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Dispersionless flat bands can be classified into two types: (1) non-singular flat bands whose
eigenmodes are completely characterized by compact localized states; and (2) singular flat bands
that have a discontinuity in their Bloch eigenfunctions at a band touching point with an adjacent
dispersive band, thereby requiring additional extended states to span their eigenmode space. In this
study, we design and numerically demonstrate two-dimensional thin-plate phononic metamaterials
in which tunable flat bands of both kinds can be achieved. Non-singular flat bands are achieved by
fine-tuning the ratio of the global tension and the bending stiffness in triangular and honeycomb
lattices of plate resonators. A singular flat band arises in a kagome lattice due to the underlying
lattice geometry, which can be made degenerate with two additional flat bands by tuning the plate
tension. A discrete model of the continuum thin-plate system reveals the interplay of geometric and
mechanical factors in determining the existence of flat bands of both types. The singular nature
of the kagome lattice flat band is established via a metric called the Hilbert-Schmidt distance
calculated between a pair of eigenstates infinitesimally close to the quadratic band touching point.
We also simulate a phononic manifestation of a robust boundary mode arising from the singular flat
band and protected by real-space topology in a finite system. Our theoretical and computational
study establishes a framework for exploring flat-band physics in a tunable classical system, and for
designing phononic metamaterials with potentially useful sound manipulation capabilities.

I. INTRODUCTION

A flat band is a constant energy or frequency band for
all values of the crystal momentum in the Brillouin zone
of excitations of a periodic structure. Originally pro-
posed in electronic systems [1–10], flat band models have
also been investigated in optical [11–17] and acoustic[18–
21] systems as a novel means of manipulating light and
sound in artificial structures. Potential applications of
flat band physics in optics include lasing [17], distortion-
free image transmission [22], logic [23], slow-light prop-
agation [24], and mode conversion [25]. Acoustic struc-
tures with flat bands enable functionalities such as cloak-
ing [18], lensing [19], wavefront manipulation [20], and
addressable localized states [21]. These diverse applica-
tions primarily exploit the dispersionless character of flat
bands and the consequent existence of compact localized
states (CLSs)—a set of states belonging to the flat band,
each of which is sharply localized with nonzero weight
only on a finite subset of sites.
Compact localized states are guaranteed to exist in flat

bands arising from lattice models with finite-range inter-
actions between sites [26, 27]. However, they are not al-
ways guaranteed to form a complete spanning set for the
space of Bloch eigenfunctions belonging to the flat band.
If the flat band touches another band at a particular crys-
tal momentum, the point of band touching can induce
a discontinuity in the Bloch eigenfunctions of the flat
band when treated as a function of the momentum, which
serves as a topological obstruction to finding a spanning
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set of CLSs [28]. Flat bands can be classified as singu-
lar or non-singular based on the presence or absence of
such a discontinuity; the Bloch eigenspace of singular flat
bands under periodic boundary conditions is spanned by
combining CLSs with extended lattice-traversing eigen-
states called noncontractible loop states (NLSs) [26, 27].
For finite systems, these NLSs manifest as modes that
form closed loops along the system boundary and are
strictly localized to it [26]. These so-called robust bound-
ary modes (RBMs) cannot be disrupted through local
perturbations, and serve as a manifestation of boundary
effects protected by the real-space topology of the un-
derlying lattice [26, 28] in contrast to the more widely
established momentum-space topological protection [29–
31]. Besides the existence of RBMs and real-space topo-
logical phenomena, singular flat bands also generate un-
usual features in the energy spectrum of electrons in a
magnetic field [32].

To date, the exploration of singular flat-band physics
has primarily been advanced using photonic lattices
which can be fabricated in desired geometries via laser
writing [33–36]. However, photonic lattices and their re-
sulting band structures cannot be tuned after fabrication.
By contrast, many techniques exist to tune the vibra-
tional spectra of artificial acoustic and phononic struc-
tures through external electromagnetic or mechanical ac-
tuation [37], enabling dynamic control of band dispersion
towards and away from a flat band. In a previous theo-
retical and computational study, we introduced a design
for a one-dimensional phononic metamaterial based on
plate resonators, with a phonon band which can be dy-
namically tuned to be dispersionless by applying a global
tension [38]. Our work demonstrated that dynamic tun-
ing of a flat band can be exploited to stop and reverse a
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these variables, Eq. (1) becomes

∂2u

∂t̄2
+ ∇̄4u− T ∇̄2u = 0 on domain,

u = ∇̄u = 0 on boundary.

(2)

For a particular boundary geometry, Eq. (2) shows that
under appropriate length and time units, the system de-
pends on a single dimensionless parameter—the rescaled
tension T ≡ T ′a2/D, which serves as the tunable phys-
ical quantity in our study. In the remainder of this
manuscript, the bar is dropped for clarity; the variables
x, y, t and the gradient operator ∇ refer to the rescaled
coordinates from here on.

Oscillatory solutions to Eq. (2) can be written as a
superposition of normal modes ui(x, y)e

−iωit, where the
eigenfunction ui(x, y) and oscillation frequency ωi of the
ith mode solve the eigenvalue problem

∇4ui − T∇2ui = ω2
i ui (3)

under the prescribed boundary conditions. We use finite-
element analysis to compute normal mode eigenfunctions
and frequencies (details are provided in Appendix A).
While a true continuum system has infinitely many de-
grees of freedom, and thus an infinite number of normal
modes per resonator, we focus in this work upon collec-
tive modes that arise from combinations of the lowest-
frequency or fundamental mode of each individual res-
onator (schematically depicted in Fig. 1(a)). Since modes
of an individual resonator with higher wavenumbers are
significantly higher in frequency than the fundamental
mode, a system of N coupled resonators will typically
have its N lowest normal modes composed primarily of
combinations of fundamental modes on individual res-
onators, such as the modes shown in Fig. 2(c–d). For an
infinite periodic lattice, the eigenmodes are Bloch func-
tions defined on a unique set of crystal momenta termed
the Brillouin zone and the corresponding eigenfrequency
surfaces are the bands; here, for a unit cell with n res-
onators the lowest n bands can be identified as being
built primarily from the fundamental modes on individ-
ual resonators. The fundamental mode frequency ω0 for
a single resonator is used as the frequency scale for mode
frequencies and band structures evaluated numerically.

B. Discrete model of coupled fundamental modes

The collective excitations built from couplings among
fundamental modes can be described by a simpler “tight-
binding” description of discrete oscillators with finite-
ranged couplings, derived in Ref. 38 and summarized
here. The key elements are shown as balls connected
by springs in Fig. 1 (top view of different lattices) and
Fig. 2(a) (side view of a minimal unit comprising a pair of
coupled resonators). The primary degrees of freedom are
the fundamental modes of individual resonators, each of

which is modeled as a harmonic oscillator of mass m con-
fined to the vertical direction (yellow balls), with spring

stiffness k̃1 (red spring). To correctly model the effect
of variable tension T on the coupling between funda-
mental modes of adjacent resonators, we introduce an
additional, secondary degree of freedom, also a ball of
mass m, which encodes the vertical displacement of the
plate at the junction between two resonators (green ball

and spring) with spring constant k̃2. Since the junc-
tion between resonators is narrower than the resonator
diameter, the secondary degree of freedom has a stiffer
spring k̃2 > k̃1. The junction mass is coupled to the
fundamental mode masses by harmonic springs (dark
grey) which are prestressed with a tensile force g̃, and
a torsional spring (red) which induces the two tensile
springs to be collinear. If y1 and y3 correspond to the
vertical displacements of the resonator degrees of free-
dom and y2 to that of the junction, the effect of the
tensile and torsional springs is captured in potential en-
ergy contributions Us = g̃[(y1 − y2)

2 + (y2 − y3)
2]/a and

Ub = κ̃(1− cos θ) ≈ 2κ̃(y1 − 2y2 + y3)
2/a2 respectively.

Newton’s equations of motion for the coupled spring-
mass system can be written as

m
d2y

dt̃2
+ K̃y = 0, (4)

where y = {y1, y2, ...} is the vector of vertical displace-

ments, and K̃ is the stiffness matrix whose entries are
obtained by taking derivatives of the total potential en-
ergy in the on-site, tensed, and torsional springs. For
the three-site model of a coupled resonator pair shown in
Fig. 2(a), the stiffness matrix reads

K̃ =





k̃1 +
g̃

ℓ + κ̃
ℓ2 − g̃

ℓ − 2κ̃
ℓ2

κ̃
ℓ2

− g̃

ℓ − 2κ̃
ℓ2 k̃2 +

2g̃
ℓ + 4κ̃

ℓ2 − g̃

ℓ − 2κ̃
ℓ2

κ̃
ℓ2 − g̃

ℓ − 2κ̃
ℓ2 k̃1 +

g̃

ℓ + κ̃
ℓ2



, (5)

where ℓ is the horizontal spacing between the masses.
To build a discrete model with dimensionless parameters
that can be related to the continuum system, we rescale
time and displacements by ω−1

0 and a respectively. The
distance between primary degrees of freedom yi and yi+2

is also set to be a, so that ℓ = a/2. In terms of the

rescaled time t = ω0t̃, spring stiffnesses ki = k̃i/mω2
0 ,

the tension g = 2g̃/amω2
0 , and the torsional stiffness κ =

4κ̃/a2mω2
0 , Eq. (5) reduces to

K =





k1 + g + κ −α κ
−α k2 + 2g + 4κ −α
κ −α k1 + g + κ



 , (6)

where α = g + 2κ is the net nearest-neighbor cou-
pling strength. The torsional springs generate next-
nearest-neighbor couplings with strength κ. The non-
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corresponding eigenfrequencies are respectively

ω2
1 = k1 + 2g,

ω2
2 =

k1 + k2 + 4(g + 2κ)−
√
U

2
,

(10)

where U = (k1 − k2)
2 + 16(g + 2κ)2. We use these ex-

pressions to fit the discrete model to the eigenfrequen-
cies of the continuum mode. Specifically, we treated k1,
k2, and κ as constants across all tension values, and as-
sumed a linear relationship T = cg, where c is a constant
parameter. Given the exact frequencies of the discrete
model, Eq. (10), the parameter value k1 = 1.01 is fixed
by equating it to the square of antibonding mode fre-
quency from the continuum model at T = g = 0. The
complete relationship between frequency and prestress
(tension) for this mode is then quantitatively recovered
by setting c = 95. Having set these two parameters, the
remaining parameters k2 = 10 and κ = 0.018 were fixed
by fitting the analytical form for ω2 from Eq. (10) to
the bonding mode frequency curve from the continuum
model. Through this procedure, we found that the dis-
crete model with four fit parameters quantitatively cap-
tures the dependence of normal mode frequencies on the
varying tension measured in the continuum model (com-
pare symbols to solid lines in Fig. 2(e)).

The lowest six modes in the discrete model become de-
generate when the coupling constants satisfy the relation

g =
√

(2κ)2 + κ(k2 − k1)− 2κ.

For fixed values of the stiffnesses k1, k2 and κ, a tension
can always be found to generate a mode crossing pro-
vided k2 > k1. This constraint on effective parameters
tends to be satisfied by coupling regions that are nar-
rower than the typical extent of an individual resonator.
Physically, tuning the relative strength of tension and
bending in the system has the effect of flipping the sign of
the effective interaction between the primary masses in a
tight-binding description; our model realizes a mechan-
ical analogue of a method proposed for sign control of
coupling terms in tight-binding models in Ref. 46, which
also uses a third degree of freedom between the primary
sites to mediate the sign change. As a design principle,
it useful to consider the fundamental mode on each res-
onator as a degree of freedom in a tight-binding model.
Each degree of freedom is coupled to degrees of freedom
on neighboring resonators. The strength and sign of the
effective coupling are controlled by the global tension on
the plate. At the degeneracy point, the coupling strength
is effectively zero as bonding and anti-bonding pairs have
equal vibration frequency; as a consequence, we expect a
degeneracy among all fundamendal modes present in the
assembly. This mechanism, when applied to an infinite
lattice of coupled resonators, suggests that flat bands will
generically be present at special values of the in-plane
tension.

The threshold tension T ∗ occurs at a particular value

for a given geometry, and also sets the frequency of the
degeneracy. Once the geometry is fixed, the system can
be moved towards or away from the degeneracy point,
but the frequency of the degenerate modes cannot be
changed. To tune the threshold tension and the degen-
erate frequency for a particular resonator geometry, we
can adjust the junction length J relative to the resonator
size a. In Fig. 2(f), we show that the threshold tension
value of the mode crossing in continuum simulations can
be varied significantly by changing the junction length.
Therefore, changing tension allows dynamical tuning and
changing geometry allows the threshold tension tuning,
providing two types of tunability in the system. Whereas
we will focus on the effect of changing tension for fixed
lattice geometries in the next section, we mention here
that the junction geometry could also be chosen in ad-
vance to target particular tension ranges or frequency
values for the flat band.

III. RESULTS

A. Band structures

We now investigate the consequences of the mode-
crossing mechanism for infinite periodic lattices of res-
onators. We restrict ourselves to lattices based on the
triangular Bravais lattice, namely the triangular, honey-
comb, and kagome lattices (Fig. 1) as both non-singular
and singular flat bands are observed within this set of
lattices.
We first define variables which will be used among

all lattices. The triangular Bravais lattice is defined
by two primitive lattice vectors a1 = (a, 0) and a2 =

(a/2,
√
3a/2). For convenience, we define the third vector

a3 = a2 − a1 = (−a/2,
√
3a/2). The vector q = (qx, qy)

denotes the crystal momentum. The following variables
allow us to present stiffness matrices for the discrete mod-
els succintly: γi = eiq.ai and ζi = 1 + γi, with γ∗ and ζ∗

denoting their respective complex conjugates.

1. Triangular lattice

In the thin-plate continuum metamaterial system, the
triangular lattice is a Bravais lattice and can be trans-
formed into either the honeycomb lattice or the kagome
lattice by removing subsets of sites as seen in Fig. 1.
The Brillouin zone of the triangular lattice is a hexago-
nal region in momentum space, and the bands have three
high-symmetry points marked as Γ, M and K, see labels
in Fig. 3(c) and Fig. 5(b). The unit cell in the continuum
model has a single resonator (Fig. 3(a)), and therefore
the lowest-frequency band is associated with the funda-
mental modes on individual resonators, as we verify by
examining the numerically computed eigenfunctions for
states from the lowest band. The continuum dispersion
relations were calculated by sampling 31 evenly-spaced
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Figure 6. Hilbert-Schmidt distance computed from lowest three bands of the discrete kagome lattice model, which correspond
to the vibrational states built from the fundamental modes of the three resonators in the unit cell. Bands 1–3 are ordered
according to the eigenfrequency value; the legend is shared by all panels. (a) Discrete model corresponding to T < Tfb in
Fig. 5, for which Band 1 is the flat band which touches Band 2 at q = (0, 0). Inset shows the two crystal momenta (blue dots)
at which the eigenstates are compared; the singular point is approached by setting the radius q of the circle arbitrarily close
to zero. (b) Discrete model corresponding to T > Tfb in Fig. 5, for which Band 3 is the flat band which touches Band 2 at
q = (0, 0). (c) Hilbert-Schmidt distance of the three bands with q = 10−5a when the discrete tension value g is varied near the
value corresponding to the flat band T = Tfb.

quantified by the Hilbert-Schmidt distance [27, 32]

dq1,q2
=

√

1−
∣

∣

〈

vq1

∣

∣vq2

〉∣

∣

2
, (17)

where vq1
and vq2

are two eigenstates from the same band
at momenta q1,q2 that are infinitesimally close to each
other near the QBT. As the distance between the two mo-
menta tends to zero, in the absence of a singularity the
Hilbert-Schmidt distance should tend to zero as well since
the inner product of two identical normalized eigenstates
is unity. However, for singular flat bands the metric be-
comes non-zero due to the immovable discontinuity in the
Bloch eigenstates at the QBT. For quantum-mechanical
states, the Hilbert-Schmidt distance represents a distance
between eigenstates using the metric defined by the real
part of the quantum geometric tensor [48]; the imagi-
nary part of this tensor is the Berry curvature [49]. In
the quantum context, the Hilbert-Schmidt distance (also
termed the quantum distance) is a geometric feature of
Bloch states in the Hilbert space with measurable phys-
ical consequences. In particular, the maximal value of
dq1,q2

evaluated for all possible momentum pairs for the
flat band has been shown to dictate the spread of Landau
level energies in a magnetic field [32].

To investigate whether the flat band of the kagome lat-
tice in our phononic system also exhibits a singular QBT,
we numerically evaluated the Hilbert-Schmidt distance
between Bloch eigenvectors at q1 = (q, 0) and q2 = (0, q)
as q → 0 for the lowest three bands of the discrete model
(see inset to Fig. 6(a) for the position of the momenta).
For discrete model parameters corresponding to T < Tfb

(Fig. 6(a)), the flat band (Band 1) and the next-highest
band (Band 2) both exhibit the maximal possible value
of dq1,q2

= 1 as the QBT at q = 0 is approached, showing
that the QBT is singular. By contrast, the third band ex-
hibits a Hilbert-Schmidt distance between the two states

that approaches zero as q → 0, which is the expected be-
havior in the absence of a singularity. When the tension
is increased beyond the point where three flat bands arise
(T > Tfb; Fig. 6(b)), the flat band is now third in order
of frequency (Band 3) and touches Band 2 at the ori-
gin; the corresponding Hilbert-Schmidt distances again
remain at one even as q → 0, whereas the separated band
(now the lowest band, Band 1) is non-singular. We can
confirm that the singularity follows the QBT by track-
ing the Hilbert-Schmidt distance of the three bands for
q close to zero in a discrete model with g varied near the
value corresponding to Tfb; the maximally singular QBT
is apparent on either side of the transition. Exactly at
T = Tfb, the three bands are degenerate at all values of q
and numerical evaluation generates arbitrary superposi-
tions of Bloch eigenvectors from the three bands, so the
Hilbert-Schmidt distance of each individual band cannot
be computed.

C. Robust boundary modes

The calculations of the maximal Hilbert-Schmidt dis-
tance in the vicinity of the band touching at q = (0, 0)
show that the discrete kagome lattice model harbors
a singular flat band at tension values away from Tfb,
and therefore supports robust boundary modes (RBMs)
as the boundary manifestation of noncontractible loop
states (NLSs) [26]. We therefore hypothesize that the
continuum model also supports RBMs. To test this hy-
pothesis, we constructed RBMs in the continuum model
and investigated their dynamics according to the plate
equations, Eq. (2). RBMs were constructed in the
kagome lattice by placing a CLS (Fig. 7(a)) throughout
all the lattice sites of a finite section of the kagome lat-
tice as shown in Fig. 7(b). In the bulk, individual CLSs
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ary modes, which derive from extended states belonging
to the singular flat band that are guaranteed to exist by
topology, in a finite section of a kagome lattice.

Our study indicates that engineered plate resonator
arrays could serve as a versatile tunable platform for ex-
ploring flat band physics. Despite the formal differences
between the the governing equations of the mechanical
system we have studied (Eq. (1)) and the Schrödinger-
like equations governing light propagation in photonic
waveguide lattices under the paraxial approximation [33–
36, 50], our discrete model reveals that the mechanical
system harbors flat bands whose singular nature and edge
mode behavior parallel those of the photonic systems.
The tunable balance between the biharmonic and Lapla-
cian contributions to the governing equations, absent in
photonic systems, enables the tuning of the resonator
system toward and away from the flat band state post-
fabrication as our computations demonstrate.

Experimental implementations of our proposal would
require thin-plate or membrane resonator arrays with
patterned boundary constraints and tunable in-plane
tension; these have been achieved in micromechanical
systems [39, 42] with lattice spacing of order microns.
Single- or few-atomic-layer graphene membranes (corre-
sponding to the gray areas in Fig. 1) are suspended over
voids fabricated in semiconductor substrates with the de-
sired metamaterial geometry (blank areas in Fig. 1), and
the edges are restricted by the adhesion of the mem-
brane to the substrate at the void boundaries (black
curves in Fig. 1). A two-dimensional membrane-based
system with patterned fixed boundaries was realized in
Ref. 51. Tension modulation could be achieved via elec-
trostatic [39, 40] or thermally-induced [41] prestresses.
Alternatively, resonators based on MXenes with ther-
mally responsive rigidity [52] and stiffness greater than
graphene [53] could serve as possible candidates for mi-
cromechanical experimental realizations.

At larger scales (lattice spacing of order millimeters),
it could also be experimentally feasible to recreate the
desired boundary geometry by embedding stiff, massive
inclusions in the shapes of the voids of the lattice pattern
(blank areas in Fig. 1) into an elastic plate [54], thereby
suppressing vertical deflections in the void regions to ap-
proximate the clamped internal geometries of the desired
lattices. Arrays of stiff, massive pillars with bases shaped
like the voids and adhered onto the plate could exert
a similar influence [55]. The global plate tension could
be modulated by applying edge loads to the outer plate
boundary or by thermally expanding/shrinking the plate
while keeping the outer boundaries fixed. Since the in-
clusion or pillar boundaries would only provide an ap-
proximation of the strict clamped boundaries assumed
in our work, the mapping to the discrete model would
have to be modified to incorporate the true boundary
conditions, but we expect that the predicted tunability
of the band structures could still be achieved in such plate
metamaterials provided the vibration suppresion due to
the void-shaped inclusions or pillars is sufficiently large.

While we have highlighted robust boundary modes as
a specific example of exotic flat-band physics in our sys-
tem, our platform could be used or modified to investi-
gate other properties of flat bands as well. As we have
shown, our system exhibits degenerate pairs and trios
of flat bands for certain geometries and tensions. The
quantum geometry of degenerate flat bands is known to
harbor unusual properties such as non-additivity of the
quantum metric [56]; our system provides a classical plat-
form in which to investigate the consequences of such
nontrivial geometry of the Bloch eigenfunctions. The ef-
fect of a gauge potential, particularly a magnetic field,
can be synthesized in the vibrational spectrum of me-
chanical systems via spatial modulation of the resonator
geometry or tension [57–61]; using such techniques, the
interplay of magnetic fields and singular flat bands [32]
could be investigated in mechanical resonator networks.

Beyond questions of fundamental interest, the exotic
vibrational states enabled by flat bands could serve as
the basis of phononic metamaterials with useful proper-
ties. The ability to tune the dispersion towards and away
from a flat band using tension modulation could be used
to manipulate or arrest the motion of sound pulses [38].
Periodic modulation of the background tension near the
flat band value could be used to parametrically amplify
vibrations in flat-band states [62]; since all states in the
flat band would resonate at the same parametric modu-
lation frequency, multispectral signals could be amplified
without loss of fidelity. The doubly-degenerate flat bands
in the honeycomb lattice can be used to engineer vibra-
tional states with spin-like degrees of freedom that ex-
hibit non-Abelian responses, which have been proposed
as a platform for mechanical computation [63]. More gen-
erally, our work suggests that the collective vibrations of
coupled resonators can be used to implement mechanical
analogues of two-dimensional tight-binding models [64],
with the possibility of controlling the strength and sign
of the coupling terms [46] through tension modulation
after fabrication.
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Appendix A: Finite-element analysis of continuum

model

Finite-element analyses were done in the commercially
available package COMSOL Multiphysics. The general
form pde module was used to define an eigenvalue prob-
lem based on a fourth-order partial differential equation
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describing thin plate elasticity,

∇·
[

( uxxx + 2uxyy − Tux) x̂+( uyyy − Tuy) ŷ

]

= λu,

(A1)
where subscripts denote partial derivatives of u with re-
spect to those coordinates. The Dirichlet boundary con-
dition u = 0 and Neumann boundary conditions ux =
uy = 0 satisfy the clamped boundary condition. Simpli-
fying the equation (A1) gives ∇4u−T∇2u = λu, which is
the desired eigenvalue problem. The simulation methods
were tested by comparing numerically-derived eigensolu-
tions for the square Laplacian plate (setting D → 0) and
circular clamped biharmonic plate (setting T → 0) to
known analytical results.
The continuum thin-plate resonator model has in-

finitely many bands, of which a subset are obtained nu-
merically. In this study, we focused solely on the bands
corresponding to the fundamental modes, which are built
primarily from the lowest-frequency modes of individual

resonators. This is apparent from the mode shape of the
Bloch eigenfunction in the continuum model which mir-
rors the mode shape of the single-resonator fundamental
mode.

The full-wave dynamical simulations were performed
by adding the second-order time derivative term to the
partial differential equation,

∂2u

∂t2
+∇4u− T∇2u = 0. (A2)

Mesh details for FEA: A custom mesh in COMSOL
was used for the finite element analysis. Element size
parameters for the mesh are as follows: maximum ele-
ment size = 0.08, minimum element size = 1.5 × 10−4,
maximum element growth rate = 1.2, curvature factor =
0.25, and resolution of narrow regions = 1.

A time-step of 0.01 was used in the time-dependent
solver called the generalized alpha.
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