




More recently, federated learning (FL) has emerged as a promising strategy on building ML

models with fragmented sensitive data [17]. FL is one mechanism of training ML models

across multiple decentralized sites holding local data samples without exchanging them [18]. It

builds a central aggregator to obtain global ML model’s parameters by iteratively exchanging

model parameters from local ML models. However, data heterogeneity in the FL framework

may affect prediction performance [19]. For example, different hospitals have different popu-

lations, which may have a high degree of variability in the patient treatment, such as different

medications they administer and different procedures they conduct. This heterogeneity espe-

cially affects the performance of sepsis and AKI prediction models which rely on patient

demographics, disease history, and medications [20]. Both AKI and sepsis are also highly het-

erogeneous [21]. This makes models built with conventional FL strategies such as federated

averaging challenging to generalize across clinics, limiting their use [7,22,23]. Several federated

architectures have been proposed to mitigate effects of data heterogeneity in other domains

and built personalized, but globally correlated, models to mitigate drift across sites [23], such

as model-agnostic meta-learning (MAML), federated multitask learning, and knowledge distil-

lation [24–28]. However, it is not clear how such data heterogeneity problem will impact build-

ing risk prediction models in clinical medicine.

To fill this research gap, we comprehensively investigate the effects of data heterogeneity in

the FL framework for predicting the onset risk of AKI and sepsis in ICU setting using EHR

data from multiple hospital sites. We built multiple predictive models in local, pooled, and FL

settings. The local setting built an individual model for each site from its own data. The pooled

setting built a global model shared across all sites with their combined data. The FL setting also

built a global model, where each local site did not share data with others, but updated model

parameters locally and shared the updated model parameters to a central aggregator, which

was used to update the global model parameters and shared back with each site. By comparing

the performance of models trained from different settings with each other, we investigated

how data heterogeneity would impact the federated risk prediction models. We also explored

the potential sources of the heterogeneity within EHR data by analyzing predictor importance

across settings and sites. The differences were contrasted according to patient and hospital

information to elucidate sources of heterogeneity and how they would potentially impact the

different predictive modeling settings. The overall workflow of our study is shown in Fig 1.

The notable contributions of this work to the literature are as follows:

• With the context of AKI and sepsis onset risk prediction in ICU setting, a comprehensive

comparison in terms of prediction performance among local, pooled, and federated settings

were conducted with a set of ML models.

• We have identified important predictors for AKI and sepsis risk and performed exhaustive

analysis on they would impact the prediction results. These predictors can be used by medi-

cal specialists to monitor the risk of AKI and sepsis for patients in ICU, while accounting for

the specifics of their own hospitals. In addition, we have delineated differences in feature

importance across medical sites, outlining metrics for direct comparison of feature impor-

tance across different settings (i.e., local, pooled, and federated).

• We have performed a thorough analysis on the potential sources of heterogeneity between

hospital sites according to patient demographic, medication, and lab data, as well as hos-

pital information such as available unit types. We outline how these sources of heteroge-

neity could be connected to the varying predictor importance derived across sites and

settings.
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Results

Development of AKI and sepsis prediction models in local sites

Data for 21,796 AKI patients and 22,0082 sepsis patients at 7 hospitals were extracted from the

eICU collaborative research database, following inclusion and exclusion criteria denoted in

the "Methods" section. All patients shared 354 unique variables which included lab tests, vital

signs, demographics, and medications. AKI patients were labeled both within a 24h and 48h

observation window, leading to two settings for AKI prediction. For sepsis, we labeled patient

data in accordance with Sepsis-3 clinical criteria. We predicted whether patients would suffer

from sepsis 6 hours prior to onset, onset point included. Within the observation window, lab

Fig 1. The framework of the study. In Data Preparation, different types of data including lab test, medication, vital

signs, and demographic are extracted during the observation window, which are used to build patients’ profiles to

predict whether they would suffer from acute kidney injury or sepsis in the prediction window. In Feature

Construction and Model Training, individual features from lab test, medication, vital signs, and demographic were

obtained to build a predictive model based on three frameworks including local, pooled, and federated frameworks. In

each framework, two common model architectures including logistic regression and multi-layer perceptron were used.

In Feature Importance Analysis and Source of Model Performance Heterogeneity, feature importance heterogeneity,

feature correlation across mode architectures and frameworks, and sources of model performance heterogeneity were

explored.

https://doi.org/10.1371/journal.pdig.0000117.g001
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less than 23, and more patients with a BMI of greater than 34 compared to other sites. In both

settings, there was a disparity in the number of patients that underwent elective surgery, with

the proportions ranging from 0.12–0.28. Patients show differences in racial breakdowns across

sites. The African American population varies across sites from 0.02/0.01 (AKI/sepsis) at Site

199 to 0.3/0.32 at Site 243. Site 73 has a relatively large population of Hispanic individuals

compared to other sites, whereas Sites 122, 243, 252, and 458 have no Hispanic patients. The

Asian population is similar across all sites. The ‘Other’ racial category has the largest propor-

tion of individuals across all sites, but this proportion varies largely depending on the site,

ranging from 0.67–0.98. As previously mentioned, most of the patients in all settings (AKI

24h, 28h, and sepsis) were negative for the disease. For AKI 24h and AKI 48h settings, the pro-

portion of AKI positive patients ranges from 0.06/0.08 (24h/48h) to 0.1/0.13. For the sepsis set-

ting, the proportion of positive patients ranges from 0.02 to 0.20.

Table 3 shows general site information for the 7 hospitals. The sites are located across the

Northeast, Midwest, and South of the continental United States of America. All sites are large

with greater than 500 beds. There are differences in patient unit types across all sites. Sites 420,

243, 252, and 199 have no patients in Cardiothoracic Intensive Care Units (CTICU). Sites 252

and 458 have no patients in Medical Surgery Units (Med-Surg ICUs). Sites 122 and 199 have

no patients in Surgical Intensive Care Units (SICU). Sites 122, 243, 458, and 199 have no

Fig 8. Important features comparison across model architectures for AKI 24h setting. The figure shows correlations between

important features in the MLP and LR models. Each dot corresponds to one of the most important features ranked among the top-100

by both the MLP and LR model. The y-axis measures the importance of the feature in the LR model whereas the x-axis measures the

importance in the MLP model. The shaded portion represents a 95% confidence interval. PC (Pearson correlation coefficient) for each

comparison is denoted on the top-left of each plot. (a) shows the comparisons for local sites, 420, 252, and 73. (b) shows comparisons

for the pooled models. (c) shows comparisons for the federated models.

https://doi.org/10.1371/journal.pdig.0000117.g008
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patients in Critical Care Cardiothoracic Intensive Units (CCU-CTICU). Sites 420 and 122

have no patients in Cardiothoracic Intensive Care Units (MICU). Sites 420, 122, and 199 have

no patients in Neurological Care Units (Neuro ICU). Sites 252, 199, and 73 have no patients in

Cardiac Intensive Care Units (Cardiac ICU). Among sites which do share patients in the same

unit, proportions may be different. For example, while both Sites 199 and 73 have patients in

the Med-Surg ICUs, 88% of patients in Site 199 are admitted to Med-Surg ICUs whereas only

16% of patients in Site 73 are admitted to Med-Surg ICUs. Sites also had disparities in patient

admission sources. Across hospitals, most patients were either admitted directly or admitted

from the emergency department or operating Room. Of note, at Site 199, 22% of patients were

admitted from the ICU to a special care unit (SCU). At Site 73, no patients were admitted

from the recovery room. Taken together, despite being large, sites have disparities in unit types

and sources of admission.

S5 Fig illustrates the usage of medications across sites. Only 22 medications are used at all

sites for both sepsis and AKI settings. Further analysis indicated that even for medications

Fig 9. Correlation of unique importance score (UIS) between local and pooled/federated frameworks. x-axis is the

UIS for each feature in the local model framework. y-axis is the UIS for the pooled/federated model. Line of best fit is

plotted, and equation is shown on top corner, along with Pearson correlation coefficient (p). Shaded area represents a

95% confidence interval. First column depicts plots for the MLP model whereas the second column depicts plots for

the LR model. (a, b) show analyses for sepsis setting, (c, d) show analyses for AKI 24h setting. (a, c) show analyses for

pooled framework, (b, d) show analyses for federated framework.

https://doi.org/10.1371/journal.pdig.0000117.g009
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used at multiple hospitals, the proportion of patients that were on the medication at each hos-

pital varied greatly. Coupled with the disparities in unit types, this suggests that each hospital

site treats significantly different populations of individuals, despite all these hospitals having

patients who suffer from AKI and sepsis.

Table 1. Demographic Characteristics of AKI patients at each site. Percentage of individuals with certain characteristics specified within parentheses. Table 1 Positive/

Negative distribution is associated with the AKI 48h setting.

ID 420 ID 122 ID 243 ID 252 ID 458 ID 199 ID 73

Total 2957 2315 2990 2549 2592 2848 5545

Female 1198 (0.41) 1080 (0.47) 1316 (0.44) 1079 (0.42) 1161 (0.45) 1232 (0.43) 2452 (0.44)

Male 1759 (0.59) 1235 (0.53) 1674 (0.56) 1470 (0.58) 1431 (0.55) 1616 (0.57) 3093 (0.56)

Black 131 (0.04) 507 (0.22) 909 (0.3) 164 (0.06) 730 (0.28) 43 (0.02) 813 (0.15)

Hispanic 2 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 26 (0.01) 397 (0.07)

Asian 46 (0.02) 11 (0.0) 28 (0.01) 8 (0.0) 36 (0.01) 2 (0.0) 72 (0.01)

Other 2778 (0.94) 1797 (0.78) 2053 (0.69) 2377 (0.93) 1826 (0.7) 2777 (0.98) 4263 (0.77)

Elective Surgery: Yes 366 (0.12) 404 (0.17) 470 (0.16) 625 (0.25) 490 (0.19) 368 (0.13) 1542 (0.28)

Elective Surgery: No 2591 (0.88) 1911 (0.83) 2520 (0.84) 1924 (0.75) 2102 (0.81) 2480 (0.87) 4003 (0.72)

BMI < 23 582 (0.2) 493 (0.22) 493 (0.17) 480 (0.19) 553 (0.21) 399 (0.15) 806 (0.2)

23 < BMI < 28 959 (0.33) 678 (0.3) 884 (0.3) 743 (0.29) 792 (0.31) 785 (0.29) 1100 (0.27)

28 < BMI < 34 748 (0.26) 606 (0.27) 904 (0.3) 703 (0.28) 722 (0.28) 764 (0.28) 1121 (0.28)

BMI > 34 613 (0.21) 485 (0.21) 701 (0.24) 617 (0.24) 520 (0.2) 779 (0.29) 1010 (0.25)

Age < 25 107 (0.04) 71 (0.03) 73 (0.02) 81 (0.03) 97 (0.04) 118 (0.04) 116 (0.02)

25 < Age < 50 559 (0.19) 420 (0.18) 505 (0.17) 437 (0.17) 563 (0.22) 537 (0.19) 1032 (0.19)

50 < Age < 75 1611 (0.54) 1322 (0.57) 1757 (0.59) 1516 (0.59) 1414 (0.55) 1599 (0.56) 3096 (0.56)

Age > 75 680 (0.23) 502 (0.22) 655 (0.22) 515 (0.2) 518 (0.2) 594 (0.21) 1301 (0.23)

Positive 338 (0.11) 196 (0.08) 382 (0.13) 216 (0.08) 271 (0.1) 233 (0.08) 476 (0.09)

Negative 2619 (0.89) 2119 (0.92) 2608 (0.87) 2333 (0.92) 2321 (0.9) 2615 (0.92) 5069 (0.91)

https://doi.org/10.1371/journal.pdig.0000117.t001

Table 2. Demographic Characteristics of Sepsis patients at each site. Percentage of individuals with certain characteristics specified within parentheses.

ID 420 ID 122 ID 243 ID 252 ID 458 ID 199 ID 73

Total 2276 2365 3212 2586 2748 2996 5919

Female 936 (0.41) 1085 (0.46) 1404 (0.44) 1097 (0.42) 1234 (0.45) 1293 (0.43) 2629 (0.44)

Male 1340 (0.59) 1280 (0.54) 1808 (0.56) 1489 (0.58) 1514 (0.55) 1703 (0.57) 3290 (0.56)

Black 100 (0.04) 553 (0.23) 1019 (0.32) 175 (0.07) 805 (0.29) 44 (0.01) 899 (0.15)

Hispanic 2 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 36 (0.01) 428 (0.07)

Asian 43 (0.02) 12 (0.01) 31 (0.01) 10 (0.0) 38 (0.01) 3 (0.0) 82 (0.01)

Other 2131 (0.94) 1800 (0.76) 2162 (0.67) 2401 (0.93) 1905 (0.69) 2913 (0.97) 4510 (0.76)

Elective Surgery: Yes 371 (0.16) 424 (0.18) 541 (0.17) 659 (0.25) 527 (0.19) 412 (0.14) 1635 (0.28)

Elective Surgery: No 1905 (0.84) 1941 (0.82) 2671 (0.83) 1927 (0.75) 2221 (0.81) 2584 (0.86) 4284 (0.72)

BMI < 23 414 (0.19) 491 (0.21) 528 (0.16) 475 (0.18) 576 (0.21) 414 (0.14) 854 (0.2)

23 < BMI < 28 747 (0.33) 692 (0.3) 953 (0.3) 761 (0.29) 809 (0.3) 801 (0.28) 1170 (0.27)

28 < BMI < 34 597 (0.27) 628 (0.27) 956 (0.3) 723 (0.28) 775 (0.28) 811 (0.28) 1188 (0.28)

BMI > 34 475 (0.21) 496 (0.21) 765 (0.24) 621 (0.24) 582 (0.21) 848 (0.3) 1100 (0.26)

Age < 25 77 (0.03) 72 (0.03) 72 (0.02) 83 (0.03) 100 (0.04) 119 (0.04) 125 (0.02)

25 < Age < 50 430 (0.19) 435 (0.18) 542 (0.17) 448 (0.17) 577 (0.21) 557 (0.19) 1083 (0.18)

50 < Age < 75 1243 (0.55) 1358 (0.57) 1902 (0.59) 1516 (0.59) 1516 (0.55) 1694 (0.57) 3318 (0.56)

Age > 75 526 (0.23) 500 (0.21) 696 (0.22) 539 (0.21) 555 (0.2) 626 (0.21) 1393 (0.24)

Positive 459 (0.2) 172 (0.07) 187 (0.06) 152 (0.06) 123 (0.04) 135 (0.05) 89 (0.02)

Negative 1817 (0.8) 2193 (0.93) 3025 (0.94) 2434 (0.94) 2625 (0.96) 2861 (0.95) 5830 (0.98)

https://doi.org/10.1371/journal.pdig.0000117.t002
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Discussion

In this study, to investigate the effect of data heterogeneity on the performance of FL, multiple

machine learning models were developed to predict the risk of both AKI and sepsis diseases in

multiple ICU settings. Different types of EHRs including lab tests, vital signs, demographics,

and medications were extracted from seven hospitals in the eICU collaborative research data-

base. Three model frameworks including local, pooled, and federated were explored. Effects of

data heterogeneity across hospital sites were evaluated through model performance compari-

son and feature importance analysis. The sources of data heterogeneity across hospitals were

investigated based on patient demographics, medication usage, and general hospital attributes.

Our prediction models have shown comparable performance with state-of-the art AKI and

sepsis prediction studies [7]. In addition, federated model frameworks generally outperform

their local counterparts in our results. However, this largely depends on how heterogeneous

the patient populations from different hospitals are. Moreover, the pooled model did not show

much improvement over the local models, this could be largely due to the cross-site sample

heterogeneity. Though FL performed better than pooled models in our investigations, our FL

strategy is based on federated average which did not consider such cross-site heterogeneities,

thus it is difficult to justify the generalizability of the conclusion. One reason as to why the fed-

erated models performed better than pooled models might be due to their weight distribution.

The weights of the federated models are concentrated around zero as compared to pooled

models for all settings. More weights near zero means that the models are regularized and sim-

pler, which is likely to generalize better [29].

Table 3. Hospital site information. Percentage of usage/individuals specified within parentheses.

ID 420 ID 122 ID 243 ID 252 ID 458 ID 199 ID 73

Region Northeast South South Midwest South Northeast Midwest

Number of Beds > = 500 > = 500 > = 500 > = 500 > = 500 > = 500 > = 500

Unit Type

CTICU 0 (0.0) 562 (0.19) 0 (0.0) 0 (0.0) 635 (0.17) 0 (0.0) 1364 (0.19)

Med-Surg ICU 1343 (0.29) 1495 (0.51) 11 (0.0) 0 (0.0) 0 (0.0) 3712 (0.88) 1159 (0.16)

SICU 1932 (0.41) 0 (0.0) 710 (0.17) 588 (0.17) 372 (0.1) 0 (0.0) 408 (0.06)

CCU-CTICU 706 (0.15) 0 (0.0) 0 (0.0) 1031 (0.31) 0 (0.0) 0 (0.0) 1510 (0.21)

MICU 0 (0.0) 0 (0.0) 778 (0.18) 914 (0.27) 446 (0.12) 528 (0.12) 1124 (0.16)

Neuro ICU 0 (0.0) 0 (0.0) 716 (0.17) 838 (0.25) 416 (0.11) 0 (0.0) 1494 (0.21)

Cardiac ICU 698 (0.15) 884 (0.3) 2028 (0.48) 0 (0.0) 1832 (0.5) 0 (0.0) 0 (0.0)

Patient Admit Source

Floor 683 (0.15) 676 (0.23) 378 (0.09) 175 (0.05) 261 (0.07) 290 (0.07) 904 (0.13)

Emergency Department 2283 (0.5) 1254 (0.43) 1798 (0.42) 760 (0.23) 1463 (0.4) 1185 (0.28) 2301 (0.33)

Operating Room 644 (0.14) 458 (0.16) 402 (0.09) 462 (0.14) 577 (0.16) 698 (0.17) 1858 (0.26)

Direct Admit 49 (0.01) 397 (0.14) 763 (0.18) 877 (0.26) 710 (0.19) 427 (0.1) 627 (0.09)

Other Hospital 279 (0.06) 27 (0.01) 19 (0.0) 100 (0.03) 82 (0.02) 96 (0.02) 233 (0.03)

ICU to SDU 178 (0.04) 26 (0.01) 234 (0.06) 0 (0.0) 1 (0.0) 916 (0.22) 870 (0.12)

Other ICU 156 (0.03) 67 (0.02) 78 (0.02) 267 (0.08) 124 (0.03) 138 (0.03) 194 (0.03)

Step-Down Unit (SDU) 94 (0.02) 3 (0.0) 189 (0.04) 417 (0.12) 251 (0.07) 432 (0.1) 49 (0.01)

Chest Pain Center 103 (0.02) 5 (0.0) 0 (0.0) 0 (0.0) 11 (0.0) 0 (0.0) 1 (0.0)

Recovery Room 140 (0.03) 20 (0.01) 372 (0.09) 310 (0.09) 209 (0.06) 21 (0.0) 0 (0.0)

Acute Care/Floor 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 11 (0.0) 0 (0.0)

PACU 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 3 (0.0) 0 (0.0)

ICU 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 10 (0.0) 0 (0.0)

https://doi.org/10.1371/journal.pdig.0000117.t003
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The performance heterogeneity of predictive models across sites and frameworks was eval-

uated by comparing feature importance. For both AKI and sepsis prediction tasks, important

variables identified by predictive models were consistent with prior studies [7]. For example,

creatinine and furosemide exposure showed positive associations with AKI, which is unsur-

prising given their clinical association with AKI. For the same model architecture, importance

of a feature varied depending on the sites, with variable-prediction relationships changing (see

Fig 5, 6, 7). The presence of ‘universally important features’ (i.e., features that were considered

highly important at most sites) and ’uniquely important features’ (i.e., features that were highly

important at a small subset of sites) showed that there was disagreement on relative impor-

tance across sites. The feature heterogeneity plots for federated and pooled frameworks

showed a decreased amount of uniquely important features. This was indicative of both these

frameworks being able to attribute higher importance to features shared across multiple sites.

Our findings also demonstrated that federated and pooled models were not successful at

decreasing feature importance discrepancies between LR and MLP architectures, and that

both pooled and federated frameworks prioritized features that were considered important

across a plurality of sites (i.e., low UIS) and attributed lower importance to features that were

uniquely important at a small subset of sites (i.e., high UIS). These findings also suggest that

the federated model may be better at discriminating the key features of patient-level clinical,

lab, and demographic information that improves risk prediction. In the field of critical care

medicine, the implication of this finding is that across heterogeneous sources of data, federated

models are more likely to highlight the common elements that can better predict sepsis and

AKI between hospital, patient, and practice-specific circumstances, thus highlighting the gen-

eralizability of the model’s value. However, consequently, it is possible that important local

characteristics that may better predict AKI and sepsis within hospitals could be overlooked

when compared to pooled or local models, which may in turn limit the clinical utility of these

tools, a finding that is increasingly being acknowledged in the AI/ML literature.

Within our analysis, differences in features of the hospitals, and ICUs were notable. Many

sites did not have any patients admitted to ICU types that other sites had a high proportion of

patients within, for example the Medical Surgery ICU or SICU. At these hospitals, different

sites treat different conditions. Thus, treatments may vary depending on the etiology and

nature of the condition driving sepsis and AKI [30]. For example, a patient managed for

decompensated heart failure in a cardiac ICU who subsequently develops AKI may be treated

with inotropic support and furosemide, whereas a patient being managed for septic shock in a

medical ICU with AKI may be aggressively repleted with intravenous fluids. As such different

hospitals, which are specialized at treating different conditions, may have slightly differing

medication regimens for treating patients when faced with the same disease, which in turn

may be a function of the practicing physician and their choice of treatment options including

medications, prespecified protocols, or even higher-level decisions about cost within central-

ized hospital pharmacies. Our models highlighted this putative disagreement between medica-

tion usage at hospitals, creating another source of heterogeneity in model training. This

heterogeneity in medications and demographic details was demonstrated in the feature hetero-

geneity plots since features with higher UIS scores tend to be medications and demographic

information. Differently, lab tests and vital signs were generally universally important features

across hospitals, likely because these are commonly standardized across hospitals. Taken

together, local frameworks may heavily suffer in generalizability even when population demo-

graphics are similar across sites, due to disagreements in medication and treatment adminis-

tration. However, clinicians may find use in site-specific factors, which may not be evident in

federated frameworks and only be ascertainable within a local framework. As such, while
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were extracted. Data was collected from seven hospitals with the following IDs: 420, 122, 243,

252, 458, 199, and 73. For all three disease predictions (24h or 48h AKI, and sepsis), all hospital

sites shared all features including: general demographic information (8 variables), vital signs/

lab tests (29 variables), and medications (254 medications). For 28 vital signs and lab tests, the

max, min, first, and last values are calculated. For urine, only the summation is calculated.

Taken together, a total of 354 features were available at every hospital site for each patient.

Data processing

For all datasets, we performed an automated curation process outlined as follows: (1) systemat-

ically identified extreme values of numerical features (e.g., vital signs/lab tests and some demo-

graphic information) that were beyond the 1st and 99th percentile as outliers. We marked

these values as missing. Primarily, this step marked values within demographic data (BMI,

age) and some vital signs as missing. Values marked as missing were investigated through clin-

ical literature to confirm that they were physiologically impossible. Previous studies utilizing

the eICU Collaborative Research Database have noted these errors are at random and can be

removed in downstream analyses [31–32]. (2) We standardized all our variables appropriately

by normalizing all our numerical features and converting binary features to either 1 or -1. (3)

For all missing measurements, the Multiple Imputation by Chained Equations algorithm

(MICE) was used. MICE imputation can calculate missing information by taking advantage of

the relationships between non-missing measurements within the dataset. Because overall

patient distributions are conserved after outlier removal (due to limited number of values

being considered outliers), MICE imputation can provide robust estimation of these values as

well [33].

Experimental design

There were three prediction tasks including 24-hour and 48-hour prediction of AKI, and sep-

sis prediction. Three model frameworks were designed including local, pooled, and federated

model frameworks. The local model framework only used data from each site itself. The

pooled model framework combined data from all sites. In the federated model framework,

each local site does not have access to other sites’ data. A model was trained locally, and its

parameters were shared to a central aggregator, which was used to update global model param-

eters which were subsequently sent back to each site. For each framework, LR and MLP were

used as model architectures, so there are 54 tasks in total were performed (7 site-specific

(local) x 3 prediction tasks x 2 architectures + 1 pooled model x 3 prediction tasks x 2 architec-

tures + 1 federated model x 3 prediction tasks x 2 architectures). For all settings, five-fold

cross-validation was used during training models. The Shapely Additive exPlanations (SHAP)

tool was used to calculate feature importance rankings for each task. The Markov Chain Type

4 rank aggregation was used to combine the feature importance rankings for all five folds.

Learning algorithm

To investigate the effects of heterogeneity across architectures, we focused on two learning

models: multilayer perceptron (MLP) and logistic regression (LR). The MLP is a class of feed-

forward artificial neural network (ANN) with a non-parametric functional form [34]. An MLP

consists of at least three layers of nodes: an input layer, a hidden layer, and an output layer.

Except for the input nodes, each node is a neuron that uses a nonlinear activation function.

MLP utilizes a supervised learning technique called backpropagation for training. Its multiple

layers and non-linear activation distinguish MLP from a linear perceptron. It can distinguish

data that is not linearly separable. Since MLPs are fully connected, each node in one layer
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show plots for AKI 24h, and (e, f) show plots for AKI 48h.

(TIF)

S5 Fig. Medication usage across local sites. (a, b) shows frequency of medications across hos-

pitals. X-axis is the number of hospitals and y-axis is the number of medications. For example,

there are ~20 medications that only appear at 1 hospital. (c, d) show disagreement of medica-

tion usage across hospitals for medications that appear at 2 or more hospitals. X-axis shows the

standard deviation bins of proportions of patients using the medication at each hospital (i.e.,

larger values of standard deviation indicate more disagreement). Y-axis shows the number of

medications within the histogram bin.

(TIF)

S6 Fig. Area Under Receiver Operating Curve (AUROC) for sepsis Setting. Each plot shows

performances for the sepsis prediction setting. Blue bars depict each local site’s model perfor-

mance on their respective site test data. Orange bars depict pooled model performance on

each local site’s test data. Green bars depict federated model performance on each local site’s

test data.

(TIF)

S7 Fig. Shapley dependence plots for top 10 features for pooled and federated sepsis mod-

els. Each panel shows the marginal effects of each of the most impactful features ranked

among the top 10 for predicting sepsis using pooled and federated models. The x-axis gives the

raw values of each feature, and the y-axis gives the logarithmic of estimated odds ratio (i.e., the

SHAP value) for sepsis when a feature takes a certain value. Each dot represents the SHAP

value of a sample. The LOWESS curve, used for smoother extrapolating across all the dots, is

plotted in red for all panels. (a, c) show Shapley dependence plots for MLP models and (b, d)

show Shapley dependence plots for LR models. (a, b) show plots for pooled models, (c, d)

show plots for federated models.

(TIF)

S8 Fig. Distribution of important features at all local, pooled, and federated models across

local sites. The figure demonstrates feature importance disparities for the sepsis setting and

model architectures (MLP and LR). (a-c) show feature importance disparities for MLP models.

(d-f) show feature importances for LR models. Each dot corresponds to one of the most

important features ranked among the top-100 by at least one of the seven models; y-axis mea-

sures the proportions of sites that identified the feature as top-100, or “commonality across

sites”; x-axis measures the mean of feature importance rankings measured as “soft ranking”

(the closer it is to 1, the higher the feature ranks). Top-100 is an arbitrary cutoff we used to

analyze the most important features to illustrate heterogeneity. In (a, d) each feature is also

color coded by the interquartile range (IQR) of the ranks across sites (the higher the IQR is,

the more disagreement across sites on the importance of that feature). (b, e) show the most

important features for the pooled models. (c, f) show the most important features for the feder-

ated models.

(TIF)

S9 Fig. Important features comparison across model architectures for sepsis setting. The

figure shows correlations between important features in the MLP and LR models. Each dot

corresponds to one of the most important features ranked among the top-100 by both the

MLP and LR model. The y-axis measures the importance of the feature in the LR model

whereas the x-axis measures the importance in the MLP model. The shaded portion represents

a 95% confidence interval. PC (Pearson correlation coefficient) for each comparison is denoted
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on the top-left of each plot. (a) shows the comparisons for local sites, 420, 252, and 73. (b)

shows comparisons for the pooled models. (c) shows comparisons for the federated models.

(TIF)
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S2 Text. Validation on Sepsis Prediction Setting.

(DOCX)
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