
Phylogenetic and biogeographical traits predict unrecognized hosts of zoonotic 1 

leishmaniasis 2 

 3 

Caroline K. Glidden1*, Aisling Roya Murran1, Rafaella Albuquerque Silva2, Adrian A. 4 

Castellanos3, Barbara A. Han3, Erin A. Mordecai1 5 

1Department of Biology, Stanford University, Stanford, California, United States of 6 

America 94305 7 

2 Secretaria de Vigilância em Saùde, Ministério da Saúde do Brasil, Distrito Federal, 8 

Brasília 9 

3Cary Institute of Ecosystem Studies, Millbrook, New York, United States of America 10 

12545 11 

*cglidden@stanford.edu 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 



 30 

 31 

 32 

 33 

Abstract 34 

The spatio-temporal distribution of leishmaniasis, a parasitic vector-borne zoonotic 35 

disease, is significantly impacted by land-use change and climate warming in the 36 

Americas. However, predicting and containing outbreaks is challenging as the zoonotic 37 

Leishmania system is highly complex: leishmaniasis (visceral, cutaneous and muco-38 

cutaneous) in humans is caused by up to 14 different Leishmania species, and the 39 

parasite is transmitted by dozens of sandfly species and is known to infect almost twice 40 

as many wildlife species. Despite the already broad known host range, new hosts are 41 

discovered almost annually and Leishmania transmission to humans occurs in absence 42 

of a known host.  As such, the full range of Leishmania hosts is undetermined, inhibiting 43 

the use of ecological interventions to limit pathogen spread and the ability to accurately 44 

predicting the impact of global change on disease risk. Here, we employed a machine 45 

learning approach to generate trait profiles of known zoonotic Leishmania wildlife hosts 46 

(mammals that are naturally exposed and susceptible to infection) and used trait-profiles 47 

of known hosts to identify potentially unrecognized hosts. We found that biogeography, 48 

phylogenetic distance, and study effort best predicted Leishmania host status. Traits 49 

associated with global change, such as agricultural land-cover, urban land-cover, and 50 

climate, were among the top predictors of host status. Most notably, our analysis 51 

suggested that zoonotic Leishmania hosts are significantly undersampled, as our model 52 

predicted just as many unrecognized hosts as unknown hosts. Overall, our analysis 53 

facilitates targeted surveillance strategies and improved understanding of the impact of 54 

environmental change on local transmission cycles.  55 

 56 

Author summary 57 



Leishmaniasis is a zoonotic, vector borne disease of poverty with a high burden 58 

throughout the Americas: within Latin America there are an estimated 58,500 new cases 59 

per year and 54,050 years of life lost due to disability. Although the World Health 60 

Organization has targeted leishmaniasis for elimination and control by 2030, the disease 61 

remains a persistent threat. Across the Americas, particularly in Central America, the 62 

southeastern United States, and perimeters of the Amazon Basin, risk of infection is 63 

increasing in geographic extent and elevation. While it is known that Leishmania parasites, 64 

the causative agent of leishmaniasis, are maintained in the environment via a mammalian 65 

host, the full suite of wildlife hosts has yet to be documented, which significantly hinders 66 

control efforts. Here, we use machine learning and ecological and evolutionary trait 67 

profiles of known hosts to identify unrecognized potential wildlife hosts of Leishmania. We 68 

identify 136 mammals in the Americas that are likely to be exposed to and infected by 69 

zoonotic Leishmania in the wild. The high number of unrecognized potential hosts 70 

emphasizes a need to better invest in studying the ecological epidemiology of 71 

leishmaniasis. The study provides information and tools to support targeted intervention 72 

and management of this important poverty-associated disease.  73 

 74 

Introduction 75 

Leishmaniasis, a debilitating and sometimes fatal parasitic disease, is one of the 20 76 

neglected tropical diseases targeted for control and elimination by the United Nations by 77 

2030 (1). However, leishmaniasis remains a persistent threat throughout the tropics and 78 

subtropics. In the Americas, leishmaniasis cases occur from the southern United States 79 

to Argentina, including the Caribbean, with an estimated 58,500 new cases each year (2). 80 

Further, incidence is rapidly shifting in geographic extent with land-use and climate change 81 

(3–7). For instance, hotspots of leishmaniasis have significantly expanded throughout 82 

Costa Rica in the last two decades, in concert with agricultural intensification, 83 

deforestation, and reforestation (3). 84 

 85 



Treatment for leishmaniasis has many side effects and are extremely expensive (2,8), 86 

thus control and elimination hinges on limiting transmission. Leishmania parasites are 87 

transmitted by sandflies (Order: Diptera; Family: Psychodidae) and maintained in the 88 

environment via a multitude of sylvatic and domestic mammalian hosts. As such, 89 

controlling transmission requires ecological interventions targeting either component of 90 

the transmission cycles. For instance, clearing vector habitat proximate to households, 91 

supporting populations of natural enemies that regulate populations of vectors or small 92 

mammals (e.g., fish and mosquito larvae), and/or modifying distribution of wildlife food 93 

sources are sustainable and effective interventions in preventing transmission of 94 

flaviviruses, henipaviruses, Plasmodium spp. (malaria), and Brucella abortus (brucellosis) 95 

(9,10). Similar interventions could be employed against Leishmania, however, successful 96 

application requires species identification of vectors, hosts, and their corresponding 97 

interactions with their biotic and abiotic environment.  98 

 99 

Leishmaniasis was first diagnosed by Western medicine in the Americas in 1909, at the 100 

time dogs and foxes were believed to be the zoonotic hosts (11). Continued research 101 

throughout the century hypothesized that rodents, and in some cases opossums and 102 

sloths, were the primary zoonotic hosts of these pathogens (11). However, especially with 103 

the advancement of molecular diagnostic techniques, the number and taxonomic diversity 104 

of hosts has since expeditiously increased. In the Americas, there are  now 137 species 105 

of wildlife that are recognized as potential hosts (i.e., animals that are naturally exposed 106 

and become infected once exposed), of which around 60 may act as competent hosts 107 

(i.e., animals can become infectious once infected, and may maintain the pathogen in the 108 

environment as reservoir hosts) (12,13). Wild hosts are now known to include eight orders 109 

of mammals including Chiropetra (bats), Carnivora, Cingulata (armadillos), 110 

Didelphimorphia (opossums), Lagomorpha (rabbits), Pilosa (sloths and anteaters), 111 

Primates, and Rodentia. However, even with progress in host discovery, the full suite of 112 

Leishmania hosts is not yet described: Leishmania spillover occurs in absence of known 113 

hosts and new hosts are discovered almost annually (14–17) .  114 



 115 

Limited knowledge on the transmission cycle makes it difficult to understand the 116 

mechanisms driving Leishmania distribution and spillover. As previously stated, unknown 117 

transmission cycles impede effective ecological interventions to reduce spillover risk to 118 

people. Additionally, global change can alter host dynamics to amplify spillover risk. For 119 

example, land-use change may increase host densities and/or push hosts into closer 120 

proximity to anthropophilic vectors and humans (9). Climate warming may also shrink or 121 

expand the range of hosts, further changing the rate of contact among hosts, vectors, and 122 

humans (18). As such, the incomplete classification of possible Leishmania hosts could 123 

lead to unexpected emergence and hotspots of human leishmaniasis.  124 

 125 

Study designs optimal for detecting Leishmania hosts, such as systematic sampling of 126 

large populations of a diversity of species through space and time, are limited by logistics 127 

and cost of sampling. Leishmania host discovery could benefit from strong a priori 128 

hypotheses about which mammals to target for sampling effort; taxa specific sampling 129 

could help to efficiently use time and monetary resources, ultimately expediting the full 130 

classification of the Leishmania transmission cycle. Through the last decade, machine 131 

learning approaches have been used to generate predictions of hosts of a multitude of 132 

different pathogens, including betacoronaviruses (19), flaviviruses (20), Rabies virus (21), 133 

and Borrelia burgdoferi (causative agent of Lyme disease) (22). These methods have 134 

facilitated more targeted laboratory and field work of novel pathogens, and they have great 135 

potential to improve our understanding of diseases of poverty with broad host and vector 136 

ranges.  137 

 138 

Host status for any parasite or pathogen is driven by two processes: exposure and 139 

physiological susceptibility (23,24). Exposure depends on the environmental conditions 140 

needed to support pathogen transmission and, in the case of vector-borne disease, vector 141 

reproduction, contact with competent hosts, and vector survival (25). Following exposure, 142 

physiological susceptibility then depends on pathogen interaction with host cells to gain 143 



entry and, in some cases, avoid immune attack and replicate (25). Host traits related to 144 

exposure and/or susceptibility likely interact in non-linear and higher-order combinations 145 

to delineate zoonotic Leishmania hosts from non-hosts. In brief, the effect of a trait on host 146 

status may vary in magnitude or direction depending on trait value and traits may become 147 

more or less important under different conditions. Hypothetically, for example, the average 148 

temperature of a species range may have a positive effect on host status between 25-30 149 

°C, but a negative effect outside of this range. Depending on biting activity of vector 150 

species, animals that forage on the ground may be more likely to be hosts if they are also 151 

nocturnal, whereas animals that are arboreal may be more likely to be hosts if they are 152 

crepuscular but less likely to be hosts if they are nocturnal. Thus, when viewing the 153 

zoonotic Leishmania system in one or two dimensions (e.g., only considering phylogeny 154 

or habitat use), it is difficult to determine unifying traits useful for identifying hosts. To date, 155 

it has been challenging to combine these processes across scales from physiological to 156 

evolutionary to ecological to biogeographic to predict their overall impact on infection 157 

potential. Machine learning, particularly tree-based methods, offers a set of new tools that 158 

can be used to incorporate and dissect this complexity by increasing the dimensionality in 159 

which the Leishmania system can be studied, allowing for multiple predictors that may 160 

have nonlinear and interactive effects on host status. The flexibility of these models allows 161 

for pinpointing combinations of mammalian traits unique to the confluence of Leishmania 162 

exposure and susceptibility, by learning patterns of known hosts. With this information, we 163 

can identify likely host species as targets for Leishmania surveillance efforts and the key 164 

traits that distinguish host species from non-hosts. 165 

 166 

Here we use tree-based machine learning (extreme gradient boosted regression, 167 

‘Xgboost’) and mammalian traits, including but not limited to biogeographical, 168 

phylogenetic, and life-history features, to: (i) describe trait profiles of hosts for zoonotic 169 

Leishmania (Viannia) and Leishmania (Leishmania) parasites; and (ii) use the trait profiles 170 

to predict unrecognized wild hosts of zoonotic Leishmania within the subgenera 171 

Leishmania (Viannia) and Leishmania (Leishmania).  172 



 173 

We aim for this analysis to identify animal species that are likely to be exposed and 174 

infected in the wild; due to extreme data sparsity, we do not employ our methods to identify 175 

competent hosts (i.e., animals that become infectious once infected and may act as 176 

reservoirs given the density and distribution of their populations). Our findings can be used 177 

to identify hosts that can then be surveyed at larger spatio-temporal scales, investigated 178 

for competence, or used as sentinel species. As such, while our modeling approach does 179 

not necessarily identify competent hosts that can transmit zoonotic Leishmania on to 180 

sandflies and eventually humans, it does identify animals likely to be exposed to and 181 

susceptible to zoonotic Leishmania infection, facilitating the first step of determining 182 

epidemiological importance and fine-tuning surveillance efforts.  183 

 184 

Methods 185 

Data collection 186 

Leishmaniasis is caused by protists within the Leishmania genus. There are 14 known species 187 

of zoonotic Leishmania (i.e., they spill over from animals to humans) in the Americas. These 188 

Leishmania species are divided between two subgenera: Leishmania (Viannia) and Leishmania 189 

(Leishmania). In the Americas, Leishmania (Viannia) consists of ten species, nine of which are 190 

zoonotic; Leishmania (Leishmania) consists of seven species, five of which are zoonotic (26). 191 

Leishmania (Viannia) spp. cause cutaneous and mucocutaneous leishmaniasis, which 192 

manifests as skin lesions that are susceptible to painful secondary bacterial infections, and/or 193 

destruction of the mucus membranes of the nose, mouth, and throat (2). In addition to 194 

cutaneous and mucocutaneous leishmaniasis, species within the Leishmania (Leishmania) 195 

subgenera (L. (L.) infantum and, less frequently, L. (L.) mexicana) cause fatal visceral 196 

leishmaniasis. Visceral leishmaniasis affects internal organs, typically causing enlargement of 197 

the spleen and liver (2). The following analyses were conducted for each subgenus (L. (Viannia) 198 

and L. (Leishmania) so to better described the ecological associations of each taxonomic group 199 

of parasites and their corresponding disease manifestations.   200 



 201 
Zoonotic Leishmania host status: We gathered Leishmania host status from all wild, 202 

endemic, and invasive terrestrial mammals with ranges in Mexico, Central America, and 203 

South America using recent reviews(12,13) in addition to a Web of Science query on 204 

February 12, 2021 and February 22, 2021 (see supplementary text 1 for the specific 205 

search strings). Host status was defined as a binary trait: an animal has been naturally 206 

infected by one of the 14 Leishmania species known to cause leishmaniasis in humans 207 

(1), or there is no record of infection by a Leishmania species known to cause 208 

leishmaniasis in humans (0). The latter category (“non-positives”) includes animals that 209 

have been tested for Leishmania and have not been found to be infected as well as those 210 

that have not been tested for Leishmania infection. Ideally, the analysis would include true-211 

positives (1) and true negatives (0). However, due to the intensive, systematic sampling 212 

required to declare an animal as a true-negative (longitudinal sampling across large 213 

geographic scales), there is not enough data to conduct the analysis with true-negatives. 214 

Our analysis (using true-positives and non-positives) still enables us to identify species 215 

that have not yet been tested but have a high probability of being a host.  Infection was 216 

determined via detection of Leishmania species specific antigens or genetic material. 217 

Species identification was performed either using animal tissue samples directly or using 218 

live parasites cultured from animal tissue. To ensure that all relevant mammals were 219 

included in our study, a list of species names of endemic Latin American mammals was 220 

retrieved from the International Union for Conservation of Nature (IUCN) Red List 221 

Inventory (27) and a list of invasive mammals was retrieved from the Global Invasive 222 

Species Database (28). We cross-referenced our host status data table with the Global 223 

Infectious Disease and Epidemiology Network (29). We then limited our analysis to wild 224 

mammals that had at least a 10% range overlap with reported human cases of 225 

leishmaniasis for inclusion in our analysis. In total, 86.64% (1460/1685) of species were 226 

retained for the L. Viannia analysis and 87.24% (1470/1685) of species were retained for 227 

the L. Leishmania analysis. Zoonotic Leishmania ranges were constructed by outlining a 228 



concave polygon around cases of disease occurrence in humans (30) (Fig 1a, 1c). We 229 

conducted all data filtering and downstream analyses separately for each subgenus. 230 

 231 

Traits associated with Leishmania exposure and susceptibility: Our analysis leverages 232 

patterns of traits of known hosts to predict identities of unrecognized hosts. We used host 233 

traits related to Leishmania exposure (via sandfly bites) and susceptibility, including life-234 

history, biogeographical, and phylogenetic traits (S1 Table).   235 

 236 

For life-history and some habitat use traits, we collected traits from panTHERIA (31), 237 

mammalDIET (32), and EltonTraits (33). We additionally used IUCN range maps and 238 

satellite imagery to extract data associated with species biogeography, including variables 239 

related to climate (34,35), land-cover type (36), and global human modification index, an 240 

aggregate measure of anthropogenic pressure on a landscape (37), within each species 241 

range (see S1 Table for full description of traits and satellite imagery used). Ranges of 242 

endemic species were retrieved from the IUCN database and ranges of invasive species 243 

in Mexico, Central America, and South America were constructed by building a concave 244 

polygon around species occurrence points from (38). Leishmania and invasive mammal 245 

species ranges were built using the R (v 4.0.2) packages speciesgeocodeR (39) and 246 

concaveman (40). We additionally included IUCN-designated main habitat and habitat 247 

breadth (IUCN) as traits. To quantify phylogenetic traits, we downloaded pairwise 248 

divergence time (phylogenetic distance) from TimeTree.org (41) and reduced the 249 

dimensionality of this matrix by mapping species in ordination space using principal 250 

coordinate analysis in base R. TimeTree is a knowledge-base that has collected and 251 

synthesized species divergence times from > 3000 peer-reviewed studies. We included 252 

whether an animal is invasive or endemic in the given Leishmania range and zoonotic host 253 

status using GISD and GIDEON. Finally, we accounted for sampling effort by downloading 254 

the number of citations found on PubMed per species using the R package easyPubmed 255 

(42). We choose to use PubMed as this indicates the biomedical study effort, as opposed 256 

to a more general measure of study effort that would be estimated using the number of 257 



citations on Web of Science. Biomedical study effort better represents the number of times 258 

a species was studied in the context of testing for pathogen assemblages. 259 

Data analysis 260 

We applied extreme gradient boosted regression (XGboost) in the R package xgboost 261 

(43) to use mammal trait data to predict the probability that a species is a Leishmania 262 

(Leishmania) or Leishmania (Viannia) host. Extreme gradient boosted regression is a 263 

machine learning algorithm that creates an ensemble of weak decision trees to form a 264 

stronger prediction model by iteratively learning from weak classifiers and combining them 265 

into a strong classifier (i.e., boosting) (44). Gradient boosted regression is flexible in that 266 

it allows for non-linearity, both among features (i.e., interactions) and between features 267 

and predictions, collinearity between features, and non-random patterns of missing data. 268 

Further, XGboost handles extremely unbalanced data well by weighting positive labels to 269 

increase class separability and allowing for a regularization parameter to prevent 270 

overfitting to a few positive labels – an advantage when analyzing our data set with 271 

relatively few known hosts compared to the number of mammal species examined. The 272 

ability to handle non-random patterns of missing data and extremely unbalanced data 273 

makes the XGBoost algorithm best suited for our study as compared to other machine 274 

learning methods, such as random forest and support machine vector, which severely 275 

overfit unbalanced data (random forest) and/or cannot handle missing data without use of 276 

imputation (random forest, support machine vector). Prior to analysis we removed traits 277 

with > 0.7 correlation to increase interpretability of variable importance. For the L. Viannia 278 

analysis 32/66 were retained in the final analysis; for the L. Leishmania analysis 33/66 279 

were retained. To maximize the number of traits retained in the model, out of a pair of 280 

correlated traits, the one with the highest number of correlations to other traits and/or the 281 

lowest data coverage was dropped. We used a box-cox transformation of extremely 282 

skewed variables to reduce the influence of extreme values on model performance. 283 

Categorical traits were one-hot-encoded so that each category was represented as a 284 

binary trait. Finally, traits with < 10% coverage (i.e., less than 10% of the species had data 285 



on the trait) were removed and not used in the analysis (both for training the model and 286 

prediction). 287 

 288 

Model performance and hyperparameter tuning: The accuracy of our model was evaluated 289 

using nested cross-validation. Nested cross-validation, as opposed to K-fold cross-290 

validation, produces the least biased evaluation of model performance when using a small 291 

sample size (45). Three-fold cross validation was used to generate model predictions and 292 

evaluate overall model performance, while 5-fold cross validation was performed to train 293 

hyperparameters within each 3-fold cross validation step. In other words, the full dataset 294 

was split into three outer folds. Hyperparameters were tuned using Bayesian optimization, 295 

optimizing over a parameter space aimed to reduce overfitting (low training rate, low ratio 296 

of samples used in trees, low ratio of features used in trees, low maximum tree depth, and 297 

high regularization). Using the hyperparameters that yielded the best performance 298 

(minimum logloss), a final model was then trained using the full data within these two folds 299 

and model predictions were calculated on the third hold-out fold. This process was 300 

repeated until out-of-sample predictions were made for each fold. As model output may 301 

be dependent on the distribution of the data across each fold, nested cross validation was 302 

repeated 25 times using 25 unique splits of the data. Our dataset was extremely 303 

unbalanced (i.e., many more 0s than 1s), which makes our model vulnerable to overfitting. 304 

To determine if our model was simply fitting spurious correlations in the data, we 305 

conducted a target shuffling analysis (46,47). We repeated the nested cross-validation 306 

analysis but randomized the response variables (Leishmania host status) for each 307 

iteration. We then calculated the mean AUC from the target shuffling experiment. AUC, 308 

the area under the receiver operator characteristic curve, is a classification metric that 309 

measures the probability that model output for a randomly chosen positive label (known 310 

host) will be higher than a randomly chosen negative label (animal with no record of 311 

zoonotic Leishmania infection). AUC ranges from 0 to 1, with an AUC of 1 indicating that 312 

the model perfectly classifies all samples, while an AUC < 0.5 indicates the model 313 

performs no better than a coin flip. We found that our model performed minutely better 314 



than a coin flip in the target shuffling experiment (average L. (Leishmania) target-shuffled 315 

AUC = 0.53; average L. (Viannia) target-shuffled AUC = 0.54), thus we adjusted our final 316 

AUC values by AUCfinal model - (AUCtarget shuffled model - 0.5).  317 

 318 

In our final model, citation count was among the top 10 most important variables. To 319 

ensure that we were not simply predicting well-studied animals, we repeated the analysis 320 

above while replacing the response variable with study effort (the number of citations on 321 

PubMed). To reduce computational time, we ran ten iterations instead of 25. We 322 

concluded that our model was not simply predicting well-studied species by evaluating 323 

how well the traits in our model predict study effort, measured as pseudo-R2. Additionally, 324 

we checked that trait responses (i.e., partial dependence plots) that predicted publication 325 

number were not overly similar to the functional form of the trait responses that predicted 326 

host status. 327 

 328 

Leishmania host trait profiles: To assess Leishmania host trait profiles, we first identified 329 

important features using SHAP (Shapley Additive Explanations) calculated via the R 330 

package SHAPforxgboost (48). Shapley scores represent the average marginal 331 

contribution of a feature to a prediction across all combinations of features; the contribution 332 

of the feature is interpreted as the change in prediction associated with that feature in 333 

relation to the average model prediction (44). SHAP calculates local feature contribution 334 

by evaluating the contribution of each feature to the prediction for each observation in a 335 

dataset. Here, local contribution refers to the contribution of each feature to the prediction 336 

for each individual species (local corresponds to the level of a single sample, which, for 337 

our analysis, is a species). Global feature contribution can be obtained by aggregating the 338 

Shapley scores for each feature across all observations; global feature contribution is the 339 

average contribution of each feature across all species (global corresponds to the level of 340 

the entire dataset). To generate a measure of uncertainty in feature contribution, we 341 

trained the model with 70% of the data, and calculated Shapley scores for the remaining 342 

30% of observations. We repeated the above procedure 100 times, using different subsets 343 



of data with each iteration. We then described trait profiles using SHAP partial 344 

dependence plots, which map the relationship between each value of a feature in the 345 

validation set and the contribution of the feature to model predictions.  346 

 347 

Leishmania host predictions: Following (21), we identified animals as unrecognized 348 

zoonotic Leishmania spp. hosts using the Shapley value classification criterion. The sum 349 

of the Shapley scores across features for each species sums to the prediction for each 350 

species, relativized by the average model prediction across species. A summed Shapley 351 

value of 0 represents the average prediction in the dataset (49,50). To account for model 352 

uncertainty, we used a bootstrapping procedure to calculate Shapley scores for models fit 353 

with 70% of the data 100x. We classified an animal as a newly predicted host if > 95% of 354 

Shapley scores were > 0; in other words, we classified an animal as a newly predicted 355 

host if predicted probability of being a host was greater than the average probability for 356 

that model iteration for > 95% or model iterations (21).  357 

 358 

The full record of species infection status and references, trait data-base and R code can 359 

be found at https://github.com/ckglidden/leish_hosts. 360 

 361 

Results  362 



 363 

 364 

Fig 1. The ranges of zoonotic Leishmania and their known and predicted hosts 365 

extend throughout the Americas. The number of overlapping ranges of known 366 

Leishmania hosts are depicted in (a & c), with the range of human cases of L. (Viannia) 367 

and L. (Leishmania) outlined in grey. The number of overlapping ranges of newly predicted 368 

hosts are outlined in (b & d). Hylaeamys megacephalus and Calomys callosus are 369 

unrecognized hosts with the highest and second highest predictions for L. (Viannia) 370 

according to Shapley values. Their ranges are outlined in dark green and light green, 371 

respectively, in (b).  Dasypus novemcinctus and Leopardus wiedii are currently hosts with 372 

the highest and second highest Shapley values for L. (Leishmania). Their ranges are 373 

outlined in dark blue and light blue, respectively, in (d). An exhaustive list of newly 374 

predicted hosts is listed in S2 Table. Base maps were created in R using open source 375 

shapefiles from Natural Earth (admin-0 countries: 376 

https://www.naturalearthdata.com/downloads/10m-cultural-vectors/; 377 

https://www.naturalearthdata.com/downloads/10m-cultural-vectors/


https://www.naturalearthdata.com/about/terms-of-use/) (51); species ranges were created 378 

in R using open source shape files from IUCN 379 

(https://www.iucnredlist.org/resources/spatial-data-download; 380 

https://www.iucnredlist.org/terms/terms-of-use) (27). 381 

 382 

Leishmania (Viannia): Through our literature search, we found 96 known L. (Viannia) hosts 383 

out of 1460 mammals that occur within the geographic range of L. (Viannia) parasites (Fig 384 

1a; Fig 2a). After accounting for target shuffling, our model performed moderately well with 385 

an average out of sample AUC of 0.81 (95% CI: 0.80 - 0.82) and in sample AUC of 0.94.  386 

 387 

L. (Viannia) trait profiles: After removing highly correlated traits, 30 features were used to 388 

predict L. (Viannia) hosts. A mix of biogeography, life-history, phylogeny, and study effort 389 

covariates were among the top important model features when estimating global feature 390 

contribution (Fig 3). Phylogenetic distances, reduced into six axes of a PCoA ordination, 391 

were, on average, the most important trait for Leishmania (Viannia) hosts. Specifically, 392 

animals were more likely to be hosts if they were rodents and opossums, and less likely 393 

to be hosts if they were non-human primates, carnivores, and even toed ungulates (S1, 394 

S2 Figs).  Similar to other zoonotic pathogen systems, L. (Viannia) hosts live at high 395 

population densities and demonstrate signatures of fast-paced life-histories, indicated by 396 

short gestation periods (Fig 4a). Further, L. (Viannia) host ranges are large, have high 397 

proportions of crop and urban land cover, and, on average, peak at ~28C during the 398 

warmest quarter of the year (Fig 4a). Geographic coordinates of the species’ native ranges 399 

were also an important predictors: animals were more likely to be hosts if the minimum 400 

longitude of their native range was around western Central America. Notably, although 401 

study effort (number of PubMed citations, normalized with a Box-Cox transformation) was 402 

among the most important traits, our supplementary analyses indicated that the host 403 

models were not simply predicting well-studied hosts. Specifically, the supplementary 404 

model predicting study effort (number of PubMed citations) performed poorly (average 405 

out-of-sample R2 = 0.19). Further, traits that predict citation count, and the response 406 

https://www.iucnredlist.org/resources/spatial-data-download


curves of those traits, greatly differed from traits that predict L. (Viannia) host status (S3-407 

S4 Figs). As such, while L. (Viannia) hosts are likely understudied, we are not simply 408 

reporting the trait profiles of well-studied mammals. 409 

 410 

L. (Viannia) hosts: Eighty-three animals were identified as likely hosts (Fig 2, S2 Table). 411 

Out of these newly predicted hosts, the majority were rodents, bats, and opossums. 412 

Further, 14 of these hosts are known hosts of L. (Leishmania) (S2 Table). The newly 413 

predicted hosts with the highest summed Shapley scores were the large headed rice rat 414 

(Hylaeamys megacephalus) and the large vesper mouse, Calomys callosus (Fig 1). In 415 

contrast to known hosts, the range of newly predicted hosts extends to the southern tip of 416 

South America and there is a high density of species ranges that overlap in the southern 417 

United States (Fig 1a, 1b).  418 

 419 

 420 



Fig 2. The number of known and predicted hosts per order for L. (Viannia) (a) and 421 

L. (Leishmania) (b). Grey bars represent the number of known hosts within each order, 422 

colored bars represent the number of newly predicted hosts per order. Animals were 423 

classified as newly predicted if > 95% of mean SHAP values were greater than 0 (a-b). 424 

Bars  in (c) represent the proportion of newly classified hosts within each order; colors 425 

match  (a-b). Animal outlines were downloaded from PhyloPic (http://phylopic.org/; 426 

http://phylopic.org/about/) (52). 427 

 428 

Leishmania (Leishmania): Through our literature search, we found 110 known hosts out 429 

of 1470 mammals that have overlapping ranges with the zoonotic L. (Leishmania) range 430 

(Fig 1c). Of these, 40 animals were hosts for both Leishmania subgenera. After accounting 431 

for target shuffling, our L. (Leishmania) hosts model performed moderately well with an 432 

average out of sample AUC of 0.84 (95% CI: 0.83 - 0.85) and in sample AUC of 0.94.  433 

 434 

L. (Leishmania) trait profiles: After removing highly correlated traits, 32 features were used 435 

to predict L. (Leishmania) hosts. On average, study effort was the most important trait (i.e., 436 

had the highest global feature contribution), followed by the land cover/land-use 437 

composition of the species range, average temperature in the warmest quarter of the 438 

species range, range area, phylogenetic distance, litter size, gestation length, and 439 

longitudinal extent of the species range (Fig 3). Similarly, to L. (Viannia) hosts, L. 440 

(Leishmania) hosts show signatures of fast-paced life histories, indicated by short 441 

gestation lengths and large litter sizes, and have ranges with high degrees of crop and 442 

urban cover (Fig 3b). Further, the range of L. (Leishmania) hosts are similar to L. (Viannia) 443 

hosts in that the mean temperature in the warmest quarter peaks around 28C (Fig 4b). 444 

On average, geographic coordinates of the species’ native range were also an important 445 

predictor: Animals were more likely to be hosts if the minimum longitude of the range was 446 

around western Central America, while the maximum longitude of the range was western 447 

Europe, which indicates a role of invasive species in the L. (Leishmania) transmission 448 

cycle.  While study effort was among the most important traits, host traits explained little 449 

http://phylopic.org/


variation in number of PubMed citations (average out-of-sample R2 = 0.17) and traits that 450 

predict citation count, and the response curves of those traits, greatly differed from traits 451 

that predict L. (Leishmania) host status suggesting that traits important for discriminating 452 

host status were not just those that predicted study effort (S5-S6 Figs). 453 

 454 

L. (Leishmania) hosts: Using the Shapley classification criterion, 98 animal species that 455 

are currently unrecognized hosts were labeled as newly predicted hosts (Fig 2, S2 Table). 456 

Out of these newly predicted hosts, the majority were rodents, bats, and carnivores. Nine 457 

newly predicted hosts are known hosts of L. (Viannia). Forty-five newly predicted hosts 458 

were newly predicted hosts for both the L. (Leishmania) and L. (Viannia) subgeneras (S2 459 

Table). The newly predicted hosts for the L. (Leishmania) with the top summed Shapley 460 

scores included the nine-banded armadillo (Dasypus novemcinctus) and margay 461 

(Leopardus wiedii) (Fig 1). The nine-banded armadillo is a known host of L. (Viannia) 462 

parasites, with a range that extends from northern Argentina to the central United States 463 

(Fig 1d).  464 

  465 



 466 

 

 467 

Fig 3. Biogeography, life-history, and phylogenetic traits all significantly contributed to model 

predictions for host status. Biogeographical traits (minimum longitude of the range, maximum 

longitude of the range, % cover of land-use/land cover in the species range, average temperature in 

the warmest quarter in the species range, range area) are colored in blue, life-history traits (population 

density, gestation length, litter size) are colored in red, phylogenetic distance (location along PCoA 

ordination axes) is colored in orange, and study effort is colored in grey. Points are the absolute value 

of the mean Shapley importance (mean |SHAP value|) for the trait across all mammals (i.e., global 

feature contribution), bars represent the absolute values of the 0.05-0.95 percentiles. Only features 

with 0.05 percentiles > 0 are shown.  

 

 



 

Fig 4. Hosts have fast-paced life-histories and live in proximity to humans. Shapley 468 

partial dependence plots showing the effect of each feature on L. (Viannia) (a) and L. 469 

(Leishmania) (b) host status after accounting for the average effect of the other features 470 

in the model. Colored lines represent the average effect across model iterations, while 471 

grey lines show each individual model iteration (model fit with 80% of data) (blue = 472 

biogeographical traits; red = life-history). Features with global mean feature contribution 473 



scores > 0 for > 95% of model iterations are shown. Rug plots on the x-axis indicate the 474 

distribution of the data.  475 

 476 

Discussion 477 

 478 

Our literature search identified 137 wild mammals in the Americas as known zoonotic 479 

Leishmania hosts, and our model predicted there to be an additional 136 likely hosts 480 

(animals that are likely to be exposed and infected in the wild, but not necessarily 481 

infectious upon infection). The majority of the predicted hosts for both subgenera fell within 482 

the Rodentia order (L. (Leishmania) N = 27; L. (Viannia) N: = 34), with a similar number 483 

of predicted Leishmania (Leishmania) hosts within the Chiroptera order (N = 32). While 484 

their contribution to model predictions varied between subgenera, key traits included 485 

phylogenetic distance, human associated land-use, climate, population density, and study 486 

effort. 487 

 488 

For both Leishmania subgenera, biogeographical features encompassing descriptors of 489 

species ranges were among the top five contributors to host predictive accuracy. Notably, 490 

zoonotic L. (Leishmania) hosts are more likely to be animals with larger ranges than non-491 

hosts. Geographic range area was also reported to be a shared predictive feature among 492 

zoonotic hosts and reservoirs in other systems (21,53). Further, ranges of L. (Leishmania) 493 

and L. (Viannia) hosts are made up of higher proportions of crop cover and urban cover 494 

than ranges of mammals that are not Leishmania hosts. These results are in accordance 495 

with previous findings that, in general, zoonotic host richness and relative abundance 496 

increases with anthropogenic pressure (54). Further, our results align with recent literature 497 

showing that risk of leishmaniasis is associated with agricultural intensification and 498 

urbanization (4,55). L. (Viannia) hosts are marginally more likely to have ranges with 499 

moderate forest cover, than non-hosts whereas there is little effect of forest cover on L. 500 

(Leishmania) host status. Vectors of cutaneous leishmaniasis, which is caused by all 501 

species of zoonotic Leishmania except L. infantum, are more likely to live in forests with 502 



high integrity and low human modification (56), while hosts are more common in disturbed 503 

landscapes (57). Our analysis adds support to the latter finding, highlighting that 504 

transmission of parasites associated with cutaneous leishmaniasis likely occurs at forest-505 

human settlement interfaces. The incomplete overlap between vector ranges and host 506 

ranges may explain the highly localized dynamics of cutaneous leishmaniasis spillover 507 

(i.e., transmission from wildlife to humans via the sandfly vector) (6,58). Spillover occurs 508 

when reservoir hosts, vectors, and humans overlap in space and time so that forward 509 

transmission occurs from animal to sandfly to human. If vector and host distributions only 510 

overlap at habitat interfaces, area of reservoir host, sandfly, and human co-occurrence 511 

may be low and variable through time. Finally, average temperature of the warmest 512 

quarter was an important predictor of host status, with the feature contribution to model 513 

predictions peaking around 28°C. In the case of zoonotic leishmaniasis, temperature is 514 

likely a predictor of Leishmania exposure as this trait profile reflects temperatures 515 

associated with vector survival and parasite development (59,60).  516 

 517 

The profiles of important life history traits for Leishmania hosts resembled those observed 518 

in other comparative analyses of zoonotic diseases. Specifically, for both Leishmania 519 

subgenera, the probability of host status peaked at low to median lengths of gestation, a 520 

pattern similar to that of rodent reservoirs of zoonotic pathogens and competent hosts of 521 

zoonotic tick-borne pathogens (53,61). Further, the probability of zoonotic L. (Leishmania) 522 

host status increased with litter size, a trend that parallels that of both rodents reservoirs 523 

of zoonotic pathogens and bat and carnivore reservoirs of rabies virus (21,53). Altogether, 524 

our findings suggest that, like other zoonotic reservoirs and hosts, zoonotic Leishmania 525 

hosts may have fast-paced life-histories. Animals with fast-paced life-histories are 526 

believed to maximize fitness by expeditiously investing in short-term reproductive effort -- 527 

such as through younger ages at sexual maturity, short gestation lengths, greater litter 528 

sizes -- at the cost of long-term survival (62). As a result, animals with fast-paced life 529 

histories are thought to divert energetic resources away from effective adaptive immunity 530 

(63), or utilize responses conducive to tolerance but not resistance (64), allowing them to 531 



allocate maximal resources to short term reproductive effort. As such, animals with fast-532 

paced life-histories may be more susceptible to infections. 533 

 534 

However, L. (Viannia) hosts only had one trait (gestation length) clearly associated with a 535 

fast-paced life history, suggesting weaker evidence for the “fast-paced” host hypothesis 536 

for this subgenus. Phylogenetic distance was the most important trait for L. (Viannia) 537 

hosts. We hypothesize that phylogenetic relationships may better account for host 538 

physiological defenses against Leishmania than life-history traits. If this is the case, 539 

inclusion of specific genetic markers associated with Leishmania-host cell interactions 540 

may improve model predictions.  541 

 542 

Notably, study effort significantly contributed to host predictions for both subgenera. While 543 

our follow up analyses do not indicate that model results are biased by uneven study effort, 544 

this finding may suggest that zoonotic Leishmania hosts are generally under sampled. 545 

Though leishmaniasis is a neglected tropical disease primarily impacting resource-poor 546 

communities, state-of-the-art zoonotic Leishmania diagnostic and surveillance techniques 547 

are available (16,57,65–69). As such, under sampling Leishmania hosts primarily stems 548 

from both the lack of funding to employ these tools during large scale surveillance efforts 549 

and the large number of animal species that are potentially hosts. The main leishmaniasis 550 

research funding mechanism within the USA, the National Institute of Health (NIH), 551 

primarily focuses on the molecular biology of leishmaniasis work and does not prioritize 552 

research elucidating the ecology of the sandfly-wildlife transmission cycle. In fact, a simple 553 

search for “leishmania” on the NIH and National Science Foundation grants database 554 

yields a combined total of three awards aiming to elucidate transmission cycles of 555 

Leishmania in the Americas (searched October 10, 2022). Researchers across Latin 556 

America are faced with similar, if not more severe, funding constraints. For example, in 557 

Brazil, a major hotspot of leishmaniasis, the federal administration from 2019-202 cut 90% 558 

of federal science funding (70). While our model results facilitate more targeted field 559 

sampling for particular species, optimized surveillance should consist of an iterative 560 



feedback between local knowledge and model predictions to guide field work, and 561 

updating the model with new results from field sampling to guide ongoing surveillance and 562 

field studies (16,19). Importantly, to reduce study effort bias going forward, care should be 563 

taken to estimate and survey under studied areas and species in addition to newly 564 

predicted species, particularly in areas with high rates of human spillover with poorly 565 

known hosts. A lack of investment in understanding the basic ecology of Leishmania slows 566 

research progress by obscuring the major drivers of disease dynamics and spillover 567 

transmission to humans. Leishmaniasis surveillance and management would benefit from 568 

larger funding mechanisms prioritizing understanding the ecology of this group of 569 

pathogens.  570 

 571 

In some cases, our host predictions are supported by multiple independent but 572 

complementary lines of evidence (summarized below and in S3 Table). Non-specific 573 

Leishmania antigens, antibodies, or DNA has been detected in the crab-eating racoon 574 

(Procyon cancrivorus), neotropical river otter (Lontra longicaudis), six-banded armadillo 575 

(Euphractus sexcinctus), coyote (Canis latrans), and the grey short-tailed opposum 576 

(Monodelphis domestica) (12,68,71,72). As tests were not parasite species specific, it is 577 

unconfirmed if they were infected with zoonotic Leishmania species, but our model 578 

suggests they may be. Further, Leishmania-like flagellates were discovered in Derby’s 579 

wooly opossum (Caluromys derbianus) (71); however, to our knowledge this species has 580 

not been tested for zoonotic Leishmania species.  581 

 582 

A number of animals predicted to be hosts for L. (Leishmania) were also found to co-occur 583 

with vectors of L. (L.) mexicana in Mexico: the hairy big-eyed bat (Chiroderma villosum), 584 

Brazilian brown bat (Eptesicus brasiliensis), great sac-winged bat (Saccopteryx bilineata), 585 

tent-making bat (Uroderma bilobatum), Mexican woodrat (Neotoma mexicana), black 586 

footed pygmy rice rat (Oligoryzomys nigripes), Coue’s rice rat (Oryzomys couesi), fulvous 587 

harvest mouse (Reithrodontomys fulvescens), nine-banded armadillo (Dasypus 588 

novemcinctus), lowland paca (Cuniculus paca), Virginia oppossum (Didelphis virginiana), 589 



kinkajou (Potos flavus), racoon (Procyon lotor), white-nose coati (Nasua narica), and the 590 

margay (Leopardus wiedii) (16,73). Notably, the nine-banded armadillo and margay had 591 

the two highest summed Shapley scores as potential L. (Leishmania) hosts. The nine-592 

banded armadillo is a known host of L. (Viannia) as well as other zoonotic pathogens 593 

including the causative agent of leprosy (74).  594 

 595 

Host competence (i.e., the ability to become infected and infectious) has been 596 

demonstrated in the lab for four of the predicted species: the Virginia opossum (Didlephis 597 

virginiana), the large vesper mouse (Calomys callosus), spix’s yellow toothed cavy (Galea 598 

spixii), and the Mexican free-tailed bat (Tadarida brasiliensis) (71,75–77). Although host 599 

competence for these animals has been tested in the laboratory, infection/exposure has 600 

not been tested in the wild or animals have not tested positive in the wild (possibly due to 601 

minimal sampling of the species). Our model suggests that these animals are also likely 602 

to be naturally infected in the wild and thus warrant further investigation. The large vesper 603 

mouse is one of the top predicted species for L. (Viannia). Surprisingly, we found no field 604 

studies testing wild large vesper mice for zoonotic Leishmania infection. Finally, our model 605 

suggests that a handful of species naturally infected with L. infantum in Europe are also 606 

likely to be exposed to and susceptible to zoonotic Leishmania in the Americas: the red 607 

fox (Vulpes vulpes), the European hare (Lepus europaeus), and the European rabbit 608 

(Oryctolagus cuniculus) (78–80).  609 

 610 

Importantly, while there are 14 species of zoonotic Leishmania parasites in the Americas, 611 

our analysis divides these species into two subgenera but does not identify Leishmania 612 

species specific hosts. Future work could leverage the information presented by the 613 

current analysis to identify Leishmania species specific hosts. Additionally, our analysis 614 

identifies animals that are likely to be infected in the wild but does not narrow the host pool 615 

down to competent hosts (animals that are likely to be both infected and infectious in the 616 

wild). Next steps of model development could identify trait profiles of competent hosts that 617 

delineate them from non-competent hosts. Notably, (56) used machine learning to predict 618 



unrecognized vectors of leishmaniasis. Further, metabarcoding of arthropods has started 619 

to identify sandfly feeding networks (66,81) that may be useful in linking model predictions 620 

of vectors and hosts to local transmission cycles. 621 

 622 

Overall, models for both subgenera identified a number of new hosts, including but not 623 

limited to the nine-banded armadillo, the margay, the large vesper mouse, and the large 624 

headed rice rat, that can be targeted for future surveillance and research to determine 625 

their ecological significance in leishmaniaisis transmission and spillover to humans. Next 626 

steps should include ground truthing the role of newly identified potential hosts in the 627 

zoonotic Leishmania transmission cycle, through field sampling and laboratory 628 

experiments, through engagement with local communities, and iteratively updating the 629 

current analysis as new information is collected, taking careful consideration to not 630 

perpetuate the effects of study bias. Although a cautious first step in host discovery work, 631 

our study can immediately inform surveillance efforts and study design. For instance, host 632 

predictions may provide a starting point for implication of hosts during local outbreaks of 633 

human leishmaniasis by providing a targeted list of likely suspects to sample. While the 634 

study of leishmaniasis has historically focused on rodents and small marsupials, our study 635 

suggests that capture methods should more commonly be supplemented by bat mist-636 

netting and/or techniques to capture small to medium sized carnivores. Finally, many 637 

newly predicted hosts have ranges that extend throughout the southeastern USA. 638 

Ecological niche models suggest that climate warming may increase the range of 639 

Leishmania vectors as far north as Canada, and leishmaniasis endemicity within the US 640 

was recently confirmed (82–84). Similarly, the range of predicted hosts for L. (Viannia) 641 

extends farther south through Argentina than currently known hosts. Our analysis provides 642 

tools for monitoring leishmaniasis risk under global change as these hosts could be used 643 

as sentinel species for tracking leishmaniasis range expansion. Testing these hosts for 644 

leishmaniasis infection beyond the current putative boundaries of zoonotic Leishmania 645 

ranges would help to evaluate if range expansion has already occurred as well as provide 646 

an updated baseline for future monitoring. 647 



 648 

Identifying local transmission cycles is key for reducing leishmaniasis spillover and 649 

disease burden in people, especially in the face of land-use and climate change, which 650 

likely influence the geographic distribution and extent of vector—host--human contact and 651 

were strongly associated with novel host predictions in our models. We estimate that there 652 

are likely many unknown hosts of leishmaniasis throughout the Americas, highlighting the 653 

complexity of the transmission cycle and a need to increase study effort on the ecology 654 

and epidemiology of this system. 655 
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Supplemental materials legend:  906 
 907 
Supplementary text 1. Search methods for recording Leishmania host status: We 908 
used the search string listed below to run search Web of Science of Leishmania hosts. 909 
We ran the initial search on February 12, 2021. We ran additional searches that included 910 
the species names of zoonotic Leishmania on February 22, 2021. Our host database was 911 
then updated in June 2021 after the publication of (1).  912 
 913 
 914 
S1 Table Final traits and sources of traits used in the analysis.  915 
 916 

S2 Table Summed Shapley Scores per species for newly predicted species, averages across 917 
100 model iterations (0.05 percentile - 0.95 percentile).  918 
 919 
S3 Table Complementary evidence of predicted hosts.  920 
 921 
S1 Fig Importance of each PCoA phylogenetic dimension in predicting L. (Viannia) host status.  922 
 923 
S2 Fig Shapley partial dependence plots showing the effect of PCoA dimensions on L. (Viannia) 924 
host status and distribution of hosts within each order with PCoA dimension values above or 925 
below the threshold. 926 
 927 
S3 Fig. Features contributions to predictions for the study effort of mammals for animals included 928 
in the L. (Viannia) analysis.  929 
 930 
S4 Fig Functional response of study effort to mammal traits for animals included in the L. (Viannia) 931 
analysis.  932 
 933 
S5 Fig Features contributions to predictions for the study effort of mammals for animals included 934 
in the L. (Leishmania) analysis. 935 
 936 
S6 Fig Functional response of study effort to mammal traits for animals included in the L. 937 
(Leishmania) analysis. 938 
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