PLOS DIGITAL HEALTH

Check for
updates

E OPEN ACCESS

Citation: Rajendran S, Xu Z, Pan W, Ghosh A,
Wang F (2023) Data heterogeneity in federated
learning with Electronic Health Records: Case
studies of risk prediction for acute kidney injury
and sepsis diseases in critical care. PLOS Digit
Health 2(3): €0000117. https:/doi.org/10.1371/
journal.pdig.0000117

Editor: Martin G. Frasch, University of Washington,
UNITED STATES

Received: September 1, 2022
Accepted: February 10, 2023
Published: March 15, 2023

Copyright: © 2023 Rajendran et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: Patient data was
extracted from the elCU Collaborative Research
Database, a multi-center critical care database
made publicly available through Philips Healthcare
and the MIT Laboratory for Computational
Physiology (https:/eicu-crd.mit.edu/). Processed
data and scripts used for analyses are also
available at https:/github.com/surajraj99/Data-
Heterogeneity-in-Federated-Learning.

RESEARCH ARTICLE

Data heterogeneity in federated learning with
Electronic Health Records: Case studies of risk
prediction for acute kidney injury and sepsis
diseases in critical care

Suraj Rajendran®, Zhenxing Xu?, Weishen Pan?, Arnab Ghosh?®, Fei Wang®?*

1 Tri-Institutional Computational Biology & Medicine Program, Cornell University, New York, New York,
United States of America, 2 Division of Health Informatics, Department of Population Health Sciences, Weill
Cornell Medicine, New York, New York, United States of America, 3 Departments of Medicine, Weill Cornell
Medical College, Cornell University, New York, New York, United States of America

* few2001 @ med.cornell.edu

Abstract

With the wider availability of healthcare data such as Electronic Health Records (EHR),
more and more data-driven based approaches have been proposed to improve the quality-
of-care delivery. Predictive modeling, which aims at building computational models for pre-
dicting clinical risk, is a popular research topic in healthcare analytics. However, concerns
about privacy of healthcare data may hinder the development of effective predictive models
that are generalizable because this often requires rich diverse data from multiple clinical
institutions. Recently, federated learning (FL) has demonstrated promise in addressing this
concern. However, data heterogeneity from different local participating sites may affect pre-
diction performance of federated models. Due to acute kidney injury (AKI) and sepsis’ high
prevalence among patients admitted to intensive care units (ICU), the early prediction of
these conditions based on Al is an important topic in critical care medicine. In this study, we
take AKI and sepsis onset risk prediction in ICU as two examples to explore the impact of
data heterogeneity in the FL framework as well as compare performances across frame-
works. We built predictive models based on local, pooled, and FL frameworks using EHR
data across multiple hospitals. The local framework only used data from each site itself. The
pooled framework combined data from all sites. In the FL framework, each local site did not
have access to other sites’ data. A model was updated locally, and its parameters were
shared to a central aggregator, which was used to update the federated model’s parameters
and then subsequently, shared with each site. We found models built within a FL framework
outperformed local counterparts. Then, we analyzed variable importance discrepancies
across sites and frameworks. Finally, we explored potential sources of the heterogeneity
within the EHR data. The different distributions of demographic profiles, medication use,
and site information contributed to data heterogeneity.

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000117  March 15, 2023

1/26



PLOS DIGITAL HEALTH

Data heterogeneity in federated learning with Electronic Health Records

Funding: SR would like to acknowledge the
support from Tri-Institutional Training Program in
Computational Biology and Medicine (CBM) funded
by the NIH grant 1T32GM083937. ZX, WP, FW
would like to acknowledge the support from NSF
1750326, NSF 2212175, NIH R0O1AG076234, NIH
RF1AG072449, Google Faculty Research Award
and Amazon Machine Learning Research Award.
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

Author summary

The availability of a large amount of healthcare data such as Electronic Health Records
(EHR) and advances of artificial intelligence (AI) techniques provides opportunities to
build predictive models for disease risk prediction. Due to the sensitive nature of health-
care data, it is challenging to collect the data together from different hospitals and train a
unified model on the combined data. Recent federated learning (FL) demonstrates prom-
ise in addressing the fragmented healthcare data sources with privacy-preservation. How-
ever, data heterogeneity in the FL framework may influence prediction performance.
Exploring the heterogeneity of data sources would contribute to building accurate disease
risk prediction models in FL. In this study, we take acute kidney injury (AKI) and sepsis
prediction in intensive care units (ICU) as two examples to explore the effects of data het-
erogeneity in the FL framework for disease risk prediction using EHR data across multiple
hospital sites. In particular, multiple predictive models were built based on local, pooled,
and FL frameworks. The local framework only used data from each site itself. The pooled
framework combined data from all sites. In the FL framework, each local site did not have
access to other sites’ data. We found models built within a FL framework outperformed
local counterparts. Then, we analyzed variable importance discrepancies across sites and
frameworks. Finally, we explored potential sources of the heterogeneity within EHR data.
The different distributions of demographic profiles, medication use, site information such
as the type of ICU at admission contributed to data heterogeneity.

Introduction

Acute kidney injury (AKI) and sepsis are two types of potentially life-threatening clinical con-
ditions that complicate treatment, clinical trajectories, and potentially worsen outcomes of a
significant number of hospitalized or intensive care unit (ICU)-patients [1-2]. For patients
with AKI or sepsis, morbidity and mortality are usually higher than patients without AKI or
sepsis, with as much as a sevenfold increased mortality risk, regardless of type of ICU (for
example, medical, surgical, or cardiac) [3-4]. Moreover, healthcare utilization within the ICU
is often higher for patients with these conditions. For example, patients with AKI and sepsis
often require hemodialysis, inotropic support, or mechanical ventilation [5]. Therefore, early
prediction of AKI or sepsis risk in critical care settings can facilitate early interventions that
are likely to provide benefit, including aggressive treatment with fluid resuscitation and anti-
microbials that may improve patient outcomes [6].

Recently, due to wider availability of electronic health record (EHR) data and advances in
artificial intelligence (AI), machine learning (ML) based disease risk prediction has attracted
more attention in the ICU setting [7]. Previous studies on AKI and sepsis onset risk prediction
mainly focused on building a predictive model on medical data from single hospitals [8-13].
However, building an accurate and generalizable disease risk prediction model requires a large
amount of data from a diverse patient population [8]. Collecting the data together from differ-
ent hospitals and constructing a unified risk prediction model on the combined data can lead
to better prediction performance. Moreover, using multiple hospitals or sites data over single
institution data can add to the generalizability of ML models [14]. A recent study has shown
that creating more generalizable models can increase algorithmic fairness, yet many published
models lack this generalizability across geographic locations and demographics [15]. However,
due to the highly sensitive nature of EHR in terms of protected health information (PHI) of
patients, aggregating multiple institutions’ data all together is challenging [16].
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More recently, federated learning (FL) has emerged as a promising strategy on building ML
models with fragmented sensitive data [17]. FL is one mechanism of training ML models
across multiple decentralized sites holding local data samples without exchanging them [18]. It
builds a central aggregator to obtain global ML model’s parameters by iteratively exchanging
model parameters from local ML models. However, data heterogeneity in the FL framework
may affect prediction performance [19]. For example, different hospitals have different popu-
lations, which may have a high degree of variability in the patient treatment, such as different
medications they administer and different procedures they conduct. This heterogeneity espe-
cially affects the performance of sepsis and AKI prediction models which rely on patient
demographics, disease history, and medications [20]. Both AKI and sepsis are also highly het-
erogeneous [21]. This makes models built with conventional FL strategies such as federated
averaging challenging to generalize across clinics, limiting their use [7,22,23]. Several federated
architectures have been proposed to mitigate effects of data heterogeneity in other domains
and built personalized, but globally correlated, models to mitigate drift across sites [23], such
as model-agnostic meta-learning (MAML), federated multitask learning, and knowledge distil-
lation [24-28]. However, it is not clear how such data heterogeneity problem will impact build-
ing risk prediction models in clinical medicine.

To fill this research gap, we comprehensively investigate the effects of data heterogeneity in
the FL framework for predicting the onset risk of AKI and sepsis in ICU setting using EHR
data from multiple hospital sites. We built multiple predictive models in local, pooled, and FL
settings. The local setting built an individual model for each site from its own data. The pooled
setting built a global model shared across all sites with their combined data. The FL setting also
built a global model, where each local site did not share data with others, but updated model
parameters locally and shared the updated model parameters to a central aggregator, which
was used to update the global model parameters and shared back with each site. By comparing
the performance of models trained from different settings with each other, we investigated
how data heterogeneity would impact the federated risk prediction models. We also explored
the potential sources of the heterogeneity within EHR data by analyzing predictor importance
across settings and sites. The differences were contrasted according to patient and hospital
information to elucidate sources of heterogeneity and how they would potentially impact the
different predictive modeling settings. The overall workflow of our study is shown in Fig 1.

The notable contributions of this work to the literature are as follows:

« With the context of AKI and sepsis onset risk prediction in ICU setting, a comprehensive
comparison in terms of prediction performance among local, pooled, and federated settings
were conducted with a set of ML models.

o We have identified important predictors for AKI and sepsis risk and performed exhaustive
analysis on they would impact the prediction results. These predictors can be used by medi-
cal specialists to monitor the risk of AKI and sepsis for patients in ICU, while accounting for
the specifics of their own hospitals. In addition, we have delineated differences in feature
importance across medical sites, outlining metrics for direct comparison of feature impor-
tance across different settings (i.e., local, pooled, and federated).

We have performed a thorough analysis on the potential sources of heterogeneity between
hospital sites according to patient demographic, medication, and lab data, as well as hos-
pital information such as available unit types. We outline how these sources of heteroge-
neity could be connected to the varying predictor importance derived across sites and
settings.
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Fig 1. The framework of the study. In Data Preparation, different types of data including lab test, medication, vital
signs, and demographic are extracted during the observation window, which are used to build patients’ profiles to
predict whether they would suffer from acute kidney injury or sepsis in the prediction window. In Feature
Construction and Model Training, individual features from lab test, medication, vital signs, and demographic were
obtained to build a predictive model based on three frameworks including local, pooled, and federated frameworks. In
each framework, two common model architectures including logistic regression and multi-layer perceptron were used.
In Feature Importance Analysis and Source of Model Performance Heterogeneity, feature importance heterogeneity,
feature correlation across mode architectures and frameworks, and sources of model performance heterogeneity were
explored.

https://doi.org/10.1371/journal.pdig.0000117.g001

Results
Development of AKI and sepsis prediction models in local sites

Data for 21,796 AKI patients and 22,0082 sepsis patients at 7 hospitals were extracted from the
eICU collaborative research database, following inclusion and exclusion criteria denoted in
the "Methods" section. All patients shared 354 unique variables which included lab tests, vital
signs, demographics, and medications. AKI patients were labeled both within a 24h and 48h
observation window, leading to two settings for AKI prediction. For sepsis, we labeled patient
data in accordance with Sepsis-3 clinical criteria. We predicted whether patients would suffer
from sepsis 6 hours prior to onset, onset point included. Within the observation window, lab
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tests and vital sign information were aggregated through several statistics (minimum, maxi-
mum, first, and last values) into several new features. Three model frameworks were designed
including local, pooled, and federated model architectures. The details of each model architec-
ture were described in the "Methods" section. For each framework, two model architectures
including the multilayer perceptron (MLP) and logistic regression (LR) were explored. Pro-
cessed data and scripts used for analyses are also available at https://github.com/surajrajo9/
Data-Heterogeneity-in-Federated-Learning. On the Apple M1 Max with 10-core CPU, local
LR models were trained within an average of 2.54 + 0.84 seconds and local MLP models were
trained in 2.36 + 0.79 seconds. The large standard deviation of local performances is due to
varying dataset sizes across different sites. Pooled LR and MLP models were trained within
18.94 £ 0.05 and 19.33 + 0.06 seconds, respectively. Federated LR and MLP models were
trained within 51.63 + 24.26 and 58.51 + 27.45 seconds, respectively. Communication costs
between sites and the central sever within the federated framework take a significant amount
of time, as evidenced by the time differences between pooled and federated framework. These
communication costs can be reduced by increasing the number of epochs that local sites train
models at each federated framework.

Fig 2 illustrates the LR and MLP performance, measured by area-under-receiver-operator-
curve (AUC), on both AKI 24h and 48h settings. Sepsis prediction setting results can be found
in S2 Text and S6 Fig. We observed:

o When using local model framework: AKI 24h LR models performed within the range of
0.680-0.809, whereas MLP models performed within a range of 0.677-0.821. Similarly, AKI
48h LR models performed within the range of 0.680-0.809, whereas MLP models performed
within a range of 0.673-0.800. Sepsis LR models’ performances ranged between 0.771-0.834
across sites, whereas MLP models’ performances ranged between 0.772-0.829. The LR and
MLP models performed similarly across all prediction tasks.

o When using pooled model framework: AKI 24h LR models performed within the range of
0.672-0.742, whereas MLP models performed within a range of 0.78-0.827. Similarly, pooled
AKIT 48h LR models performed within the range of 0.683-0.744, whereas MLP models per-
formed within a range of 0.686-0.755. Pooled sepsis LR models’ performances ranged
between 0.731-0.800 across sites, whereas MLP models’ performances ranged between
0.732-0.793. LR pooled models showed more consistent performances to local model coun-
terparts in comparison to MLP pooled models.

o When using federated model framework: AKI 24h LR models performed within the range of
0.742-0.834, whereas MLP models performed within a range of 0.732-0.839. Similarly, AKI
48h LR models performed within the range of 0.722-0.835, whereas MLP models performed
within a range of 0.72-0.833. Federated sepsis LR models’ performances ranged between
0.833-0.862 across sites, whereas MLP models’ performances ranged between 0.823-0.861.

Generally, the federated model outperformed the local model and pooled model. The pooled
models underperformed the local model.

Clinical interpretation of sepsis and AKI prediction models

Using Shapley Additive exPlanations (SHAP) values, we investigated the marginal effects of
the features identified as predictive by each model. Fig 3 illustrates the marginal plots (SHAP
dependence plots) for the top 10 most important features for each pooled model on the AKI
prediction settings. Fig 4 shows the SHAP dependence plots for AKI setting federated models.
Dependence plots for all local models are available in S4 Fig. Sepsis prediction results are
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Fig 2. Area Under Receiver Operating Curve (AUROC) for AKI Setting. Each plot shows performances for AKI 24h
and 48h prediction settings. Blue bars depict each local site’s model performance on their respective site test data.
Orange bars depict pooled model performance on each local site’s test data. Green bars depict federated model
performance on each local site’s test data.

https://doi.org/10.1371/journal.pdig.0000117.9002

available in the Supplemental Information and S7 Fig. To calculate the SHAP values for 1000
samples on the Apple M1 Max with 10-core CPU took on average 1076 + 52 seconds.

In the AKI 24h setting, the pooled MLP model identified last measured level of creatinine
(creatinine_last), last measured hematocrit level (hematocrit_last), Furosemide, bg_paco2_min,
maximum potassium level (potassium_max), minimum creatinine levels (creatinine_min), last
measured systolic blood pressure (sysbp_last), hemoglobin_first, minimum bicarbonate level
(bicarbonate_min), and last measured calcium level (calcium_last) as the top 10 most impor-
tant variables. All factors except Furosemide were lab tests and vital signs. The pooled LR
model shared several important factors with the pooled MLP model, with the addition of age,
first measured calcium level (calcium_first), and last measured blood urea nitrogen level
(bun_last). Of note, in the pooled MLP model, creatinine_last of ~4 mg/dL is associated with
an exp(0.4) = 1.5-fold increase in risk of AKI 24h. In the pooled LR model, creatinine_last
shows a similarly strong relationship as the pooled MLP to AKI 24h risk. A bun_last measure-
ment of ~60 mg/dL is associated with a exp(0.2) = 1.2-fold increase in risk of AKI 24h. In the
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Fig 3. Shapley dependence plots for top 10 features for pooled models. Each panel shows the marginal effects of
each of the most impactful features ranked among the top 10 for predicting AKI 24h or 48h using pooled models. The
x-axis gives the raw values of each feature, and the y-axis gives the logarithmic of estimated odds ratio (i.e., the SHAP
value) for sepsis, AKI 24h or AKI 48h, when a feature takes a certain value. Each dot represents the SHAP value of a
sample. The LOWESS curve, used for smoother extrapolating across all the dots, is plotted in red for all panels. (a, c)
show Shapley dependence plots for pooled MLP models and (b, d) show Shapley dependence plots for pooled LR
models. (a, b) show plots for AKI 24h, and (c, d) show plots for AKI 48h.

https://doi.org/10.1371/journal.pdig.0000117.9003

pooled LR model, the risk of AKI 24h given administration of furosemide, is greater than AKI
risk in the MLP model, with an odds ratio of exp(0.1) = 1.1.
In the AKI 48h setting, the pooled MLP model identified creatinine_last, hemoglobin_first,
bg_paco2_first, potassium_min, bun_last, Furosemide, maximum partial pressure of carbon
dioxide (bg_paco2_max), hemoglobin_max, sysbp_last, and first measured platelet count (pla-
tlet_first) as the top 10 most important variables. All factors except Furosemide were lab tests
and vital signs. The pooled LR model shared several important factors with the pooled model,
with the addition of the mean systolic and diastolic blood pressure (meanbp_first) and mini-
mum glucose level (glucose_min). Like the 24h setting, in the 48h pooled MLP model, creatini-
ne_last of ~4 mg/dL is associated with an exp(0.4) = 1.5-fold increase in risk of AKI. A
bun_last measurement of greater than ~25 mg/dL is associated with an increased risk of AKI
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a) AKI 24h Federated MLP Model b) AKI 24h Federated LR Model
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Fig 4. Shapley dependence plots for top 10 features for federated models. Each panel shows the marginal effects of
each of the most impactful features ranked among the top 10 for predicting AKI 24h or 48h using federated models.
The x-axis gives the raw values of each feature, and the y-axis gives the logarithmic of estimated odds ratio (i.e., the
SHAP value) for sepsis, AKI 24h or AKI 48h, when a feature takes a certain value. Each dot represents the SHAP value
of a sample. The LOWESS curve, used for smoother extrapolating across all the dots, is plotted in red for all panels. (a,
c) show Shapley dependence plots for federated MLP models and (b, d) show Shapley dependence plots for federated
LR models. (a, b) show plots for AKI 24h, and (c, d) show plots for AKI 48h.

https://doi.org/10.1371/journal.pdig.0000117.g004

48h. In the pooled LR model, creatinine_last and bun_last show similarly strong relationships
as the pooled MLP model. Furosemide is considered an important medication across all AKI
settings and model architectures.

For the AKI 24h setting, the federated MLP and LR model consider more medications
important than their respective pooled counterparts. Medications considered important by the
tederated MLP model include Furosemide, Potassium Chloride, Aspirin, and Metoprolol,
whereas the federated LR model considered Insulin important as well. Interestingly, the feder-
ated MLP model considered the patient’s choice of elective surgery (electivesurgery) as an
important feature, albeit a relatively small increase (exp(0.02) = 1.02-fold) in risk of AKI 24h.
Like the 24h setting, the federated MLP and LR models of the AKI 48h setting considered
more medications important than their respective pooled counterparts. Both the MLP and LR

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000117 March 15, 2023 8/26



PLOS DIGITAL HEALTH

Data heterogeneity in federated learning with Electronic Health Records

model consider administration of Aspirin and Insulin as important factors. The federated
MLP for the 48h setting uniquely finds the minimum ratio of “partial pressure of oxygen” to
“fractional inspired oxygen” (bg_pao2fio2ratio_min) and maximum level of glucose (glucose_-
max) as important factors. Local models shared numerous important factors with pooled and
federated models, depicting similar relationships between feature value and risk of sepsis/AKI
(S4 Fig).

Source of prediction performance heterogeneity across model
architectures, frameworks, and sites
To better understand differences in feature importances across hospital sites and model frame-

works, we performed a qualitative analysis which looked at the most important variables
selected by models and their prevalence across sites. Fig 5, 6, and 7 show features in relation to
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Fig 5. Distribution of important features at all local models across local sites. The figure demonstrates feature
importance disparities for all AKI settings (24h, 48h) local models (MLP and LR). (a, b) show feature importance
disparities for MLP models. (¢, d) show feature importances for LR models. Each dot corresponds to one of the most
important features ranked among the top-100 by at least one of the seven models; y-axis measures the proportions of
sites that identified the feature as top-100, or “commonality across sites”; x-axis measures the mean of feature
importance rankings measured as “soft ranking” (the closer it is to 1, the higher the feature ranks). Top-100 is an
arbitrary cutoff we used to analyze the most important features to illustrate heterogeneity. Each feature is also color
coded by the interquartile range (IQR) of the ranks across sites (the higher the IQR is, the more disagreement across
sites on the importance of that feature).

https://doi.org/10.1371/journal.pdig.0000117.9005
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Fig 6. Distribution of important features at pooled models across local sites. The figure demonstrates feature
importance disparities for all AKI settings (24h, 48h) pooled models (MLP and LR). Each dot corresponds to one of
the most important features ranked among the top-100 by the pooled model; y-axis measures the commonality across
sites; x-axis measures the feature importance soft rankings.

https://doi.org/10.1371/journal.pdig.0000117.9006

their importance rankings in AKI prediction models, where the y-axis is the proportion of
sites that consider the feature as a top 100 feature (for the specific model architecture). For
example, a feature that has a y-value of 1.0 is deemed important at all sites, whereas if a feature
has a y-value of 0.1429 (1/7), it is only considered important at one site. The x-axis shows the
importance ranking of the feature, averaged across the sites it is considered important (i.e., top
100) in (i.e., a feature is more important if it is closer to 1). Results for the sepsis prediction set-
ting are available in the Supplemental Information and S8 Fig.

Fig 5 shows the distribution of important features across sites for local models. For all set-
tings, there are features that are both ‘universally important’ and site-specific (i.e., important at
only a subset of sites). The universally important features across most sites for AKI (both 24h
and 48h) included creatinine_last, creatinine_min, creatinine_max, administration of Ondan-
steron, glucose_max, and urineoutput_sum. However, the relative importance of features at
local sites were different. This disagreement was reflected in the dependence plots for the local
models (S4 Fig). Universally important features like creatinine_last, administration of Sodium
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Fig 7. Distribution of important features at federated models across local sites. The figure demonstrates feature
importance disparities for all AKI settings (24h, 48h) federated models (MLP and LR). Each dot corresponds to one of
the most important features ranked among the top-100 by the pooled model; y-axis measures the commonality across
sites; x-axis measures the feature importance soft rankings.

https://doi.org/10.1371/journal.pdig.0000117.9007

Chloride, among others, have different trends with the prediction diagnosis depending on the
site.

Fig 6 shows the distribution of important features for the pooled models across sites. Both
AKI 24h and 48h settings’ pooled models have relatively fewer features that are only important
at a small number of sites compared to the local model framework. For the pooled MLP and
LR AKI 24h or 48h model, the universally important features mainly included creatinine_last,
potassium_max, and creatinine_min. All AKI pooled models have features that are uniquely
important to the pooled models (i.e., these features were not considered as part of the top 100
features at any local site). The pooled MLP AKI 24h model uniquely considered administra-
tion of Nitroglycerin moderately important. The pooled LR AKI 24h model uniquely consid-
ered administration of Metoclopramide Mupirocin, Lidocaine, and race_black as slightly
important. The pooled MLP AKI 48h model uniquely considered administration of Hydro-
morphone and bilirubin_last as slightly and moderately important respectively. The pooled LR
AKI 48h model also uniquely considered administration of Hydromorphone and

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000117 March 15, 2023 11/26



PLOS DIGITAL HEALTH

Data heterogeneity in federated learning with Electronic Health Records

bilirubin_last as moderately important. Taken together, these differences suggested that there
is slight variability in uniquely important features among models.

Fig 7 shows the distribution of important features for the federated models across sites. Like
the pooled models, both MLP and LR federated models have relatively fewer features that are
important at only a small number of sites compared to the local model analysis. The federated
MLP AKI 24h model shares its universally important features with its pooled counterpart,
namely attributing importance to creatinine_last, potassium_max, and creatinine_min, among
others. These features are universally important in the federated LR architecture, as well as in
the 48h setting. Some of the federated AKI models have uniquely important features as well.
The federated MLP AKI 24h model considered administration of Dexmedetomidine as an
important variable. The federated LR AKI 48h model considered administration of Phenyleph-
rine slightly important. Like the pooled setting, we can see discrepancies between feature
importances which are not considered universally important at all sites.

Correlation of feature importances across model architectures

To investigate differences of feature importance between model architectures, we looked at the
correlation between importance rankings of features shared by both the MLP and LR model
for each setting and framework. Fig 8 shows these correlations, where the x and y axes are the
importance of the feature in the MLP and LR model respectively. In the AKI 24h setting, local
models have moderately strong positive correlations with Pearson-correlation coefficients
(PC) ranging from 0.79-0.84. The pooled and federated AKI 24h model shows slightly weaker
positive correlations as compared to the local models PC = 0.79, 0.77. These results suggest
that, within the AKI setting, the pooled and federated models were not successful at decreasing
feature discrepancies between the LR and MLP architectures that were present in local models.
Sepsis prediction setting results are available in Supplemental Information and S9 Fig.

Correlation between local feature importances and non-local framework
feature importances

To investigate the correlation of heterogeneous features between local frameworks and both
pooled and federated frameworks, we established the ‘unique importance score’ (UIS). The
UIS score is large for features that are highly important at a small subset of sites, whereas it is
small for features that are considered universally important (i.e., features that were important
at a plurality of sites). In other words, the score is large for features that lie in the bottom right
region of the plots in Figs 5, 6, and 7. Calculation of the UIS score can be found in the Methods
section. Fig 9 shows the correlations of the UIS score across frameworks. Similar conclusions
can be derived from both pooled and federated framework analyses, in both sepsis and AKI.
There is a strong positive correlation (PC ranging from 0.84-0.93) between local UIS and
pooled/federated. Interestingly, for all analyses, confidence on the line of best fit decreases at
larger UIS scores. This suggests that features considered universally important in the local
framework were important for the pooled/federated models whereas features only important
at a small subset of hospitals were disregarded.

Sources of data heterogeneity

Tables 1 and 2 show demographic profiles across each site for AKI and sepsis patients, respec-
tively. For both AKI and sepsis settings, sites show similar gender distributions, with a slight
majority of patients being male across all sites. Age distributions are also similar across all sites
with most patients being between 50-75 years old. Patient BMI is similar across sites with
most patients having a BMI between 23-34. Site 199 has slightly fewer patients with a BMI of
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Fig 8. Important features comparison across model architectures for AKI 24h setting. The figure shows correlations between
important features in the MLP and LR models. Each dot corresponds to one of the most important features ranked among the top-100
by both the MLP and LR model. The y-axis measures the importance of the feature in the LR model whereas the x-axis measures the
importance in the MLP model. The shaded portion represents a 95% confidence interval. PC (Pearson correlation coefficient) for each
comparison is denoted on the top-left of each plot. (a) shows the comparisons for local sites, 420, 252, and 73. (b) shows comparisons
for the pooled models. (c) shows comparisons for the federated models.

https://doi.org/10.1371/journal.pdig.0000117.g008

less than 23, and more patients with a BMI of greater than 34 compared to other sites. In both
settings, there was a disparity in the number of patients that underwent elective surgery, with
the proportions ranging from 0.12-0.28. Patients show differences in racial breakdowns across
sites. The African American population varies across sites from 0.02/0.01 (AKI/sepsis) at Site
199 to 0.3/0.32 at Site 243. Site 73 has a relatively large population of Hispanic individuals
compared to other sites, whereas Sites 122, 243, 252, and 458 have no Hispanic patients. The
Asian population is similar across all sites. The ‘Other’ racial category has the largest propor-
tion of individuals across all sites, but this proportion varies largely depending on the site,
ranging from 0.67-0.98. As previously mentioned, most of the patients in all settings (AKI
24h, 28h, and sepsis) were negative for the disease. For AKI 24h and AKI 48h settings, the pro-
portion of AKI positive patients ranges from 0.06/0.08 (24h/48h) to 0.1/0.13. For the sepsis set-
ting, the proportion of positive patients ranges from 0.02 to 0.20.

Table 3 shows general site information for the 7 hospitals. The sites are located across the
Northeast, Midwest, and South of the continental United States of America. All sites are large
with greater than 500 beds. There are differences in patient unit types across all sites. Sites 420,
243, 252, and 199 have no patients in Cardiothoracic Intensive Care Units (CTICU). Sites 252
and 458 have no patients in Medical Surgery Units (Med-Surg ICUs). Sites 122 and 199 have
no patients in Surgical Intensive Care Units (SICU). Sites 122, 243, 458, and 199 have no
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Fig 9. Correlation of unique importance score (UIS) between local and pooled/federated frameworks. x-axis is the
UIS for each feature in the local model framework. y-axis is the UIS for the pooled/federated model. Line of best fit is
plotted, and equation is shown on top corner, along with Pearson correlation coefficient (p). Shaded area represents a
95% confidence interval. First column depicts plots for the MLP model whereas the second column depicts plots for
the LR model. (a, b) show analyses for sepsis setting, (c, d) show analyses for AKI 24h setting. (a, c) show analyses for
pooled framework, (b, d) show analyses for federated framework.

https://doi.org/10.1371/journal.pdig.0000117.9009

patients in Critical Care Cardiothoracic Intensive Units (CCU-CTICU). Sites 420 and 122
have no patients in Cardiothoracic Intensive Care Units (MICU). Sites 420, 122, and 199 have
no patients in Neurological Care Units (Neuro ICU). Sites 252, 199, and 73 have no patients in
Cardiac Intensive Care Units (Cardiac ICU). Among sites which do share patients in the same
unit, proportions may be different. For example, while both Sites 199 and 73 have patients in
the Med-Surg ICUs, 88% of patients in Site 199 are admitted to Med-Surg ICUs whereas only
16% of patients in Site 73 are admitted to Med-Surg ICUs. Sites also had disparities in patient
admission sources. Across hospitals, most patients were either admitted directly or admitted
from the emergency department or operating Room. Of note, at Site 199, 22% of patients were
admitted from the ICU to a special care unit (SCU). At Site 73, no patients were admitted
from the recovery room. Taken together, despite being large, sites have disparities in unit types
and sources of admission.

S5 Fig illustrates the usage of medications across sites. Only 22 medications are used at all
sites for both sepsis and AKI settings. Further analysis indicated that even for medications
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Table 1. Demographic Characteristics of AKI patients at each site. Percentage of individuals with certain characteristics specified within parentheses. Table 1 Positive/
Negative distribution is associated with the AKI 48h setting.

2957 2315 2990 2549 2592 2848 5545
1198 (0.41) 1080 (0.47) 1316 (0.44) 1079 (0.42) 1161 (0.45) 1232 (0.43) 2452 (0.44)
1759 (0.59) 1235 (0.53) 1674 (0.56) 1470 (0.58) 1431 (0.55) 1616 (0.57) 3093 (0.56)
131 (0.04) 507 (0.22) 909 (0.3) 164 (0.06) 730 (0.28) 43 (0.02) 813 (0.15)

2.(0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 26 (0.01) 397 (0.07)
46 (0.02) 11 (0.0) 28 (0.01) 8 (0.0) 36 (0.01) 2(0.0) 72 (0.01)
2778 (0.94) 1797 (0.78) 2053 (0.69) 2377 (0.93) 1826 (0.7) 2777 (0.98) 4263 (0.77)
366 (0.12) 404 (0.17) 470 (0.16) 625 (0.25) 490 (0.19) 368 (0.13) 1542 (0.28)
2591 (0.88) 1911 (0.83) 2520 (0.84) 1924 (0.75) 2102 (0.81) 2480 (0.87) 4003 (0.72)
582 (0.2) 493 (0.22) 493 (0.17) 480 (0.19) 553 (0.21) 399 (0.15) 806 (0.2)
959 (0.33) 678 (0.3) 884 (0.3) 743 (0.29) 792 (0.31) 785 (0.29) 1100 (0.27)
748 (0.26) 606 (0.27) 904 (0.3) 703 (0.28) 722 (0.28) 764 (0.28) 1121 (0.28)
613 (0.21) 485 (0.21) 701 (0.24) 617 (0.24) 520 (0.2) 779 (0.29) 1010 (0.25)
107 (0.04) 71 (0.03) 73 (0.02) 81 (0.03) 97 (0.04) 118 (0.04) 116 (0.02)
559 (0.19) 420 (0.18) 505 (0.17) 437 (0.17) 563 (0.22) 537 (0.19) 1032 (0.19)
1611 (0.54) 1322 (0.57) 1757 (0.59) 1516 (0.59) 1414 (0.55) 1599 (0.56) 3096 (0.56)
680 (0.23) 502 (0.22) 655 (0.22) 515 (0.2) 518 (0.2) 594 (0.21) 1301 (0.23)
338 (0.11) 196 (0.08) 382 (0.13) 216 (0.08) 271 (0.1) 233 (0.08) 476 (0.09)
2619 (0.89) 2119 (0.92) 2608 (0.87) 2333 (0.92) 2321 (0.9) 2615 (0.92) 5069 (0.91)

https://doi.org/10.1371/journal.pdig.0000117.t001

used at multiple hospitals, the proportion of patients that were on the medication at each hos-
pital varied greatly. Coupled with the disparities in unit types, this suggests that each hospital
site treats significantly different populations of individuals, despite all these hospitals having
patients who suffer from AKI and sepsis.

Table 2. Demographic Characteristics of Sepsis patients at each site. Percentage of individuals with certain characteristics specified within parentheses.

2276 2365 3212 2586 2748 2996 5919
936 (0.41) 1085 (0.46) 1404 (0.44) 1097 (0.42) 1234 (0.45) 1293 (0.43) 2629 (0.44)
1340 (0.59) 1280 (0.54) 1808 (0.56) 1489 (0.58) 1514 (0.55) 1703 (0.57) 3290 (0.56)
100 (0.04) 553 (0.23) 1019 (0.32) 175 (0.07) 805 (0.29) 44 (0.01) 899 (0.15)

2 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 36 (0.01) 428 (0.07)
43 (0.02) 12 (0.01) 31 (0.01) 10 (0.0) 38 (0.01) 3 (0.0) 82 (0.01)
2131 (0.94) 1800 (0.76) 2162 (0.67) 2401 (0.93) 1905 (0.69) 2913 (0.97) 4510 (0.76)
371 (0.16) 424 (0.18) 541 (0.17) 659 (0.25) 527 (0.19) 412 (0.14) 1635 (0.28)
1905 (0.84) 1941 (0.82) 2671 (0.83) 1927 (0.75) 2221 (0.81) 2584 (0.86) 4284 (0.72)
414 (0.19) 491 (0.21) 528 (0.16) 475 (0.18) 576 (0.21) 414 (0.14) 854 (0.2)
747 (0.33) 692 (0.3) 953 (0.3) 761 (0.29) 809 (0.3) 801 (0.28) 1170 (0.27)
597 (0.27) 628 (0.27) 956 (0.3) 723 (0.28) 775 (0.28) 811 (0.28) 1188 (0.28)
475 (0.21) 496 (0.21) 765 (0.24) 621 (0.24) 582 (0.21) 848 (0.3) 1100 (0.26)
77 (0.03) 72 (0.03) 72 (0.02) 83 (0.03) 100 (0.04) 119 (0.04) 125 (0.02)
430 (0.19) 435 (0.18) 542 (0.17) 448 (0.17) 577 (0.21) 557 (0.19) 1083 (0.18)
1243 (0.55) 1358 (0.57) 1902 (0.59) 1516 (0.59) 1516 (0.55) 1694 (0.57) 3318 (0.56)
526 (0.23) 500 (0.21) 696 (0.22) 539 (0.21) 555 (0.2) 626 (0.21) 1393 (0.24)
459 (0.2) 172 (0.07) 187 (0.06) 152 (0.06) 123 (0.04) 135 (0.05) 89 (0.02)
1817 (0.8) 2193 (0.93) 3025 (0.94) 2434 (0.94) 2625 (0.96) 2861 (0.95) 5830 (0.98)

https://doi.org/10.1371/journal.pdig.0000117.t002
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Table 3. Hospital site information. Percentage of usage/individuals specified within parentheses.

Northeast South South Midwest South Northeast Midwest
> =500 > =500 > =500 > =500 > =500 > =500 > =500
0 (0.0) 562 (0.19) 0 (0.0) 0 (0.0) 635 (0.17) 0(0.0) 1364 (0.19)
1343 (0.29) 1495 (0.51) 11 (0.0) 0 (0.0) 0 (0.0) 3712 (0.88) 1159 (0.16)
1932 (0.41) 0 (0.0) 710 (0.17) 588 (0.17) 372 (0.1) 0(0.0) 408 (0.06)
706 (0.15) 0 (0.0) 0 (0.0) 1031 (0.31) 0 (0.0) 0(0.0) 1510 (0.21)
0(0.0) 0(0.0) 778 (0.18) 914 (0.27) 446 (0.12) 528 (0.12) 1124 (0.16)
0 (0.0) 0 (0.0) 716 (0.17) 838 (0.25) 416 (0.11) 0(0.0) 1494 (0.21)
698 (0.15) 884 (0.3) 2028 (0.48) 0 (0.0) 1832 (0.5) 0(0.0) 0(0.0)
683 (0.15) 676 (0.23) 378 (0.09) 175 (0.05) 261 (0.07) 290 (0.07) 904 (0.13)
2283 (0.5) 1254 (0.43) 1798 (0.42) 760 (0.23) 1463 (0.4) 1185 (0.28) 2301 (0.33)
644 (0.14) 458 (0.16) 402 (0.09) 462 (0.14) 577 (0.16) 698 (0.17) 1858 (0.26)
49 (0.01) 397 (0.14) 763 (0.18) 877 (0.26) 710 (0.19) 427 (0.1) 627 (0.09)
279 (0.06) 27 (0.01) 19 (0.0) 100 (0.03) 82 (0.02) 96 (0.02) 233 (0.03)
178 (0.04) 26 (0.01) 234 (0.06) 0(0.0) 1 (0.0) 916 (0.22) 870 (0.12)
156 (0.03) 67 (0.02) 78 (0.02) 267 (0.08) 124 (0.03) 138 (0.03) 194 (0.03)
94 (0.02) 3(0.0) 189 (0.04) 417 (0.12) 251 (0.07) 432 (0.1) 49 (0.01)
103 (0.02) 5(0.0) 0 (0.0) 0 (0.0) 11 (0.0) 0(0.0) 1 (0.0)
140 (0.03) 20 (0.01) 372 (0.09) 310 (0.09) 209 (0.06) 21 (0.0) 0 (0.0)
0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 11 (0.0) 0 (0.0)
0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 3(0.0) 0(0.0)
0 (0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 10 (0.0) 0 (0.0)
https://doi.org/10.1371/journal.pdig.0000117.t003
Discussion

In this study, to investigate the effect of data heterogeneity on the performance of FL, multiple
machine learning models were developed to predict the risk of both AKI and sepsis diseases in
multiple ICU settings. Different types of EHRs including lab tests, vital signs, demographics,
and medications were extracted from seven hospitals in the eICU collaborative research data-
base. Three model frameworks including local, pooled, and federated were explored. Effects of
data heterogeneity across hospital sites were evaluated through model performance compari-
son and feature importance analysis. The sources of data heterogeneity across hospitals were
investigated based on patient demographics, medication usage, and general hospital attributes.

Our prediction models have shown comparable performance with state-of-the art AKI and
sepsis prediction studies [7]. In addition, federated model frameworks generally outperform
their local counterparts in our results. However, this largely depends on how heterogeneous
the patient populations from different hospitals are. Moreover, the pooled model did not show
much improvement over the local models, this could be largely due to the cross-site sample
heterogeneity. Though FL performed better than pooled models in our investigations, our FL
strategy is based on federated average which did not consider such cross-site heterogeneities,
thus it is difficult to justify the generalizability of the conclusion. One reason as to why the fed-
erated models performed better than pooled models might be due to their weight distribution.
The weights of the federated models are concentrated around zero as compared to pooled
models for all settings. More weights near zero means that the models are regularized and sim-
pler, which is likely to generalize better [29].
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The performance heterogeneity of predictive models across sites and frameworks was eval-
uated by comparing feature importance. For both AKI and sepsis prediction tasks, important
variables identified by predictive models were consistent with prior studies [7]. For example,
creatinine and furosemide exposure showed positive associations with AKI, which is unsur-
prising given their clinical association with AKI. For the same model architecture, importance
of a feature varied depending on the sites, with variable-prediction relationships changing (see
Fig 5, 6, 7). The presence of ‘universally important features’ (i.e., features that were considered
highly important at most sites) and “uniquely important features’ (i.e., features that were highly
important at a small subset of sites) showed that there was disagreement on relative impor-
tance across sites. The feature heterogeneity plots for federated and pooled frameworks
showed a decreased amount of uniquely important features. This was indicative of both these
frameworks being able to attribute higher importance to features shared across multiple sites.

Our findings also demonstrated that federated and pooled models were not successful at
decreasing feature importance discrepancies between LR and MLP architectures, and that
both pooled and federated frameworks prioritized features that were considered important
across a plurality of sites (i.e., low UIS) and attributed lower importance to features that were
uniquely important at a small subset of sites (i.e., high UIS). These findings also suggest that
the federated model may be better at discriminating the key features of patient-level clinical,
lab, and demographic information that improves risk prediction. In the field of critical care
medicine, the implication of this finding is that across heterogeneous sources of data, federated
models are more likely to highlight the common elements that can better predict sepsis and
AKI between hospital, patient, and practice-specific circumstances, thus highlighting the gen-
eralizability of the model’s value. However, consequently, it is possible that important local
characteristics that may better predict AKI and sepsis within hospitals could be overlooked
when compared to pooled or local models, which may in turn limit the clinical utility of these
tools, a finding that is increasingly being acknowledged in the AI/ML literature.

Within our analysis, differences in features of the hospitals, and ICUs were notable. Many
sites did not have any patients admitted to ICU types that other sites had a high proportion of
patients within, for example the Medical Surgery ICU or SICU. At these hospitals, different
sites treat different conditions. Thus, treatments may vary depending on the etiology and
nature of the condition driving sepsis and AKI [30]. For example, a patient managed for
decompensated heart failure in a cardiac ICU who subsequently develops AKI may be treated
with inotropic support and furosemide, whereas a patient being managed for septic shock in a
medical ICU with AKI may be aggressively repleted with intravenous fluids. As such different
hospitals, which are specialized at treating different conditions, may have slightly differing
medication regimens for treating patients when faced with the same disease, which in turn
may be a function of the practicing physician and their choice of treatment options including
medications, prespecified protocols, or even higher-level decisions about cost within central-
ized hospital pharmacies. Our models highlighted this putative disagreement between medica-
tion usage at hospitals, creating another source of heterogeneity in model training. This
heterogeneity in medications and demographic details was demonstrated in the feature hetero-
geneity plots since features with higher UIS scores tend to be medications and demographic
information. Differently, lab tests and vital signs were generally universally important features
across hospitals, likely because these are commonly standardized across hospitals. Taken
together, local frameworks may heavily suffer in generalizability even when population demo-
graphics are similar across sites, due to disagreements in medication and treatment adminis-
tration. However, clinicians may find use in site-specific factors, which may not be evident in
federated frameworks and only be ascertainable within a local framework. As such, while
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federated frameworks may provide performance increases, local frameworks can still provide
clinical value in determining important site-specific factors for risk prediction.

Limitations

There are several limitations to our study. First, we mainly considered structured clinical infor-
mation to construct the features. Integrating unstructured free text to build predictive models
may obtain better predictive performance and allow a new level of explainability of prediction.
Second, we only considered LR and MLP to build predictive models based on local, pooled,
and federated frameworks. Other algorithmic solutions such as support vector machines may
have a potential to improve model performance. Third, we mainly focus on describing the
effects of data heterogeneity in FL in terms of disease risk prediction. Considering data harmo-
nization techniques and other federated techniques to mitigate the problem and improve the
performance is one of future research topics. Moreover, federated techniques that deal with
data heterogeneity while simultaneously reducing communication costs may be required for
real-time medical use.

Methods
Ethics statement

This study analyzed a publicly available anonymized database (eICU Collaborative Research
Database) with preexisting institutional review board approval. Collection of data was in
accordance with the ethical standards set out by the IRB no. 0403000206 of the Massachusetts
Institute of Technology and with the 1964 Declaration of Helsinki and its later amendments.
Because the database is fully anonymized, formal consent was not required to use the data.

Data aggregation

Patient data was extracted from the eICU Collaborative Research Database, a multi-center crit-
ical care database made publicly available through Philips Healthcare and the MIT Laboratory
for Computational Physiology (https://eicu-crd.mit.edu/). The database contains detailed
information regarding the clinical care of ICU patients. We investigated three disease settings
(24h or 48h observation window (OW) AKI, and sepsis). An AKI (non-graded) is defined as
any of the following: Increase in serum creatinine (SCr) by > = 0.3 mg/dl (> = 26.5 pmol/l)
within 48 hours, increase in SCr to > = 1.5 times baseline which is known or presumed to
have occurred within the prior 7 days, or urine volume < 0.5 ml/kg/h for 6 hours. We predict
AKIl risk using an accumulating OW (S1 Fig). We predicted AKI within the next 24 hours
(prediction window, PW) following the end of the OW, focusing only on the first 3 days (72
hours) of a patients’ inpatient hospital stay (max OW = 48 hours). For each patient, we created
2 pairs of OW/PWs, specifically using from OW = 1-24 hours (1-day) after admission, 1-48
hours (2-days). We do not consider the onset point. For the AKI prediction experimental set-
ting, positive cases are samples that are diagnosed as AKI in the prediction window whereas
controls are samples that are not diagnosed as AKI in the prediction window. For sepsis pre-
diction, we labeled patient data in accordance with Sepsis-3 clinical criteria. We predicted
whether patients would suffer from sepsis 6 hours prior to onset, onset point included. For
sepsis prediction experimental setting, positive cases are samples that are diagnosed as sepsis.
Controls are samples that are not diagnosed as sepsis. For patients who did not develop sepsis,
predictor values were selected from a random T-hour time window (T is usually set as 48 or 24
hours) during the patient’s ICU stay. For those who developed sepsis, a time was selected for
the patient within admission to 6 hours prior to the onset of sepsis, and the predictor values
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were extracted. Data was collected from seven hospitals with the following IDs: 420, 122, 243,
252, 458, 199, and 73. For all three disease predictions (24h or 48h AKI, and sepsis), all hospital
sites shared all features including: general demographic information (8 variables), vital signs/
lab tests (29 variables), and medications (254 medications). For 28 vital signs and lab tests, the
max, min, first, and last values are calculated. For urine, only the summation is calculated.
Taken together, a total of 354 features were available at every hospital site for each patient.

Data processing

For all datasets, we performed an automated curation process outlined as follows: (1) systemat-
ically identified extreme values of numerical features (e.g., vital signs/lab tests and some demo-
graphic information) that were beyond the 1st and 99th percentile as outliers. We marked
these values as missing. Primarily, this step marked values within demographic data (BMI,
age) and some vital signs as missing. Values marked as missing were investigated through clin-
ical literature to confirm that they were physiologically impossible. Previous studies utilizing
the eICU Collaborative Research Database have noted these errors are at random and can be
removed in downstream analyses [31-32]. (2) We standardized all our variables appropriately
by normalizing all our numerical features and converting binary features to either 1 or -1. (3)
For all missing measurements, the Multiple Imputation by Chained Equations algorithm
(MICE) was used. MICE imputation can calculate missing information by taking advantage of
the relationships between non-missing measurements within the dataset. Because overall
patient distributions are conserved after outlier removal (due to limited number of values
being considered outliers), MICE imputation can provide robust estimation of these values as
well [33].

Experimental design

There were three prediction tasks including 24-hour and 48-hour prediction of AKI, and sep-
sis prediction. Three model frameworks were designed including local, pooled, and federated
model frameworks. The local model framework only used data from each site itself. The
pooled model framework combined data from all sites. In the federated model framework,
each local site does not have access to other sites’ data. A model was trained locally, and its
parameters were shared to a central aggregator, which was used to update global model param-
eters which were subsequently sent back to each site. For each framework, LR and MLP were
used as model architectures, so there are 54 tasks in total were performed (7 site-specific
(local) x 3 prediction tasks x 2 architectures + 1 pooled model x 3 prediction tasks x 2 architec-
tures + 1 federated model x 3 prediction tasks x 2 architectures). For all settings, five-fold
cross-validation was used during training models. The Shapely Additive exPlanations (SHAP)
tool was used to calculate feature importance rankings for each task. The Markov Chain Type
4 rank aggregation was used to combine the feature importance rankings for all five folds.

Learning algorithm

To investigate the effects of heterogeneity across architectures, we focused on two learning
models: multilayer perceptron (MLP) and logistic regression (LR). The MLP is a class of feed-
forward artificial neural network (ANN) with a non-parametric functional form [34]. An MLP
consists of at least three layers of nodes: an input layer, a hidden layer, and an output layer.
Except for the input nodes, each node is a neuron that uses a nonlinear activation function.
MLP utilizes a supervised learning technique called backpropagation for training. Its multiple
layers and non-linear activation distinguish MLP from a linear perceptron. It can distinguish
data that is not linearly separable. Since MLPs are fully connected, each node in one layer
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connects with a certain weight to every node in the following layer [35]. To implement the MLP
model, Python’s PyTorch library was used. PyTorch is an open-source machine learning frame-
work based on the Torch library, used for applications such as computer vision and natural lan-
guage processing, primarily developed by Facebook’s AI Research lab [36]. All MLP models had
one hidden dense layer of 10 units, learning rate = 0.001, used binary cross-entropy loss, and
stochastic gradient descent optimization. To mitigate class imbalance, class weights were used
to penalize the loss for positive class inaccuracies. This allows the model to pay increased atten-
tion to examples from the positive class despite a skewed class distribution [37]. Each model
was trained for 200 epochs and the batch size was 64. An epoch is the total number of iterations
it takes all the training data to make one pass through the model whereas, the batch size is the
number of samples processed in each iteration before the model is updated [38].

In addition to the MLP model, we implemented a LR model. The LR model has a paramet-
ric functional form and formulates the log-odds of an event as a linear combination of inde-
pendent variables [39]. The LR model consists of one linear layer followed by sigmoid
activation. Like the MLP, a learning rate = 0.001, binary cross-entropy loss, and stochastic gra-
dient descent optimization was used. Class weights were applied in a similar fashion to the
MLP model. For consistency and to enable direct comparisons, all models of each framework
for all tasks were built with the same architecture.

Because the output of an MLP model is a nonlinear function of the inputs, the decision
boundary for classification from an MLP is also nonlinear, which provides more flexibility
than LR models [34]. As such, we wanted to investigate the effects of heterogeneity across
these two different architectures.

Our primary model framework of interest was a federated learning model. In this model,
training was performed in different sites, and parameters were shared to a central location. To
create a federated model using both the MLP and LR architecture, the federated averaging
technique was used. The process was as follows: a central aggregator initialized the federated
model with random parameters. This model was sent to each site, then trained for one epoch.
Next, model parameters were sent back to the central aggregator where federated averaging
was performed. Updated parameters from the central aggregator were then sent back to each
site, and this cycle was repeated for multiple epochs. Federated averaging scales the parameters
of each site according to the number of available data points and sums all parameters by layer.
Through this technique, federated models did not receive any raw data. Class weighting was
performed at each site on every cycle, which ensured local data distribution information was
not sent to the global server. All parameters for local server models were kept the same to
enable comparison. We were able to perform federated class weighting through this mecha-
nism because local data distributions were similar across hospitals.

Assume M local sites, each with N,,, samples (number of samples in m-th local site). wﬁl”“ is
the weight of the n-th sample at the m-th site, y is the ground-truth label for sample x",
which is the n-th sample at m-th site:

M,N,,

m=1,n=1

() ymymy

The base model Q is initialized at the global server. Without loss of generalizability, the fol-
lowing steps assume a LR model described by Eq (1). y, is the predicted value for sample x,, by
the LR model with parameters S

1
yn_l{»e*ﬁxn

(1)
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At the start of each epoch, model Q is copied from the global server to the local site 2,,;:
Q —Q

Q,, is trained on local site data for one epoch. Loss at the m-th site (1,,) is calculated using

modified binary-cross entropy which considers class weighting at site, described by Eq (2). y\"
is the model prediction for sample x{™ and bce() is the binary cross-entropy function:

Nm ——
L= wibee(y” i) 2)
n=1

Local model Q,, is updated through back propagation and gradient descent:

al,

Qm(_Qm_an

All B, are transferred to the global server where the layer weights of all B, are averaged
through Eq (3), generating an updated global model for the next epoch:

1 M
Q:M;¥% (3)

The time complexity of one iteration of federated averaging is O(Z,,,N,,,) for client m, where
Z,, is the number of parameters in the model. The communication cost of one iteration is O
(Zy).

Evaluations

We used the area under the receiver operator curve (AUROC) to compare the overall predic-
tion performance, which is known to be more robust to imbalanced datasets. In addition to
AUROC, accuracy, precision, and recall were calculated. In addition to aggregate performance
metrics for each model, training loss and training/testing AUROC histories were measured.
Tests of significance were performed using the student’s t-test. Feature importance rankings
for each task were computed using SHAP. To focus more on the most impactful features (i.e.,
variables ranked among top 100) without losing information on the weaker features, we
assigned a “soft” membership of a feature as how high up the rank is relative to tops (s = 100)
by applying an exponentially decreasing function to the original ranks (r), i.e., f(r) = exp{-1/s}.
For some top features, SHAP dependence plots were generated to illustrate the effect that each
feature has on the predictions made by the model. Locally Weighted Scatterplot Smoothing
(LOWESS) was used to fit a smooth trend line to the dependence plots.

The unique importance score (UIS) was calculated for each model architecture-setting-
framework combination. For local model analysis, the mean importance ij; for each feature j
was calculated by averaging all soft rankings for said feature across all sites. This was done for
all top 100 features at each local site. For both pooled and federated analysis, importance (i,; or
i;) of each feature j was set to the soft ranking of said feature within the pooled or federated
model. In all model frameworks, the frequency f of each feature was calculated by determining
the proportion of local sites the feature was a top 100 feature. Given ;, iy, ig, and f:

UlS,ey; = iy x (1~ f)

local,j

UISpouled,j = ipj X (1 _f])
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UISfedemted‘j = lﬁ X (1 _.)5)

Supporting information

S1 Table. Performance summaries of all sepsis models. Performances of LR and MLP mod-
els are shown for each model framework. Four metrics are captured: accuracy, AUC, precision,
and recall.

(DOCX)

S2 Table. Performance summaries of all AKI 24h models. Performances of LR and MLP
models are shown for each model framework. Four metrics are captured: accuracy, AUC, pre-

cision, and recall.
(DOCX)

S3 Table. Performance summaries of all AKI 48h models. Performances of LR and MLP
models are shown for each model framework. Four metrics are captured: accuracy, AUC, pre-

cision, and recall.
(DOCX)

S1 Fig. Prediction setting details of AKI and Sepsis. For AKI prediction, there are two obser-
vation windows (2 OWs) which creates 2 AKI prediction settings. The observation window for
AKT settings can be 24 or 48 hours. For sepsis prediction, the observation window is the entire
period from admission to 6 hours prior to the onset of sepsis.

(TTF)

S2 Fig. Sepsis training and testing histories for local and federated models. Training AUC,
testing AUC, and training loss at each epoch (from left to right) has been shown. (a, ¢) show
local histories where each color indicates the histories of a different site. (b, d) show histories
for the federated model, where each color shows the history of the model while training/testing
on that site’s data. Training and testing histories for AKI settings show similar patterns to the
sepsis setting.

(TIF)

S3 Fig. AKI 24h training and testing histories for local and federated models. Training
AUC, testing AUC, and training loss at each epoch (from left to right) has been shown. (a, ¢)
show local histories where each color indicates the histories of a different site. (b, d) show his-
tories for the federated model, where each color shows the history of the model while training/
testing on that site’s data. Training and testing histories for AKI settings show similar patterns
to the sepsis setting.

(TIF)

$4 Fig. Shapley dependence plots for 10 important features for local models. Each panel
shows the marginal effects of impactful features for predicting sepsis, AKI 24h, or 48h in all
local site models. All 7 sites are plotted in each panel, where each color corresponds to a differ-
ent site (see legend). The x-axis gives the raw values of each feature, and the y-axis gives the
logarithmic of estimated odds ratio (i.e., the SHAP value) for sepsis, AKI 24h or AKI 48h,
when a feature takes a certain value. Each dot represents the SHAP value of a sample. The
LOWESS curve, used for smoother extrapolating across all the dots, is plotted in all panels for
each site. (a, ¢, and e) show Shapley dependence plots for federated MLP models and (b, d, and
f) show Shapley dependence plots for federated LR models. (a, b) show plots for sepsis, (c, d)
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show plots for AKI 24h, and (e, f) show plots for AKI 48h.
(TIF)

S5 Fig. Medication usage across local sites. (a, b) shows frequency of medications across hos-
pitals. X-axis is the number of hospitals and y-axis is the number of medications. For example,
there are ~20 medications that only appear at 1 hospital. (c, d) show disagreement of medica-
tion usage across hospitals for medications that appear at 2 or more hospitals. X-axis shows the
standard deviation bins of proportions of patients using the medication at each hospital (i.e.,
larger values of standard deviation indicate more disagreement). Y-axis shows the number of
medications within the histogram bin.

(TIF)

S6 Fig. Area Under Receiver Operating Curve (AUROC) for sepsis Setting. Each plot shows
performances for the sepsis prediction setting. Blue bars depict each local site’s model perfor-
mance on their respective site test data. Orange bars depict pooled model performance on
each local site’s test data. Green bars depict federated model performance on each local site’s
test data.

(TIF)

S7 Fig. Shapley dependence plots for top 10 features for pooled and federated sepsis mod-
els. Each panel shows the marginal effects of each of the most impactful features ranked
among the top 10 for predicting sepsis using pooled and federated models. The x-axis gives the
raw values of each feature, and the y-axis gives the logarithmic of estimated odds ratio (i.e., the
SHAP value) for sepsis when a feature takes a certain value. Each dot represents the SHAP
value of a sample. The LOWESS curve, used for smoother extrapolating across all the dots, is
plotted in red for all panels. (a, ¢) show Shapley dependence plots for MLP models and (b, d)
show Shapley dependence plots for LR models. (a, b) show plots for pooled models, (c, d)
show plots for federated models.

(TIF)

S8 Fig. Distribution of important features at all local, pooled, and federated models across
local sites. The figure demonstrates feature importance disparities for the sepsis setting and
model architectures (MLP and LR). (a-c) show feature importance disparities for MLP models.
(d-f) show feature importances for LR models. Each dot corresponds to one of the most
important features ranked among the top-100 by at least one of the seven models; y-axis mea-
sures the proportions of sites that identified the feature as top-100, or “commonality across
sites”; x-axis measures the mean of feature importance rankings measured as “soft ranking”
(the closer it is to 1, the higher the feature ranks). Top-100 is an arbitrary cutoff we used to
analyze the most important features to illustrate heterogeneity. In (a, d) each feature is also
color coded by the interquartile range (IQR) of the ranks across sites (the higher the IQR is,
the more disagreement across sites on the importance of that feature). (b, e) show the most
important features for the pooled models. (c, f) show the most important features for the feder-
ated models.

(TIF)

S9 Fig. Important features comparison across model architectures for sepsis setting. The
figure shows correlations between important features in the MLP and LR models. Each dot
corresponds to one of the most important features ranked among the top-100 by both the
MLP and LR model. The y-axis measures the importance of the feature in the LR model
whereas the x-axis measures the importance in the MLP model. The shaded portion represents
a95% confidence interval. PC (Pearson correlation coefficient) for each comparison is denoted
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on the top-left of each plot. (a) shows the comparisons for local sites, 420, 252, and 73. (b)
shows comparisons for the pooled models. (c) shows comparisons for the federated models.
(TIF)

S1 Text. Abbreviations.
(DOCX)

$2 Text. Validation on Sepsis Prediction Setting.
(DOCX)
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