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Abstract

The spatio-temporal distribution of leishmaniasis, a parasitic vector-borne zoonotic
disease, is significantly impacted by land-use change and climate warming in the
Americas. However, predicting and containing outbreaks is challenging as the zoonotic
Leishmania system is highly complex: leishmaniasis (visceral, cutaneous and muco-
cutaneous) in humans is caused by up to 14 different Leishmania species, and the
parasite is transmitted by dozens of sandfly species and is known to infect almost twice
as many wildlife species. Despite the already broad known host range, new hosts are
discovered almost annually and Leishmania transmission to humans occurs in absence
of a known host. As such, the full range of Leishmania hosts is undetermined, inhibiting
the use of ecological interventions to limit pathogen spread and the ability to accurately
predicting the impact of global change on disease risk. Here, we employed a machine
learning approach to generate trait profiles of known zoonotic Leishmania wildlife hosts
(mammals that are naturally exposed and susceptible to infection) and used trait-profiles
of known hosts to identify potentially unrecognized hosts. We found that biogeography,
phylogenetic distance, and study effort best predicted Leishmania host status. Traits
associated with global change, such as agricultural land-cover, urban land-cover, and
climate, were among the top predictors of host status. Most notably, our analysis
suggested that zoonotic Leishmania hosts are significantly undersampled, as our model
predicted just as many unrecognized hosts as unknown hosts. Overall, our analysis
facilitates targeted surveillance strategies and improved understanding of the impact of

environmental change on local transmission cycles.

Author summary
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Leishmaniasis is a zoonotic, vector borne disease of poverty with a high burden
throughout the Americas: within Latin America there are an estimated 58,500 new cases
per year and 54,050 years of life lost due to disability. Although the World Health
Organization has targeted leishmaniasis for elimination and control by 2030, the disease
remains a persistent threat. Across the Americas, particularly in Central America, the
southeastern United States, and perimeters of the Amazon Basin, risk of infection is
increasing in geographic extent and elevation. While it is known that Leishmania parasites,
the causative agent of leishmaniasis, are maintained in the environment via a mammalian
host, the full suite of wildlife hosts has yet to be documented, which significantly hinders
control efforts. Here, we use machine learning and ecological and evolutionary trait
profiles of known hosts to identify unrecognized potential wildlife hosts of Leishmania. We
identify 136 mammals in the Americas that are likely to be exposed to and infected by
zoonotic Leishmania in the wild. The high number of unrecognized potential hosts
emphasizes a need to better invest in studying the ecological epidemiology of
leishmaniasis. The study provides information and tools to support targeted intervention

and management of this important poverty-associated disease.

Introduction

Leishmaniasis, a debilitating and sometimes fatal parasitic disease, is one of the 20
neglected tropical diseases targeted for control and elimination by the United Nations by
2030 (1). However, leishmaniasis remains a persistent threat throughout the tropics and
subtropics. In the Americas, leishmaniasis cases occur from the southern United States
to Argentina, including the Caribbean, with an estimated 58,500 new cases each year (2).
Further, incidence is rapidly shifting in geographic extent with land-use and climate change
(3-7). For instance, hotspots of leishmaniasis have significantly expanded throughout
Costa Rica in the last two decades, in concert with agricultural intensification,

deforestation, and reforestation (3).
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Treatment for leishmaniasis has many side effects and are extremely expensive (2,8),
thus control and elimination hinges on limiting transmission. Leishmania parasites are
transmitted by sandflies (Order: Diptera; Family: Psychodidae) and maintained in the
environment via a multitude of sylvatic and domestic mammalian hosts. As such,
controlling transmission requires ecological interventions targeting either component of
the transmission cycles. For instance, clearing vector habitat proximate to households,
supporting populations of natural enemies that regulate populations of vectors or small
mammals (e.g., fish and mosquito larvae), and/or modifying distribution of wildlife food
sources are sustainable and effective interventions in preventing transmission of
flaviviruses, henipaviruses, Plasmodium spp. (malaria), and Brucella abortus (brucellosis)
(9,10). Similar interventions could be employed against Leishmania, however, successful
application requires species identification of vectors, hosts, and their corresponding

interactions with their biotic and abiotic environment.

Leishmaniasis was first diagnosed by Western medicine in the Americas in 1909, at the
time dogs and foxes were believed to be the zoonotic hosts (11). Continued research
throughout the century hypothesized that rodents, and in some cases opossums and
sloths, were the primary zoonotic hosts of these pathogens (11). However, especially with
the advancement of molecular diagnostic techniques, the number and taxonomic diversity
of hosts has since expeditiously increased. In the Americas, there are now 137 species
of wildlife that are recognized as potential hosts (i.e., animals that are naturally exposed
and become infected once exposed), of which around 60 may act as competent hosts
(i.e., animals can become infectious once infected, and may maintain the pathogen in the
environment as reservoir hosts) (12,13). Wild hosts are now known to include eight orders
of mammals including Chiropetra (bats), Carnivora, Cingulata (armadillos),
Didelphimorphia (opossums), Lagomorpha (rabbits), Pilosa (sloths and anteaters),
Primates, and Rodentia. However, even with progress in host discovery, the full suite of
Leishmania hosts is not yet described: Leishmania spillover occurs in absence of known

hosts and new hosts are discovered almost annually (14-17) .
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Limited knowledge on the transmission cycle makes it difficult to understand the
mechanisms driving Leishmania distribution and spillover. As previously stated, unknown
transmission cycles impede effective ecological interventions to reduce spillover risk to
people. Additionally, global change can alter host dynamics to amplify spillover risk. For
example, land-use change may increase host densities and/or push hosts into closer
proximity to anthropophilic vectors and humans (9). Climate warming may also shrink or
expand the range of hosts, further changing the rate of contact among hosts, vectors, and
humans (18). As such, the incomplete classification of possible Leishmania hosts could

lead to unexpected emergence and hotspots of human leishmaniasis.

Study designs optimal for detecting Leishmania hosts, such as systematic sampling of
large populations of a diversity of species through space and time, are limited by logistics
and cost of sampling. Leishmania host discovery could benefit from strong a priori
hypotheses about which mammals to target for sampling effort; taxa specific sampling
could help to efficiently use time and monetary resources, ultimately expediting the full
classification of the Leishmania transmission cycle. Through the last decade, machine
learning approaches have been used to generate predictions of hosts of a multitude of
different pathogens, including betacoronaviruses (19), flaviviruses (20), Rabies virus (21),
and Borrelia burgdoferi (causative agent of Lyme disease) (22). These methods have
facilitated more targeted laboratory and field work of novel pathogens, and they have great
potential to improve our understanding of diseases of poverty with broad host and vector

ranges.

Host status for any parasite or pathogen is driven by two processes: exposure and
physiological susceptibility (23,24). Exposure depends on the environmental conditions
needed to support pathogen transmission and, in the case of vector-borne disease, vector
reproduction, contact with competent hosts, and vector survival (25). Following exposure,

physiological susceptibility then depends on pathogen interaction with host cells to gain
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entry and, in some cases, avoid immune attack and replicate (25). Host traits related to
exposure and/or susceptibility likely interact in non-linear and higher-order combinations
to delineate zoonotic Leishmania hosts from non-hosts. In brief, the effect of a trait on host
status may vary in magnitude or direction depending on trait value and traits may become
more or less important under different conditions. Hypothetically, for example, the average
temperature of a species range may have a positive effect on host status between 25-30
°C, but a negative effect outside of this range. Depending on biting activity of vector
species, animals that forage on the ground may be more likely to be hosts if they are also
nocturnal, whereas animals that are arboreal may be more likely to be hosts if they are
crepuscular but less likely to be hosts if they are nocturnal. Thus, when viewing the
zoonotic Leishmania system in one or two dimensions (e.g., only considering phylogeny
or habitat use), it is difficult to determine unifying traits useful for identifying hosts. To date,
it has been challenging to combine these processes across scales from physiological to
evolutionary to ecological to biogeographic to predict their overall impact on infection
potential. Machine learning, particularly tree-based methods, offers a set of new tools that
can be used to incorporate and dissect this complexity by increasing the dimensionality in
which the Leishmania system can be studied, allowing for multiple predictors that may
have nonlinear and interactive effects on host status. The flexibility of these models allows
for pinpointing combinations of mammalian traits unique to the confluence of Leishmania
exposure and susceptibility, by learning patterns of known hosts. With this information, we
can identify likely host species as targets for Leishmania surveillance efforts and the key

traits that distinguish host species from non-hosts.

Here we use tree-based machine learning (extreme gradient boosted regression,
‘Xgboost’) and mammalian traits, including but not limited to biogeographical,
phylogenetic, and life-history features, to: (i) describe trait profiles of hosts for zoonotic
Leishmania (Viannia) and Leishmania (Leishmania) parasites; and (ii) use the trait profiles
to predict unrecognized wild hosts of zoonotic Leishmania within the subgenera

Leishmania (Viannia) and Leishmania (Leishmania).
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We aim for this analysis to identify animal species that are likely to be exposed and
infected in the wild; due to extreme data sparsity, we do not employ our methods to identify
competent hosts (i.e., animals that become infectious once infected and may act as
reservoirs given the density and distribution of their populations). Our findings can be used
to identify hosts that can then be surveyed at larger spatio-temporal scales, investigated
for competence, or used as sentinel species. As such, while our modeling approach does
not necessarily identify competent hosts that can transmit zoonotic Leishmania on to
sandflies and eventually humans, it does identify animals likely to be exposed to and
susceptible to zoonotic Leishmania infection, facilitating the first step of determining

epidemiological importance and fine-tuning surveillance efforts.

Methods

Data collection

Leishmaniasis is caused by protists within the Leishmania genus. There are 14 known species
of zoonotic Leishmania (i.e., they spill over from animals to humans) in the Americas. These
Leishmania species are divided between two subgenera: Leishmania (Viannia) and Leishmania
(Leishmania). In the Americas, Leishmania (Viannia) consists of ten species, nine of which are
zoonotic; Leishmania (Leishmania) consists of seven species, five of which are zoonotic (26).
Leishmania (Viannia) spp. cause cutaneous and mucocutaneous leishmaniasis, which
manifests as skin lesions that are susceptible to painful secondary bacterial infections, and/or
destruction of the mucus membranes of the nose, mouth, and throat (2). In addition to
cutaneous and mucocutaneous leishmaniasis, species within the Leishmania (Leishmania)
subgenera (L. (L.) infantum and, less frequently, L. (L.) mexicana) cause fatal visceral
leishmaniasis. Visceral leishmaniasis affects internal organs, typically causing enlargement of
the spleen and liver (2). The following analyses were conducted for each subgenus (L. (Viannia)
and L. (Leishmania) so to better described the ecological associations of each taxonomic group

of parasites and their corresponding disease manifestations.
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Zoonotic Leishmania host status: We gathered Leishmania host status from all wild,
endemic, and invasive terrestrial mammals with ranges in Mexico, Central America, and
South America using recent reviews(12,13) in addition to a Web of Science query on
February 12, 2021 and February 22, 2021 (see supplementary text 1 for the specific
search strings). Host status was defined as a binary trait: an animal has been naturally
infected by one of the 14 Leishmania species known to cause leishmaniasis in humans
(1), or there is no record of infection by a Leishmania species known to cause
leishmaniasis in humans (0). The latter category (“non-positives”) includes animals that
have been tested for Leishmania and have not been found to be infected as well as those
that have not been tested for Leishmania infection. Ideally, the analysis would include true-
positives (1) and true negatives (0). However, due to the intensive, systematic sampling
required to declare an animal as a true-negative (longitudinal sampling across large
geographic scales), there is not enough data to conduct the analysis with true-negatives.
Our analysis (using true-positives and non-positives) still enables us to identify species
that have not yet been tested but have a high probability of being a host. Infection was
determined via detection of Leishmania species specific antigens or genetic material.
Species identification was performed either using animal tissue samples directly or using
live parasites cultured from animal tissue. To ensure that all relevant mammals were
included in our study, a list of species names of endemic Latin American mammals was
retrieved from the International Union for Conservation of Nature (IUCN) Red List
Inventory (27) and a list of invasive mammals was retrieved from the Global Invasive
Species Database (28). We cross-referenced our host status data table with the Global
Infectious Disease and Epidemiology Network (29). We then limited our analysis to wild
mammals that had at least a 10% range overlap with reported human cases of
leishmaniasis for inclusion in our analysis. In total, 86.64% (1460/1685) of species were
retained for the L. Viannia analysis and 87.24% (1470/1685) of species were retained for

the L. Leishmania analysis. Zoonotic Leishmania ranges were constructed by outlining a
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concave polygon around cases of disease occurrence in humans (30) (Fig 1a, 1c). We

conducted all data filtering and downstream analyses separately for each subgenus.

Traits associated with Leishmania exposure and susceptibility: Our analysis leverages
patterns of traits of known hosts to predict identities of unrecognized hosts. We used host
traits related to Leishmania exposure (via sandfly bites) and susceptibility, including life-

history, biogeographical, and phylogenetic traits (S1 Table).

For life-history and some habitat use traits, we collected traits from panTHERIA (31),
mammalDIET (32), and EltonTraits (33). We additionally used IUCN range maps and
satellite imagery to extract data associated with species biogeography, including variables
related to climate (34,35), land-cover type (36), and global human modification index, an
aggregate measure of anthropogenic pressure on a landscape (37), within each species
range (see S1 Table for full description of traits and satellite imagery used). Ranges of
endemic species were retrieved from the IUCN database and ranges of invasive species
in Mexico, Central America, and South America were constructed by building a concave
polygon around species occurrence points from (38). Leishmania and invasive mammal
species ranges were built using the R (v 4.0.2) packages speciesgeocodeR (39) and
concaveman (40). We additionally included IUCN-designated main habitat and habitat
breadth (IUCN) as traits. To quantify phylogenetic traits, we downloaded pairwise
divergence time (phylogenetic distance) from TimeTree.org (41) and reduced the
dimensionality of this matrix by mapping species in ordination space using principal
coordinate analysis in base R. TimeTree is a knowledge-base that has collected and
synthesized species divergence times from > 3000 peer-reviewed studies. We included
whether an animal is invasive or endemic in the given Leishmania range and zoonotic host
status using GISD and GIDEON. Finally, we accounted for sampling effort by downloading
the number of citations found on PubMed per species using the R package easyPubmed
(42). We choose to use PubMed as this indicates the biomedical study effort, as opposed

to a more general measure of study effort that would be estimated using the number of
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citations on Web of Science. Biomedical study effort better represents the number of times

a species was studied in the context of testing for pathogen assemblages.

Data analysis

We applied extreme gradient boosted regression (XGboost) in the R package xgboost
(43) to use mammal trait data to predict the probability that a species is a Leishmania
(Leishmania) or Leishmania (Viannia) host. Extreme gradient boosted regression is a
machine learning algorithm that creates an ensemble of weak decision trees to form a
stronger prediction model by iteratively learning from weak classifiers and combining them
into a strong classifier (i.e., boosting) (44). Gradient boosted regression is flexible in that
it allows for non-linearity, both among features (i.e., interactions) and between features
and predictions, collinearity between features, and non-random patterns of missing data.
Further, XGboost handles extremely unbalanced data well by weighting positive labels to
increase class separability and allowing for a regularization parameter to prevent
overfitting to a few positive labels — an advantage when analyzing our data set with
relatively few known hosts compared to the number of mammal species examined. The
ability to handle non-random patterns of missing data and extremely unbalanced data
makes the XGBoost algorithm best suited for our study as compared to other machine
learning methods, such as random forest and support machine vector, which severely
overfit unbalanced data (random forest) and/or cannot handle missing data without use of
imputation (random forest, support machine vector). Prior to analysis we removed traits
with > 0.7 correlation to increase interpretability of variable importance. For the L. Viannia
analysis 32/66 were retained in the final analysis; for the L. Leishmania analysis 33/66
were retained. To maximize the number of traits retained in the model, out of a pair of
correlated traits, the one with the highest number of correlations to other traits and/or the
lowest data coverage was dropped. We used a box-cox transformation of extremely
skewed variables to reduce the influence of extreme values on model performance.
Categorical traits were one-hot-encoded so that each category was represented as a

binary trait. Finally, traits with < 10% coverage (i.e., less than 10% of the species had data
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on the trait) were removed and not used in the analysis (both for training the model and

prediction).

Model performance and hyperparameter tuning: The accuracy of our model was evaluated
using nested cross-validation. Nested cross-validation, as opposed to K-fold cross-
validation, produces the least biased evaluation of model performance when using a small
sample size (45). Three-fold cross validation was used to generate model predictions and
evaluate overall model performance, while 5-fold cross validation was performed to train
hyperparameters within each 3-fold cross validation step. In other words, the full dataset
was split into three outer folds. Hyperparameters were tuned using Bayesian optimization,
optimizing over a parameter space aimed to reduce overfitting (low training rate, low ratio
of samples used in trees, low ratio of features used in trees, low maximum tree depth, and
high regularization). Using the hyperparameters that yielded the best performance
(minimum logloss), a final model was then trained using the full data within these two folds
and model predictions were calculated on the third hold-out fold. This process was
repeated until out-of-sample predictions were made for each fold. As model output may
be dependent on the distribution of the data across each fold, nested cross validation was
repeated 25 times using 25 unique splits of the data. Our dataset was extremely
unbalanced (i.e., many more Os than 1s), which makes our model vulnerable to overfitting.
To determine if our model was simply fitting spurious correlations in the data, we
conducted a target shuffling analysis (46,47). We repeated the nested cross-validation
analysis but randomized the response variables (Leishmania host status) for each
iteration. We then calculated the mean AUC from the target shuffling experiment. AUC,
the area under the receiver operator characteristic curve, is a classification metric that
measures the probability that model output for a randomly chosen positive label (known
host) will be higher than a randomly chosen negative label (animal with no record of
zoonotic Leishmania infection). AUC ranges from 0 to 1, with an AUC of 1 indicating that
the model perfectly classifies all samples, while an AUC < 0.5 indicates the model

performs no better than a coin flip. We found that our model performed minutely better
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than a coin flip in the target shuffling experiment (average L. (Leishmania) target-shuffled
AUC = 0.53; average L. (Viannia) target-shuffled AUC = 0.54), thus we adjusted our final

AUC values by AUCfinal model - (AUCtarget shuffled model = 05)

In our final model, citation count was among the top 10 most important variables. To
ensure that we were not simply predicting well-studied animals, we repeated the analysis
above while replacing the response variable with study effort (the number of citations on
PubMed). To reduce computational time, we ran ten iterations instead of 25. We
concluded that our model was not simply predicting well-studied species by evaluating
how well the traits in our model predict study effort, measured as pseudo-R2. Additionally,
we checked that trait responses (i.e., partial dependence plots) that predicted publication
number were not overly similar to the functional form of the trait responses that predicted

host status.

Leishmania host trait profiles: To assess Leishmania host trait profiles, we first identified
important features using SHAP (Shapley Additive Explanations) calculated via the R
package SHAPforxgboost (48). Shapley scores represent the average marginal
contribution of a feature to a prediction across all combinations of features; the contribution
of the feature is interpreted as the change in prediction associated with that feature in
relation to the average model prediction (44). SHAP calculates local feature contribution
by evaluating the contribution of each feature to the prediction for each observation in a
dataset. Here, local contribution refers to the contribution of each feature to the prediction
for each individual species (local corresponds to the level of a single sample, which, for
our analysis, is a species). Global feature contribution can be obtained by aggregating the
Shapley scores for each feature across all observations; global feature contribution is the
average contribution of each feature across all species (global corresponds to the level of
the entire dataset). To generate a measure of uncertainty in feature contribution, we
trained the model with 70% of the data, and calculated Shapley scores for the remaining

30% of observations. We repeated the above procedure 100 times, using different subsets
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of data with each iteration. We then described trait profiles using SHAP partial
dependence plots, which map the relationship between each value of a feature in the

validation set and the contribution of the feature to model predictions.

Leishmania host predictions: Following (21), we identified animals as unrecognized
zoonotic Leishmania spp. hosts using the Shapley value classification criterion. The sum
of the Shapley scores across features for each species sums to the prediction for each
species, relativized by the average model prediction across species. A summed Shapley
value of 0 represents the average prediction in the dataset (49,50). To account for model
uncertainty, we used a bootstrapping procedure to calculate Shapley scores for models fit
with 70% of the data 100x. We classified an animal as a newly predicted host if > 95% of
Shapley scores were > 0; in other words, we classified an animal as a newly predicted
host if predicted probability of being a host was greater than the average probability for

that model iteration for > 95% or model iterations (21).

The full record of species infection status and references, trait data-base and R code can

be found at https://github.com/ckglidden/leish_hosts.

Results
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Fig 1. The ranges of zoonotic Leishmania and their known and predicted hosts
extend throughout the Americas. The number of overlapping ranges of known
Leishmania hosts are depicted in (a & c), with the range of human cases of L. (Viannia)
and L. (Leishmania) outlined in grey. The number of overlapping ranges of newly predicted
hosts are outlined in (b & d). Hylaeamys megacephalus and Calomys callosus are
unrecognized hosts with the highest and second highest predictions for L. (Viannia)
according to Shapley values. Their ranges are outlined in dark green and light green,
respectively, in (b). Dasypus novemcinctus and Leopardus wiedii are currently hosts with
the highest and second highest Shapley values for L. (Leishmania). Their ranges are
outlined in dark blue and light blue, respectively, in (d). An exhaustive list of newly
predicted hosts is listed in S2 Table. Base maps were created in R using open source
shapefiles from Natural Earth (admin-0 countries:

https://www.naturalearthdata.com/downloads/10m-cultural-vectors/;
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https://www.naturalearthdata.com/about/terms-of-use/) (51); species ranges were created
in R using open source shape files from IUCN

(https://www.iucnredlist.org/resources/spatial-data-download:;

https://www.iucnredlist.org/terms/terms-of-use) (27).

Leishmania (Viannia): Through our literature search, we found 96 known L. (Viannia) hosts

out of 1460 mammals that occur within the geographic range of L. (Viannia) parasites (Fig
1a; Fig 2a). After accounting for target shuffling, our model performed moderately well with

an average out of sample AUC of 0.81 (95% CI: 0.80 - 0.82) and in sample AUC of 0.94.

L. (Viannia) trait profiles: After removing highly correlated traits, 30 features were used to
predict L. (Viannia) hosts. A mix of biogeography, life-history, phylogeny, and study effort
covariates were among the top important model features when estimating global feature
contribution (Fig 3). Phylogenetic distances, reduced into six axes of a PCoA ordination,
were, on average, the most important trait for Leishmania (Viannia) hosts. Specifically,
animals were more likely to be hosts if they were rodents and opossums, and less likely
to be hosts if they were non-human primates, carnivores, and even toed ungulates (S1,
S2 Figs). Similar to other zoonotic pathogen systems, L. (Viannia) hosts live at high
population densities and demonstrate signatures of fast-paced life-histories, indicated by
short gestation periods (Fig 4a). Further, L. (Viannia) host ranges are large, have high
proportions of crop and urban land cover, and, on average, peak at ~28°C during the
warmest quarter of the year (Fig 4a). Geographic coordinates of the species’ native ranges
were also an important predictors: animals were more likely to be hosts if the minimum
longitude of their native range was around western Central America. Notably, although
study effort (number of PubMed citations, normalized with a Box-Cox transformation) was
among the most important traits, our supplementary analyses indicated that the host
models were not simply predicting well-studied hosts. Specifically, the supplementary
model predicting study effort (number of PubMed citations) performed poorly (average

out-of-sample R? = 0.19). Further, traits that predict citation count, and the response
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curves of those traits, greatly differed from traits that predict L. (Viannia) host status (S3-
S4 Figs). As such, while L. (Viannia) hosts are likely understudied, we are not simply

reporting the trait profiles of well-studied mammals.

L. (Viannia) hosts: Eighty-three animals were identified as likely hosts (Fig 2, S2 Table).
Out of these newly predicted hosts, the majority were rodents, bats, and opossums.
Further, 14 of these hosts are known hosts of L. (Leishmania) (S2 Table). The newly
predicted hosts with the highest summed Shapley scores were the large headed rice rat
(Hylaeamys megacephalus) and the large vesper mouse, Calomys callosus (Fig 1). In
contrast to known hosts, the range of newly predicted hosts extends to the southern tip of
South America and there is a high density of species ranges that overlap in the southern

United States (Fig 1a, 1b).
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Fig 2. The number of known and predicted hosts per order for L. (Viannia) (a) and
L. (Leishmania) (b). Grey bars represent the number of known hosts within each order,
colored bars represent the number of newly predicted hosts per order. Animals were
classified as newly predicted if > 95% of mean SHAP values were greater than 0 (a-b).
Bars in (c) represent the proportion of newly classified hosts within each order; colors

match (a-b). Animal outlines were downloaded from PhyloPic (http:/phylopic.org/;

http://phylopic.org/about/) (52).

Leishmania (Leishmania): Through our literature search, we found 110 known hosts out

of 1470 mammals that have overlapping ranges with the zoonotic L. (Leishmania) range
(Fig 1c). Of these, 40 animals were hosts for both Leishmania subgenera. After accounting
for target shuffling, our L. (Leishmania) hosts model performed moderately well with an

average out of sample AUC of 0.84 (95% CI: 0.83 - 0.85) and in sample AUC of 0.94.

L. (Leishmania) trait profiles: After removing highly correlated traits, 32 features were used
to predict L. (Leishmania) hosts. On average, study effort was the most important trait (i.e.,
had the highest global feature contribution), followed by the land cover/land-use
composition of the species range, average temperature in the warmest quarter of the
species range, range area, phylogenetic distance, litter size, gestation length, and
longitudinal extent of the species range (Fig 3). Similarly, to L. (Viannia) hosts, L.
(Leishmania) hosts show signatures of fast-paced life histories, indicated by short
gestation lengths and large litter sizes, and have ranges with high degrees of crop and
urban cover (Fig 3b). Further, the range of L. (Leishmania) hosts are similar to L. (Viannia)
hosts in that the mean temperature in the warmest quarter peaks around 28°C (Fig 4b).
On average, geographic coordinates of the species’ native range were also an important
predictor: Animals were more likely to be hosts if the minimum longitude of the range was
around western Central America, while the maximum longitude of the range was western
Europe, which indicates a role of invasive species in the L. (Leishmania) transmission

cycle. While study effort was among the most important traits, host traits explained little
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variation in number of PubMed citations (average out-of-sample R? = 0.17) and traits that
predict citation count, and the response curves of those traits, greatly differed from traits
that predict L. (Leishmania) host status suggesting that traits important for discriminating

host status were not just those that predicted study effort (S5-S6 Figs).

L. (Leishmania) hosts: Using the Shapley classification criterion, 98 animal species that
are currently unrecognized hosts were labeled as newly predicted hosts (Fig 2, S2 Table).
Out of these newly predicted hosts, the majority were rodents, bats, and carnivores. Nine
newly predicted hosts are known hosts of L. (Viannia). Forty-five newly predicted hosts
were newly predicted hosts for both the L. (Leishmania) and L. (Viannia) subgeneras (S2
Table). The newly predicted hosts for the L. (Leishmania) with the top summed Shapley
scores included the nine-banded armadillo (Dasypus novemcinctus) and margay
(Leopardus wiedii) (Fig 1). The nine-banded armadillo is a known host of L. (Viannia)
parasites, with a range that extends from northern Argentina to the central United States

(Fig 1d).
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Fig 3. Biogeography, life-history, and phylogenetic traits all significantly contributed to model

predictions for host status. Biogeographical traits (minimum longitude of the range, maximum

longitude of the range, % cover of land-use/land cover in the species range, average temperature in

the warmest quarter in the species range, range area) are colored in blue, life-history traits (population

density, gestation length, litter size) are colored in red, phylogenetic distance (location along PCoA

ordination axes) is colored in orange, and study effort is colored in grey. Points are the absolute value

of the mean Shapley importance (mean |SHAP value|) for the trait across all mammals (i.e., global

feature contribution), bars represent the absolute values of the 0.05-0.95 percentiles. Only features

with 0.05 percentiles > 0 are shown.
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Fig 4. Hosts have fast-paced life-histories and live in proximity to humans. Shapley
partial dependence plots showing the effect of each feature on L. (Viannia) (a) and L.
(Leishmania) (b) host status after accounting for the average effect of the other features
in the model. Colored lines represent the average effect across model iterations, while
grey lines show each individual model iteration (model fit with 80% of data) (blue =
biogeographical traits; red = life-history). Features with global mean feature contribution
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scores > 0 for > 95% of model iterations are shown. Rug plots on the x-axis indicate the

distribution of the data.

Discussion

Our literature search identified 137 wild mammals in the Americas as known zoonotic
Leishmania hosts, and our model predicted there to be an additional 136 likely hosts
(animals that are likely to be exposed and infected in the wild, but not necessarily
infectious upon infection). The maijority of the predicted hosts for both subgenera fell within
the Rodentia order (L. (Leishmania) N = 27; L. (Viannia) N: = 34), with a similar number
of predicted Leishmania (Leishmania) hosts within the Chiroptera order (N = 32). While
their contribution to model predictions varied between subgenera, key traits included
phylogenetic distance, human associated land-use, climate, population density, and study

effort.

For both Leishmania subgenera, biogeographical features encompassing descriptors of
species ranges were among the top five contributors to host predictive accuracy. Notably,
zoonotic L. (Leishmania) hosts are more likely to be animals with larger ranges than non-
hosts. Geographic range area was also reported to be a shared predictive feature among
zoonotic hosts and reservoirs in other systems (21,53). Further, ranges of L. (Leishmania)
and L. (Viannia) hosts are made up of higher proportions of crop cover and urban cover
than ranges of mammals that are not Leishmania hosts. These results are in accordance
with previous findings that, in general, zoonotic host richness and relative abundance
increases with anthropogenic pressure (54). Further, our results align with recent literature
showing that risk of leishmaniasis is associated with agricultural intensification and
urbanization (4,55). L. (Viannia) hosts are marginally more likely to have ranges with
moderate forest cover, than non-hosts whereas there is little effect of forest cover on L.
(Leishmania) host status. Vectors of cutaneous leishmaniasis, which is caused by all

species of zoonotic Leishmania except L. infantum, are more likely to live in forests with
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high integrity and low human modification (56), while hosts are more common in disturbed
landscapes (57). Our analysis adds support to the latter finding, highlighting that
transmission of parasites associated with cutaneous leishmaniasis likely occurs at forest-
human settlement interfaces. The incomplete overlap between vector ranges and host
ranges may explain the highly localized dynamics of cutaneous leishmaniasis spillover
(i.e., transmission from wildlife to humans via the sandfly vector) (6,58). Spillover occurs
when reservoir hosts, vectors, and humans overlap in space and time so that forward
transmission occurs from animal to sandfly to human. If vector and host distributions only
overlap at habitat interfaces, area of reservoir host, sandfly, and human co-occurrence
may be low and variable through time. Finally, average temperature of the warmest
quarter was an important predictor of host status, with the feature contribution to model
predictions peaking around 28°C. In the case of zoonotic leishmaniasis, temperature is
likely a predictor of Leishmania exposure as this trait profile reflects temperatures

associated with vector survival and parasite development (59,60).

The profiles of important life history traits for Leishmania hosts resembled those observed
in other comparative analyses of zoonotic diseases. Specifically, for both Leishmania
subgenera, the probability of host status peaked at low to median lengths of gestation, a
pattern similar to that of rodent reservoirs of zoonotic pathogens and competent hosts of
zoonotic tick-borne pathogens (53,61). Further, the probability of zoonotic L. (Leishmania)
host status increased with litter size, a trend that parallels that of both rodents reservoirs
of zoonotic pathogens and bat and carnivore reservoirs of rabies virus (21,53). Altogether,
our findings suggest that, like other zoonotic reservoirs and hosts, zoonotic Leishmania
hosts may have fast-paced life-histories. Animals with fast-paced life-histories are
believed to maximize fitness by expeditiously investing in short-term reproductive effort --
such as through younger ages at sexual maturity, short gestation lengths, greater litter
sizes -- at the cost of long-term survival (62). As a result, animals with fast-paced life
histories are thought to divert energetic resources away from effective adaptive immunity

(63), or utilize responses conducive to tolerance but not resistance (64), allowing them to
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allocate maximal resources to short term reproductive effort. As such, animals with fast-

paced life-histories may be more susceptible to infections.

However, L. (Viannia) hosts only had one trait (gestation length) clearly associated with a
fast-paced life history, suggesting weaker evidence for the “fast-paced” host hypothesis
for this subgenus. Phylogenetic distance was the most important trait for L. (Viannia)
hosts. We hypothesize that phylogenetic relationships may better account for host
physiological defenses against Leishmania than life-history traits. If this is the case,
inclusion of specific genetic markers associated with Leishmania-host cell interactions

may improve model predictions.

Notably, study effort significantly contributed to host predictions for both subgenera. While
our follow up analyses do not indicate that model results are biased by uneven study effort,
this finding may suggest that zoonotic Leishmania hosts are generally under sampled.
Though leishmaniasis is a neglected tropical disease primarily impacting resource-poor
communities, state-of-the-art zoonotic Leishmania diagnostic and surveillance techniques
are available (16,57,65-69). As such, under sampling Leishmania hosts primarily stems
from both the lack of funding to employ these tools during large scale surveillance efforts
and the large number of animal species that are potentially hosts. The main leishmaniasis
research funding mechanism within the USA, the National Institute of Health (NIH),
primarily focuses on the molecular biology of leishmaniasis work and does not prioritize
research elucidating the ecology of the sandfly-wildlife transmission cycle. In fact, a simple
search for “leishmania” on the NIH and National Science Foundation grants database
yields a combined total of three awards aiming to elucidate transmission cycles of
Leishmania in the Americas (searched October 10, 2022). Researchers across Latin
America are faced with similar, if not more severe, funding constraints. For example, in
Brazil, a major hotspot of leishmaniasis, the federal administration from 2019-202 cut 90%
of federal science funding (70). While our model results facilitate more targeted field

sampling for particular species, optimized surveillance should consist of an iterative
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feedback between local knowledge and model predictions to guide field work, and
updating the model with new results from field sampling to guide ongoing surveillance and
field studies (16,19). Importantly, to reduce study effort bias going forward, care should be
taken to estimate and survey under studied areas and species in addition to newly
predicted species, particularly in areas with high rates of human spillover with poorly
known hosts. A lack of investment in understanding the basic ecology of Leishmania slows
research progress by obscuring the major drivers of disease dynamics and spillover
transmission to humans. Leishmaniasis surveillance and management would benefit from
larger funding mechanisms prioritizing understanding the ecology of this group of

pathogens.

In some cases, our host predictions are supported by multiple independent but
complementary lines of evidence (summarized below and in S3 Table). Non-specific
Leishmania antigens, antibodies, or DNA has been detected in the crab-eating racoon
(Procyon cancrivorus), neotropical river otter (Lontra longicaudis), six-banded armadillo
(Euphractus sexcinctus), coyote (Canis latrans), and the grey short-tailed opposum
(Monodelphis domestica) (12,68,71,72). As tests were not parasite species specific, it is
unconfirmed if they were infected with zoonotic Leishmania species, but our model
suggests they may be. Further, Leishmania-like flagellates were discovered in Derby’s
wooly opossum (Caluromys derbianus) (71); however, to our knowledge this species has

not been tested for zoonotic Leishmania species.

A number of animals predicted to be hosts for L. (Leishmania) were also found to co-occur
with vectors of L. (L.) mexicana in Mexico: the hairy big-eyed bat (Chiroderma villosum),
Brazilian brown bat (Eptesicus brasiliensis), great sac-winged bat (Saccopteryx bilineata),
tent-making bat (Uroderma bilobatum), Mexican woodrat (Neotoma mexicana), black
footed pygmy rice rat (Oligoryzomys nigripes), Coue’s rice rat (Oryzomys couesi), fulvous
harvest mouse (Reithrodontomys fulvescens), nine-banded armadillo (Dasypus

novemcinctus), lowland paca (Cuniculus paca), Virginia oppossum (Didelphis virginiana),
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kinkajou (Potos flavus), racoon (Procyon lotor), white-nose coati (Nasua narica), and the
margay (Leopardus wiedii) (16,73). Notably, the nine-banded armadillo and margay had
the two highest summed Shapley scores as potential L. (Leishmania) hosts. The nine-
banded armadillo is a known host of L. (Viannia) as well as other zoonotic pathogens

including the causative agent of leprosy (74).

Host competence (i.e., the ability to become infected and infectious) has been
demonstrated in the lab for four of the predicted species: the Virginia opossum (Didlephis
virginiana), the large vesper mouse (Calomys callosus), spix’s yellow toothed cavy (Galea
spixii), and the Mexican free-tailed bat (Tadarida brasiliensis) (71,75—77). Although host
competence for these animals has been tested in the laboratory, infection/exposure has
not been tested in the wild or animals have not tested positive in the wild (possibly due to
minimal sampling of the species). Our model suggests that these animals are also likely
to be naturally infected in the wild and thus warrant further investigation. The large vesper
mouse is one of the top predicted species for L. (Viannia). Surprisingly, we found no field
studies testing wild large vesper mice for zoonotic Leishmania infection. Finally, our model
suggests that a handful of species naturally infected with L. infantum in Europe are also
likely to be exposed to and susceptible to zoonotic Leishmania in the Americas: the red
fox (Vulpes vulpes), the European hare (Lepus europaeus), and the European rabbit

(Oryctolagus cuniculus) (78-80).

Importantly, while there are 14 species of zoonotic Leishmania parasites in the Americas,
our analysis divides these species into two subgenera but does not identify Leishmania
species specific hosts. Future work could leverage the information presented by the
current analysis to identify Leishmania species specific hosts. Additionally, our analysis
identifies animals that are likely to be infected in the wild but does not narrow the host pool
down to competent hosts (animals that are likely to be both infected and infectious in the
wild). Next steps of model development could identify trait profiles of competent hosts that

delineate them from non-competent hosts. Notably, (56) used machine learning to predict
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unrecognized vectors of leishmaniasis. Further, metabarcoding of arthropods has started
to identify sandfly feeding networks (66,81) that may be useful in linking model predictions

of vectors and hosts to local transmission cycles.

Overall, models for both subgenera identified a number of new hosts, including but not
limited to the nine-banded armadillo, the margay, the large vesper mouse, and the large
headed rice rat, that can be targeted for future surveillance and research to determine
their ecological significance in leishmaniaisis transmission and spillover to humans. Next
steps should include ground truthing the role of newly identified potential hosts in the
zoonotic Leishmania transmission cycle, through field sampling and laboratory
experiments, through engagement with local communities, and iteratively updating the
current analysis as new information is collected, taking careful consideration to not
perpetuate the effects of study bias. Although a cautious first step in host discovery work,
our study can immediately inform surveillance efforts and study design. For instance, host
predictions may provide a starting point for implication of hosts during local outbreaks of
human leishmaniasis by providing a targeted list of likely suspects to sample. While the
study of leishmaniasis has historically focused on rodents and small marsupials, our study
suggests that capture methods should more commonly be supplemented by bat mist-
netting and/or techniques to capture small to medium sized carnivores. Finally, many
newly predicted hosts have ranges that extend throughout the southeastern USA.
Ecological niche models suggest that climate warming may increase the range of
Leishmania vectors as far north as Canada, and leishmaniasis endemicity within the US
was recently confirmed (82—-84). Similarly, the range of predicted hosts for L. (Viannia)
extends farther south through Argentina than currently known hosts. Our analysis provides
tools for monitoring leishmaniasis risk under global change as these hosts could be used
as sentinel species for tracking leishmaniasis range expansion. Testing these hosts for
leishmaniasis infection beyond the current putative boundaries of zoonotic Leishmania
ranges would help to evaluate if range expansion has already occurred as well as provide

an updated baseline for future monitoring.
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Identifying local transmission cycles is key for reducing leishmaniasis spillover and

disease burden in people, especially in the face of land-use and climate change, which

likely influence the geographic distribution and extent of vector—host--human contact and

were strongly associated with novel host predictions in our models. We estimate that there

are likely many unknown hosts of leishmaniasis throughout the Americas, highlighting the

complexity of the transmission cycle and a need to increase study effort on the ecology

and epidemiology of this system.
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Supplemental materials legend:

Supplementary text 1. Search methods for recording Leishmania host status: We
used the search string listed below to run search Web of Science of Leishmania hosts.
We ran the initial search on February 12, 2021. We ran additional searches that included
the species names of zoonotic Leishmania on February 22, 2021. Our host database was
then updated in June 2021 after the publication of (1).

S1 Table Final traits and sources of traits used in the analysis.

S2 Table Summed Shapley Scores per species for newly predicted species, averages across
100 model iterations (0.05 percentile - 0.95 percentile).

S3 Table Complementary evidence of predicted hosts.

S$1 Fig Importance of each PCoA phylogenetic dimension in predicting L. (Viannia) host status.

S2 Fig Shapley partial dependence plots showing the effect of PCoA dimensions on L. (Viannia)
host status and distribution of hosts within each order with PCoA dimension values above or
below the threshold.

83 Fig. Features contributions to predictions for the study effort of mammals for animals included
in the L. (Viannia) analysis.

S$4 Fig Functional response of study effort to mammal traits for animals included in the L. (Viannia)
analysis.

S5 Fig Features contributions to predictions for the study effort of mammals for animals included
in the L. (Leishmania) analysis.

S6 Fig Functional response of study effort to mammal traits for animals included in the L.
(Leishmania) analysis.
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