Non-singular and singular flat bands in tunable phononic metamaterials
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Dispersionless flat bands can be classified into two types: (1) non-singular flat bands whose
eigenmodes are completely characterized by compact localized states; and (2) singular flat bands
that have a discontinuity in their Bloch eigenfunctions at a band touching point with an adjacent
dispersive band, thereby requiring additional extended states to span their eigenmode space. In this
study, we design and numerically demonstrate two-dimensional thin-plate phononic metamaterials
in which tunable flat bands of both kinds can be achieved. Non-singular flat bands are achieved by
fine-tuning the ratio of the global tension and the bending stiffness in triangular and honeycomb
lattices of plate resonators. A singular flat band arises in a kagome lattice due to the underlying
lattice geometry, which can be made degenerate with two additional flat bands by tuning the plate
tension. A discrete model of the continuum thin-plate system reveals the interplay of geometric and
mechanical factors in determining the existence of flat bands of both types. The singular nature
of the kagome lattice flat band is established via a metric called the Hilbert-Schmidt distance
calculated between a pair of eigenstates infinitesimally close to the quadratic band touching point.
We also simulate a phononic manifestation of a robust boundary mode arising from the singular flat
band and protected by real-space topology in a finite system. Our theoretical and computational
study establishes a framework for exploring flat-band physics in a tunable classical system, and for

designing phononic metamaterials with potentially useful sound manipulation capabilities.

I. INTRODUCTION

A flat band is a constant energy or frequency band for
all values of the crystal momentum in the Brillouin zone
of excitations of a periodic structure. Originally pro-
posed in electronic systems [1-10], flat band models have
also been investigated in optical [11-17] and acoustic[18—
21] systems as a novel means of manipulating light and
sound in artificial structures. Potential applications of
flat band physics in optics include lasing [17], distortion-
free image transmission [22], logic [23], slow-light prop-
agation [24], and mode conversion [25]. Acoustic struc-
tures with flat bands enable functionalities such as cloak-
ing [18], lensing [19], wavefront manipulation [20], and
addressable localized states [21]. These diverse applica-
tions primarily exploit the dispersionless character of flat
bands and the consequent existence of compact localized
states (CLSs)—a set of states belonging to the flat band,
each of which is sharply localized with nonzero weight
only on a finite subset of sites.

Compact localized states are guaranteed to exist in flat
bands arising from lattice models with finite-range inter-
actions between sites [26, 27]. However, they are not al-
ways guaranteed to form a complete spanning set for the
space of Bloch eigenfunctions belonging to the flat band.
If the flat band touches another band at a particular crys-
tal momentum, the point of band touching can induce
a discontinuity in the Bloch eigenfunctions of the flat
band when treated as a function of the momentum, which
serves as a topological obstruction to finding a spanning
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set of CLSs [28]. Flat bands can be classified as singu-
lar or non-singular based on the presence or absence of
such a discontinuity; the Bloch eigenspace of singular flat
bands under periodic boundary conditions is spanned by
combining CLSs with extended lattice-traversing eigen-
states called noncontractible loop states (NLSs) [26, 27].
For finite systems, these NLSs manifest as modes that
form closed loops along the system boundary and are
strictly localized to it [26]. These so-called robust bound-
ary modes (RBMs) cannot be disrupted through local
perturbations, and serve as a manifestation of boundary
effects protected by the real-space topology of the un-
derlying lattice [26, 28] in contrast to the more widely
established momentum-space topological protection [29-
31]. Besides the existence of RBMs and real-space topo-
logical phenomena, singular flat bands also generate un-
usual features in the energy spectrum of electrons in a
magnetic field [32].

To date, the exploration of singular flat-band physics
has primarily been advanced using photonic lattices
which can be fabricated in desired geometries via laser
writing [33-36]. However, photonic lattices and their re-
sulting band structures cannot be tuned after fabrication.
By contrast, many techniques exist to tune the vibra-
tional spectra of artificial acoustic and phononic struc-
tures through external electromagnetic or mechanical ac-
tuation [37], enabling dynamic control of band dispersion
towards and away from a flat band. In a previous theo-
retical and computational study, we introduced a design
for a one-dimensional phononic metamaterial based on
plate resonators, with a phonon band which can be dy-
namically tuned to be dispersionless by applying a global
tension [38]. Our work demonstrated that dynamic tun-
ing of a flat band can be exploited to stop and reverse a
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Figure 1. Unit cells of the three lattices: (a) triangular, (b)
honeycomb, and (c¢) kagome. Discrete spring-mass models for
coupled fundamental modes of the continuum thin-plate res-
onator metamaterial are superimposed. (a) A single resonator
as a building block has a length of ¢ with the chosen junc-
tion length of 0.4a. An example of the displacement field in
the triangular unit cell is shown in the bottom panel of (a).
The masses in the corresponding discrete model have ver-
tical springs acting as anchors along with coupling springs.
The bold black edges around the plates signify Dirichlet or
clamped boundary conditions. On the bottom panel, figures

a, b, and ¢ show the extended version of the respective lat-
tices.

sound pulse. However, flat bands in one dimension are
guaranteed to be non-singular [26]. Realizing singular
flat bands in higher-dimensional tunable phononic meta-
materials could open up a highly adaptable platform for
investigating singular flat band physics, and also provide
design strategies for novel sound manipulation and pro-
cessing in mechanical metamaterials.

As a step towards this goal, in this study we propose a
class of thin-plate phononic metamaterials in which flat
bands of both singular and non-singular type can be re-
alized. Our designs are based on the triangular lattice
and its derivatives, the honeycomb and kagome lattices
(Fig. 1). The dispersion relations of the vibrational band
structures depend strongly on the lattice geometry as
well as the in-plane tension within the plate, a param-
eter which can be tuned post-fabrication using electro-
static [39, 40] or thermally-induced [41] stresses in mi-

cromechanical resonator arrays [42]. By mapping the
mechanical response of the continuum plate resonators
to a discrete model of masses connected by springs [38]
(green and yellow balls in Fig. 1), we elucidate the sepa-
rate mechanisms for flat bands of different types to arise
in our model, identify the conditions on system param-
eters that generate flat bands in the three lattices, and
show that the honeycomb and kagome lattices can harbor
doubly- and triply-degenerate flat bands respectively. We
verify the discontinuity in the Bloch eigenfunctions of the
flat band in the discrete kagome lattice model, thereby
establishing the singular nature of the band. We build
a boundary mode from states belonging to the singular
flat band, and demonstrate its robustness against per-
turbations in dynamical simulations. We wrap up with a
brief discussion of potential experimental platforms and
of possible future directions.

II. THEORETICAL FRAMEWORK
A. Model of coupled plate resonators

Our analysis uses the model of elastic plate resonator
assemblies introduced in Ref. 38. We model a continuum
elastic plate (grey region in Fig. 1) with clamped exter-
nal and internal edges (solid black lines) that impose the
chosen plate geometry. We study three lattice geometries
that are assembled by joining identical hexagonal plates
with rounded edges along prescribed boundaries to gen-
erate a triangular, honeycomb, or kagome lattice (Fig. 1
(a), (b), and (c) respectively). The equation of motion
for the transverse displacement field u(x,y) of the plate
with mass per unit area p, bending modulus D, and with
a uniform in-plane tension 7" is [43]:

0u
—— + DV —T'Vu=0 domai
p8t2 + u u on domain, (1)

u=Vu=0 on boundary.

Note that Eq. (1) differs from the Schrédinger and
Schrodinger-like equations that govern excitations in the
electronic and photonic systems used in prior investiga-
tions of flat bands: it is second-order (not first-order)
in time, and includes a biharmonic operator in addi-
tion to the Laplacian operator. As mentioned previously,
the tension is an externally-imposed prestress which can
be tuned whereas the other parameters and the geome-
try are fixed at fabrication. Modulating the tension ad-
justs the balance between the biharmonic and Laplacian
terms, which imparts a high degree of tunability to the
mode structure and excitation spectra of the phononic
system.

The continuum plate equations can be non-
dimensionalized by defining the dimensionless variables
T = x/a, § = yla, and T = t\/D/(pat). In terms of



these variables, Eq. (1) becomes
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) on domain, )
v =VYu=0 on boundary.

For a particular boundary geometry, Eq. (2) shows that
under appropriate length and time units, the system de-
pends on a single dimensionless parameter—the rescaled
tension T' = T"a?/D, which serves as the tunable phys-
ical quantity in our study. In the remainder of this
manuscript, the bar is dropped for clarity; the variables
x, y, t and the gradient operator V refer to the rescaled
coordinates from here on.

Oscillatory solutions to Eq. (2) can be written as a
superposition of normal modes u;(x, y)e™ ™ where the
eigenfunction w;(x,y) and oscillation frequency w; of the
ith mode solve the eigenvalue problem

Viu;, — TV?u; = w?ui (3)

under the prescribed boundary conditions. We use finite-
element analysis to compute normal mode eigenfunctions
and frequencies (details are provided in Appendix A).
While a true continuum system has infinitely many de-
grees of freedom, and thus an infinite number of normal
modes per resonator, we focus in this work upon collec-
tive modes that arise from combinations of the lowest-
frequency or fundamental mode of each individual res-
onator (schematically depicted in Fig. 1(a)). Since modes
of an individual resonator with higher wavenumbers are
significantly higher in frequency than the fundamental
mode, a system of N coupled resonators will typically
have its N lowest normal modes composed primarily of
combinations of fundamental modes on individual res-
onators, such as the modes shown in Fig. 2(c—d). For an
infinite periodic lattice, the eigenmodes are Bloch func-
tions defined on a unique set of crystal momenta termed
the Brillouin zone and the corresponding eigenfrequency
surfaces are the bands; here, for a unit cell with n res-
onators the lowest n bands can be identified as being
built primarily from the fundamental modes on individ-
ual resonators. The fundamental mode frequency wq for
a single resonator is used as the frequency scale for mode
frequencies and band structures evaluated numerically.

B. Discrete model of coupled fundamental modes

The collective excitations built from couplings among
fundamental modes can be described by a simpler “tight-
binding” description of discrete oscillators with finite-
ranged couplings, derived in Ref. 38 and summarized
here. The key elements are shown as balls connected
by springs in Fig. 1 (top view of different lattices) and
Fig. 2(a) (side view of a minimal unit comprising a pair of
coupled resonators). The primary degrees of freedom are
the fundamental modes of individual resonators, each of

which is modeled as a harmonic oscillator of mass m con-
fined to the vertical direction (yellow balls), with spring
stiffness k; (red spring). To correctly model the effect
of variable tension T on the coupling between funda-
mental modes of adjacent resonators, we introduce an
additional, secondary degree of freedom, also a ball of
mass m, which encodes the vertical displacement of the
plate at the junction between two resonators (green ball
and spring) with spring constant ks. Since the junc-
tion between resonators is narrower than the resonator
diameter, the secondary degree of freedom has a stiffer
spring ko > k;. The junction mass is coupled to the
fundamental mode masses by harmonic springs (dark
grey) which are prestressed with a tensile force 7, and
a torsional spring (red) which induces the two tensile
springs to be collinear. If y; and y3 correspond to the
vertical displacements of the resonator degrees of free-
dom and y, to that of the junction, the effect of the
tensile and torsional springs is captured in potential en-
ergy contributions Us = 7[(y1 — y2)% + (y2 — y3)?]/a and
Uy = /(1 — cos @) ~ 2&(y1 — 2y2 + y3)?/a® respectively.

Newton’s equations of motion for the coupled spring-
mass system can be written as
d’y

2 4+ Ky =0, 4
m— y (4)

where y = {y1, 92, ...} is the vector of vertical displace-
ments, and K is the stiffness matrix whose entries are
obtained by taking derivatives of the total potential en-
ergy in the on-site, tensed, and torsional springs. For
the three-site model of a coupled resonator pair shown in
Fig. 2(a), the stiffness matrix reads

27 &

k1 + Jr@% - Vi

[

.
o ~72~ 7. 2~é4~ ~422~
K=| —i-% ht7+8 -7 | 0O
R T 2R 7. T R
= —i—F kmtite

where ¢ is the horizontal spacing between the masses.
To build a discrete model with dimensionless parameters
that can be related to the continuum system, we rescale
time and displacements by w; L and a respectively. The
distance between primary degrees of freedom y; and ;4
is also set to be a, so that £ = a/2. In terms of the
rescaled time ¢t = wot, spring stiffnesses k; = sz /mw%,
the tension 7 = 27 /amw3, and the torsional stiffness k =
4% /a*mwd, Eq. (5) reduces to

ki+1t+k - K
K= —a ko + 27 + 4k -« ,  (6)
K — ki+T1t+kK
where @« = 7 4 2k is the net nearest-neighbor cou-

pling strength. The torsional springs generate next-
nearest-neighbor couplings with strength x. The non-
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Figure 2. Crossing between the bonding and the anti-
bonding eigenmodes at threshold tension T that can be
tuned by changing the junction length in the continuum
model. (a) Spring-mass discrete model describing the spring
stiffnesses and the vertical displacements of the vertical
springs and the angular displacement of the torsional spring.
(b) Honeycomb ring with the dimensions for which the eigen-
mode crossing is shown in (e). The anti-bonding and the
bonding modes of the 6-site honeycomb ring along with
the decorated 12-site decorated honeycomb discrete model
is shown in (¢) and (d) respectively. (e) The crossing be-
tween the bonding and the anti-bonding mode for the junc-
tion length [ = 0.46a¢ of the honeycomb ring. The modes
associated with the results are shown in (¢) and (d) along
with the 12-gite spring-mass model that gives agreeable an-
alytical fits (solid lines). The fundamental eigenmode used
for the normalizing frequency wp is shown in Fig. 3(b). The
change in the threshold tension T™ as a function of the junc-
tion length I demonstrates the geometric tunability as shown
in (f). The open square markers are results from simulations
and the dashed line is a fit to an exponentially decaying func-
tion A + Bexp[—Cl], with A ~ —23.10, B =~ 2233.14, and
C ~ 7.95.

dimensionalized equation of motion is

d2y

el + Ky = 0, (7)

and the normal modes u;e =it of the discrete system are
obtained from solutions of the eigenvalue equation

For a continuum system with a given set of physical pa-

rameters, the parameters of the corresponding discrete
model are obtained by matching the normal mode fre-

quencies of the modes arising from the fundamental res-
onator excitations of the continuum system [38]. The
structure and symmetries of the discrete stiffness matrix
provide insights into the spectral features of the contin-
uum system and their relationship to the geometry and
tunable parameters.

C. Tunable mode-crossing mechanism

The stiffness matrix for arbitrary networks of coupled
resonators can be built by overlapping blocks of the form
of Eq. (6). As an example of matching discrete and con-
tinuum models which elucidates the mode crossing mech-
anism that generates tunable flat bands, we consider a
six-resonator ring, Fig. 2(b), which is a recurring motif
in the honeycomb and kagome lattices. We expect the
continuum eigenmodes with the lowest six eigenfrequen-
cles to derive primarily from the fundamental modes of
individual resonator. At T' = 0, the lowest eigenmode is
shown in Fig. 2(c) and can be interpreted as a combina-
tion of fundamental modes in an “anti-bonding” configu-
ration with displacements on adjacent resonators bearing
opposing signs. The sixth eigenmode is a “bonding” con-
figuration, shown in Fig. 2(d). The intermediate modes
involve other combinations of the six fundamental modes.

Upon increasing the tension, the anti-bonding and
bonding modes approach each other in frequency, as
shown in Fig. 2(e). At a threshold tension T*, the
frequencies of the two modes become degenerate with
each other and with the four intermediate modes. When
the tension is increased further, the bonding mode be-
comes the lowest in frequency, as dictated by the max-
imum principle when the Laplacian operator dominates
the plate equation, Eq. (2) [38, 44, 45]. The degeneracy
in the coupled modes at T* demonstrates one mecha-
nism for generating flat bands in a periodic 2D array of
resonators.

The balance of bending and stretching energy that
gives rise to the mode crossing is made evident in the cor-
responding discrete model. The discretized six-resonator
ring has twelve harmonic degrees of freedom, whose dy-
namics are dictated by the 12 x 12 stiffness matrix

P —a K ... ... K —«
—a ¢y —« 0
K —a ¢ —a kK 0
K= 0 0 —«a (;52 —Q 0 , (9)

K oo v K —a ¢ —«
e o A /2

where ¢ = ky + 27 + 2k is the on-site net stiffness of the
primary mass and ¢ = ks + 27 4 4k is the on-site net
stiffness of the junction mass. Out of the twelve eigenvec-
tors of the discrete model, displacements corresponding
to the anti-bonding and bonding modes can be readily
identified (masses and springs in Fig. 2(c—d)) and the



corresponding eigenfrequencies are respectively

wi = ky + 21,

ky 4 ko +4(t +2k) — VU (10)

2 _
Wy = 9 )

where U = (k1 — ko)? + 16(7 + 2x)%. We use these ex-
pressions to fit the discrete model to the eigenfrequen-
cies of the continuum mode. Specifically, we treated ki,
ks, and k as constants across all tension values, and as-
sumed a linear relationship 7" = cr, where c is a constant
parameter. Given the exact frequencies of the discrete
model, Eq. (10), the parameter value k; = 1.01 is fixed
by equating it to the square of antibonding mode fre-
quency from the continuum model at T = 7 = 0. The
complete relationship between frequency and prestress
(tension) for this mode is then quantitatively recovered
by setting ¢ = 95. Having set these two parameters, the
remaining parameters ke = 10 and x = 0.018 were fixed
by fitting the analytical form for ws from Eq. (10) to
the bonding mode frequency curve from the continuum
model. Through this procedure, we found that the dis-
crete model with four fit parameters quantitatively cap-
tures the dependence of normal mode frequencies on the
varying tension measured in the continuum model (com-
pare symbols to solid lines in Fig. 2(e)).

The lowest six modes in the discrete model become de-
generate when the coupling constants satisfy the relation

7 =1/(2r)2 + (ks — k1) — 2.

For fixed values of the stiffnesses k1, ko and k, a tension
can always be found to generate a mode crossing pro-
vided ko > ki. This constraint on effective parameters
tends to be satisfied by coupling regions that are nar-
rower than the typical extent of an individual resonator.
Physically, tuning the relative strength of tension and
bending in the system has the effect of flipping the sign of
the effective interaction between the primary masses in a
tight-binding description; our model realizes a mechan-
ical analogue of a method proposed for sign control of
coupling terms in tight-binding models in Ref. 46, which
also uses a third degree of freedom between the primary
sites to mediate the sign change. As a design principle,
it useful to consider the fundamental mode on each res-
onator as a degree of freedom in a tight-binding model.
Each degree of freedom is coupled to degrees of freedom
on neighboring resonators. The strength and sign of the
effective coupling are controlled by the global tension on
the plate. At the degeneracy point, the coupling strength
is effectively zero as bonding and anti-bonding pairs have
equal vibration frequency; as a consequence, we expect a
degeneracy among all fundamendal modes present in the
assembly. This mechanism, when applied to an infinite
lattice of coupled resonators, suggests that flat bands will
generically be present at special values of the in-plane
tension.

The threshold tension T* occurs at a particular value

for a given geometry, and also sets the frequency of the
degeneracy. Once the geometry is fixed, the system can
be moved towards or away from the degeneracy point,
but the frequency of the degenerate modes cannot be
changed. To tune the threshold tension and the degen-
erate frequency for a particular resonator geometry, we
can adjust the junction length J relative to the resonator
size a. In Fig. 2(f), we show that the threshold tension
value of the mode crossing in continuum simulations can
be varied significantly by changing the junction length.
Therefore, changing tension allows dynamical tuning and
changing geometry allows the threshold tension tuning,
providing two types of tunability in the system. Whereas
we will focus on the effect of changing tension for fixed
lattice geometries in the next section, we mention here
that the junction geometry could also be chosen in ad-
vance to target particular tension ranges or frequency
values for the flat band.

III. RESULTS

A. Band structures

We now investigate the consequences of the mode-
crossing mechanism for infinite periodic lattices of res-
onators. We restrict ourselves to lattices based on the
triangular Bravais lattice, namely the triangular, honey-
comb, and kagome lattices (Fig. 1) as both non-singular
and singular flat bands are observed within this set of
lattices.

We first define variables which will be used among
all lattices. The triangular Bravais lattice is defined
by two primitive lattice vectors a; = (a,0) and ay =
(a/2,v/3a/2). For convenience, we define the third vector
a3 = ap —a; = (—a/2,v/3a/2). The vector q = (¢, qy)
denotes the crystal momentum. The following variables
allow us to present stiffness matrices for the discrete mod-
els succintly: y; = €92 and {; = 1 +;, with y* and (*
denoting their respective complex conjugates.

1. Triangular lattice

In the thin-plate continuum metamaterial system, the
triangular lattice is a Bravais lattice and can be trans-
formed into either the honeycomb lattice or the kagome
lattice by removing subsets of sites as seen in Fig. 1.
The Brillouin zone of the triangular lattice is a hexago-
nal region in momentum space, and the bands have three
high-symmetry points marked as I', M and K, see labels
in Fig. 3(c) and Fig. 5(b). The unit cell in the continuum
model has a single resonator (Fig. 3(a)), and therefore
the lowest-frequency band is associated with the funda-
mental modes on individual resonators, as we verify by
examining the numerically computed eigenfunctions for
states from the lowest band. The continuum dispersion
relations were calculated by sampling 31 evenly-spaced
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Figure 3. Band structure of the triangular lattice for

three different tension values. (a) Unit cell with the corre-
sponding discrete model superimposed. (b) The fundamental
mode of a circular clamped plate (r ~ 0.54a) with frequency

~ 34\/Dp/a* for T = 0 and D = 1. The frequency wp
is used as the normalizing frequency throughout this study.
(c) Dispersion relation of the lowest band from finite-element
computations for the continuum model (symbols) and ana-
Iytical evaluation of the discrete model with parameters ob-
tained by a fit to the continuum model (solid curves/surfaces).
Values are shown along line segments connecting the high-
symmetry points on the left, and for the entire hexagonal
Brillouin zone on the right. The high-symmetry points I"; M,
K and the segments connecting them are shown on the surface
plot of the band at T' = Ty, for which the band is completely
flat. Discrete model parameters k = 0.19 and ko = 2.62 are
held constant for all tension values. Fit parameters 7 and ki
for different tensions T" are: T =1 — {7,k1} ~ {0.39,0.36},
T =956 =Tw — {1,k1} ~ {0.59,1.06}, and T" = 240 —
{r,k1} ~ {0.73,1.78}.

points along the segments connecting the high-symmetry
points in the Brillouin zone (symbols in Fig. 3(c)).

At low tension (T = 1 in Fig. 3(c)), the g = 0 mode
has the largest frequency in the band, consistent with the
“bonding” configuration being of higher frequency than
the “anti-bonding” configuration because the displace-
ments on all resonators have the same phase at q = 0 [38].
At high tension (T = 240), the relative frequencies at the
band center and the band edges have flipped, and q = 0
now bears the lowest frequency, consistent with a flip in
the order of bonding and anti-bonding configurations. At
a specific value of the tension T' = Th, = 95.6, the band
is completely flat across all sampled points, showing that
the degeneracy mechanism observed for the six-resonator
ring gives rise to a flat band at a fine-tuned parameter
value. Since the lowest band is isolated from higher bands
and does not touch any other band, the flat band at T,
is a non-singular band as a singularity can only occur at
a band touching point.

While the continuum model is in the triangular lattice
form, the discrete model is a decorated triangular lattice
since an extra lattice point is required to model the junc-
tion between each resonator as shown in Fig. 1(a). The
unit cell of the discrete model has four degrees of free-
dom, resulting in four frequency bands. The 4 x 4 matrix
describing the Bloch bands of the periodic lattice in the

discrete model is

Vi—26> cosqa; alf ol olf

B als Vo 0 0
KT(q) - agz 0 ‘/2 0 ’ (11)
aly 0 0 W

where V] = ki + 47 + 6k is the on-site stiffness for the
primary degree of freedom and V5 = ka+27+4k is the on-
site stiffness for the secondary degrees of freedom. The
frequency bands are then solved via |K(q) —w(q)?I| = 0,
giving rise to four bands. When ko > ki, the lowest
band includes eigenvectors whose displacements are sig-
nificantly larger for the primary degree of freedom than
for the secondary degrees of freedom, consistent with our
assignment of the resonator and junction displacements
with the primary and secondary oscillators respectively.

To fix the discrete model parameters, we used a fit of
the analytical form for the lowest eigenfrequency from
the discrete model to the numeric non-dimensionalized
frequencies w/wq for the lowest band from the continuum
model along the line segments connecting the symmetry
points I') M and K. The numerically obtained frequen-
cles from the continuum model (symbols) are compared
to the fitted analytical solution for the lowest eigenfre-
quency of Eq. (11) (curves) in the left column of Fig. 3(c),
showing good agreement at all three tension values. We
were able to obtain a quantitative fit across the Brillouin
zone by keeping the parameters x and ko fixed across
all values of T, and allowing both %; and 7 to vary at
each T value (see caption to Fig. 3 for fit parameter val-
ues). The variation in both the tensile force and the
on-site harmonic stiffness in the discrete model reflects
the fact that changing the continuum tension modifies
the fundamental mode frequency on each resonator, and
also influences the coupling between modes on adjacent
resonators.

In the discrete model, the lowest band becomes com-
pletely flat (i.e. the eigenfrequency has no g-dependence)
at a parameter value 7 that is related to the other discrete
parameter values via

T= \/(3/&)2 + (ks — k1) — 3k, (12)

If we treat the stiffnesses k1, k2 and x as fixed and the
spring tension 7 as a variable parameter, we can find
a real value of 7 that generates a flat band as long as
ko > k1. This requirement tends to be satisfied for fits
of our discrete model to continuum data across different
geometries and tension values, and reflects the physical
constraints to the model for narrow junctions: displace-
ments at the junctions cost more elastic energy than the
same displacements at the center of the resonators, which
translates to a higher stiffness for the junction degrees of
freedom in the discrete model.
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Figure 4. Band structures of the honeycomb lattice for three
different tension values. (a) Unit cell with the correspond-
ing discrete model superimposed. (b) An example eigenmode
of the unit cell at the symmetry point M of Brillouin zone
is shown along with the corresponding discrete model. The
discrete model also has a torsional spring which is activated
due to the bending at the junction replicating the bending
stiffness of the continuum model. (¢) Dispersion relations
of the lowest two bands from the continuum (symbols) and
discrete (curves/surfaces) models at three different tension
values. Values are shown along line segments connecting the
high-symmetry points on the left, and as a surface plot over
the entire hexagonal Brillouin zone on the right. Note that
there are two bands in all three surface plots, but they exactly
coincide for T' = Th,. Parameters & = 0.19 and k2 = 2.62 are
held constant. Fit parameters T and ki for different tensions
Tare: T =1 — {7,k1} =~ {0.39,0.74}, T = 82.1 = Tw, —
{r,k1} ~ {0.59,1.28}, and T'= 200 — {z,k1} =~ {0.68,1.91}.

2. Homneycomb lattice

The honeycomb lattice is built by decorating the tri-
angular Bravais lattice with a two-resonator unit shell
shown in Fig. 4(a). Consequently, the lowest two bands in
frequency are associated with the fundamental resonator
modes. We expect a dispersion similar to that of the
tight-binding honeycomb lattice, used as a basic model
for electrons in graphene [47]: the two bands touch each
other at the six corners of the Brillouin zone and exhibit
a linear dispersion in the vicinity of the band touchings
(Fig. 4(c)). At low tension, the effective coupling between
fundamental modes is negative, and the lowest-frequency
mode of the lowest band at g = 0 is an antibonding state
where each sublattice of the honeycomb lattice shares in-
phase displacements of the fundamental modes, but the
two sublattices have displacements of opposite sign com-
pared to each other. Upon increasing the tension, we
cross through a point T = Ty, = 82.1 at which the ef-
fective coupling of the fundamental modes becomes zero.
At this point, the two bands become flat and degener-
ate. As the tension is increased further, the bands again
separate, but the lowest band is now associated with a

bonding configuration with all displacements in-phase at
q = 0, analogous to a tight-binding model with positive
couplings.

The discretized version of the resonator lattice is a dec-
orated honeycomb lattice as shown in Fig. 4(a). The
5 x b stiffness matrix encapsulating the coupled discrete
degrees of freedom in the decorated honeycomb lattice is

Vin a k(8 +7v3) avs av;

(0% V2 (0% 0 0
Ku(q) = | —x(G2+t7vs) a Va1 a a |,

QY 0 « Vo 0

a3 0 « 0 VW

(13)
where, Vi;1 = k1 + 37 + 3k is the on-site term for the
primary degrees of freedom. When k; > kq, the two
lowest-frequency bands are well-separated from the three
higher bands and represent the modes for which the pri-
mary degrees of freedom have much larger displacements
than the secondary degrees of freedom. The analytical
expressions for these two bands (solid curves in Fig. 4(c))
are fit to the numerically-computed frequencies from the
continuum model (symbols) for points along the line seg-
ments connecting the high-symmetry points in the Bril-
louin zone. In the discrete model, two degenerate flat
bands occur when the parameter 7 satisfies

=/ (55/2) + wlks — ) — 55/2. (14)

The change in lattice topology gives rise to a different
expression for flat bands compared to that for the tri-
angular lattice, Eq. (12). As with the triangular lattice,
a real value of 7 can be found which satisfies the above
condition as long as ko > k.

3. Kagome lattice

The flat bands in the triangular and honeycomb lat-
tices require fine-tuning of the global in-plane tension
on the resonator system: the bands in question generi-
cally have a nonuniform dispersion relation, and become
dispersion-free only at a special tension value for a partic-
ular geometry. This behavior is anticipated by the tight-
binding dispersion relations of the same lattices, which
display flat bands only when the nearest-neighbor cou-
pling is set to zero. Such flat bands do not arise from
the real-space lattice topology and are non-singular. By
contrast, the kagome lattice is an example of a lattice
which, in a tight-binding description, generically exhibits
a flat band due to its lattice topology. The flat band is
singular by virtue of a discontinuity in its Bloch eigen-
states at a quadratic band touching with its neighboring
band [26, 28].

To replicate this mechanism in our mechanical system,
we built a kagome lattice of resonators using a three-site
unit cell shown in Fig. 5(a); the bands of interest are the
three lowest-frequency band. Consistent with the tight-
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Figure 5. Band structures of the kagome lattice for three
different tension values. (a) Unit cell with the correspond-
ing discrete model superimposed. (b) Brillouin zone of the
kagome lattice, with high-symmetry points marked. (¢) Band
structures from the continuum model (symbols) and discrete
model (solid curves/surfaces) show that there is always one
band that is flat (circular red open markers) for all values of
tension. At the threshold tension of the crossing point be-
tween the bonding and the anti-bonding eigenmode, all the
three bands become degenerate and flat. Parameters x = 0.19
and ks = 2.62 are held constant. Fit parameters 7 and kp for
different tensions T are: T = 1 — {7,k1} =~ {0.39,0.48},
T =2875=Tw — {1,k1} ~ {0.59,1.08}, and T" = 220 —
{r,k1} ~ {0.71,1.79}.

binding expectation, we find a flat band guaranteed by
the lattice topology at all tension values in the continuum
system (highlighted in orange in Fig. 5(c)). The flat band
touches the adjacent dispersive band at q = 0, whereas
the third band and second band touch at the six corners
of the Brillouin zone. The band structures at low and
high tension are consistent with that of a tight-binding
kagome lattice model with a change in sign of the hopping
term between T'= 1 and T = 220, so that the flat band
shifts from the bottom to the top in order of frequencies.
At the point of the sign change, the effective coupling of
the three primary degrees of freedom becomes zero, and
we observe three degenerate flat bands at 7' = Tj, = 87.5.

The kagome lattice in the continuum model corre-
sponds to a decorated kagome lattice in the discrete
model with three primary and six secondary degrees of
freedom in the unit cell as shown in Fig. 5(a). The cor-

responding 9 x 9 stiffness matrix is

Vi a k(3 0 o 0 apf i a

a Vo o0 0 0 0 0 0 0
—kle a0 Vi a a a 0 —k30
0 0 o Vo 0 0 0 ay3 O
KK(q) = ays 0 « 0 Vo 0 O 0 0 ,
0 0 o 0 0V 0 «a O
ayy 0 0 0 0 0 Vo «a O
-0 0 —kllay; 0 o o V1 «
a 0 0 0 0 0 0 o W
(15)

where the on-site terms V; and V5 for the primary and
secondary sites are the same as for the triangular lattice.
The lowest three bands of the discrete model display the
same behavior as of the continuum model: a flat band
exists at all tension values, and touches a dispersive band
at ¢ = 0. At low values of 7, the flat band has the
lowest frequency; at high values of 7, the order of the
lowest three bands is inverted and the flat band has the
highest frequency of the three bands (albeit still lower
than the frequencies of the other six bands in the discrete
model). The threshold separating these two situations
occurs when

7= \Tr2 + k(ks — k1) — 3k, (16)

At this value of the tensile force in the discrete model,
the three bands become degenerate and dispersion-free,
giving rise to a triply-degenerate flat band. The threshold
7 value is always real when ks > k1. However, it can be
negative if ko < k1 + 2x. Note that negative values of
the tensile force 7 in the coupling springs of the discrete
model are physically allowed, just as negative values of
the tension T" are allowed in the continuum model.

B. Flat band singularity and Hilbert-Schmidt
distance

The band structure of the kagome lattice is distinct
from that of the triangular and honeycomb lattices in
exhibiting a degeneracy between the flat band and the
dispersive band that is nearest in frequency at the crys-
tal momentum g = 0. The adjacent band has a quadratic
dispersion relation near the touching point, and the de-
generacy is termed a quadratic band touching (QBT).
QBTs of flat bands can be classified as singular or non-
singular depending on the presence or absence of a dis-
continuity in the Bloch eigenfunctions of each band at
the touching point, which cannot be removed through a
local gauge transformation [26].

A signature of a singular QBT is that Bloch eigenstates
of different crystal momenta that are close to the QBT do
not overlap, but instead differ from each other by a finite
amount even as the momenta at which they are evaluated
become arbitrarily close to each other. This difference is
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Figure 6. Hilbert-Schmidt distance computed from lowest three bands of the discrete kagome lattice model, which correspond
to the vibrational states built from the fundamental modes of the three resonators in the unit cell. Bands 1-3 are ordered
according to the eigenfrequency value; the legend is shared by all panels. (a) Discrete model corresponding to T' < Tj, in
Fig. 5, for which Band 1 is the flat band which touches Band 2 at q = (0, 0). Inset shows the two crystal momenta (blue dots)
at which the eigenstates are compared; the singular point is approached by setting the radius g of the circle arbitrarily close
to zero. (b) Discrete model corresponding to 7' > T, in Fig. 5, for which Band 3 is the flat band which touches Band 2 at
q = (0,0). (c) Hilbert-Schmidt distance of the three bands with ¢ = 10™°a when the discrete tension value 7 is varied near the

value corresponding to the flat band T' = Th,.

quantified by the Hilbert-Schmidt distance [27, 32]

d 1- |<UQ1|HQ2>|2a (17>
where v4, and vq, are two eigenstates from the same band
at momenta qi,qs that are infinitesimally close to each
other near the QBT. As the distance between the two mo-
menta tends to zero, in the absence of a singularity the
Hilbert-Schmidt distance should tend to zero as well since
the inner product of two identical normalized eigenstates
is unity. However, for singular flat bands the metric be-
comes non-zero due to the immovable discontinuity in the
Bloch eigenstates at the QBT. For quantum-mechanical
states, the Hilbert-Schmidt distance represents a distance
between eigenstates using the metric defined by the real
part of the quantum geometric tensor [48]; the imagi-
nary part of this tensor is the Berry curvature [49]. In
the quantum context, the Hilbert-Schmidt distance (also
termed the quantum distance) is a geometric feature of
Bloch states in the Hilbert space with measurable phys-
ical consequences. In particular, the maximal value of
dq,,q, €valuated for all possible momentum pairs for the
flat band has been shown to dictate the spread of Landau
level energies in a magnetic field [32].

qi,92 —

To investigate whether the flat band of the kagome lat-
tice in our phononic system also exhibits a singular QBT,
we numerically evaluated the Hilbert-Schmidt distance
between Bloch eigenvectors at q1 = (¢,0) and g2 = (0, q)
as ¢ — 0 for the lowest three bands of the discrete model
(see inset to Fig. 6(a) for the position of the momenta).
For discrete model parameters corresponding to 7' < T,
(Fig. 6(a)), the flat band (Band 1) and the next-highest
band (Band 2) both exhibit the maximal possible value
of dg, q, = 1 as the QBT at ¢ = 0 is approached, showing
that the QBT is singular. By contrast, the third band ex-
hibits a Hilbert-Schmidt distance between the two states

that approaches zero as ¢ — 0, which is the expected be-
havior in the absence of a singularity. When the tension
is increased beyond the point where three flat bands arise
(T > Tw; Fig. 6(b)), the flat band is now third in order
of frequency (Band 3) and touches Band 2 at the ori-
gin; the corresponding Hilbert-Schmidt distances again
remain at one even as ¢ — 0, whereas the separated band
(now the lowest band, Band 1) is non-singular. We can
confirm that the singularity follows the QBT by track-
ing the Hilbert-Schmidt distance of the three bands for
q close to zero in a discrete model with T varied near the
value corresponding to Ti,; the maximally singular QBT
is apparent on either side of the transition. Exactly at
T = Ty, the three bands are degenerate at all values of q
and numerical evaluation generates arbitrary superposi-
tions of Bloch eigenvectors from the three bands, so the
Hilbert-Schmidt distance of each individual band cannot
be computed.

C. Robust boundary modes

The calculations of the maximal Hilbert-Schmidt dis-
tance in the vicinity of the band touching at q = (0,0)
show that the discrete kagome lattice model harbors
a singular flat band at tension values away from Tj,,
and therefore supports robust boundary modes (RBMs)
as the boundary manifestation of noncontractible loop
states (NLSs) [26]. We therefore hypothesize that the
continuum model also supports RBMs. To test this hy-
pothesis, we constructed RBMs in the continuum model
and investigated their dynamics according to the plate
equations, Eq. (2). RBMs were constructed in the
kagome lattice by placing a CLS (Fig. 7(a)) throughout
all the lattice sites of a finite section of the kagome lat-
tice as shown in Fig. 7(b). In the bulk, individual CLSs
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Figure 7. Robust boundary mode (RBM) created by placing the compact localized states throughout the kagome lattice. The
compact localized state (a) is a flat band state and is derived from eigenmode analysis. Placing such modes around the sites
labeled 1-16 in the finite section of the kagome lattice (b) creates the RBM. The destructive interference in the bulk leads
to nonzero displacements only on the boundary resonators. (¢) Dynamical evolution of the energy density during full-wave
simulations starting fom the initial displacements in (b) (top), and with a perturbed initial condition in which the displacements
on two resonators are set to zero (bottom). The tension is set to 7'=1 in the dynamical simulations. Snapshots are shown at

intervals of 250 units of the rescaled time £.

interfere destructively leading to net zero displacements,
with the displacements surviving only at the edges.

Dynamical simulations reported in the top row of
Fig. 7(c) show that the RBM remains confined to the
boundary over hundreds of cycles, even though the sys-
tem harbors many additional states in its interior at the
same [requency wq (the flat band frequency). This ro-
bustness arises because the RBMs are vestiges in a finite
system of noncontractible loop states (NLSs)—line-like
flat band states that loop around periodic directions in
the absence of boundaries [26]. Whereas the CLSs form a
spanning set for the space of eigenstates in a non-singular
flat band, they do not span that space when the flat band
is singular; additional NLSs are required to completely
span the space of eigenstates belonging to the flat band.
In a finite section of the lattice with a boundary, the
NLSs manifest as closed edge states which loop around
the boundary; these are the RBMs. The RBMs cannot
be disconnected by adding or subtracting CLSs around
the boundary; a closed loop of resonators oscillating with
alternating phases is always maintained.

Motivated by explorations of RBMs in photonic sys-
tems [34], we verified the robustness of the RBM against
being disconnected by initializing the full-wave simula-
tion with a perturbed version of the boundary mode,
with the displacement set to zero on two adjacent res-
onators (bottom row of Fig. 7(c)). Despite this large
perturbation of the initial state at two sites, the RBM is

still recovered at long times and the perturbed sites initi-
ated with zero displacements recover their displacements
without the RBM falling apart or leaking energy to the
bulk. These results suggest that singular flat bands can
be exploited to generate robust edge modes in phononic
metamaterials.

IV. DISCUSSION

We have theoretically and numerically investigated the
vibrational properties of planar resonator lattices whose
phononic spectra are designed to harbor non-singular and
singular flat bands. The phononic band structures of the
lattices can be dramatically modified by changing the in-
plane mechanical tension, which enables the structures to
be tuned to a state with an isolated flat band (for the tri-
angular lattice), two degenerate flat bands (honeycomb
lattice), or three degenerate flat bands, one of which re-
mains flat at all tension values (kagome lattice). The
behavior of the relevant bands is captured in a reduced
discrete model of harmonic degrees of freedom on individ-
ual resonators, coupled to their neighbors via auxiliary
degrees of freedom. The discrete model elucidates the
mechanism underlying the lack of dispersion for certain
bands at particular tension values, and establishes the
singular nature of the persistent flat band in the kagome
lattice. We demonstrated the presence of robust bound-



ary modes, which derive from extended states belonging
to the singular flat band that are guaranteed to exist by
topology, in a finite section of a kagome lattice.

Our study indicates that engineered plate resonator
arrays could serve as a versatile tunable platform for ex-
ploring flat band physics. Despite the formal differences
between the the governing equations of the mechanical
system we have studied (Eq. (1)) and the Schrédinger-
like equations governing light propagation in photonic
waveguide lattices under the paraxial approximation [33—
36, 50], our discrete model reveals that the mechanical
system harbors flat bands whose singular nature and edge
mode behavior parallel those of the photonic systems.
The tunable balance between the biharmonic and Lapla-
cian contributions to the governing equations, absent in
photonic systems, enables the tuning of the resonator
system toward and away from the flat band state post-
fabrication as our computations demonstrate.

Experimental implementations of our proposal would
require thin-plate or membrane resonator arrays with
patterned boundary constraints and tunable in-plane
tension; these have been achieved in micromechanical
systems [39, 42] with lattice spacing of order microns.
Single- or few-atomic-layer graphene membranes (corre-
sponding to the gray areas in Fig. 1) are suspended over
voids fabricated in semiconductor substrates with the de-
sired metamaterial geometry (blank areas in Fig. 1), and
the edges are restricted by the adhesion of the mem-
brane to the substrate at the void boundaries (black
curves in Fig. 1). A two-dimensional membrane-based
system with patterned fixed boundaries was realized in
Ref. 51. Tension modulation could be achieved via elec-
trostatic [39, 40] or thermally-induced [41] prestresses.
Alternatively, resonators based on MXenes with ther-
mally responsive rigidity [52] and stiffness greater than
graphene [53] could serve as possible candidates for mi-
cromechanical experimental realizations.

At larger scales (lattice spacing of order millimeters),
it could also be experimentally feasible to recreate the
desired boundary geometry by embedding stiff, massive
inclusions in the shapes of the voids of the lattice pattern
(blank areas in Fig. 1) into an elastic plate [54], thereby
suppressing vertical deflections in the void regions to ap-
proximate the clamped internal geometries of the desired
lattices. Arrays of stiff, massive pillars with bases shaped
like the voids and adhered onto the plate could exert
a similar influence [55]. The global plate tension could
be modulated by applying edge loads to the outer plate
boundary or by thermally expanding/shrinking the plate
while keeping the outer boundaries fixed. Since the in-
clusion or pillar boundaries would only provide an ap-
proximation of the strict clamped boundaries assumed
in our work, the mapping to the discrete model would
have to be modified to incorporate the true boundary
conditions, but we expect that the predicted tunability
of the band structures could still be achieved in such plate
metamaterials provided the vibration suppresion due to
the void-shaped inclusions or pillars is sufficiently large.
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While we have highlighted robust boundary modes as
a specific example of exotic flat-band physics in our sys-
tem, our platform could be used or modified to investi-
gate other properties of flat bands as well. As we have
shown, our system exhibits degenerate pairs and trios
of flat bands for certain geometries and tensions. The
quantum geometry of degenerate flat bands is known to
harbor unusual properties such as non-additivity of the
quantum metric [56]; our system provides a classical plat-
form in which to investigate the consequences of such
nontrivial geometry of the Bloch eigenfunctions. The ef-
fect of a gauge potential, particularly a magnetic field,
can be synthesized in the vibrational spectrum of me-
chanical systems via spatial modulation of the resonator
geometry or tension [57-61]; using such techniques, the
interplay of magnetic fields and singular flat bands [32]
could be investigated in mechanical resonator networks.

Beyond questions of fundamental interest, the exotic
vibrational states enabled by flat bands could serve as
the basis of phononic metamaterials with useful proper-
ties. The ability to tune the dispersion towards and away
from a flat band using tension modulation could be used
to manipulate or arrest the motion of sound pulses [38].
Periodic modulation of the background tension near the
flat band value could be used to parametrically amplify
vibrations in flat-band states [62]; since all states in the
flat band would resonate at the same parametric modu-
lation frequency, multispectral signals could be amplified
without loss of fidelity. The doubly-degenerate flat bands
in the honeycomb lattice can be used to engineer vibra-
tional states with spin-like degrees of freedom that ex-
hibit non-Abelian responses, which have been proposed
as a platform for mechanical computation [63]. More gen-
erally, our work suggests that the collective vibrations of
coupled resonators can be used to implement mechanical
analogues of two-dimensional tight-binding models [64],
with the possibility of controlling the strength and sign
of the coupling terms [46] through tension modulation
after fabrication.
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Appendix A: Finite-element analysis of continuum
model

Finite-element analyses were done in the commercially
available package COMSOL Multiphysics. The general
form pde module was used to define an eigenvalue prob-
lem based on a fourth-order partial differential equation



describing thin plate elasticity,

= \u,
(A1)

where subscripts denote partial derivatives of u with re-
spect to those coordinates. The Dirichlet boundary con-
dition v = 0 and Neumann boundary conditions u, =
u, = 0 satisfy the clamped boundary condition. Simpli-
fying the equation (A1) gives V*u—TV?u = Au, which is
the desired eigenvalue problem. The simulation methods
were tested by comparing numerically-derived eigensolu-
tions for the square Laplacian plate (setting D — 0) and
circular clamped biharmonic plate (setting T — 0) to
known analytical results.

The continuum thin-plate resonator model has in-
finitely many bands, of which a subset are obtained nu-
merically. In this study, we focused solely on the bands
corresponding to the fundamental modes, which are built
primarily from the lowest-frequency modes of individual

Ve | (Uaza + 2Ugyy — Tug) T+ uyyy — Tuy) ?9]
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resonators. This is apparent from the mode shape of the
Bloch eigenfunction in the continuum model which mir-
rors the mode shape of the single-resonator fundamental
mode.

The full-wave dynamical simulations were performed
by adding the second-order time derivative term to the
partial differential equation,

0%u

5z T Viu — TV?u = 0. (A2)

Mesh details for FEA: A custom mesh in COMSOL
was used for the finite element analysis. Element size
parameters for the mesh are as follows: maximum ele-
ment size = 0.08, minimum element size = 1.5 x 1074,
maximum element growth rate = 1.2, curvature factor =
0.25, and resolution of narrow regions = 1.

A time-step of 0.01 was used in the time-dependent
solver called the generalized alpha.
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