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Abstract

The role of the microbiome in health and disease is attracting the
attention of researchers seeking to engineer microorganisms for
diagnostic and therapeutic applications. Recent progress in
synthetic biology may enable the dissection of host—microbiota
interactions. Sophisticated genetic circuits that can sense,
compute, memorize, and respond to signals have been devel-
oped for the stable commensal bacterium Bacteroides thetaio-
taomicron, dominant in the human gut. In this review, we highlight
recent advances in expanding the genetic toolkit for

B. thetaiotaomicron and foresee several applications of this
species for microbiome engineering. We provide our perspective
on the challenges and future opportunities for the engineering of
human gut-associated bacteria as living therapeutic agents.
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Introduction

The gut microbiota ecosystem is intimately associated
with numerous aspects of the human host, influencing
human health and disease [1]. The diversity and
composition of these microbial communities have a
broad impact on human health, affecting metabolism,
immunity, and behavior [2]. For instance, the gut
microbiota converts ingested dietary fiber and host
mucosal glycans to short-chain fatty acids (SCFAs),
which are crucial for human intestinal health [3]. The
gut microbiota also influences the responses of cancer
patients to anti-PD-1 immunotherapy [4]. Fecal
microbiota transplantation (FMT) has become a
powerful strategy to treat recurrent Clostridium difficile
infection and other disorders by restoring balance to
disturbed microbiota [5]. Our understanding of the
human gut microbiota has been dramatically shaped by
-omics technologies, which provide a snapshot of the
composition and metabolism of microbial communities
in the human gut. However, targeted approaches to
clucidate the mechanistic relationships between gut
microbiota and host have lagged behind. Specifically, the
molecular mechanisms of how the gut microbiota affects
human health and disease are still poorly understood.

Synthetic biology provides attractive approaches to
facilitate our understanding of host—microbiota in-
teractions but also to manipulate the gut microbiota,
ideally reconfiguring these microbial communities to
promote health [6]. In this article, we review recently
developed genetic tools for the obligate anaerobe
Bacteroudes spp., which is one of the most abundant and
stable genera in the healthy human gut [7]. Of the
species in the Bacteroides genus, Bacteroides thetaiotaomi-
cron (B. thetaiotaomicron) was the first to be sequenced
[8]. This prominent human gut commensal species has
been reported to attenuate gut inflammation [9],
enhance innate immunity against pathogen invasion
[10], and process important dietary nutrients [11] and is
well tolerated as a live biotherapeutic in patients with
Crohn’s disease [12]. B. thetaiotaomicron has emerged as a
key organism for both understanding and manipulating
the gut microbiota ecosystem [13]. This review focuses
on recent advances in expanding the genetic toolbox
(Table 1) for B. thetaiotaomicron, which can enable the
construction of sophisticated genetic circuits to sense
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Table 1

The synthetic biology toolbox for Bacteroides engineering.

Functions Genetic Promoter RBS Payload Vector backbone Genome integration Additional Year Refs
circuits information
Sense and YES and Constitutive rpiL* and Serine integrases Integration vector attBT2 Controlled gene 2015 [18]
respond NOT gates promoters: Pgr1311 randomized rpilL* (memory); pNBU2 expression (>10%
variants; RBS libraries NanolLuc; dCas9; fold dynamic
Rhamonse-, (142); weak RBS BT1854 (LpxF); range); Genetic
chondroitin RC500 BT1754 circuits validated
sulfate-, in mouse model.
arabinogalactan-,
and IPTG-
inducible
promoters.
Regulated gene  YES gate The mannan- RBSxyl120; SD8 Lactobacillus pepl; pGH 103-fold range of 2016 [21]
expression inducible promoter BtCepA promoter activity
(PeT3784)-
Regulated gene Constitutive phage AT-rich, AG-rich, and GFP and mCherry pNBU2 attBT2 High-throughput 2017 [19]
expression promoter: Pgip1ees random RBS cloning and
libraries. genomic
integration
pipeline; unique
fluorescent protein
signature for
in vivo imaging.
Regulated gene  YES gate aTc inducible P1 and RBS panel [18] Nanoluc; BT1854 pNBU2; attBT2; between 10°-fold range of 2017 [23]
expression P2 promoters (LpxF); BT1754; pExchange_tdk BT3743 and promoter activity;
Ss-Bfe1 and Ss- (allelic exchange) BT3744; between Tested in 11
Bte1; BT0455 BT4719 and different species
(Sialidase) BT4720.
Exclusive Native promoters of Native RBSs Porphyran utilization pWDO011 and pEZ- attBT2 Transfer of the 60-kb 2018 [33]
nutrient access porphyran PULs BAC for yeast PUL into a native
polysaccharide assembly strain of
utilization loci Bacteroides
(PULs)
Expression of Native promoters of  Native RBSs of gut-  Glycan utilization pCC1FOS (fosmid Functional 2018 [39]
metagenomic gut-derived DNA derived DNA genes vector) metagenomic
DNA screens
Genetic YES gate aTc- and Rhamnose- ss-Bfe1 toxic effector pNBU2 attBT2 Genetic 2019 [31]
maniputlation inducible (counter- manipulation in
promoters; Pgr1311 selection); inulin antibiotic-resistant
utilization cassette Bacteroides
isolates
Regulated gene  AND gate Dextran and rpiL*RBS NanolLuc; agarase pINT; pNBU2; attBT2; PUL75 Dual-glycan 2019 [22]

expression

arabinogalactan-
responsive
promoters; PgT1311

(BuGH16C)

pEpisomalPromoter
(PEP)

expression system

(2zo2) ABojoig anayiuhs ¢z
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Sense and NOT; NOR; Constitutive
respond XOR,; the 2- promoters:
input 3- PgT1311, PPAMS,
output P1, etc; aTc- and
circuit BA-inducible
promoters
Regulated gene Constitutive
expression promoters: Pgr1311
and Pgip1Es
Genetic YES gate Constitutive

maniputlation promoters: Pgr1311
and Pcia; aTc-
and IPTG-

inducible promoter

Containment and Constitutive
regulated gene promoters: Pcepa,
expression Petias Petxas

Pgr1311, and Py.

rpiL*RBS etc.

RBS panel [18,19]

rpiL*RBS

NanolLuc; dCas9;
sgRNAs etc.

Butyrate biosynthetic
pathway: thil, hbd,
crt, bed, etfAB, ptb,
buk

SpCas9; SpRY;
FnCas12a;
NanoLuc.

NanoLuc; SpCas9;
sgRNAs;
Engineered
Riboregulators.

L3S2P21 etc.

pNBU2-based vectors
(pPMM710 and
pLGB13); Replicon
plasmid pFD340

pNBU2; Replicon
plasmids

pNBU2

attBT1-1; attBT2 Circuit design 2020
automation;
Development of
complex genetic
logic gates in
Bacteroides.

GEM (KS1119)- 2021
guided metabolic
engineering
design. The
maximum butyrate
titer in the
AptaAldhD mutant
was 41 + 1 mg/Lin
BHIS medium.

Deletion of large 2022
genomic DNA up
to 50-kb; Work in
multiple
Bacteroides
species.

Cas9-assisted 2022
biocontainment;
engineered
riboregulator for
controlled gene
expression.

BT4681-2; pta and
ldhD gene loci.

attBT2; thyA gene

[24]

[43]

[29]

[14]
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and respond to environmental signals (Figure 1). We also  those of well characterized organisms like Fscherichia coli

provide our vision for future research and discuss chal- [15—17], strong constitutive promoters, such as native
lenges facing gut commensal bacteria engineering. Bacteroides promoters [18] and phage promoters [19],

were characterized and engineered to express heterol-
Constitutive promoter and ribosome ogous and homologous proteins in B. thetaiotaomicron.
binding site (RBS) design Based on the constitutive promoter for the house-
In prokaryotic cells, gene expression is highly controlled ~ keeping sigma factor BT1311, Mimee et al. designed
at the transcriptional level. Given that the transcrip-  four promoter variants by introducing a 26-bp sequence

tional control mechanisms in Bacteroides differ from  in the regions surrounding and including the —33

Figure 1
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Current Opinion in Chemical Biology

Engineered genetic circuits in B. thetaiotaomicron with multiple functional modules. Genetically engineered gut commensal B. thetaiotaomicron
sense inputs, process signals with bio-computation and memory, and generate output according to the “decision” made by the genetic circuits. Input
sensors, constructed with constitutive and inducible promoters, detect environmental or disease biomarkers [Input]. Upon recognition of these bio-
markers, modules involved in gene regulation and genetic memory can integrate the inputs [Computation and Memory] and, in response, drive specific
and appropriate output functions [Output]. Genetic circuits can be integrated into the genome of B. thetaiotaomicron. Biocontainment modules can
prevent horizontal gene transfer and unintended spread of engineered B. thetaiotaomicron [14]. RBS, ribosome binding site; GOI, gene of interest; ChS,
chondroitin sulfate; Rha, rhamnose; AG, arabinogalactan; DX, dextran; IPTG, isopropyl f3-p-1-thiogalactopyranoside; BA, bile acid; aTc, anhydrote-
tracycline; SM, selectable marker; CSM, counter selectable marker; UHA, upstream homologous arm; DHA, downstream homologous arm; AMP,
ampicillin; PULs, the polysaccharide utilization loci; OMVs, outer membrane vesicles.
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and —7 promoter structures, which are known to be
important for B. thetaiotaomicron transcription [18].
Whitaker et al. identified the strong constitutive pro-
moter Ppepige in Bacteroides fragilis (B. fragilis) phage
genomes and created eight synthetic promoters by
introducing single or multiple mutations in this pro-
moter spanning a 3 X 10*-fold expression range [19]. To
expand the range of constitutive gene expression, the
RBS, which regulates protein production via translation,
was characterized. When native B. thetaiotaomicron pro-
moters and phage promoters were combined with RBS
libraries, gene expression was programmable across
ranges of 1 x 10*-fold and ~1 x 10°fold, respectively
[18,19]. In addition, analysis of the RBS libraries
revealed that the AT-rich RBSs strengthened protein
expression more than other RBS designs [18,19].
Intriguingly, Townsend et al. showed that dietary fruc-
tose and glucose can silence a regulator of colonization
(Roc) in B. thetaiotaomicron by controlling its protein
translation [20]. Four nucleotides located between the
putative RBS and the start codon of the 7oc gene are
required for such control by fructose and glucose [20].
Thus, engineered B. thetaiotaomicron with another mRNA
leader sequence from the BT3334 gene preceding the
roc coding region can render the expression of this
colonization factor active in mice fed glucose and su-
crose [20]. The identification and characterization of
constitutive promoters and RBSs will extend our genetic
toolkit for the manipulation of B. thetaiotaomicron.

Inducible promoter-based biosensor

Although constitutive protein expression is suitable for
many applications, inducible systems are often desirable
to sense fluctuating environmental signals and precisely
control output gene expression levels. Currently, there
are three strategies to design and construct inducible
promoters in B. thetaiotaomicron. By adapting genetic parts
that control carbohydrate utilization, Mimee et al.
developed a rhamnose-inducible promoter that is
mediated by the transcriptional activator RhaR with an
output dynamic range of 104-fold [18]. Promoters
inducible by mannan (output range of 100-fold) and
dextran (DX) (output range of 3- to 5-fold) have been
derived by Horn et al. and Jones et al., respectively, from
promoters of genes in polysaccharide utilization loci
(PULs) [21,22]. Based on hybrid two-component sys-
tems that sense external stimuli and transduce signals in
Bacteroides, Mimee et al. designed systems inducible by
chondroitin sulfate (ChS) and arabinogalactan (AG)
having output dynamic ranges of 60-fold and 29-fold,
respectively [18]. The third strategy to design chemi-
cally inducible promoters is based on DNA operator-
repressor systems. In the OFF state, repressor proteins
bind to operator sequences in the promoter, preventing
gene transcription. Once a chemical inducer binds to the
repressor, the repressor releases the repression, allowing
the gene to be transcribed. For instance, systems
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inducible by isopropyl B-D-1-thiogalactopyranoside
(IPTG), anhydrotetracycline (a’lc), and bile acid (BA)
were developed in B. thetaiotaomicron by investigating the
position effects of corresponding operator sequences in
constitutive promoters [18,23,24]. As the orthogonality
of genetic sensors is crucial for their combined use,
Taketani et al. constructed a B. thetaiotaomicron strain
with sensors inducible by IPTG, aTc, and BA; no cross-
talk was recorded with this system [24]. Mimee et al.
also tested systems inducible by rhamnose, ChS, AG, and
IPTG with the full set of carbohydrate inducers [18].
Each inducible system was highly orthogonal to the
others, and no cross-talk was observed [18]. Engineering
genetic sensors, promoters, and RBSs enables scientists
to manipulate outputs of genetically engineered
B. thetaiotaomicron at different levels and in response to
inputs from environmental signals.

Tunable and predictable gene regulation
CRISPRi-mediated gene knockdown can be used to
modulate endogenous gene expression. Synthetic gene
circuits encoding CRISPRi elements can be constructed
and expressed in B. thetaiotaomicron. By connecting to
chemically inducible systems, the regulated production
of deactivated Cas9 (dCas9) or single guide RNAs
(sgRNAs) can repress target promoters, resulting in the
performance of complex response functions [18,24]. For
instance, Mimee et al. implemented genetic one-input
NOT gates in B. thetaiotaomicron that repressed distinct
phenotypes in the presence of IPTG by regulating
dCas9 expression; these phenotypes included the pro-
duction of Nanol.uc, resistance to antimicrobial pep-
tides, and growth on fructose as the sole carbon source
[18]. Taketani et al. designed more complex genetic
circuits based on regulated sgRNAs with the help of
Cello circuit design automation software [24]. In one of
the systems designed by Taketani et al., the two-input
NOR gates incorporate two separate copies of the
same sgRNA, regulated by two inducers (aTc and BA)
but targeting the same output promoter [24]. For
another system, two-input XOR gates were designed by
combining simpler NOR and OR gates based on
different sgRNAs targeting different output promoters
[24]. Additionally, a genetic circuit was implemented in
B. thetaiotaomicron that senses the conditions of a
fermenter (the sensor is induced by alc) or the gut
environment (the sensor is induced by BA) and controls
three outputs of gene expression [24].

Recently, Hayashi and Lai et al. developed an engi-
neered riboregulator (ER) for controlled gene expres-
sion in B. thetaiotaomicron [14]. The ER consists of two
components: cis-repressed mRNA (crRNA) and trans-
activating RNA (taRNA). The cis-repressive sequence
in the 5- untranslated region (UTR) of the crRNA
blocks access of the ribosome to the RBS and represses
downstream protein expression. In the presence of

www.sciencedirect.com
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taRNA, the trans-activating sequence hybridizes to the
crRNA, exposing the RBS region to the ribosome and
initiating protein translation. Unlike FE. co/i [25], the
strongest RBSs of Bacteroides are AT-rich and more sen-
sitive to secondary structure [18,19]. Based on the pu-
tative S1 protein binding site in the RBS, Hayashi and
Lai et al. designed and optimized an ER system in
B. thetaiotaomicron. 'The system could repress Nanol.uc
activity by 4258-fold in the ER-OFF state compared to
the condition in the absence of the cis-repressive
sequence, and induce Nanol.uc activity, with a 69-fold
increase from the OFF to the ON state [14]. Thus,
tunable and predictable gene regulation systems for
B. thetaiotaomicron have been developed that are likely to
facilitate the design of genetic circuits.

Genetic memory

Gut commensal B. thetaiotaomicron interacts with host
cells and other microbial cells during transit through the
human digestive tract, making this species attractive as a
living system for potentially recording environmental
inputs inside the body. By connecting biosensors to
recombinase-based switches, B. thetaiotaomicron can be
engineered to store long-term memories in its genomic
DNA in response to exposure to environmental signals.
Mimee et al. characterized four serine integrases in a
DNA “memory array” in B. thetaiotaomicron, Int7, Int8,
Int9, and Int12, which catalyze the unidirectional inver-
sion of the DNA sequences between two respective
recognition sequences [18]. To demonstrate the capa-
bility of chemical signal recording, the rhamnose-
inducible recombinase Intl12 circuit was constructed;
this circuit responded within 2 h to increasing concen-
trations of rhamnose [18]. To test its function 7z v7vo, mice
were colonized with the engineered B. thetaiotaomicron
strain and supplemented with exogenous rhamnose, and
recombination was quantified by sequencing the DNA
“memory array” of B. thetaiotaomicron in stool. The
recombination frequency achieved >90% flipping of the
targeted DNA sequences within one day after mice
received rhamnose-supplemented water [18]. The
recording of recombinase-mediated events demonstrates
the potential of B. thetaiotaomicron for long-term living
memory storage in a gut microorganism.

Genome engineering

To stabilize their functions in B. thetaiotaomicron, DNA
genetic circuits can be integrated into the bacterial
chromosome. Currently, there are three strategies for
genome engineering in B. thetaiotaomicron: homologous
recombination [26—28], tyrosine integrase-mediated
integration [18], and CRISPR-based genome editing
[29]. Homologous recombination, a commonly used
method to engineer the genome of Bacteroides spp.,
allows DNA sequences to be deleted or inserted without
considering the presence or location of restriction sites.
However, this method requires the construction of a

mutant for counterselection, such as the deletion of
thymidylate synthase (#4yA) or thymidine kinase (zd#),
or the mutation of a subunit of phenylalanine tRNNA
synthetase (pheS*).

Interestingly, Garcia-Bayona et al. and Bencivenga-Barry
et al. have developed aTc-inducible counterselection
cassettes using toxins from the type VI secretion system,
which do not require the construction of Bactervides mu-
tants across diverse species [30,31]. In B. thetaiotaomicron,
tyrosine integrase IntlN1, encoded in pNBU1, mediates
the sequence-specific recombination of the a#N site of
pNBU1 and the azzBT1-1 site located in the 3’ ends of the
tRNA-Leu gene on the chromosome [24,32]. Similarly,
tyrosine integrase IntN2 mediates recombination be-
tween the @z site of pNBU2 and one of two BT sites
(@artBT2-1 and antBT2-2) located in the 3’ ends of two
tRNA-Ser genes [18,32]. Shepherd et al. demonstrated
that the 60-kb porphyran utilization locus, which in-
cludes 34 genes, can be integrated into the Bacteroides
genome by a tyrosine integrase-mediated method [33].
Recently, Zheng et al. developed the aTc-inducible
CRISPR/FnCas12a system, which deleted a 50-kb
metabolic gene cluster in B. thetaiotaomicron and a target
gene in four Bacteroides species: B. fragilis, Bacteroides
ovatus, Bacteroides vulgatus, and Bacteroides uniformis [29].
Tajkarimi et al. have identified three types of native
CRISPR-Cas systems (i.e. type IB, type IIIB, and type
IIC) in the genome of a wide range of B. fragilis strains
[34]. As more options for genome engineering of
B. thetaiotaomicron become available, we envision that they
may be applied to study linkages between microbiome
states and important diseases.

Production and delivery of payloads

B. thetaiotaomicron can be engineered to produce and
deliver payloads for specific tasks based on decisions
calculated by genetic circuits. The payloads can be
genes encoding reporter proteins to enable monitoring
of colonized locations and functions of engineered gut
commensal bacteria in 7 vivo environments. As a first
step, Whitaker et al. characterized a set of constitutive
strong promoters to drive distinct expression of GFP and
mCherry, which encoded six unique fluorescent protein
signatures and allowed differentiation of Bacteroides
species within the gut [19]. Researchers have also
tested the performance of artificial genetic circuits in
in vivo models by measuring luminescence expressed by
NanolLuc [14,18,22,23,29].

Proteins that mediate antibiotic resistance, such as
polymyxin B and ampicillin resistance, or carbon meta-
bolism, such as fructose utilization, were also expressed
in B. thetaiotaomicron [18,21,23]. In addition, these pay-
loads can include gene clusters (i.e., PULs) to metab-
olize plant- and host-derived polysaccharides. In the
B. thetaiotaomicron genome, more than 80 PULs have
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been identified, which contain gene clusters involved in
the regulation, transport, and catabolism of complex
polysaccharides [35]. In the sequencing era, large-scale
functional genetics methods have been applied to
B.  thetaiotaomicron, such as transposon insertion
sequencing (INSeq) [36,37] and a barcoded variant of
TnSeq (RB-TnSeq) [38]; these studies have provided
insights into the colonization of # wviwo niches and
nutrient acquisition strategies in gut ecosystems. By
functional metagenomic screening, Lam et al. identified
a fructan utilization PUL and transferred it into
B. thetaiotaomicron, enabling the bacterium to utilize ChS
as a carbon source [39]. To control the engraftment and
abundance of the exogenous bacterial strain in the
mouse gut, Shepherd et al. transferred a 60-kb PUL to
B. thetaiotaomicron that provided access to porphyran, a
marine polysaccharide, as a privileged nutrient [33]. To
develop an alternative genetic tool for integrant selec-
tion in antibiotic-resistant Bactervides species, Garcia-
Bayona et al. constructed a three-gene inulin-utilizing
PUL in B. thetaiotaomicron and selected integrants on
inulin selection agar plates [31]. The expression of type
VI toxic effectors (Ss-Bfel and Ss-Btel) in
B. thetaiotaomicron can be used for counterselection in
genome engineering [30,31]. Lim et al. engineered an
inducible genetic circuit in B. thetaiotaomicron to control
the expression of sialidase in the mouse gut, revealing a
non-linear relationship between commensal enzyme
activity and host sialic acid levels [23].

A major strategy to improve human health with engi-
neered gut commensal bacteria is to deliver and produce
treatment payloads  situ, especially for chronic gastro-
intestinal disorders that require continuous treatment.
B. ovatus was engineered for the xylan-regulated i situ
delivery of TGF-B [40], KGF-2 [41], and murine IL-2
[42] to treat inflammatory gut diseases. Kim et al. het-
erologously expressed a biosynthetic pathway in
B. thetaiotaomicron to produce non-native butyrate, a
SCFA that maintains intestinal homeostasis [43].
Importantly, they maximized butyrate production in the
pta-ldhD double knockout B. thetaiotaomicron, which was
guided by an expanded genome-scale metabolic model
(GEM) with the OptKnock algorithm [43].

Moreover, outer membrane vesicles (OMVs), naturally
produced and secreted by B. thetaiotaomicron, are
promising for development as drug delivery systems
that can prevent dilution and proteolytic degradation
during treatment. For example, Lu et al. characterized
key components of OMVs to deliver IL-10 for the
treatment of inflammatory bowel disease (IBD). Lu
et al. engineered Bacteroides spp. to secrete therapeutic
proteins via OMVs and tested secretion in animal
models [44]. Carvalho et al. demonstrated that engi-
neered B. thetaiotaomicron OMVs can be used to deliver
antigens of Salmonella enterica ser. Typhimurium (OmpA

Engineering Bacteroides with synthetic biology Lai et al. 7

and SseB) and H5N1 virus (the H-stalk protein H5) as
a vaccine, as well as to deliver a human therapeutic
protein (KGF-2) to the gastrointestinal and respiratory
tracts [45]. In addition to using Bacteroides as a conve-
nient chassis for synthetic gene circuits, researchers
could potentially use OMVs as delivery systems for
proteins and genes [44,45].

Biocontainment

Stringent regulations limit the use of the genetically
modified bacteria to prevent them from being unin-
tentionally released into the environment. There is also
a potential risk that transgenes in the bacteria would be
disseminated in an uncontrolled manner by horizontal
gene transfer (HGT). Thus, appropriate containment of
genetically modified microorganisms and their intro-
duced genetic elements is a prerequisite for prac-
tical use.

To contain an engineered bacterial strain in unmoni-
tored environments, such as clinical applications,
auxotrophy is often used [46—48]. This approach was
applied to Bacteroides spp. by deletion of the thymidy-
late synthase gene #y4, which leads to thymidine
auxotropy [49]. However, the #hyA-deficient B. ovatus
acquired a #yA gene from surrounding bacterial cells
and escaped from the containment. Hayashi and Lai
et al. have devised a Cas9-assisted biocontainment
system to prevent engineered B. thetaiotaomicron from
acquiring 74yA through HG'T] by targeting the #yA4 gene
[14]. Hayashi and Lai et al. designed an artificial gene
cassette bearing a CRISPR Device, composed of a
Cas9-encoding gene and single guide RNA (sgRNA),
that could specifically recognize and destroy the #yA4
gene by introducing a double-strand break. In this
system, when the gene cassette was introduced by ge-
netic exchange with the #4y4 gene, the conjugation ef-
ficiency of plasmids having 7#y4 was significantly
decreased, at least 156-fold, and the CRISPR Device
reliably functioned as a safeguard to avoid disrupting
the thymidine-auxotrophic biocontainment of the
genetically modified B. thetaiotaomicron. Additionally,
the containment system had the capacity to prevent the
dissemination of the gene cassette into wild-type
B. thetaiotaomicron. The CRISPR Device transferred to
the wild-type strain could destroy the 74yA4 gene on the
genome and have a bactericidal effect on the cells that
acquired the gene cassette. The number of trans-
conjugants that acquired plasmids with the CRISPR
Device was markedly lowered by at least 18 times,
compared to the number of transconjugants that ac-
quired control plasmids. This Cas9-assisted auxotro-
phic biocontainment system simultaneously prevents
the escape of the genetically modified microorganisms
and the genetic elements i vitro. Experiments are in
progress to determine the function and stability of the
CRISPR Device in animal models.
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Conclusion

The use of probiotic supplementation and FMT to treat
human digestive tract disorders has sparked increasing
interest in engineering gut commensal bacteria for living
diagnostic and therapeutic applications [5,50]. With
continuing advances in genome editing, DNA synthesis
and sequencing, and automation of genetic circuit
design, we are able to rapidly and efficiently construct
artificial genetic circuits that enable gut commensal
organisms to sense and respond to # vivo environmental
signals. However, challenges remain — these are asso-
ciated primarily with poor understanding of the mech-
anisms underlying the dynamics and functions of the
microbiota and its interactions with the human host,
especially for digestive tract disorders, such as IBD.

The stable and abundant colonization of the human gut
by commensal Bacteroides species and the development
of genetic circuits for this genus demonstrate the po-
tential of these organisms as chassis for long-term sen-
sors and medicines in the microbiota. This paradigm can
be extended to other gut microorganisms as well. Multi-
omics analysis, machine learning, and automation are
accelerating the design-build-test-learn (DBTL) cycle
of synthetic biology. This cycle could be applied to
“domesticate” important gut microbes other than
Bacteroides, which would provide new tools to study the
structure—function relationships of the microbiota with
the host and to develop novel therapies for human dis-
eases. For example, bioengineered bacterial sensors
could be put into disease models and humans to detect
which biomarkers are relevant i situ in response to
important clinical disease states. Libraries of consortia
with various payloads could be created to determine
which organisms and which payloads could change the
microbiota to alleviate inflammation or treat disease.
Human gastrointestinal organoid models could be
designed to accelerate the study of interactions between
the microbiota and human cells. So far, we have just
scratched the surface of gut microbiome engineering,
and the future is promising as synthetic biology and
microbiome science continue to intersect.
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