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The self-organization of the brain matrix of serotonergic axons (fibers) remains
an unsolved problem in neuroscience. The regional densities of this matrix have
major implications for neuroplasticity, tissue regeneration, and the understanding
of mental disorders, but the trajectories of its fibers are strongly stochastic
and require novel conceptual and analytical approaches. In a major extension
to our previous studies, we used a supercomputing simulation to model
around one thousand serotonergic fibers as paths of superdiffusive fractional
Brownian motion (FBM), a continuous-time stochastic process. The fibers
produced long walks in a complex, three-dimensional shape based on the mouse
brain and reflected at the outer (pial) and inner (ventricular) boundaries. The
resultant regional densities were compared to the actual fiber densities in the
corresponding neuroanatomically-defined regions. The relative densities showed
strong qualitative similarities in the forebrain and midbrain, demonstrating the
predictive potential of stochastic modeling in this system. The current simulation
does not respect tissue heterogeneities but can be further improved with
novel models of multifractional FBM. The study demonstrates that serotonergic
fiber densities can be strongly influenced by the geometry of the brain, with
implications for brain development, plasticity, and evolution.

5-hydroxytryptamine, serotonin, axons, density, stochastic process, anomalous diffusion,
fractional Brownian motion, geometry

1. Introduction

The self-organization of the brain serotonergic matrix remains an unsolved problem in
neuroscience. This matrix, or a meshwork of axons (fibers), is present in virtually all brain
regions, likely across the entire vertebrate clade (Wolters et al., 1985; Challet et al., 1991,
1996; Stuesse et al., 1991; Metzger et al., 2002; Lopez and Gonzalez, 2014; Janus$onis, 2018;
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Awasthi et al, 2021; Bhat and Ganesh, 2023). It appears to be
fundamentally associated with neuroplasticity (Lesch and Waider,
2012; Teissier et al, 2017; Daws et al., 2022), raising new
questions (Vargas et al., 2023), and is remarkable in its ability
to robustly regenerate in the adult mammalian brain (Jin et al,
2016; Cooke et al., 2022). In mammals, serotonergic axons originate
exclusively in the brainstem raphe nuclei; the total number of
serotonin (5-hydroxytryptamine, 5-HT)-synthesizing neurons has
been estimated at 20,000-26,000 in mice and rats and at around
450,000 in humans (Jacobs and Azmitia, 1992; Okaty et al,
2019). Comprehensive analyses have shown that this population
of neurons is extremely diverse in its transcriptomes (Okaty et al.,
2019, 2020; Ren et al., 2019).

Recent studies have led to an intriguing picture of this system.
On the one hand, state-of-the-art methods, such as single-cell
RNA-seq and viral-genetic tract-tracing, have revealed its deep,
deterministic-like organization. In particular, specific transcriptome
profiles (including neurotransmitter complements and excitability
signatures) have been mapped to nested neuron clusters, each with
its anatomically-defined set of projections (Ren et al., 2018, 2019;
Okaty et al., 2019, 2020). On the other hand, serotonergic axons
have been shown to be strongly stochastic in their trajectories.
These trajectories can be viewed as unique paths (realizations)
of rigorously-defined spatial stochastic processes (Janusonis and
Detering, 2019; Janusonis et al., 2019, 2020; Vojta et al., 2020).
Both approaches are innovative in that they seek to reveal how
precisely-specified events at the single-neuron level result in the
self-organization of the entire serotonergic system, in space and
time. Their conceptual underpinnings can be traced back several
decades (Katz et al., 1984; Waterhouse et al., 1986).

The emerging duality of the serotonergic system, with well-
defined deterministic and stochastic components, may reflect
the fundamental principles of the self-assembly of neural tissue.
The constructive interplay between dynamic determinism and
stochasticity has been suggested by studies that have used various
experimental platforms. An individual serotonergic neuron may
express a specific gene network, distinctly different from other
“adjacent” networks, but it may still be able to perform switch-
like transitions among them, in the presence of environmental
“noise” (Okaty et al, 2019; Ren et al., 2019). Dorsal raphe
serotonergic neurons vary in their firing rates, but this variability
may be captured by a single normal distribution, across
different anatomical locations (Mlinar et al., 2016). Several
classes of serotonergic axons have been defined based on their
morphology (Kosofsky and Molliver, 1987), but recent studies have
demonstrated that axonal morphology may undergo significant
changes in a regionally- and developmentally-dependent manner
(Gagnon and Parent, 2014; Maddaloni et al., 2017; Nazzi et al., 2019;
Okaty et al., 2019; Andersson et al., 2020). In primary cell cultures,
adjacent axon segments of serotonergic neurons can strongly vary
in their caliber, varicosity size, and other features (Hingorani et al.,
2022). This variability is likely to be partially stochastic, as a
consequence of the strongly stochastic properties of neural tissue at
the microscopic level (Jang et al., 2010; Nicholson and Hrabetova,
2017; Hrabetova et al., 2018; Hingorani et al., 2022). Furthermore,
different neuron clusters may show preference for different targets;
however, individual serotonergic axons within the same cluster
may differ in their collateralization and target specificity (Gagnon
and Parent, 2014; Ren et al., 2019). Also, serotonergic neurons
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that send their axons to the same anatomical region may not be
physically clustered (Okaty et al., 2019). In experimental brain
injury models, regenerating serotonergic fibers do not follow their
previous trajectories and create new tortuous paths (Jin et al., 2016).

This study sought to investigate the potential of the purely
stochastic component of the serotonergic fibers, with regard to the
self-organization of their regional densities. Individual serotonergic
fibers were modeled as paths of fractional Brownian motion
(FBM), a continuous-time stochastic process (Mandelbrot and
Van Ness, 1968; Biagini et al., 2010). FBM generalizes normal
Brownian motion (BM) in that it allows positive and negative
correlations among displacement increments (in BM, used to
describe free diffusion of particles, non-overlapping displacements
are assumed to be statistically independent). FBM process is
parametrized with the Hurst index (0 < H < 1), which leads
to three distinctly different regimes: subdiffusion (H < 0.5), BM
(H = 0.5), and superdiftusion (H > 0.5). We have previously
shown that serotonergic fiber trajectories can be modeled with
superdiffusive FBM (H~0.8) (Janusonis et al., 2020).

In a previous study, we have analyzed the distributions of FBM-
driven fibers in a selected set of two-dimensional (2D) shapes based
on coronal sections of the adult mouse brain (Janusonis et al., 2020).
However, the long-range dependence among spatial displacements
implies that the trajectory of a fiber at a given coronal level depends
on its history in the three-dimensional (3D) space (e.g., at more
rostral or caudal coronal sections). In this study, we performed
a supercomputing simulation of a large number of fibers in a
complex 3D-shape that was constructed from a serially sectioned
mouse brain. The simulation was based on reflected (boundary-
limited) FBM (rFBM), the theoretical properties of which have been
investigated by our group (Wada and Vojta, 2018; Guggenberger
etal., 2019; Vojta et al., 2020). It is a major extension of the previous
study in that the simulation captured the entire 3D-geometry of
the brain, virtually eliminating the dependence of the results on the
sectioning plane.

In the adult mouse brain, this geometry contains some
elaborate elements (e.g., the folded hippocampus) and is enriched
with many dense, fully developed axon tracts. These tracts
(e.g., the anterior commissure, the corpus callosum, and the
fasciculus retroflexus) are nearly impermeable to serotonergic
axons and act as obstacles in simulations (Janu$onis et al.,
2020). To reduce this complexity, a late-embryonic mouse brain
(at embryonic day [E] 17.5) was used to construct the 3D-
shape. This selection is further justified by the evidence that
serotonergic neurons mature early; by this age, their axons are
already present in the telencephalon and reach the cortical plate
in mice and rats (Wallace and Lauder, 1983; Briining et al,
1997; Janusonis et al., 2004). The geometries (e.g., curvatures,
distances) of the embryonic and adult brain are not identical, but
they share the same fundamental topology and major features.
Strictly speaking, neither the embryonic brain nor the adult brain
is the “correct” static shape in this context: a developmentally
accurate approach would require simulating fiber trajectories as
the shape itself increases in size and morphs. However, without
accurate experimental information about the relative dynamics of
both processes such simulations are unlikely to produce robust
results. State-of-the-art imaging techniques have provided new
insights into the growth dynamics of single serotonergic axons
(Jin et al., 2016; Hingorani et al, 2022), but live-imaging of
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serotonergic fibers in the intact developing brain needs further
technological advances.

The verification of simulation results requires accurate
information about actual serotonergic fiber densities. These
densities have been a major focus of investigation since the
discovery of 5-HT-producing neurons in the brain (Hokfelt,
2016). Their regionally-specific estimates, independent of the
neuroanatomical origin of the fibers, initially relied on the detection
of 5-HT or the serotonin transporter (SERT) (Steinbusch, 1981;
Lidov and Molliver, 1982; Foote and Morrison, 1984; Mize and
Horner, 1989; Lavoie and Parent, 1990, 1991; Voigt and de Lima,
1991a; Sur et al., 1996; Bjarkam et al., 2003, 2005; Way et al., 2007;
Vertes et al., 2010; Parent et al., 2011; Linley et al., 2013; Belmer
etal,, 2017). These markers are specific to serotonergic neurons and
strongly overlap (Belmer et al., 2019), with some caveats (Lebrand
etal., 1996, 2006; Maddaloni et al., 2017). However, they are directly
associated with local 5-HT accumulation and release, and therefore
may not visualize fibers or their segments with low 5-HT levels (e.g.,
if they have a fine caliber and contain no varicosities). The 5-HT
signal can show striking variability along the path of a single fiber
in cell-culture preparations (Hingorani et al., 2022). In addition, the
relative abundance of SERT may depend on the local diffusivity of
extracellular 5-HT, which in turn depends on the local properties
of the extracellular space (Sykova and Nicholson, 2008; Hrabetova
et al,, 2018; Okaty et al., 2019). Furthermore, serotonergic neurons
can release other neurotransmitters, such as glutamate, and their
terminals can segregate by the preferred neurotransmitter (Okaty
etal., 2019).

In the past several decades, studies have mapped the projections
of specific raphe nuclei, often using sensitive visualization
procedures (e.g., efficient neural tract tracers combined with
immunoperoxidase detection) (Vertes, 1991; Morin and Meyer-
Bernstein, 1999; Vertes et al.,, 1999). These connectomics-driven
approaches are independent of 5-HT accumulation, but the
obtained densities reflect only the contribution of the selected
nucleus. In addition, they strongly depend on the uptake efficiency
of the tracer (i.e., some serotonergic neurons and their axons are
likely to remain unlabeled).

More recently, transgenic mouse models have allowed
extremely accurate visualization of all serotonergic axons,
irrespective of their anatomical origin or 5-HT content. For
example, a fluorescent reporter (e.g., EGFP) can be expressed
under the promoter of a serotonergic neuron-specific gene (e.g.,
Tph2) and further enhanced with immunohistochemistry. Since
reporter proteins can be transported to distal axon segments,
they can reveal the dynamics and susceptibility of serotonergic
fibers with unprecedented precision (Maddaloni et al., 2017, 2018).
However, these studies have focused on targeted brain regions, due
to the complexity of single-fiber analyses.

These research trends have resulted in a paradoxical lack of
modern, comprehensive atlases of serotonergic fiber densities. Such
atlases should (1) cover the entire brain and (2) detect all physically
present serotonergic fibers—with high specificity and sensitivity,
irrespective of their signaling state (e.g., 5-HT content). The recent
publication of a detailed topographical map of the serotonergic
fiber densities in the entire adult mouse brain has now partially
filled this knowledge gap (Awasthi et al., 2021). This map, based on
the expression of EGFP under the SERT gene promoter, currently
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does not include the adult female mouse brain or developmental
stages.

In summary, this study brings together several recent
developments: the models of serotonergic fibers as rFBM-paths,
the advances in the theory of rFBM, and the new comprehensive
map of serotonergic fiber densities. By using a supercomputing
simulation, we attempted to predict regional fiber densities based
purely on the geometry of the brain and compared them to the
neuroanatomical data.

2. Materials and methods

2.1. Brain sections

A timed-pregnant mouse (Charles River Laboratories) was
deeply anesthetized at E17.5 with a mixture of ketamine
(200 mg/kg) and xylazine (20 mg/kg), and the embryos were
dissected into cold 0.1 M phosphate-buffered saline (PBS, pH 7.2).
They were immediately decapitated, and their brains were dissected
with fine forceps under a stereoscope. Two embryonic brains
were rinsed in PBS and immersion-fixed in 4% paraformaldehyde
overnight at 4°C. They were cryoprotected in 30% sucrose for
2 days at 4°C and embedded in 20% gelatin (type A) in a Peel-
A-Way mold, with an insect pin pushed through the mold in the
rostro-caudal orientation just dorsal to the brain. After 1 h at 4°C,
the gelatin block was removed, trimmed, and incubated for 3 h in
formalin with 20% sucrose at room temperature. It was sectioned
coronally from the olfactory bulbs to the caudal midbrain at 40 um
thickness on a freezing microtome into 96-well trays with PBS. The
lower brainstem and the cerebellum were not included. In order
to avoid distance distortions in the rostro-caudal axis, empty wells
were used to mark damaged or missing sections. Every other section
was mounted onto gelatin/chromium-subbed glass slides, allowed
to air-dry, and imaged uncoverslipped on a Zeiss Axio Imager Z1
in bright field with a 1 x objective (NA = 0.025) (Figure 1A). All
animal procedures have been approved by the UCSB Institutional
Animal Care and Use Committee.

2.2. Conversion of images to a stack of
2D-shapes for simulations

The section series of both brains were examined, and one
series was selected for further processing. The sections were aligned
in the rostro-caudal axis in Reconstruct (SynapseWeb), as shown
in our previous publication (Flood et al, 2012). The pin-hole
in the gelatin was used as a fiducial marker (Figure 1A). The
aligned images were imported into Photoshop 23 (Adobe, Inc., San
Jose, CA, United States), and brain contours were outlined by an
expert neuroanatomist using the magnetic or polygonal lasso tools.
The contours were converted into binary images (white shapes
on a black background). If a section contained more than one
shape (e.g., the outer outline and ventricular spaces), they were
saved as separate images, in the same aligned geometric space. In
order to reduce the complexity of the geometry, the folding of
the hippocampus was not respected (i.e., the hippocampus was
represented by a medial pallial region with no internal structure).
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FIGURE 1

(A) Representative bright-field images of unstained and uncoverslipped coronal brain sections (E17.5) used in the set. The rostrocaudal distances are
shown at the top of the panels. In the simulation, tissue heterogeneities were disregarded. Aq, cerebral aqueduct; CxP, cortical plate; CPu,
caudate-putamen; LV, lateral ventricle; SC, superior colliculus; 3V, third ventricle. Scale bar = 1 mm. (B) Each of the constitutive shapes in a section
was fully described by its leftmost and rightmost points at each dorsoventral level. The 2D-shape represents the section at the rostrocaudal distance
of 1,360 wm. The allowed region is shown in blue; the forbidden regions are shown in yellow and red (the lateral ventricles and the dorsomedially
oriented concavity, respectively). (C) Four sample FBM (H = 0.8) trajectories with mean zero and o = 0.4 spatial units, from O to 20 time-units with
the walk-step of 0.05 time-units. The side of one cell is one spatial unit (corresponding to 6.6 pm in the physical brain). All trajectories start at the
center (gray circle) of the region containing 20 x 20 grid cells. The small step is used to show the fine details of the process. (D) The same
trajectories shown with the walk-step of one time-unit (as actually used in the simulation). The green circle shows the relative size of a typical
neuronal soma in the adult brain (with the diameter of around 13 wm). (E) Four sample trajectories of normal Brownian motion (H = 0.5) with mean
zero and o = 0.4 spatial units, from 0 to 20 time-units with the walk-step of 0.05 time-units. The trajectories are shown for comparison (normal
Brownian motion was not used in the simulation; it produces trajectories with uncorrelated increments). (F) All fibers started in the rostral raphe

region (R), approximated by a cuboid under the aqueduct.

The binary images were imported into Wolfram Mathematica
13 (Wolfram Research, Inc.) and processed as previously described
(Janusonis et al., 2020). Briefly, each closed contour was converted
into an ordered set of points, smoothed, bilaterally symmetrized,
and transformed into a different format represented by an N x 3
matrix (where N is the number of the rows). The rows represented
the consecutive y-coordinates (with no gaps), from the most dorsal
level to the most ventral level of the contour. Each row contained
three values: a y-coordinate and the leftmost and rightmost
x-coordinates of the contour at this y-coordinate (both x- and
y-coordinates were integers). Since this format cannot capture
concavities oriented in the dorsoventral direction, they were coded
as separate contours representing “forbidden” regions (in addition
to the ventricular spaces) (Figure 1B). In this two-dimensional
(2D)-integer grid, the side of each square cell represented the
physical distance of 6.6 um in the physical brain.

Next, a three-dimensional brain model was built from the
section stack. First, missing or damaged sections were recreated by
linear interpolation between neighboring sections to maintain even
(80 wm) rostro-caudal steps between any two consecutive sections.
This process was guided by the known anatomy, and the resulting
interpolated sections were checked manually for anatomical
correctness. Second, in order to produce a three-dimensional
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simulation grid, each section was further subdivided into a set
of twelve virtual sections of around 6.6 pm in thickness using
linear interpolation. The resulting simulation grid cells (voxels)
were thus cubes whose linear size corresponded to 6.6 pm in
the physical brain.

2.3. Supercomputing simulations

The fiber densities were produced by 960 simulated fibers.
Each fiber was represented by the path of a discrete three-
dimensional FBM (Qian, 2003). Specifically, the trajectory of
the random walker moved according to the recursion relation
nyl = tu+ &y, where r, is the (three-dimensional) walker
position, and the steps (increments) &, are a three-component
discrete fractional Gaussian noise (Figures 1C, D). The statistically-
independent x, y, and z components of &, were Gaussian
random numbers with mean zero and variance o2, and each
component had long-range correlations between steps [in contrast
to normal Brownian motion (Figure 1E)]. The corresponding
noise covariance function between steps m and m+n was given
by (Gim Gmen) = 38507 [In+112H = 2[n*H+|n — 12H], where
H is the Hurst index, 3;; is the Kronecker delta, and i, j = x, y, z

frontiersin.org


https://doi.org/10.3389/fncom.2023.1189853
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

Janusonis et al.

denotes the three space dimensions. The Fourier-filtering method
(Makse et al., 1996) was employed to generate these long-range
correlated, stationary random numbers on the computer (Wada
and Vojta, 2018; Vojta et al., 2020). This efficient method allowed us
to create particularly long trajectories. The main simulations were
performed for H = 0.8, but we also tested other H-values. The root
mean-square step size was set to ¢ = 0.4 grid units, corresponding
to 2.6 wm in the physical brain (smaller than the diameter of
a single neuron). All paths started in the rostral raphe region,
given by a cuboid with the approximate physical dimensions
680 x 1,200 x 400 wm? in the mediolateral, dorsoventral, and
rostrocaudal directions, respectively (Figure 1F). Each trajectory
consisted of 22°2233.6 million walk-steps (each 1 time-unit). The
length of the trajectories was sufficient for the relative densities to
reach a steady state.

If the extending fiber encountered a boundary (i.e., an outer
or inner contour), it was reflected. Our previous extensive analyses
have shown that the choice of the reflection condition has virtually
no effect on the simulation results, with the exception of a
very narrow region (a few steps wide) at the boundary (Vojta
et al., 2020). Therefore, the following simulation used the simple
condition under which a step that would move the leading fiber
end into the forbidden region was simply not carried out. Deciding
whether a given point is inside or outside of a complex three-
dimensional shape is a complicated problem in computational
geometry. Our approach to modeling the geometry in terms of
virtual sections and boundary contours within each section (as
described above) allowed us to implement an efficient local inside-
outside test. The most rostral and caudal sections of the model brain
geometry were treated as reflecting boundaries in the rostro-caudal
direction.

After the simulation, the resultant densities were evaluated
in non-overlapping cubes (composed of 2 x 2 x 2 grid cells,
to suppress noise and achieve more robust estimates). The local
density (d;) was determined by counting the total number of
random-walk segments inside each cell. These local densities were
normalized to the total sum of one in the entire 3D-brain volume,
to remove any dependence of the results on the arbitrarily chosen
trajectory length. To facilitate comparisons between the simulated
fiber densities and published densities (typically, in immunostained
sections), the raw simulation densities were transformed to “optical
densities” using a Beer-Lambert law-like transformationd, = 1 —
—exp(—kds) (Janusonis et al., 2020), with an empirically optimized
k-value (k = 1033). This transformation constrained density values
to a finite interval (from zero to one). They were used for all further
analyses and figures. The graphical density maps were produced in
Mathematica 13, using the “rainbow” and “heat” color schemes.

All supercomputing simulations were written in Fortran 2018
and carried out on the Pegasus cluster at the Missouri University
of Science and Technology, using parallel processing on several
hundred CPU cores.

2.4. The evaluation of simulated fiber
densities

The simulated fiber densities were evaluated using a
comprehensive map of the serotonergic fiber densities in the
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adult male mouse brain (on the C57BL/6] background) (Awasthi
et al., 2021) and an atlas of the developing mouse brain (Paxinos
et al., 2020).

3. Results

The fiber densities obtained in the simulation are shown in
Figure 2. For accurate quantitative comparisons, the density values
along selected cuts (1D-segments) are included (Figure 3).

The extremely high accumulation of fibers in the most rostral
section (Figure 2A) reflects its position as a coronal boundary of
the 3D-shape (i.e., fibers cannot advance rostrally beyond it). The
actual olfactory bulb extends a little further, but this section can also
be considered to be the most superficial layer of the rostral pole.

Generally, the simulated fibers produced the highest fiber
densities close to the tissue borders (the pia as the outer border
and the ependyma of the ventricular system as the inner border).
However, the memory (autocorrelation) of the fibers and the
complex shape they interacted with led to other density variations
that could not be predicted purely from the local geometry. We next
discuss the key findings and compare them to the experimentally
established densities of serotonergic fibers in the adult mouse brain,
based on the comprehensive map of Awasthi et al. (2021). In this
map, regional densities (d) are semi-quantitatively evaluated on the
scale of 0 (extremely low) to 6 (extremely high).

In the olfactory bulb, the dense accumulation of the simulated
fibers at the outer border (Figure 2B [rl]) corresponds to the
glomerular layer, the layer with the highest serotonergic fiber
density in this structure (d = 5). In the telencephalon proper,
the neural tissue at the outer and inner borders corresponds to
the adult cortical layer I and periventricular regions, respectively.
In most regions, the high-density band at the outer border (r2)
was considerably thicker than the bands at the inner borders
(Figures 2C-T). This pattern was in register with the high
densities (d = 5) of serotonergic fibers in layer I of virtually all,
functionally different adult cortical regions (in which no other
layer exceeds the layer I density). These regions cover the entire
rostro-caudal and medio-lateral extents and include the prefrontal
cortex, the motor cortex, the somatosensory cortex, the auditory
cortex, and the piriform cortex, with the minor exception of the
retrosplenial cortex (RSC; d = 3). However, the RSC [areas A29¢
and A30 of the cingulate cortex (Vogt and Paxinos, 2014)] has
an extensive, prominently flattened cortical region (A29c), where
the two hemispheres press against each other at the midline.
The exact boundaries of A29c are not readily identifiable in
the embryonic mouse brain (Paxinos et al., 2020), but in the
simulation similar flat cingulate regions showed narrower high-
density bands (Figure 2J [r3]). The basolateral amygdala (BLA)
has an exceptionally high density of serotonergic fibers (d = 5-
6), with the adjacent regions showing a similar pattern [the
basomedial amygdala (BMA) and the piriform cortex: d = 3-5; the
endopiriform nucleus: d = 5-6]. The simulated fibers produced a
particularly thick high-density band in the corresponding region
(Figure 2P [r4], Figure 3C). However, the simulated fibers did
not show the tendency to decrease in density in cortical regions
in the rostro-caudal direction, as reported by Awasthi et al.
(2021), and produced another thick high-density band in a region
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(Continued)

corresponding to the future visual cortex (Figure 28 [r5]). This
discrepancy may reflect limitations of the model, but it can also
be due to other causes: in the adult brain the visual cortex
extends more caudally (to the cerebellum); serotonergic neurons
that reach the most caudal cortical regions incur an energetic cost
in supporting extremely long axons (with no such limitation in
simulations); and the detection of distal axonal segments can be
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100
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affected by the long-distance transport of EGFP, the protein used
for fiber visualization.

The simulated fibers produced a low density in the region
the [r6],
Figures 3A, B), despite its proximity to the medially-bulging

corresponding  to caudate-putamen  (Figure 2I

edge of the lateral ventricles. The fiber density increased in
the more caudal caudate-putamen regions (Figure 2R [r7],
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(Continued)

Figures 3A-C), generally consistent with the low-to-moderate
(d = 2-4) densities of serotonergic fibers in this region, with the
same gradient.

The complex geometry of the septal region led to a subtly higher
density of simulated fibers in the medial septum than in the lateral
septum (Figure 2M [r8, r9], Figure 3B). With the exception of the
rostral part of the lateral septum, the brain shows a similar gradient
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of serotonergic fiber densities (the medial septum: d = 3-5; the
lateral septum: d = 1-3).

Just rostral to the transition to the third ventricle, simulated
fibers produced a distinct median band with an elevated fiber
density (Figure 2L [r10]). This region corresponds to the region
of the preoptic hypothalamus, which has a high density of
serotonergic fibers (e.g, d = 5 in the median preoptic nucleus
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FIGURE 2

A color-map atlas of the simulated fiber densities in coronal sections (A=X) from the rostral brain pole (A) to the most caudal section in the set (X).
Low densities are blue, medium densities are green, and high densities are red. Key rostrocaudal levels and transitions are shown (note that the
rostrocaudal distances between panels vary; they are shown at the top of the panels). The selected regions (r1-r15) are discussed in the results
section. The frame numbers indicate square cells after the 2 x 2 pooling. Scale bar = 1 mm.

and parts of the medial preoptic area). The higher density was  move caudally: they cannot enter the third ventricle at the adjacent
induced by the location of this region in the 3D-space. Specifically,  caudal levels and are “reflected,” with an accumulation. This same
it represents a coronal boundary to medially located fibers that  geometry may be a contributing factor in the actual brain.

Frontiers in Computational Neuroscience 08 frontiersin.org


https://doi.org/10.3389/fncom.2023.1189853
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

Janusonis et al.

100 200 300

1340 um

100 200 300
100 200 300

100 200 300
100 200 300

100 200 300
100 200 300

100 200 300

FIGURE 3
Plots of fiber densities (right) along selected one-dimensional cuts acros

10.3389/fncom.2023.1189853

1.0 d,

08

06

0.4 v u
02

—O O O o—>
10 Cx CPu CPu Cx
038
0.6
0.4
0.2
0

—O0—O0—0—0—0—0—0>
Cx CPu LS MS LS CPu  Cx

1.0
0.8
06
0.4

0.2
0 ) ) )
_C U \J \J )
100, Cx Hi CPu Am
0.8
06"

0.4
02
0- L. h

Cx CPu lat med mid med lat CPu
Th

u L

s sections (left) at four coronal levels (A-D). Regions important for

comparisons with the actual serotonergic fiber densities are marked with circles. Am, amygdala region; CPu, caudate-putamen; Cx, cortex; Hi,

hippocampal (medial pallial) region; LS, lateral septum; MS, medial septu
(0-1). The frame numbers indicate square cells after the 2 x 2 pooling

In the diencephalon and mesencephalon, the highest
serotonergic fiber densities tend to be located near the outer
tissue border or around the ventricular spaces [see Figure 5 of
Awasthi et al. (2021)]. This general pattern is strongly consistent
with the density distributions produced by the simulated fibers
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m; Th, thalamus (lat, lateral; med, medial; mid, midline); do, optical density

(Figures 20-W). In the actual brain, it can be interrupted by major
axon fascicles (e.g., the cerebral peduncle) that cannot be easily
penetrated by individual serotonergic fibers (Janusonis et al., 2020;
Awasthi et al., 2021). The thalamic lateral posterior (LP), lateral
dorsal (LD), and lateral geniculate (LG) nuclei, all contributing to
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the dorsal outer border of the thalamus, have high serotonergic
fiber densities (d = 4-5, d = 4-5, d = 6, respectively). The simulated
fibers also produced high densities in this region (Figure 2Q [r11],
Figure 3D). Notably, in the adult mouse brain the LG has the
highest outer curvature. In contrast, the deeper thalamic nuclei,
such as the ventral posteromedial and posterolateral nuclei (VPM
and VPL), the ventromedial nucleus (VM), the posterior nucleus
(PO), and the deep part of the medial geniculate nucleus (MG),
have serotonergic fiber densities that are among the lowest in the
entire brain (d = 2 in the MG and d < 1 in the rest of the set).
The simulated fibers also produced especially low densities in this
region (Figure 2Q [r12], Figure 3D). The thalamic midline nuclei,
located close to the third ventricle, again have high serotonergic
fiber densities (d = 6), consistent with the accumulation of the
simulated fibers at inner borders (Figure 2Q [r13], Figure 3D).

The mesencephalon followed a similar general pattern. The
simulated fibers produced the highest densities in the regions of
the superior colliculus (SC) (Figure 2V [r14]) and the broadly
defined ventral tegmental region (Figure 2V [r15]), both of which
have high serotonergic fiber densities (Awasthi et al., 2021). Despite
this consistency, caution should be exercised at this coronal level
because it is close to the origin of the serotonergic fibers (emerging
from the raphe nuclei under the cerebral aqueduct) and it also
contains several major axon fascicles deep in the tissue. Also, the
caudal mesencephalon represents an unnatural boundary of the
simulated central nervous system (Figure 2X), which in reality is
given by the caudal end of the spinal cord.

A selected subset of the sections is shown in pseudo-
monochrome, to support direct comparisons with densities
visualized with immunohistochemical procedures (Figure 4).

4. Discussion

The supercomputing simulation produced a predictive map of
serotonergic fiber densities, based on the model of fibers as rFBM
paths. In addition to its contribution to neuroscience, this work
is the first simulation of rFBM in any complex 3D-shape, with
potential applications in other fields (Vojta et al., 2020).

The obtained densities depended only on the fundamental
properties of rFBM as a stochastic process and the geometry
of the 3D-shape (including the ventricular spaces). Despite this
conceptual simplicity, the simulated densities approximated the
relative intensities of serotonergic fiber densities in many brain
regions. Exact quantitative comparisons are currently infeasible
because regional serotonergic densities are traditionally reported
only descriptively or as observer scores limited to a small set of
discrete values [e.g., 0—6 in Awasthi et al. (2021)]. This approach
is partially motivated by the need to combine the overall signal
intensity with the morphology of individual fibers; for example, the
same overall signal intensity can be produced by a high density
of fine-caliber fibers or by a lower density of larger-caliber axons.
As a consequence, the semi-quantitative scores are assigned by
expert viewers but can still be influenced by subjective biases. In
contrast, assessments of relative densities, especially in adjacent or
similar brain regions, are likely to be highly accurate. Therefore,
we followed the same approach in our comparisons, which were
nearly independent of the shape of the monotonic function used
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to transform raw simulated fiber densities to the corresponding
(immunohistochemistry-like) signal intensities.

As expected from our previous simulations in 2D-shapes, high
fiber densities were produced near the borders of the 3D-shape
(Janusonis et al., 2020). Elevated serotonergic fiber densities have
been reported in many of the corresponding brain regions, despite
major differences in their functional roles (Awasthi et al., 2021).
These regions include the most superficial layer (layer I) of virtually
all cortical areas, the thalamic nuclei at the lateral and medial
(ventricular) borders, the superior colliculus, the hypothalamus, the
ventral region of the tegmentum, and other major neuroanatomical
structures (Figures 2-4). The local border curvature and the
geometry of adjacent regions further contributed to the intensities
and gradients of fiber densities. In particular, this effect produced
a high-density region in the area corresponding to the amygdala
complex. This region extended deep into the tissue (Figure 3C),
consistent with the actual serotonergic fiber densities in the brain
(Awasthi et al., 2021). Generally, high serotonergic fiber densities in
these regions have been reported in other mapping studies (Vertes,
1991; Morin and Meyer-Bernstein, 1999; Vertes et al., 1999, 2010;
Linley et al., 2013), with some variability due to the technical
limitations discussed in the Introduction (e.g., the targeting of
specific raphe nuclei).

The border effect has been reported in different species, but it
usually has been interpreted in a brain region-centric way, without
generalizing the pattern. Interesting examples are provided by the
telencephalon of the New Zealand white rabbit (Bjarkam et al,
2003, 2005) and the tadpole telencephalon of the Indian burrowing
frog (Bhat and Ganesh, 2023). A study of serotonergic densities in
the hamster brain has noted that, “in the thalamus, there is a general
theme of denser 5-HT-IR [serotonergic] innervation surrounding
a sparsely innervated core” (Morin and Meyer-Bernstein, 1999).
We are aware of only one descriptive study that has attempted to
quantitatively evaluate the decrease of a fiber density as a function
of the distance from the edge; this analysis has been performed in
the cat superior colliculus (Mize and Horner, 1989). Relatively few
studies have investigated serotonergic fibers in the ependymal layer
(which surrounds ventricular spaces), but this region is known to
have high fiber densities (Dinopoulos and Dori, 1995), consistent
with the simulation results. Actual serotonergic fiber densities
can decrease more gradually away from a border; however, this
property can be mirrored in simulated densities by changing the
convexity of the transforming function (effectively, by deciding
at which density value intensities saturate and become virtually
indistinguishable).

The hippocampal complex was modeled as a featureless,
unfolded medial pallial region (Butler and Hodos, 2005; Striedter
and Northcutt, 2020). This representation was deliberately
inaccurate, to avoid the 3D-reconstruction of a complex, layered
structure (with the correctly placed entrance and exit zones for
fibers). Unsurprisingly, the low simulated density in this area
(Figure 3C) deviated strongly from the generally high density
of serotonergic fibers in the hippocampus (Awasthi et al., 2021).
However, if the folding had been simulated, a high fiber density
would have been observed in the superficial layer of this cortical
structure (the archicortex). In the hippocampus proper, this
superficial layer corresponds to the stratum lacunosum moleculare,
which has the highest serotonergic fiber density among all layers
(Vertes et al., 1999; Nazzi et al., 2019; Awasthi et al., 2021). Likewise,
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FIGURE 4

A pseudo-monochrome map atlas of the simulated fiber densities at selected coronal levels (A—H) (a subset of the set in Figure 2). The colors
simulate immunohistochemical visualization with 3,3'-diaminobenzidine (DAB); low densities are light, high densities are dark. The rostrocaudal
distances are shown at the top of the panels. The frame numbers indicate square cells after the 2 x 2 pooling. Scale bar = 1 mm.
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the molecular layer of the mouse dentate gyrus has been reported
to have the highest serotonergic fiber density among all layers
(Awasthi et al., 2021). A slightly different pattern has been reported
in another study that has focused only on the fibers originating
in the median raphe nucleus of the rat (Vertes et al., 1999). This
discrepancy may be due to an incomplete labeling of fibers with
the tracer.
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The mediolateral fiber-density profile in the
(Figure 3B) was remarkably consistent with the reported

serotonergic densities in this region (Awasthi et al., 2021), with a

septum

high peak in the medial septum, a deep trough in the medial part of
the lateral septum, and another peak in the lateral part of the lateral
septum, at the edge of the lateral ventricle [see Figure 11 of Vertes
et al. (1999)]. This close match may be coincidental, but it may
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also reflect the potential of the proposed approach. The observed
profile cannot be deduced from a single coronal section and it may
also have a developmental component, since in the adult brain this
region is dorsally limited by the thick band of the corpus callosum
(which was not modeled in the used 3D-shape).

The current model cannot capture local variations in
serotonergic fiber densities that are not accounted for by the
geometry of the borders. For example, the cortical layers below
layer I often do not follow a descending gradient and can produce
local density peaks deeper in the tissue, such as in layers IV or
V (Linley et al., 2013; Awasthi et al., 2021). Likewise, individual
nuclei in the amygdala complex can be located close to one
another but differ strongly in their serotonergic fiber densities
(Awasthi et al., 2021). This local variability may be due to local
biological factors that control the growth and branching of fibers.
These discrepancies do not signal fundamental limitations of the
proposed model which assumed that the interior of the 3D-shape
was a uniform medium, with no spatial heterogeneities. In reality,
such heterogeneities are always present in natural neural tissue and
can be easily observed even in unstained preparations (Figure 1).
They may include regional variations in neuron packing densities
(Er6 et al., 2018; Keller et al., 2018), extracellular space (Hrabetova
et al.,, 2018), viscoelasticity (Cherstvy et al., 2019; Antonovaite
et al, 2021), and other variables. It is currently unclear which
of these factors can affect the resultant densities of simulated
fibers; for example, our limited analysis of rFBM-fibers in 2D-
shapes with densely packed cells (small obstacles) produced results
similar to those in corresponding shapes with no cells (Janu$onis
et al., 2020). The incorporation of spatial heterogeneities requires
advances in the theory of FBM, where a non-constant H poses
challenges in mathematical specifications of the process. We are
currently developing new theoretical models that can overcome
these difficulties (Wang et al., 2023). It is worth noting that the
densities of glial cells show surprisingly little regional variability,
and even little variability across mammalian species (Herculano-
Houzel, 2014; Dos Santos et al., 2020). Quantitative estimates of
some parameters of the brain extracellular space (e.g., tortuosity)
also suggest strong uniformity across brain regions (Nicholson,
2005; Sykova and Nicholson, 2008).

In order to keep the simulation manageable, it was performed
in a static shape based on a late-embryonic brain. The actual biology
is more complex in that serotonergic fibers gradually “fill” the brain
as the brain itself rapidly expands, in embryonic and postnatal
development (Slaten et al., 2010; Flood et al., 2012). This growth
includes changes in local tissue properties, due to cell migration,
myelination, and other processes (Iwashita et al., 2014; Guo et al,,
2019). In mouse postnatal development, fiber densities can steadily
increase in some brain regions (e.g., in the caudate-putamen and
basolateral amygdala), but they can show transient peaks in others
(e.g., in the medial prefrontal cortex and hippocampus) (Maddaloni
et al,, 2017). The present simulation cannot replicate these more
complex patterns. Simulating fibers in evolving 3D-shapes might
capture them, but this transition poses challenges in mathematical
specifications (e.g., a dynamic border may drag adjacent fibers or
move independently of them) and requires further upscaling of
computing resources. Despite the current limitations, the general
validity of the static brain model is supported by the observation
that serotonergic fibers accumulate at the surface of the future
cerebral cortex as soon as they reach it (i.e., in the marginal zone,
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the future cortical layer I) (Wallace and Lauder, 1983; Voigt and de
Lima, 1991b; Briining et al., 1997; Janu$onis et al., 2004). It should
also be noted that the model did not include the medial forebrain
bundle, a major pathway that the rostrally-projecting serotonergic
fibers follow before dispersing (Wallace and Lauder, 1983). In
simulations, fibers can be forced to deterministically move away
from the raphe nuclei, as a compact bundle, before they acquire
stochastic properties. However, it would not have a major effect on
their final, equilibrium densities outside the bundle.

The primary aim of the simulation was not to fully replicate
the regional densities of serotonergic fibers but rather to examine
to what extent these densities can be explained by the intrinsic
stochastic properties of the fibers, as they interact with the
basic geometry of the brain. We note that different axon types
may lie at different points along the stochastic-deterministic
continuum. For example, the trajectories of the retinogeniculate
and corticospinal axons can be considered strongly deterministic.
In contrast, serotonergic fibers appear to be strongly stochastic; in
the adult brain they typically produce highly tortuous trajectories
(sometimes with complete loops), can meet at any angles (Janusonis
et al,, 2019), and do not fasciculate. The stochasticity of axon
growth has been acknowledged by a small number of other studies
(Katz et al., 1984; Maskery and Shinbrot, 2005; Betz et al., 2006;
Yurchenko et al., 2019), but thus far these approaches have not led
to major applications in neuroscience. The fundamental problem
of the self-organization of serotonergic fiber densities may motivate
this line of research, which can be enriched with other theoretical
insights, such Brownian ratchet theory and Wiener sausage-like
constructs.

At the qualitative level, the rFBM-model of serotonergic fibers
can make intriguing predictions. For example, the accumulation
of fibers at a border is likely to be higher if the border has a high
local curvature. We have demonstrated this phenomenon in 2D-
shapes (JanuSonis et al., 2020; Vojta et al., 2020). Since the size
of neurons and axons is physically constrained, it implies that
larger brains might have relatively lower serotonergic fiber densities
at the surface—unless the curvature is restored with gyrification.
It also implies that the shape of the brain, whether molded by
evolution (Striedter and Northcutt, 2020), artificial selection, or
artificial cranial deformation (Meiklejohn et al., 1992) might affect
the distribution of serotonergic fibers, with potential implications
for regional neuroplasticity.

Irrespective of the exact specification of the used stochastic
process, this study highlights the possibility that serotonergic
fiber densities are never truly local. In order to reach a specific
target, fibers have to traverse other regions, introducing spatial
correlations. Also, the absence of physical tissue or the emergence
of obstacles in adjacent planes prevents fibers from advancing in
this direction and may give the impression of an external guiding
force when viewed in only one plane.

The strong stochasticity of serotonergic fibers does not
exclude other factors that may guide their interaction with
the environment and with one another. These factors include
brain-derived neurotrophic factor (BDNF) (Mamounas et al,
1995; Popova and Naumenko, 2019), the growth factor S1008
(Sodhi and Sanders-Bush, 2004), GAP-43 (Donovan et al., 2002),
the microtubule-associated STOP proteins (Fournet et al., 2010),
protocadherins (Katori et al., 2009, 2017; Chen et al.,, 2017), and
neurexins (Cheung et al, 2023). In addition, 5-HT itself may
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affect the growth of serotonergic fibers (Whitaker-Azmitia, 2001;
Migliarini et al., 2013), but these effects are neuroanatomically
subtle (Lesch et al., 2012; Montalbano et al., 2015; Mosienko et al.,
2015). They can also be masked by the availability of placenta-
derived 5-HT in fetal brain development (Bonnin and Levitt, 2011).
Interestingly, serotonergic fibers themselves may guide postnatal
neuroblast migration (Garcia-Gonzalez et al., 2017).

Alterations in regional serotonergic fiber densities have been
associated with a number of mental disorders and conditions,
such as autism spectrum disorder (Azmitia et al., 2011), epilepsy
(Maia et al., 2019), major depressive disorder (Numasawa et al.,
2017), social isolation (Keesom et al., 2018), and the abuse of
3,4-methylenedioxy-methamphetamine (MDMA, Ecstasy) (Adori
et al,, 2011). In the healthy brain, 5-HT signaling plays major roles
in the sleep-wake cycle (Brown et al,, 2012) and reward circuits
(Liu et al., 2020). It suggests that predictive models of the self-
organization and dynamics of serotonergic fibers may advance not
only basic neuroscience but also find applications in the biomedical
field.
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