility 
criteria design
Jie Xu 1,2,3, Hao Zhang 2,3, Hansi Zhang 1, Jiang Bian 1* & Fei Wang 2*

Overly restrictive eligibility criteria for clinical trials may limit the generalizability of the trial results 
to their target real‑world patient populations. We developed a novel machine learning approach using 
large collections of real‑world data (RWD) to better inform clinical trial eligibility criteria design. We 
extracted patients’ clinical events from electronic health records (EHRs), which include demographics, 
diagnoses, and drugs, and assumed certain compositions of these clinical events within an individual’s 
EHRs can determine the subphenotypes—homogeneous clusters of patients, where patients within 
each subgroup share similar clinical characteristics. We introduced an outcome‑guided probabilistic 
model to identify those subphenotypes, such that the patients within the same subgroup not only 
share similar clinical characteristics but also at similar risk levels of encountering severe adverse events 
(SAEs). We evaluated our algorithm on two previously conducted clinical trials with EHRs from the 
OneFlorida+ Clinical Research Consortium. Our model can clearly identify the patient subgroups who 
are more likely to suffer or not suffer from SAEs as subphenotypes in a transparent and interpretable 
way. Our approach identified a set of clinical topics and derived novel patient representations based 
on them. Each clinical topic represents a certain clinical event composition pattern learned from the 
patient EHRs. Tested on both trials, patient subgroup (#SAE=0) and patient subgroup (#SAE>0) can 
be well‑separated by k‑means clustering using the inferred topics. The inferred topics characterized 
as likely to align with the patient subgroup (#SAE>0) revealed meaningful combinations of clinical 
features and can provide data‑driven recommendations for refining the exclusion criteria of clinical 
trials. The proposed supervised topic modeling approach can infer the clinical topics from the 
subphenotypes with or without SAEs. The potential rules for describing the patient subgroups with 
SAEs can be further derived to inform the design of clinical trial eligibility criteria.

Appropriately designed clinical studies, especially randomized controlled trials (RCTs), provide gold standard 
evidence for determining the efficacy and safety of  treatments1. To maximize internal validity, RCT’s designs 
usually involve idealized and rigorously controlled conditions with restrictive inclusion and exclusion criteria 
that define the study population of the  trial2. Although excessive or overly restrictive eligibility criteria may 
lower the risk of the study populations for encountering adverse  events3,4, they usually lead to low popula-
tion representativeness (thus, low trial generalizability), and subsequently, treatment effectiveness could be 
reduced, and the likelihood of adverse outcomes could increase when the treatment entered real-world clinical 
 practice5. Essential populations of interest are described in Supplement Fig. S1. On the other hand, to be clini-
cally useful, RCT results must be generalizable to the real-world target population in routine clinical practice. 
External validity, or “generalizability”, is often compromised because of the over-emphasis on internal validity. 
Low generalizability is a major concern in clinical research communities across disease  domains2,6–8, including 
various types of  dementias9–14 and  cancers15–17. Therefore, without enrolling the appropriate population, the 
“true” effectiveness cannot be accurately estimated; and more dangerously, some serious adverse events (SAEs) 
are not identified until the therapies moved into routine practice, leading to significant patient safety issues and 
withdrawing drugs from the  market18.
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Regulatory agencies such as the U.S. Food and Drug Administration (FDA)19,20 and the broader clinical 
research communities have called and provided guidance for better trial eligibility criteria (EC) design-e.g., 
through broadening  EC19 and using enrichment  strategies20-to promote enrollment practices so that trial par-
ticipants can better reflect the real-world target populations and the trials are more likely to succeed. However, 
trial sponsors and investigators are reluctant to broaden EC concerning about the potential negative impact on 
the investigational drug’s safety and effectiveness profile. Literature on the concerns of EC design is  extensive2,6–8, 
including some of our  work21,22 However, little effort has focused on providing potentially actionable decision 
support on choosing the appropriate study population defined by trials’ EC.

Trial generalizability is largely dependent on the representativeness of the study population with respect to 
the target population to which the study results are intended to be  applied5. In recent years, the rapid adoption of 
electronic health record (EHR) systems in the last decade have led to large integrated clinical data warehouses and 
interoperable clinical data research networks, which made large amounts of real-world clinical data available for 
research. The National Patient-Centered Clinical Research Network (PCORnet) funded by the Patient-Centered 
Outcomes Research Institute (PCORI) is one of those examples, that has accumulated data from more than 80 
million patients in  201823. These large collections of real-world data (RWD) provide a unique opportunity for 
studying the impact of EC on (1) the mismatch of the real-world study population and target population they 
represent, and (2) the consequences of such mismatches in terms of real-world outcomes when the treatment 
being tested in the trial is applied in clinical practice reflected from the RWD. Insights from these studies can 
inform and lead to better eligible criteria design of future clinical trials with similar characteristics.

The goal of this study is to develop machine learning approaches for gaining insights from RWD that could be 
used to inform clinical trial EC design. In particular, to account for the heterogeneity of the real-world popula-
tion, we introduce a novel transparent and outcome-guided probabilistic model to identify the subphenotypes 
(i.e., homogenous clusters of patients) of the target population of a trial (i.e., patients who were placed on the 
treatment that the trial aimed to develop) (Fig. 1). More importantly, we aim to derive these clusters so that the 
patients of the target population within the same subphenotype do not just share similar clinical characteristics, 
but are also predicted to have a similar clinical outcome (i.e., in our current study, we consider patient safety 
outcome - the risk of experiencing SAEs) after they are placed on the treatment. We hypothesized that certain 
compositions (i.e., co-occurrence patterns) of the clinical events within an individual’s EHR could determine 
those subphenotypes and proposed a novel weakly supervised topic modeling approach to identify those sub-
phenotypes, where each clinical topic represents a certain clinical event composition pattern learned from the 
patient EHRs.

Figure 1.  Model overview. Demographics, diagnoses, and medications were extracted from RWD to represent 
patients. Supervised Poisson factor analysis (PFA) was applied to identify patient subgroups with coherent 
clinical latent topics and outcomes measured by SAEs. Subgroups with SAEs can be derived to inform the design 
of clinical trial exclusion criteria.
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Methods
Study design and population. We obtained individual-level patient data from the OneFlorida+ Clini-
cal Research  Consortium24, which contains robust longitudinal and linked patient-level RWD of ~16.8 million 
(>60%) Floridians, including data from Medicaid and Medicare claims, cancer registries, vital statistics, and EHRs 
from its clinical partners. We extracted patients’ clinical care information from OneFlorida+, including patient 
demographics (i.e., age, sex, race), diagnoses (i.e., coded in International Classification of Diseases 9th/10th 
revision [ICD-9/10]), and medications (i.e., coded in National Drug Code [NDC] or RXNorm). Uniform-sized 
bins were used to discretize the age first and then one-hot encoding was adopted to encode the discretized age, 
gender, and race variables. We mapped diagnosis codes (i.e., ICD-9/10) to Phecode which is designed to facili-
tate phenome-wide association studies (PheWAS) in EHRs. Drug codes (i.e., NDC or RXNorm) were mapped 
to the Anatomical Therapeutic Chemical (ATC) Classification System 3rd level. Finally, we concatenated all the 
features (i.e., demographics, diagnosis, and medications) to represent each patient as a binary vector.

We selected two Phase III RCTs of different disease domains from ClinicalTrials.gov: (1) a hallmark trial 
(i.e., NCT00478205) that compares the effects of 23 mg to 10 mg donepezil in treating patients with Alzheimer’s 
disease (AD)25; and (2) another RCT (i.e., NCT00112918) studying two different combination chemotherapy 
regimens with or without bevacizumab (i.e., trade name Avastin) in stage II/III colon cancer  patients26. For 
NCT00478205, we set the target population as those who (1) were diagnosed with AD, and (2) were treated with 
donepezil (Fig. 2b). For NCT00112918, we set the target population as patients who (1) were diagnosed with 
colorectal cancer (CRC), and (2) were treated with FOLFOX4 (Fig. 3b).

The key dates in our study design are illustrated in Figs. 2a and  3a21,27. The beginning of the treatment is set 
as the index date: (1) the first (ever) observed prescription date of donepezil for NCT00478205, and (2) the first 
FOLFOX4 treatment after CRC diagnosis for NCT00112918. We refer to the time period before the index date 
as the baseline period and only use information collected during that time for the clustering analysis. The period 
from the index date to the last donepezil or FOLFOX4 prescription plus 30 days was set as the follow-up period, 
from which the SAE information is collected as the patient outcomes.

Figure 2.  Donepezil clinical trial. (a) Definition of key dates. (b) Selection of target population. Each sample is 
colored based on whether the patient had SAEs or not. (c) Traits distribution with UMAP.
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Definition of serious adverse events. To define an SAE, we followed two resources: (1) the Food and 
Drug Administration (FDA)’s definition of  SAE28, where an adverse event (AE) is considered serious if it results 
in either death, a life-threatening event, or inpatient hospitalization or prolongation of existing hospitalization; 
and (2) the Common Terminology Criteria for Adverse Events (CTCAE) - a descriptive terminology for AE 
 reporting29, which incorporates certain elements of the MedDRA terminology, e.g., CTCAE terms are grouped 
by MedDRA primary System Organ Classes (SOCs). Within each SOC, AEs are listed with descriptions of 
their severity. CTCAE categorizes AE into 5 different severities: Grade 1 (mild), Grade 2 (moderate), Grade 3 
(severe or medically significant but not immediately life-threatening), Grade 4 (life-threatening consequences), 
and Grade 5 (death). To identify SAEs for patients treated with donepezil or FOLFOX4, we first identified the 
reported SAEs in the Result section of the selected trials from ClinicalTrails.gov, which are organized according 
to MedDRA. For each SAE, we collected the ICD-9/10-CM codes to identify corresponding health conditions; 
and we then mapped these health conditions to the CTCAE terms and categorized them as SAEs based on the 
grading scale above (i.e., CTCAE Grade 3, 4, or 5). Considering both the definitions from FDA and CTCAE, we 
defined an AE as SAE if it results in hospitalization or death.

Supervised Poisson factor analysis. By collecting all patient vectors, we can construct a binary data 
matrix X ∈ {0, 1}V×N , with V corresponding to the number of features and N being the number of patients. 
Poisson factor analysis (PFA)30 assumes X following a Poisson likelihood as

where � = [φ1, ...,φK ] ∈ R
V×K
+  is the topic matrix with each column φk being the k-th clinical topic, and φk is 

a distribution over features; � = [θ1, ..., θN ] ∈ R
K×N
+  is the topic weight matrix and each column θn represents 

the topic weights of the n-th patient. Based on the expectation rule, we have the equation:

(1)X ∼ Poisson(��)

(2)xn = �θn = φ1θn1 + φ2θn2 + ... + φKθnK .

Figure 3.  Bevacizumab clinical trial. (a) Definition of key dates. (b) Selection of target population. Each sample 
is colored based on whether the patient had SAEs or not. (c) Traits distribution with UMAP.
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Clearly, each patient vector is composed of weighted summation of all topics, where values in θn denotes the 
weights. Therefore, we call θn as the topic weights, a new representation for xn , since it exhibits the weight (or 
proportion after normalization) of each topic in representing patient xn . We then perform clustering analysis 
on the learned new representations.

Compared with latent Dirichlet allocation (LDA)31, which models the distribution of topic weights as a 
Dirichlet distribution, PFA models it as a Gamma distribution. The advantage of Gamma distribution for 
topic weight is that it introduces a shrinkage mechanism to prune inactive factors and enhances the model 
 interpretability32. We set the number of topics as 40 for both cases, after learning, our model automatically 
truncates it to 35 for AD and 26 for CRC. It is in accordance with the fact that our CRC data has less samples, 
which thus can be described with less topics.

The original PFA is purely unsupervised. In order to incorporate the outcome information (i.e., having SAE 
or no) into the topic learning process, we extended the original PFA model to a supervised setting which uses the 
occurrence of SAE as the supervision information to guide the learning process of PFA. Specifically, for the n-th 
patient, if he/she did not encounter any SAE in the follow-up period, we set yn = 0 ; otherwise, we set yn = 1 . 
Then we adopted the mean-field variational Bayes  method33 to maximize the evidence lower bound (ELBO) of 
the data likelihood as

where p(xn|�, θn) and p(θn|r) are the Poisson likelihood and Gamma prior as in PFA, q(θn) is the variational 
posterior to be learned. Currently, we built q(θn) as an encoder network qW (θn|xn) , where W represents learn-
able parameters of the encoder network, and q(·) is modeled as a Weibull distribution that makes θn positive 
and  sparse34.

To perform supervised learning, we added a supervised regularizer in the original ELBO objective as

where the second term can be viewed as the label likelihood implemented by cross-entropy loss. The model 
structure of the supervised PFA is shown in Fig. 1. As a result, we built a probabilistic auto-encoding supervised 
topic model, whose parameters were encoder parameters W, decoder parameters � (topics), and classifier Wc . 
We deployed stochastic gradient descent to learn W and Wc , and stochastic gradient-based Monte Carlo Markov 
Chain sampling to infer �34. Our proposed model can be learned in a mini-batch style, which is easily amenable 
for large-scale data analysis.

Clustering with supervised PFA models. Before applying the ML approach to the data matrix, we first 
represented each patient using the study traits as a vector and checked whether patients with and without SAEs 
can be well separated. The study traits were extracted corresponding to each computable eligibility criteria and 
the OneFlorida data. The identified traits included patient demographics (e.g., age) and medical history (e.g., 
comorbidities and treatments). We dropped the criteria that are not computable (e.g., subjective eligibility crite-
ria such as “written informed consent”).

We then applied supervised PFA (SPFA) and used the occurrence of SAE as the supervision to guide the 
learning process. Similar to other topic modeling  approaches35, SPFA first compressed the clinical events into 
a set of overlapping groups (i.e., topics), and patient representations are derived from these topics based on the 
idea that groups of clinical events that tend to co-appear in the same visit within the RWD.

K-means clustering is then performed on new patient representations to identify the clusters as subpheno-
types. To choose the optimal number of topics, we used all samples to learn the supervised topic model and then 
evaluated the topic coherence by normalized pointwise mutual information (NPMI)  value36, and the classifica-
tion performance by ROC-AUC. We selected the most appropriate number of clusters that provide the largest 
silhouette  score37,38.

In our analysis, we used mean topic weight (MTW) to select typical topics. According to the data generation 
process of PFA and Eq. (1), topic weight of n-th patient θn represents the weights of all topics in representing 
one patient. For fair evaluation, we normalized θn as θ̃n = θn/

∑
k
θnk to a Dirichelt  distribution31. As a result, θ̃n 

can be regarded as topic proportions. Given a group with N̂ patients, the MTW of k-th topic within this group is 
calculated as 

∑
N̂

n=1
θ̃nk/N̂ . For each topic, after calculation of MTW on SAE subgroup and non-SAE subgroup, 

we used Mann-Whitney U (MWU)  test39 to calculate the p value of each topic for evaluating the significant dif-
ference of topic weights on two subgroups.

Ethics and dissemination. The study has been approved by University of Florida Institutional Review 
Board (protocol no. IRB202003137 and IRB202000704). The research has been approved under secondary 
research for which consent is not required. The research does not involve greater than minimal risk for partici-
pation. Analyses only involve the secondary analysis of data that are either limited data sets or de-identified. 
Our research team has no direct contact with human subjects. All methods were carried out in accordance with 
relevant guidelines and regulations.

(3)ELBO =

N
∑

n=1

Eq(θn)[log p(xn|�, θn)] −

N
∑

n=1

E

[

q(θn)

p(θn|r)

]

,

(4)L = ELBO +

N∑

n=1

log pWc (yn|θn),
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Results
We report our model results of the donepezil trial (i.e., NCT00478205) and the bevacizumab trial (i.e., 
NCT00112918) separately below.

The donepezil trial. A total of 4998 patients (mean (SD) age, 77.53 (9.9) years) were identified from One-
Florida (Table 1). Among which, 3063 (61.3%) had no SAE while 1935 (38.7%) had at least one SAE. Fig. 2c 
shows the 2D embeddings of patient traits with Uniform Manifold Approximation and Projection (UMAP)40. 
We colored each sample based on whether the patient had SAEs or not. As shown in Fig.  2c, patients with 
(#SAE>0) versus without (#SAE=0) are intertwined, indicating that the trial-eligible population (i.e., identified 
by the original trial’s eligibility criteria over our data) in the real world does not guarantee their safety. Further, 
we examined the differences of the study traits between the two groups (patients with SAE vs. patients without 
SAEs) through Chi-square tests and summarized the results in Table 1, from which we observe that many traits 
were not significantly different (statistically, considering p > 0.05 ) including memantine (p = 0.145), cancer (p 
= 0.091), antidepressant (p = 0.590), basal/squamous cell carcinoma of the skin (p = 0.275), galantamine (p = 
0.190), severe lactose intolerance (p = 0.219), and clinically significant Hepatic (p = 0.105). There is an oppor-
tunity to refine the eligibility criteria that can better predict (thus select) potential participants who are likely to 
develop SAEs, if it meets the study design goals (e.g., for a safety trial).

We applied SPFA to the collected data and set #topics=40 for subsequent analyses as it achieved the highest 
ROC-AUC with large topic coherence values. Six clusters were derived which can be characterized by clinical 
topics: cluster 1 (N = 1811; 36.23%), patients with disorders of ears or eyes (T11 and T14); cluster 2 (N = 939; 
18.79%), patients with diseases of the urinary system (T12 and T15); cluster 3 (N = 331; 6.62%), patients with 

Table 1.  Demographic characteristics and selected traits of the target population of the donepezil clinical trial 
for AD. CS* Clinically significant. If the disease causes hospitalization, we consider it as “clinically significant”.

Characteristic Overall (N = 4998) # SAEs = 0 (N = 3063) # SAEs > 0 (N = 1935) χ
2 p value

Age, Mean (SD), yr 77.53 (9.9) 76.98 (9.8) 78.41 (9.9)

Sex, No. (%)

   Female 3123 (62.5) 1923 (62.8) 1200 (62.0)

Race, No. (%)

   White 3,537 (70.8) 2,262 (73.8) 1,275 (65.8)

   Black 965 (19.4) 484 (158) 481 (24.9)

   Asian 34 (0.6) 25 (0.8) 9 (0.5)

   Others & Unknown 462 (9.2) 292 (9.5) 170 (8.8)

Study traits, No. (%)

   Memantine 1,511 (30.2) 950 (31) 561 (28.9) 0.145

   Psychiatric disorders 1,396 (27.9) 754 (24.6) 642 (33.1) ≤0.001

   Cardiovascular (CS*) 1,082 (21.6) 492 (16) 590 (30.4) ≤0.001

   Endocrine (CS*) 813 (16.2) 353 (11.5) 460 (23.7) ≤0.001

   Cancer 808 (16.1) 468 (15.2) 340 (17.5) 0.091

   Dysphagia 649 (12.9) 302 (9.8) 347 (17.9) ≤0.001

   Gastrointestinal (CS*) 631 (12.6) 289 (9.4) 342 (17.6) ≤0.001

   Drug or alcohol abuse &or dependence 627 (12.5) 283 (9.2) 344 (17.7) ≤0.001

   Respiratory (CS*) 586 (11.7) 249 (8.1) 337 (17.4) ≤0.001

   AD with delirium 389 (7.7) 161 (5.2) 228 (11.7) ≤0.001

   Hepatic disease 361 (7.2) 180 (5.8) 181 (9.3) ≤0.001

   Renal (CS*) 342 (6.8) 135 (4.4) 207 (10.6) ≤0.001

   Parkinson disease 329 (6.5) 176 (5.7) 153 (7.9) 0.001

   Menopausal 230 (4.6) 128 (4.1) 102 (5.2) 0.040

   Antidepressant 226 (4.5) 143 (4.6) 83 (4.2) 0.590

   Basal/squamous cell carcinoma of the skin 216 (4.3) 128 (4.1) 88 (4.5) 0.275

   Gastric ulcers 163 (3.2) 75 (2.4) 88 (4.5) ≤0.001

   Inflammatory bowel disease 154 (3) 82 (2.6) 72 (3.7) 0.024

   Rivastigmine 153 (3) 121 (3.9) 32 (1.6) ≤0.001

   Multi-infarct dementia 151 (3) 72 (2.3) 79 (4) 0.001

   Acupressure 119 (2.3) 54 (1.7) 65 (3.3) 0.002

   Fecal incontinence 107 (2.1) 48 (1.5) 59 (3) 0.001

   Galantamine 35 (0.7) 18 (0.5) 17 (0.8) 0.190

   Severe lactose intolerance 24 (0.4) 12 (0.3) 12 (0.6) 0.219

   Hepatic (CS*) 20 (0.4) 9 (0.2) 11 (0.5) 0.105
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depression or mood disorder (T10 and T13); cluster 4 (N = 667; 13.35%), patients with disorders of endocrine 
and metabolism (T6, T7, and T8); cluster 5 (N = 548; 10.96%), patients with different diseases of the brain (T1, 
T5, and T16); and cluster 6 (N = 702; 14.05%), patients with diseases of digestive and respiratory systems (T2, 
T3, and T17). Among the six clusters, two patient subgroups emerged: (1) the SAE group (#SAE>0) containing 
clusters 4, 5, and 6, and (2) the non-SAE group (#SAE=0) including clusters 1, 2, and 3. As shown in Fig. 4a, the 
two subgroups (i.e., #SAE=0 versus #SAE>0) are well separated, where 1915 out of the 1935 patients (99.0%) 
in the SAE group encountered SAEs, while 3014 out of the 3063 patients (98.4%) did not have any SAEs in the 
non-SAE group.

We examined the distribution of the 40 topics across the two subgroups (Fig. 4b). Eighteen topics were then 
selected for further analysis based on MTW and MWU  test39. Of the fifteen significantly-different topics (MWU 
p-value≤0.05), ten topics (T1~T3, T5~T8, T16~T18, denoted by red in Fig. 4c) were characterized as likely to 

Figure 4.  Clustering results of the AD target population. (a) Visualization of clustering results. (b) Mean topic 
weight (MTW) of all topics on two groups, where the x-axis is the topic index and the y-axis is the MTW of 
each topic on two subgroups. (c) Top features from certain disease topics. The right sidebar of each topic shows 
the percentage of patients with the corresponding feature in that topic.
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align with the SAE subgroup and the other five topics (T10~T12, T14~T15, denoted by blue in Fig. 4a) align with 
the non-SAE subgroup. For the other 3 topics (T4, T9, and T13) whose MWU p values≥0.05 but MTWs are in the 
top three, they are shared by all clusters. We also examined the relevance of the eighteen topics by qualitatively 
assessing the coherence of the five most prevalent clinical events (i.e., diagnosis and medication codes) for each 
topic and found that many of the selected topics were specific to different diseases or disease groups (Fig. 4c). 
Specifically, T4, T9, and T13 include dementia, memory loss, and cognitive impairment-related events, which are 
shared across the clusters and represent the common diseases and medication use in the cohort. T1 is related to 
cardiovascular diseases. T2 is related to gastrointestinal diseases. T3 is about respiratory disorders. T5 is related 
to psychotic disorders, especially Schizophrenia and relevant treatments (anticholinergic agents)41. T6 is related 
to endocrine disorders. T7 is about metabolism disorders such as mineral metabolism disorder. T8 includes lipid 
metabolism and secondary malignant neoplasm or cancer of the liver, where prior studies have shown the rela-
tionship between these two types of  diseases42. T16 includes various conditions or disorders of the brain, which 
are closely related to AD. T17 are related to diseases and treatments of the esophagus such as gastroesophageal 
reflux disease (GERD). T18 is about obesity and some related complications and drugs.

The bevacizumab trial. A total of 739 patients (mean age, 57.49 with a standard deviation of 11.2 years 
old) who received FOLFOX4 after diagnosis were identified (out of a total of 47,492 CRC patients) from One-
Florida+. Among all 739 patients, 347 (47.0%) had no SAE, while 392 (53.0%) had at least one SAE. As shown in 
Fig. 3c, CRC patients with (#SAE>0) vs. without (#SAE=0) are intertwined. We conducted Chi-square tests on 
the two patient subgroups, i.e., patients who had SAEs (#SAE>0) vs patients who did not (#SAE>0). We found 
that the p values of most study traits are larger than 0.05, except for metastatic disease (p = 0.026), parenteral 
anticoagulants ( p < 0.001 ), myocardial infarction ( p < 0.001 ), and thrombolytic agent (p = 0.003) as shown in 
Table 2.

Similar to the donepezil trial, we applied SPFA to the CRC target population. We set #topics=40 as it achieved 
higher ROC-AUC and NPMI. Figure 5a shows the UMAP embeddings of new patient representations induced 
by SPFA, where we can observe two well-separated patient subgroups that can be identified by k-means cluster-
ing. One group (red) is mostly associated with patients with SAE, i.e., 317 of 347 patients (91.4%) encountered 
at least one SAE, and the other group (blue) is free of SAEs (393 patients).

We checked the patient group proportions for the forty learned topics across the two clusters (Fig. 5b). Among 
all forty topics, using the same topic selection criteria as in donepezil trial, we selected 13 topics for further 
analysis (Fig. 5c). According to the MTW of the two groups, these topics can be divided into three categories: 
(1) T1~T6 and T12~T13, represented as red, are associated with the SAE subgroup; (2) T7~T9, represented as 

Table 2.  Demographic characteristics and selected traits of the target population of the bevacizumab clinical 
trial for CRC.

Characteristic Overall (N = 739) # SAEs = 0 (N = 392) # SAEs > 0 (N = 347) χ
2 p value

Age, Mean (SD), yr 57.49 (11.2) 59.13 (11.2) 56.0 (11.1)

Sex, No. (%)

   Female 328 (44.3) 141 (40.6) 187 (47.7)

Race, No. (%)

   White 488 (66.0) 237 (68.3) 251 (64)

   Black 172 (23.3) 79 (22.8) 93 (23.7)

   Asian 10 (1.4) 5 (1.4) 5 (1.2)

   Others & Unknown 69 (9.3) 26 (7.5) 43 (10.9)

Study traits, No. (%)

   Colon carcinoma 616 (83.3) 296 (85.3) 320 (81.6) 0.058

   Metastatic disease 499 (67.5) 221 (63.6) 278 (70.9) 0.026

   Parenteral anticoagulants 240 (32.4) 77 (22.1) 163 (41.5) ≤0.001

   Immunotherapy 146 (19.7) 75 (21.6) 71 (18.1) 0.130

   Anti-angiogenic treatment 137 (18.5) 72 (20.7) 65 (16.5) 0.081

   Myocardial infarction 90 (12.1) 25 (7.2) 65 (16.5) ≤0.001

   Significant traumatic injury 40 (5.4) 16 (4.6) 24 (6.1) 0.379

   Thrombolytic agent 38 (5.1) 9 (2.5) 29 (7.3) 0.003

   Central nervous disease 37 (5) 12 (3.4) 25 (6.3) 0.099

   Inability to take oral medication 33 (4.4) 10 (2.8) 23 (5.8) 0.034

   Open biopsy 30 (4) 17 (4.8) 13 (3.3) 0.282

   Radiotherapy 24 (3.2) 10 (2.8) 14 (3.5) 0.790

   Bone fracture 21 (2.8) 8 (2.3) 13 (3.3) 0.392

   Coagulopathy 20 (2.7) 8 (2.3) 12 (3) 0.672

   Oophorectomy 17 (2.3) 7 (2) 10 (2.5) 0.956

   Cerebrovascular accidents 14 (1.8) 5 (1.4) 9 (2.2) 0.428
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blue, aligned with the non-SAE subgroup, contain relatively mild diseases and were not directly related to the 
diagnosis of colon cancer; (3) T10~T11, represented as green, are often shared on two subgroups. Specifically, 
T1 is annotated to the use of corticosteroids, with the three of the top five codes being specific corticosteroids 
treatments. T2 is related to antithrombotic agents. T3 is about malignant neoplasm, where the first three main 
codes are all correlated with secondary malignant neoplasm and one code is about cancer, and one code is 
hormones and related preparations drug class which is used to treat cancer. T4 is related to clinically significant 
(i.e., active) cardiovascular disease. T5 is also related to cancer, but more specifically to the liver. Phenotypes in 
T6 include various kinds of disorders related to the intestine, e.g., drugs for peptic ulcer and gastro-oesophageal 
reflux disease (GORD), hemorrhage of the gastrointestinal tract, gastritis, and duodenitis, and gastric ulcer. T7 
includes some commonly used drugs. T8 talks about the disease and treatments of urinary tract infection, which 
is extremely common in the elderly. T9 is associated with gastrointestinal diseases such as nausea and vomit-
ing. T10 and T11 are some common diseases such as or hyperlipidemia or hypertension. T12 includes different 
diseases or treatments for the intestine.

Figure 5.  Clustering results of the CRC target population. (a) Visualization of clustering results. (b) Mean topic 
weight (MTW) of all topics on two groups, where the x-axis is the topic index and the y-axis is the MTW of 
each topic on two subgroups. (c) Top features from certain disease topics. The right sidebar of each topic shows 
the percentage of patients with the corresponding feature in that topic.
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Discussion
Rigorous eligibility criteria for RCTs may make the trial participants not representative of the trial’s real-world 
target patients, where the trial results intended to be applied when the treatment is moved into clinical practice. 
The FDA, funding agencies, and various research communities have called to broaden eligibility criteria to make 
clinical trials more  representative15. Nevertheless, trial investigators and sponsors are hesitant to do so because 
of their concerns about whether broadening the eligibility criteria would compromise the efficacy results and/
or patient safety profiles. There lack of methods and tools to provide such decision support based on real-world 
data, e.g., so that trial investigators can relax certain eligibility criteria that would not lead to more SAEs.

In this paper, we developed a machine learning approach to identify patient subgroups (i.e., subphenotypes) 
using large collections of RWD from the OneFlorida+ network that are either more or less likely to encounter 
SAEs after using the treatment. We consider patient demographics and all clinical events, including diagnosis and 
medications, in the baseline period for deriving the subgroups. To account for the high dimensionality of RWD, 
we proposed a novel supervised topic modeling approach that uses the SAE information as a weak supervision. 
Our approach can effectively identify a set of clinical topics and derived novel patient representations based 
on them in a lower dimensionality (i.e., from thousands of clinical features to 40 topics), such that the patient 
subgroups with or without SAEs can be well separated with these representations.

We applied our method using two RCTs from different disease domains: (1) NCT00478205 for AD; and (2) 
NCT00112918 for CRC. Tested on both trials, patient subgroup (#SAE=0) and patient subgroup (#SAE>0) can 
be well-separated by k-means clustering using the inferred topics. The inferred topics characterized as likely to 
align with the patient subgroup (#SAE>0) revealed meaningful combinations of clinical features and can provide 
data-driven recommendations for refining the eligibility criteria of clinical trials. We analyzed the association 
between the inferred topics with the SAE subgroup and the extracted computable eligibility criteria. We found 
that topics aligned with the SAE patient subgroup (#SAE>0) are highly associated with the exclusion criteria of 
the trial (Tables 3 and 4).

However, compared to the eligibility criteria of the trial, the learned clinical topics provided more detailed 
information, which prompted us to relax the ambiguous exclusion criteria while making them easier to interpret 
and implement. For example, for the Donepezil trial, T5 is a combination of schizophrenia and other psychotic 
disorders and does not mention sleep disorders. So we can relax the corresponding exclusion criterion to “Patients 
with schizophrenia and other psychotic disorders.”. T7 is about disorders of lipoid metabolism, so the correspond-
ing criterion can be relaxed to “Patients with disorders of lipoid metabolism.” Even for one disease that appears 
in both SAE-associated topics and exclusion criteria of the trial, the identified topics provide more detailed 
insights. For example, for gastrointestinal disease, the exclusion criteria only said “Patients with evidence of 
clinically significant active gastrointestinal disease”, which is a relatively coarse description. However, the learned 
topics, T2 and T17, discover more detailed diseases or drugs related to gastrointestinal disease. For the Bevaci-
zumab trial, the eligibility criterion provides a rough description of corticosteroids as “Current or recent (within 
10 days prior to study treatment start) use of full-dose oral or parenteral anticoagulants or thrombolytic agents for 
therapeutic purposes”. But the topic T2 contains more detailed drugs about corticosteroids. In addition, most 
topics associated with the non-SAE subgroup are mild comorbidities that are common and may have a lower 
probability of causing SAE. Therefore, these advantages allow our method to better separate the two subgroups 
and relax the eligibility criteria.

In a recent study, Liu et al. evaluated EC for oncology trials using RWD and AI, the authors quantified the 
representability of each study trait with SHAP, and they tried to relax the range of each eligibility criterion for 
broadening the  participation43,44. Only traits with continuous values are considered in a one-by-one manner. Our 
proposed approach mainly considered binary traits (continuous traits can also be incorporated with appropriate 
discretizations followed by one-hot representations) and modeled the high-order interactions of these traits as 

Table 3.  Inferred topics and related exclusion criteria in the original donepezil trial (i.e., NCT00478205).

Topics Related exclusion criteria

T1 (cardiovascular), T2 (gastrointestinal), T3 (respiratory), T6 (endo-
crine), T8 (lipoid metabolism)

Patients with evidence of clinically significant, active gastrointesti-
nal, renal, hepatic, respiratory, endocrine, or cardiovascular system 
disease (including history of life-threatening arrhythmias).

T4 (delirium)
Patients with dementia complicated by other organic diseases or 
Alzheimer’s disease with delirium.

T5 (psychotic)

Patients with psychiatric disorders affecting the ability to assess cog-
nition such as schizophrenia, bipolar or unipolar depression. Patients 
with clinically significant sleep disorders will also be excluded unless 
these are controlled by treatment and clinically stable for > 3 months 
prior to screening.

T7 (metabolism)

Patients with any conditions affecting absorption, distribution, 
or metabolism of the study medication (e.g., inflammatory bowel 
disease, gastric or duodenal ulcers, hepatic disease, or severe lactose 
intolerance).

T8 (lipoid metabolism, secondary malignant neoplasm or cancer of 
the liver)

Patients with a history of cancer (does not include basal or squamous 
cell carcinoma of the skin) treated within 5 years prior to study entry, 
or current evidence of malignant neoplasm, recurrent, metastatic 
disease. Males with localized prostate cancer requiring no treatment 
would not be excluded.
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clinical topics. In addition, we also considered adding extra traits to improve the representability and safety of 
the trial in RWD.

Our study has several limitations. First, our study only leveraged the RWD from OneFlorida, which is a 
regional clinical research network. Future investigation on larger and more diverse RWD is needed to enhance 
the generalizability of the identified subgroups. Second, we only explored structured information in RWD in 
this study. Much of important information, such as symptoms, clinical assessments (e.g., from radiology and 
pathology reports), and socioeconomic status, are only encoded in clinical notes. Extracting and incorporating 
unstructured information in our study is another important direction to pursue. Third, only discrete traits have 
been considered in this study. Continuous traits, such as lab tests, are also crucial for many RCTs. Their corre-
sponding computable counterparts in RWD should be explored as well. Fourth, there are different strategies for 
“enrichment” (that affect EC design) as recommended by the FDA, for example, “excluding patients unlikely to 
tolerate the drug” to decrease the nondrug-related variability or “identifying people at relatively high risk” for 
safety  studies20. Our study only considered patient safety (i.e., SAEs), while other enrichment strategies that con-
sider treatment effectiveness should also be developed. Nevertheless, our general framework holds the potential 
to derive insights from RWD that can inform clinical trial design and develop efficient enrichment strategies.

Data availability
All data required to evaluate the conclusions of the manuscript are presented in the main text and/or the Sup-
plementary Materials. The dataset used during the current study is a HIPAA limited data set, which requires 
a data use agreement with the OneFlorida+ clinical research consortium, https:// onefl orida conso rtium. org/. 
Request of the data can be sent to the OneFlorida+.
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