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Introduction: For artificial synapses whose strengths are assumed to be
bounded and can only be updated with finite precision, achieving optimal
memory consolidation using primitives from classical physics leads to synaptic
models that are too complex to be scaled in-silico. Here we report that a
relatively simple differential device that operates using the physics of Fowler-
Nordheim (FN) quantum-mechanical tunneling can achieve tunable memory
consolidation characteristics with different plasticity-stability trade-offs.

Methods: A prototype FN-synapse array was fabricated in a standard
silicon process and was used to verify the optimal memory consolidation
characteristics and used for estimating the parameters of an FN-synapse
analytical model. The analytical model was then used for large-scale memory
consolidation and continual learning experiments.

Results: We show that compared to other physical implementations of
synapses for memory consolidation, the operation of the FN-synapse is near-
optimal in terms of the synaptic lifetime and the consolidation properties.
We also demonstrate that a network comprising FN-synapses outperforms a
comparable elastic weight consolidation (EWC) network for some benchmark
continual learning tasks.

Discussions: With an energy footprint of femtojoules per synaptic update,
we believe that the proposed FN-synapse provides an ultra-energy-efficient
approach for implementing both synaptic memory consolidation and
continual learning on a physical device.

hardware synapse, memory consolidation, quantum-tunneling, neuromorphic,
continual learning

1. Introduction

There is a growing evidence from the field of neuroscience and neuroscience
inspired AI about the importance of implementing synapses as a complex high-
dimensional dynamical system (Fusi et al., 2005; Benna and Fusi, 2016), as opposed to
a simple and a static storage element, as depicted in standard neural networks (Sohoni
et al., 2019). This dynamical systems viewpoint has been motivated by the hypothesis
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that complex interactions between plethora of biochemical
processes at a synapse (illustrated in Figure 1A) produces
synaptic metaplasticity (Abraham, 2008) and plays a key role
in synaptic memory consolidation (Li et al., 2017). Both these
phenomena have been observed in biological synapses (Yang
et al, 2009, 2014) where the synaptic plasticity (or ease of
update) can vary depending on age and task-specific usage that
is accumulated during the process of learning. In literature these
long-term synaptic memory consolidation dynamics have been
captured using different analytical models with varying degrees
of complexity (Amit and Fusi, 1994; Fusi, 2002; Fusi et al,
2005; Fusi and Abbott, 2007; Roxin and Fusi, 2013; Benna and
Fusi, 2016). One such model is the cascade model (Benna and
Fusi, 2016) which has been shown to achieve the theoretically
optimal memory consolidation characteristic for benchmark
random pattern experiments. However, the physical realization
of cascade models as described in Benna and Fusi (2016) uses
a complex coupling of dynamical states and diffusion dynamics
(an example illustrated in Figure 1B using a reservoir model),
which is difficult to mimic and scale in-silico. Similar optimal
memory consolidation characteristics have been reported in the
context of continual learning in artificial neural networks (ANN)
where synapses that are found to be important for learning a
specific task are consolidated (or become rigid) (Aljundi et al.,
2017; Kirkpatrick et al., 2017; Lee et al., 2017; Zenke et al,
2017; Chaudhry et al., 2018; Liu et al., 2018). As a result, when
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learning a new task the synaptic weight does not significantly
deviate from the consolidated weights, hence, the network seeks
solutions that work well for as many tasks as possible. However,
these synaptic models are algorithmic in nature and it is not
clear if the optimal consolidation characteristics can be naturally
implemented on the synaptic device in-silico. Also, it is not
clear if the consolidation properties of the physical synaptic
device can be tuned to achieve different plasticity-stability trade-
offs and hence can overcome the relative disadvantages of the
EWC models. In this paper, we report that a simple differential
device that operates using the physics of Fowler-Nordheim (FN)
quantum-mechanical tunneling can achieve tunable synaptic
memory consolidation characteristics similar to the algorithmic
consolidation models. The operation of the synaptic device,
referred to in this paper as the FN-synapse, can be understood
using a reservoir model as shown in Figure 1C). Two reservoirs
with fluid levels WT and W™ are coupled to each other using
a sliding barrier X. The barrier is used to control the fluid
flow from the respective reservoirs into an external medium.
The respective flows, which are modeled by functions J(W™)
and J(W™), at time-instant ¢ are modulated by the position of
the sliding barrier X(¢) and the level of fluid in the external
reservoir m(t). In this reservoir model, the synaptic weight is
%(W"' — W7™) whereas W, = %(W"’ +
W) serves as an indicator of synaptic usage with respect to

stored as W; =

time.

FIGURE 1

devices fabricated in a standard silicon process.

On-device memory consolidation using FN-synapses: (A) An illustration of a biological synapse with different coupled biochemical processes
that determine synaptic dynamics (B) physical realization of the cascade model reported in Benna and Fusi (2016) that captures the
consolidation dynamics using fluid in reservoirs uy that are coupled through parameters gy;. (C) Illustration of the FN-synapse dynamics using a
differential reservoir model and its state at time-instants tg, t1, and t,; (D) energy-band diagram to show the implementation of the reservoir
model in (C) using the physics of Fowler-Nordheim quantum-mechanical tunneling where a single synaptic element (as show in E) which stores
the weight W, as the differential charge stored between each tunneling junction, i.e., Wy = % >

W, as the average of the individual charges, i.e., W, = w); (E) micrograph of a single FN-synapse; (F) micrograph of an array of FN-synaptic
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In the Section 3, we show that for a synapse based
on a general differential reservoir model [without making
assumptions on the nature of the flow function J(.)] the synaptic
weight W, evolves in response to the external input X(t)
according to the coupled differential equation

dw
7" = —r(OW, + X(t) 1)
where
EW, (dW.\ !
= "—3 ( dt) @)

is a time varying decay function that models the dynamics of the
synaptic plasticity as a function of the history of synaptic activity
(or its usage). The usage parameter W, evolves according to

AW,
dt

based on the functions J(.) and m(t). Equations (1)-(3) show
that the weight W; update does not directly depend on the non-

= —J (W¢) +m(t) 3)

linear function J(.) but implicitly through the common-mode
We. Furthermore, Equation (1) conforms to the weight update
equation reported in the EWC model (Kirkpatrick et al., 2017)
where it has been shown that if r(f) varies according to the
network Fisher information metric, then the strength of a stored
pattern or memory (typically defined in terms of signal-to-noise
ratio) decays at an optimal rate of 1/4/t when the synaptic
network is subjected to random, uncorrelated memory patterns.
In Section 3, we show that if the objective is to maximize the
operational lifetime of the synapse, then equating the time-
evolution profile in Equation (2) to r(t) ~ O(1/t) (Kirkpatrick
et al, 2017) leads to an optimal J(.) of the form J(V)
V2 exp (—B/V) where B is a constant. The expression for J(V)
matches the expression for a Fowler-Nordheim (FN) quantum-
mechanical tunneling current (Lenzlinger and Snow, 1969)
indicating that optimal synaptic memory consolidation could be
achieved on a physical device operating on the physics of FN
quantum-tunneling.

To verify on-device optimal consolidation dynamics we
fabricated an array of FN-synapses and Figures 1D, E show
the micrograph of the fabricated prototype. In the Section 3,
we show the mapping of the differential reservoir model using
the physical variables associated with FN quantum tunneling
and Figure 1F shows the mapping using an energy-band
diagram. Similar to our previous works (Zhou and Chakrabartty,
2017; Zhou et al., 2019; Rahman et al., 2022), the tunneling
junctions have been implemented using polysilicon, silicon-
di-oxide, and n-well layers, where the silicon-di-oxide forms
the FN-tunneling barrier for electrons to leak out from the
n-well onto a polysilicon layer. The polysilicon layer forms
a floating-gate where the initial charge can be programmed
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using a combination of hot-electron injection or quantum-
tunneling (Mehta et al., 2020, 2022). The synaptic weight is
%(W"" — W7) across
two floating-gates as shown in Figure 1F. The voltages on the

stored as a differential voltage W,; =

floating-gates W1 and W™ at any instant of time are modified
by the differential signals :I:%X(t) that are coupled onto the
floating-gates. The dynamics for updating WT and W~ are
determined by the respective tunneling currents J(.) which
discharge the floating-gates. In the Supplementary Figure 1, we
describe the complete equivalent circuit for the FN-synapse
along with the read-out mechanism used in this work to
measure W,. The presence of additional coupling capacitors
in Supplementary Figure 1 provides a mechanism to inject a
common-mode modulation signal m(t) into the FN-synapse.
We will show in the Section 2 that m(t) can be used to tune the
memory consolidation characteristics of the FN-synapse array to
achieve memory capacity similar to or better than the cascade
consolidation models (with different degrees of complexities)
or the task-specific synaptic consolidation corresponding to the
EWC model.

2. Results

2.1. FN-synapse characterization

The first set of experiments were designed to understand the
metaplasticity exhibited by FN-synapses and how the synaptic
weight and usage change in response to an external stimulation.
The charge stored on the floating-gates in the FN-synapse were
first initialized according to the procedure described in the
Section 3 and in the Supplementary material. The tunneling
barrier thickness in FN-synapse prototype shown in Figures 1D,
E was chosen to be greater than 12 nm which makes the
probability of direct-tunneling of electrons across the barrier
to be negligible. The probability of FN-tunneling of electrons
across the barrier (as shown in Figure 1F) is reduced to be
negligible by lowering the electric potential of the tunneling
nodes WT and W™ (see Supplementary Figure 1) with respect
to the reference ground to be less than 5 V. In this state the
FN-synapse behaves as a standard non-volatile memory storing
a weight proportional to W; = W+ — W™, To increase the
magnitude of the stored weight a differential input pulse :i:%X
is applied across the capacitors that are coupled to the floating-
gates (see Supplementary Figure 1). The electric potential of the
floating-gate W™ is increased beyond 7.5 V where the FN-
tunneling current J(W™) is significant. At the same time the
electric potential of the floating-gate W™ is also pushed higher
but W~ > W such that the FN-tunneling currents J(W™') <
J(W™). As a result, the W™ node discharges at a rate that is
faster than the W+ node. After the input pulse is removed, the
potential of both W~ and W are pulled below 5 V and hence
the FN-synapse returns to its non-volatile state. Figures 2A-C
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FIGURE 2
Experimental weight evolution of FN-synapse: (A) A random set of potentiation and depression pulses of equal magnitude and duration applied to
the FN-synapse leading to (B) bidirectional evolution of weight (Wy) and (C) the corresponding trajectory followed by the common-mode
tunneling node (W.).

show the measured responses which shows that an FN-synapse
can store both the weight and the usage history. When a series
of potentiation and depression pulses of equal magnitude and
duration is applied to the FN-synapse, as shown in Figure 2A,
the weight stored W, evolves bidirectionally (like a random
walk) due to the input pulses (see Figure 2B). Meanwhile, the
common-mode potential W, decreases monotonically with the
number of input pulses irrespective of the polarity of the input,
as shown in Figure 2C. Therefore, W, reliably tracks the usage
history of the FN-synapse whereas W stores the weight of the
synapse. Figures 3A, B show the measured weight update AW
in response to different magnitudes and duration of the input
pulses. For this experiment the common-mode W, = %(W"' +
W) is held fixed. In Figure 3A, we can observe that for a fixed
magnitude of input voltage pulses (= 4V) AW, changes linearly
with pulse width. Whereas, Figure 3B shows that the updated
AW, changes exponentially with respect to the magnitude of
the input pulses (duration = 100 ms). Thus, the results show that
pulse width modulation or pulse density modulation provides a
more accurate control over the synaptic updates. Furthermore,
in regard to energy dissipation per synaptic update pulse width

Frontiersin Neuroscience

modulation is also more attractive than using pulse magnitude
variation. The energy required to write each time on FN-synapse
can be estimated by measuring the energy drawn from the
differential input source X in Supplementary Figure 1 to charge
the coupling capacitor C¢ and is given by

1
Eyrite = Eccoc)z (4)

This means that using smaller pulse magnitude accompanied by
longer pulse width is preferable than the other way around in the
context of write energy dissipation for the same desired change
in weight. However, this would come at a cost of slower writing
speed. Therefore, a trade-off exists. For the fabricated FN-
synapse prototype, the magnitude of the coupling capacitor C is
approximately 200f F which leads to 400f J for an input voltage
pulse change of 2V across C. For the differential input voltage
pulse of 4V a total of 800f | of energy was dissipated for each
potentiation and depression of the synaptic weights. When the
common-mode W, is not held fixed, irrespective of whether the
weight W is increased or decreased (depending on the polarity
of the input signal) the common-mode always decreases. Thus,
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Experimental characterization of a single FN-synapse: (A) Dependence of change in magnitude of weight with change in pulse-width which
follows a linear trajectory defined by y = mx + ¢ (where m = 0.005136 and ¢ = —6.227 x 10~°). (B) Dependence on pulse magnitude of the
input pulse which follows an exponential trajectory defined by y = ¢ x explax + b) + d (wherea =1, b = —6.611, ¢ = 0.009959 and
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W, serve as an indicator of the usage of the synapse. Figure 3C
shows the metaplasticity exhibited by an FN-synapse where we
measured AW, as a function of usage by applying successive
potentiation input pulses of constant magnitude (4 V) and width
(100 ms). Figure 3C shows that when the synapse is modulated
with same excitation successively, the amount of weight update
decreases monotonically with increasing usage, similar to the
response illustrated in Figures 1C, F.

2.2. FN-synapse network capacity and
memory lifetime without plasticity
modulation

The next set of experiments were designed to understand
the FN-synaptic memory consolidation characteristics when
the array is excited using a random binary input pattern
(potentiation or depression pulses). This type of benchmark
experiment is used extensively in memory consolidation
studies (Benna and Fusi, 2016; Kirkpatrick et al., 2017) since
analytical solutions exist for limiting cases which can be used
to validate and compare the experimental results. A network
comprising of N FN-synapses is first initialized to store zero
weights (or equivalently W~ = WT). New memories were
presented as random binary patterns (N dimensional random
binary vector) that are applied to the N FN-synapses through
either potentiation or depression pulses. Each synaptic element
was provided with balanced input, ie., equal number of
potentiation and depression pulses. The goal of this experiment
is to track the strength of a memory that is imprinted on this
array in the presence of repeated new memory patterns. This
is illustrated in Figures 4A, B where an initial input pattern (a
2D image of the number “0” comprising of 10 x 10 pixels)
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is written on a memory array. The array is then subjected to
images of noise patterns that are statistically uncorrelated to
the initial input pattern. It can be envisioned that as additional
new patterns are written to the same array, the strength of a
specific memory (of the image “0”) will degrade. Similar to the
previous studies (Benna and Fusi, 2016; Kirkpatrick et al., 2017)
we quantify this degradation in terms of signal-to-noise ratio
(SNR). If n denotes the number of new memory patterns that
have been applied to an empty FN-synapse array (initial weight
stored on the network is zero), then the Section 3 shows that
for the p" update the retrieval memory signal S(n,p) power,
the noise v(n,p) power and the SNR(n,p) can be expressed
analytically as

2 _ 2 _
Se(n,p) = v(n,p) = N

()2 (nt )2

SNR(n,p) = \/g

where y > 0 is a device parameter that depends on the

(5)

initialization condition, material properties and duration of the
input stimuli.

Equation (5) shows that the initial SNR is +/N and the
SNR falls off according to a power-law decay with a slope
of ﬁ Like previous consolidation studies (Benna and Fusi,
2016) we will assume that a specific memory pattern is retained
as long as its SNR exceeds a predetermined threshold (unity
in this experiment). Therefore, according to Equation (5) the
network capacity and memory lifetime for FN-synapse scales
linearly with the size of the network N when the initial weight
across all synapse is zero. We verified the analytical expressions
in Equation (5) for a network size of N = 100 using
results measured from the FN-synapse chipset. Details of the

frontiersin.org
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FIGURE 4
Comparison of measured and simulated memory consolidation for an empty FN-synapse network: (A) Set of 10x 10 randomized noise inputs
fed to a network of 100 FN-synapses initialized to store an image of the number 0 and (B) the corresponding memory evolution. Comparison of
(C) signal strength, (D) noise strength, and (E) SNR for a network size of 100 synapse measured using the fabricated FN-synapse array shown in
Figure 1F for 25 (for y1) and 15 (for y») Monte-Carlo runs. (F) SNR comparison of the y; and y> models with the analytical model for 1,000 Monte
Carlo simulations. The legends associated with the plots are specified as (y, Number of Monte-Carlo runs). All of these results correspond to the
behavior of an empty FN-synapse network.

hardware experiment is provided in the Section 3. Figures 4C-
E show the retrieval signal, noise, and SNR obtained from
the fabricated FN-synapse network for two different values
of y. We observe that the SNR obtained from the hardware
results conform to the analytical expressions relatively well.
The slight differences can be attributed to the Monte-Carlo
simulation artifacts (only 25 and 15 iterations were carried
out). In the Supplementary Figure 3, we show verification of
these analytic expressions using a behavioral model of the
FN-synapse which mimics the hardware prototype with great
accuracy (as shown in Supplementary Figure 2). Details on the
derivation of FN-synapse model is provided in the Section
3. The simulated results in Figures 4C-E verifies that results
from the software model can accurately track the hardware FN-
synapse measurements for both values of y when subjected
to the same stimuli. Therefore, FN-synapse and its behavioral
model can be used interchangeably. The results in Figure 4F also
show that when the number of iterations on the Monte-Carlo
simulation is increased (1,000 iterations), the simulated SNR
closely approximates the analytic expression. This verifies that
hardware FN-synapse is also capable of exactly matching the
optimal analytic consolidation characteristics. Figure 3C shows
the measured evolution of weights stored in the FN-synapse
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where initially the weights grow quickly but after a certain
number of updates settle to a steady value irrespective of new
updates. This implies that the synapses have become rigid with
an increase in its usage. This type of memory consolidation
is also observed in EWC models which has been used for
continual learning. However, note that unlike EWC models that
need to store and update some measure of Fisher information,
whereas, here the physics of the FN-synapse device itself can
achieve similar memory consolidation without any additional
computation.

2.3. Plasticity modulation of FN-synapse
models

In our next set of experiments, we verified that the plasticity
of FN-synapses can be adjusted to mimic the consolidation
properties of both EWC and steady-state models (such as
cascade models). While the EWC model only allows for the
retention of old memories, steady state/cascade models allow
for both memory retention and forgetting. As a result, these
models avoid blackout catastrophe whereas an EWC network
is unable to retrieve any previous memories or store new
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experiences as the network approaches its capacity. Steady-state
models allow the network to gracefully forget old memories and
continue to remember new experiences indefinitely. For an FN-
synapse network, a coupling capacitor in each synapse (shown
in Supplementary Figure 1) which is driven by a global voltage
signal V,,,4(t) (which produces m(t) = %
the plasticity of the FN-synapse to mimic the characteristics

) ) can control

of a steady-state model. Details of the modified FN-synapse
achieving a steady-state response are provided in the Section 3.
To understand and compare the blackout catastrophe in FN-
synapse models with a steady-state model, e.g., the cascade
model we define the metric #patterns.retained as the total
number of memory patterns whose SNR exceeds 1 at any given
point of time. The #patterns.retained for FN-synapse network
with modulation profiles mg(t), my(t), ma(t), ms(t), and ma(t)
of size N = 1,000 is shown in Figure 5A together with those
for cascade models of different levels of complexity (Benna and
Fusi, 2016) (denoted by ¢ = 1,.,5). In order to calculate
the #patterns.retained the SNR resulting from each stimulus
was calculated and tracked at every observation to determine
the number of such stimuli that had a corresponding SNR
greater than unity. The profiles of m(t), ma(t), and m3(t) are
produced by changing V,,,,;(¢) at each update as three quarter,
half, and quarter of the average of AW, across all the synapses
during the latest update, respectively, while mq(t) is achieved
through a constant voltage signal V,,,;(t). We can observe in
Figure 5A that the FN-synapse network with myg(t) forgets all
observed patterns in addition to not forming any new memories
as #patterns.retained goes to zero as the network capacity is
reached starting from an empty network. Whereas, in the case
for FN-synapse under mj(¢) and m;(t) modulation profile the
#patterns.retained reaches a finite value similar to that of the
cascade models. This indicates that the FN-synapse network
when subjected to plasticity modulation profiles continues to
form new memory while gracefully forgetting the old ones. For
the m3(t) modulation profile the network is slowly evolving and

yet to reach the steady state condition within 2000

update.
The FN-synapse network under the m4(t) modulation profile,
which switches between mg(t) and m(t) periodically, is in
an oscillatory steady-state with the same periodicity as the
modulation profile itself. However, note that the network does
not suffer from blackout catastrophe and has a variable capacity.
This shows that the capacity of the FN-synapse network can also
be tuned to the specificity of different applications. From the
figure, we also observe that the steady state network capacity for
my(t) modulation profile is higher than that of cascade models.
Note here that network capacity for cascade models may be
increased by increasing the complexities of the synaptic model.
Nevertheless, we find that network capacity for FN-synapse is
comparable to cascade models of moderate complexities.

In order to understand the plasticity modulation further, we
investigated the SNR for patterns introduced to a non-empty

0 th

network. For this experiment, we tracked the 1000"* pattern
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observed by the network of N = 1, 000 synapse. Figure 5B shows
the SNR of this pattern under m (t) — m4(¢) modulation profile
along with cascade models of various complexity. Note that the
x-axis now represents the age of the stimulus, i.e., number of
patterns observed after the tracked pattern. For the modulation
profile mj(t) the initial SNR is large, comparable to that of
cascade models, but the SNR falls off quickly indicating high
plasticity. Whereas, for modulation profile m;(t) and m3(t) the
initial SNR is smaller than m(¢) but it falls off at a much later
time similar to cascade models with high complexities. These
SNR profiles for FN-synapse model with modulation m(t) —
m3(t) are similar to that of a constant weight decay synaptic
model used in deep learning neural network as a regularization
method. On the other hand, the SNR profile for the 1000
pattern under m4(t) modulation has both high initial SNR and
a large lifetime. However, from Figure 5B, we observe that the
network is in an oscillatory state which indicates that this profile
is specific to the 1000 pattern, and if we tracked any other
pattern the SNR profile would be different (for reference the
SNR tracked for the 750" update is also shown). This is not
the case for the cascade models which would consistently have
similar SNR profiles irrespective of the pattern that is tracked.
Nevertheless, this SNR profile for the FN-synapse model would
repeat itself corresponding to the periodicity of the modulation
profile. This suggests that the amount of plasticity and memory
lifetime for the FN-synapse model is readily tunable and depends
on the amount of modulation provided to the network. We have
also verified that the synaptic strength of FN-synapse is bounded
similarly to that of the cascade models. This can be observed
in Supplementary Figure 10 which shows that the variance in
retrieval signal (Noise) of an FN-synapse network with both
constant modulation and time-varying modulations remains
bounded. Furthermore, Supplementary Figure 11 shows that
plasticity modulation indeed introduces a forgetting mechanism
as the SNR for different modulation profiles (when tracked
from an empty network) starts to fall off earlier than the one
without modulation. In addition to different modulation profile,
the plasticity-lifetime tradeoff of the FN-synapse model can
also be achieved by varying the parameter y as shown in
Supplementary Figure 12. Therefore, our synaptic models can
exhibit memory consolidation properties similar to both EWC
and steady-state models while being physically realizable and
scalable for large networks.

2.4. Continual learning using FN-synapse

The next set of experiments was designed to evaluate the
performance of FN-synapse neural network for a benchmark
continual learning task. A fully-connected neural network
with two hidden layers was trained sequentially on multiple
supervised learning tasks. Details of the neural network
architecture and training are given in Section 3 and in the
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Network capacity and saturation experiments: Comparison of (A) no. of patterns retained by networks composed of 1,000 synapses following
different synaptic models when exposed to 2,000 patterns and (B) steady-state SNR of the 1000 update (p = 1, 000) of networks consisting of
1,000 synapses with various synaptic models when exposed to subsequent updates. For my modulation SNR profiles for both 450" and 1000t
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Supplementary material. The network was trained on each task
for a fixed number of epochs and after the completion of its
training on a particular task ¢,, the dataset from ¢, was not used
for the successive task t,y1.

The aforementioned tasks were constructed from the
Modified National Institute of Standards and Technology
(MNIST) dataset, to address the problem of classifying
handwritten digits in accordance with schemes popularly used
in several continual-learning literature (Hsu et al., 2018). Also
known as incremental domain learning using split-MNIST
dataset, each task of this continual learning benchmark dictates
the neural network to be trained as binary classifier which
distinguishes between a set of two hand-written digits, i.e., the
network is first trained to distinguish between the set [0, 1] as #;
and is then trained to distinguish between [2, 3] in 5, [4, 5] in #3,
[6,7] in t4, and [8, 9] in t5. Thus, the network acts as an even-odd
number classifier during every task.
the
accuracy of networks trained with different learning and

Supplementary Figures 7A-E ~ compare task-wise
consolidation approaches. Note here that the absence of a data-
point corresponding to a particular approach indicates that the
accuracy obtained is below 50%. All the approaches taken into
consideration perform equally well at learning f; as illustrated
in Supplementary Figure 7A. However, as the networks learn
ty (see Supplementary Figure 7B), the performance of both
EWC (Kirkpatrick et al., 2017) and online EWC (Liu et al,
2018) degrade for task t; as do the networks with conventional
memory using SGD and ADAM. The FN-synapse based
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networks on the other hand retain the accuracy of task t; far
better in comparison. This advantage in retention comes at the
cost of learning f; marginally poorer than others. This trend
of retaining the older memories or tasks far better than other
approaches continues in successive tasks. Particularly, if we
consider the retention of f; when the networks are trained on
t3 (see Supplementary Figure 7C), it can be observed that it is
only the FN-synapse based networks that retain ¢; while others
fall below the 50% threshold. Similar trends can be observed
in Supplementary Figures 7D, E. There are a few instances
during the five tasks where the EWC variants and SGD with
conventional memory marginally outperform or match the FN-
synapse in terms of retention. However, if the overall average
accuracy of all these approaches are compared (see Figure 6A),
it is clearly evident that both the FN-synapse networks
significantly outperform the others. It is also worth noting
here that even when a network equipped with FN-synapse is
trained using a computationally-inexpensive optimizer such as
SGD, it shows remarkably superior performance than highly
computationally-expensive approaches such as ADAM with
conventional memory and ADAM with EWC variants.

The only drawback of the FN-synapse based approach is
that its ability to learn the present task slightly degrades with
every new task. This phenomenon results from the FN-synapses
becoming more rigid and can be seen in Figure 6B which shows
the evolution of plasticity of weights in the output and input
layer of the network with successive tasks with respect to We.
As mentioned earlier, W, keeps track of the importance of
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Continual learning benchmarks results and insights: (A) Overall average accuracy comparison of SGD and ADAM with FN-synapse, ADAM with
EWC and Online EWC, SGD, and ADAM with conventional memory. (B) Distribution of the usage profile of weights in the output layer and the
input layer of the FN-synapse neural network. Overall Average Accuracy comparison of incremental-domain learning scenarios on the
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each weight as a function of the number of times it is used.
The higher the W, of a particular weight, the less it has been
used and therefore, the more plastic it is and sensitive to
change. On the other hand, a more rigid and frequently used
weight has a lower value of W,. Suppose the output layer is
considered from Figure 6B. In that case, it can be observed
that with each successive task the W, of the weights of the
network collectively reduces, leading to more consolidation and
consequently leaving the network with fewer plastic synapses to
learn a new task. In comparison, the majority of the weights
in the input layer remain relatively more plastic (or less spread
out) owing to the redundancies in the network arising from the
vanishing gradient problem (see Section 4 for more details). In
Supplementary Figure 5, we show that the ability of the network
to learn or forget new tasks is a function of the initial plasticity
of the FN-synapses and can be readily adjusted.

In addition to the split-MNIST benchmark, the performance
of FN-synapse based network was compared with EWC for
the permuted MNIST benchmark. These incremental-domain
learning experiments were carried out by randomly permuting
the order of pixels of the images in the MNIST dataset in
accordance with Hsu et al. (2018) to create new tasks. The
overall average accuracy for 10 Monte Carlo simulations when
using ADAM as the optimizer with EWC, FN-Synapse and
conventional memory are depicted in Figure 6C. We can observe
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from Figure 6C that despite not being as retentive as EWC in this
particular scenario, the network equipped with FN-synapse as
the memory element performs better than the network without
any memory consolidation mechanism, thereby exhibiting
continual learning ability. Furthermore, when compared to a
network with traditional memory employing an optimizer like
ADAGRAD, which has been shown to be suitable for this
learning scenario (Hsu et al., 2018), the FN-synapse network
with ADAGRAD exhibits marginal improvements without any
drop in performance with respect to the former as shown in
Figure 6D.

3. Materials and methods
The main methods are described in this section of the

paper while Supplementary material includes additional details,
supporting information, and figures.

3.1. Weight update for differential
synaptic model
Consider the differential synaptic model described by

Figure 1C where the evolution of two dynamical systems with
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state variables W1 and W™ is governed by

aw+ 4, 1 1
— = JWH+ X + Sm©) (©)
dw~= -1 1
= W) = SXO + S m() ™)

where J(.) is an arbitrary function of the state variables,
+%X(t) or —%X(t) are differential time varying inputs and
m(t) is a common mode modulation input. In this differential
architecture, we define the weight parameter Wy as W; =
%(W+ — W) which represents the memory and the common-
mode parameter W, as W, = %(W"' + W) which represents
the usage of the synapse. Applying this definition to (6) and (7),

we obtain:
d(We + W) . 1 1
— = —J(We+ Wy) + EX(t) + Em(t) (®)
AW, — Wy) . 1 1
— - —J(We = Wy) — EX(t) + Em(t) 9)

Now, adding and subtracting (8) and (9), we get:

dw,
dt

_ (I(Wc + Wa) +J(We — W)

! ) +m  (10)

awy (J(Wc + W) — J(We — Wy)
dr 2

) + X(1) (11)

Assuming that W, >> W/, applying Taylor series expansion on
(10) and (11) leads to

AW,
dt

= —J (W¢) + m(t) (12)

Wy
dt

This means that the modulation input impacts the usage of the

= —J (We) Wy + X(1). (13)

synapse. Therefore, the plasticity of the synapse can be tuned
using m(t) when needed. Now we first look into the trivial case
when a constant modulation input is provided, i.e., m(t) = ¢
where ¢ is any arbitrary constant. In this scenario the plasticity
of the synapse is solely dependent on the usage of the synapse
as m(t) does not change with time. Substituting the derivative of
W, from (12), when m(t) is constant, into (13), the rate of change
in W, can be formulated as:

2 —1
[d We (dwf> } Wy + X(t) (14)

aWg _
N dar? dt

dt

Please refer to the Supplementary material for detailed
derivation. Equation (14) shows that the change in weight AW
is directly proportional to the curvature of usage while being
inversely proportional to the rate of usage.
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3.2. Optimal usage profile

We define the decaying term in (14) as

) = AW (dw\ 7!
N 7 (dt)

Now, comparing the weight update equation in (14) to the

(15)

weight update equation for EWC in the balanced input scenario,
the decay term has the following dependency with time for
avoiding catastrophic forgetting.

1

Now, the usage of a synapse is always monotonically increasing

(16)

and since W, represents the usage, it too needs to monotonic.
At the same time W, also needs to be bounded, therefore
W, has to monotonically decrease with increasing usage while
satisfying the relationship in Equation (16). It can be shown that
Equations (16) and (15) can be satisfied by any dynamical system
of the form

_ 1
" f(logt)

(17)

We

where f(.) > 0 is any monotonic function. Substituting Equation
(17) in Equation (15) we obtain the corresponding usage profile
as follows

(18)

HE) = % (1+ 2f'(log t) _f (logt))

logt f'(logt)

where f’(logt) and f”(logt) are derivatives of f(logt) with
respect to logt. While several choices of f(.) are possible, the
simplest usage profile can be expressed as

.
~ log()

(19)

c

where f is any arbitrary constant. The corresponding non-linear
function in this model is determined by substituting Equation
(19) in Equation (12) to obtain

1 5 B
BWC exp <_WC) .

The expression for J(.) in Equation (20) bears similarity with the

J(We) = (20)

form of FN quantum-tunneling current (Lenzlinger and Snow,
1969) and Figures 1D-F show the realization of Equations (6)
and (7) using FN tunneling junctions.
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3.3. Achieving optimal usage profile on
FN-synapse

For the differential FN tunneling junctions shown
in Figure IF and its equivalent circuit shown in the

Supplementary Figure I, the dynamical systems model is

given by
dwt Ce dviy
=Wt 4 =2 21
T JW™) + —— 21
dw— . Cedviy
Cr——=—JW™) - = 22
T JW™) = —— (22)

where W, W™ are the tunneling junction potentials, C is the
input coupling capacitance, v;,(t) is the input voltage to the
coupling capacitance and C = C¢ + Cf, is the total capacitance
comprising of the coupling capacitance and the floating-gate
capacitance Cp,. J(.) are the FN tunneling currents given by

(23)
(29)

where k; and kp are device specific and fabrication specific
parameters that remain relatively constant under isothermal
conditions. Following the derivations in the previous sections
and the expression in Equation (19) leads to a common-mode
voltage W, profile as

ko

t) = ———mM—
Welt) log(k1t + ko)

(25)

where kg = exp (&,—i{)) and W refers to the initial voltage at

the floating-gate.

3.4. FN-synpase network SNR estimation
for random pattern experiment

Upon following the same procedure used in previous
sections, the weight update equation for an FN-synapse using
Equation (21) and Equation (22) can be expressed as

in 26
dt dr? dt dt (26)

dw, [dz We (dW. —1} dv;
Cr—=— ( ) Wy + Ce
We designed the floating-gate potential and the input voltage
pulses such that the FN-dynamics is only active when there is
an memory update. Therefore, the dynamics in Equation (26)
evolve in a discrete manner with respect to the number of
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modulations. Assuming Cr = C, we formulate a discretized
version of the weight update dynamics from Equation (26) in
accordance with the floating-gate potential profile of the device

expressed in Equation (25) as follows

AWd(n) _

2 1
At —k (1 + log (ki Atn + ko)) (klAtn + ko)
Wo(n—1) 4 220
(27)
Win)=1|1-— (1 + > !
d - log (k1 Atn + ko) n+ %
Wa(n — 1) + (vin(n) — vip(n — 1))
(28)

where n represents the number of patterns observed and At is
the duration of the input pulse. Let us denote the weight decay
term as

an)=1{1-— (1 + (29)

2 1
log (k1 Atn + k ) ko
08 (ki Atn + ko) n+ par
Thus, we obtain the weight update equation with respect to
number of patterns observed as

Wa(n) = a(m)Wy(n — 1) + (vin(n) — vip(n — 1)) (30)

When we start from an empty network, i.e., W;(0) = 0, the
memory update can be expressed as a weighted sum over the past
input as

n—2 n
Wam) = > @i+ =D [T @) | vin() G
i1 j=i+2

+ (a(n) — Dvip(n — 1) + viu(n)

We define the retrieval signal and the noise associated with it
as per the definition in Benna and Fusi (2016). For a network
comprising of N synapses, each weight in the network is indexed
as W;(a, n) where a = 1, ..., N. Similarly, the input applied to the
ath synapse after n patterns is v;, (a, n). Then, the signal strength
for the pth update (where p < ) introduced to the initially
empty network tracked after n patterns can be formulated as:

N
S(n,p) = ;V< > Wala, n)vm(a,p>> (32)

a=1

where angle brackets denote averaging over the ensemble of all
of the input patterns seen by the network. If we assume that
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the input patterns are random binary events of +1 and are
uncorrelated between different synapses and memory patterns
then substituting Equation (31) in Equation (32), we obtain

Snp) =@+ -1 [] «()
j=p+2

(33)

Given that in Equation (29), kg = O(10'%) and k; = O(101),
the term (1 + m ~ 1, the signal power simplifies to:

1

$(np) = —
(n,p) 1 )2

(34)

where y = Ko and depends on the pulse-width At and the

initial conditikér? tko. The above equation shows that the signal’s
strength is a function of the system parameter y and decays with
the number of memory pattern observed. If we assume that the
weight W () is uncorrelated from the input v;,(n) and that the
inputs v, (1), vin(2), ...vin(n) are uncorrelated from each other,
then the corresponding noise power is given by the variance
of the retrieval signal expressed in Equation (32). This can be
estimated as the sum of the power of all signals tracked at »n
except for the retrieval signal corresponding to the p update
we are tracking and is given by:

v%n,p):% > i) (35)

i=Li#p

However, in order to derive a more tractable analytical
expression for further analysis we added the retrieval signal
as well into the summation which introduces a small error in
the estimation (overestimating the noise by the retrieval signal
term). This leads us to the following estimation of the noise
power:

vi(n,p) = (36)

n
N(n+y)?

Based on the value of n in comparison to y, we obtain two trends
for the noise profile. When y >> n,

()

which implies that noise increases with increase in updates

v(n,p) = (37)

initially. On the other hand, when y << n,

(38)
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which implies that noise falls with increase in updates in the later
stages. The signal-to-noise ratio (SNR) of a network of size N can
then be obtained as:

S2(n, N
N

3.5. FN-synapse with tunable
consolidation characteristics

(39)

In the previous sections, we derived the analytical
expressions for the memory retrieval signal, the noise associated
with it, and the corresponding SNR for the case when the
modulation input m(t) was kept constant. This led to a
synaptic memory consolidation which is similar to that of
EWC. However, blackout catastrophic forgetting occurs in
networks with such memory consolidation due to the absence
of a balanced pattern retention and forgetting mechanism. The
forgetting mechanism is naturally present in a steady state model
such as the cascade model which do not suffer from memory
“blackouts". Since the increase in retention is equivalent to an
increase in rigidity and forgetting is tantamount to a decrease
in rigidity, it is necessary to adjust the plasticity/rigidity of the
synapse accordingly. From Figures 2A, B, we notice that without
external modulation W, decreases monotonically with each
new updates which correspondingly makes the synapse only
rigid. Therefore, to balance the same, the idea is to keep W, as
steady as possible to keep the synapse plastic as long as possible
by applying a modulation profile m(t) that recovers/restores W
after every synaptic update. This results in m(t) of the form

m(t) = m(i)é(t — iT) (40)

where §(t) is the Dirac-delta, m(i) is the magnitude of
the modulation increment, and T is the time between each
modulation increment. This increment is determined by the rate
of the differential update to the FN-synapse. Integrating this
form of m(t) into Equation (12) leads to

AW,
dt

= —J(We) + m()é(t — iT) (41)

which implies a tunable plasticity profile for the FN-synapse. An
analytical solution to the differential equation (41) is difficult and
hence we resort to a recursive solution. Due to the nature of the
m(t), it can be seen that the initial condition of the variable W,
changes at increments of T, whereas between two modulation
increments W, evolves naturally according to Equation (25).
Thus, the dynamics of W, in the presence of the modulation
increments can be described as

frontiersin.org


https://doi.org/10.3389/fnins.2022.1050585
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Rahman et al.

Weo

We(t) = We(t) 4+ Vioa(t) ;

ko

k ciT <t < @+ 1T
log(kl(t—iT)+eXp(W2iT)))

(42)
where V,,,,4(t) is an external voltage signal applied to the FN-
synapse as shown in Supplementary Figure 1 and is given by:

o]

Vinod(t) = Y m(i)8(t —iT)

i=1

(43)

In this case the change in plasticity of the synapse is determined
by the step-size of the staircase voltage function V,,,;(t). Note
that the weight update equation in (13) is still valid since m(t) is
kept constant during differential input.

Although an analytic expression for the SNR is no longer
tractable in this iterative form, the ability of the modulation
term to regulate the plasticity and induce a more graceful form
of forgetting is shown in the corresponding no. of patterns
retained plot in Figure 5A and the SNR plot Figure 5B for
various modulation input profiles.

3.6. Programming and initialization of
FN-synapses

The potential corresponding to the tunneling nodes W+
and W~ can be accessed through a capacitively coupled
node, as shown in Supplementary Figure 1. This configuration
minimizes readout disturbances and the capacitive coupling
also acts as a voltage divider so that the readout voltage is
within the input dynamic range of the buffer. The configuration
also prevents hot-electron injection of charge into the floating
gate during readout operation. Details of initialization and
programming are discussed in Mehta et al. (2020), so here we
describe the methods specific for this work. The tunneling node
potential was initialized at a specific region where FN-tunneling
only occurs while there is a voltage pulse at the input node and
the rest of the time it behaves as a non-volatile memory. This
was achieved by first measuring the readout voltage every 1 s
for a period of 5 min to ensure that the floating gate was not
discharging naturally. During this period the noise floor of the
readout voltage was measured to be &~ 100 V. At this stage, an
voltage pulse of magnitude 1 V and duration 1 ms was applied at
the input node and the change in readout voltage was measured.
If the change was within the noise floor of the readout voltage,
the potential of the tunneling nodes were increased by pumping
electrons out of the floating gate using the program tunneling
pin. This process involves gradually increasing the voltage at the
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program tunneling pin to 20.5 V (either from external source
or from on-chip charge pump). The voltage at the program
tunneling pin was held for a period of 30 s, after which it
was set to 0 V. The process was repeated until substantial
change in the readout voltage was observed (= 300.V) after
providing an input pulse. The readout voltage in this region
was around 1.8 V.

3.7. Hardware and software experiments
for random pattern updates

The fabricated prototype contained 128 differential FN
tunneling junctions, which corresponds to 64 FN-synapses.
However, due to the peripheral circuitry only one tunneling
node could be accessed at a time for readout and modification.
Now, since the memory pattern is completely random, each
synapse can be modified independently without affecting
the outcome of the experiment. Therefore, two tunneling
nodes were initialized following the method described in the
aforementioned section. Input pulses of magnitude 4 V and
duration 100 ms was applied to both the tunneling nodes.
The change in the readout voltages were measured, and the
region where the update sizes of both the tunneling node
would be equal was chosen as the initial zero memory point
for the rest of the experiment. The nodes were then modified
with a series of 100 potentiation and depression pulses of
magnitude 4.5 V and duration 250 ms and the corresponding
weights were recorded. This procedure represented the 100
updates of a single synapse. The tunneling nodes were then
reinitialized to the zero memory point and the procedure
was repeated with different random series of input pulses
representing the modification of other 99 synapse in the
network. The first input pulses of each series of modification
forms the tracked memory pattern. To modify the value of y
the FN-synapses were initialized at a higher tunneling node
potential.

The behavioral model of the FN-synapse was generated by
extracting the device parameters k1 and k from the hardware
prototype. The extracted parameters have been shown to capture
the hardware response with an accuracy greater than 99.5% in
our previous works (Zhou and Chakrabartty, 2017; Zhou et al,,
2019). These extracted parameters were fed into a dynamical
system which follows the usage profile described in the hardware
implementation subsection and follow the weight update rule
elaborated in the SNR estimation subsection to reliably imitate
the behavior of the FN-synapse. The behavioral model network
was started with exactly the same initial condition as hardware
synapses and subjected to the exact memory patterns used for
the hardware experiment for the same number of iterations.
The simulation was also extended to 1,000 iterations and the
corresponding responses are included in Figure 4F.
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3.8. Probabilistic FN-synapse model

Adaption of FN-synapse occurs by tunneling of electrons
through a triangular FN quantum-tunneling barrier. The
tunneling current density is dependent on the barrier profile
which in turn is a function of the floating-gate potential. When
W, W~ is around 7 V the synaptic update AW, due to
an external pulse can be determined by the continuous and
deterministic form of the FN-synapse model (as described in
the previous sections). Since the number of electrons tunneling
across the barrier is relatively large (>>1), the method is adequate
for determining AW,. However, once WT, W~ is around 6
V, each updates occurs due to the transport of a few electrons
tunneling across the barrier and in the limit by a single electron
tunneling across the barrier at a time. In this regime, the
continuous behavioral model is no longer valid. Therefore,
the behavioral model of the FN-synapse has to switch to a
probabilistic model. In this mode of operation, we can assume
that each electron tunneling event follows a Poisson process
where the number of electrons e (1),e™ () tunneling across
the two junctions during the n' input pulse is estimated by
sampling from a Poisson distribution with rate parameters
AT, A~ given by

+
)L+(n) — w (44)
A (n) = M (45)

q is the charge of an electron, A is the cross-sectional area of the
tunneling junction. Using the sampled values of et (n), e (n),
the corresponding discrete-time stochastic equation governing
the dynamics of the tunneling node potentials Wt(n), W (n) is

given by
+
W) = WHin—1) — qec(”) (46)
T
W) = W (n—1)— ‘”T(”) (47)
T

where Cr is the equivalent capacitance of the tunneling node.
We have verified the validity/accuracy of the probabilistic
model against the continuous-time deterministic model in
high tunneling rate regimes. Supplementary Figure 4A shows
that the output of the probabilistic model matches closely
to the deterministic model and the deviation which arises
due to the random nature of the probabilistic updates
(shown in Supplementary Figure 4B) is within 200 V. Using
the probabilistic model we performed the memory retention
and network capacity experiments (as discussed in the main
manuscript) by initializing the tunneling nodes at a low
potential. In this regime, each updates to the FN synapse results
from tunneling of a few electrons. Supplementary Figures 4C,
D show that even when each update sizes are on the order of
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tens of electrons, the network capacity and memory retention
time remains unaffected. However, as the synaptic voltage
is modified by less than ten electrons per update (shown
in Supplementary Figure 4E), the SNR curve starts to shift
downwards and the network capacity along with memory
retention time decreases. The tunneling node potential can
be pushed further down to a region where the synapses
might not even register modifications at times and other times
update sizes drop down to single electron per modification (see
Supplementary Figure 4F). In this regime, the SNR curve shifts
down further, the SNR decay still obeys the power-law curve.

3.9. Neural network implementation
using FN-synapses

The MNIST dataset was split into 60,000 training images and
10,000 test images which yielded about 6,000 training images
and 1,000 test images per digit. Each image, originally of 28 x28
pixels, was converted to 32 x 32 pixels through zero-padding.
This was followed by standard normalization to zero mean with
unit variance. The code for implementing the non-FN-synapse
approaches such as EWC and online EWC were obtained from
the repository mentioned in Hsu et al. (2018). To enforce an
equitable comparison, the same neural network architecture
(as shown in Supplementary Figure 6), in the form a multi-
layered perceptron (MLP) with an input layer of 1024 nodes,
two hidden layers of 400 nodes each (paired with the ReLU
activation function) and a softmax output layer of 2 nodes, has
been utilized by every method mentioned in this work. Based on
the optimizer in use, a learning rate of 0.001 was chosen for both
SGD and ADAM (with additional parameters 1, 82, and € set to
0.9,0.999, and 108, respectively, for the latter). Each model was
trained with a mini-batch size of 128 for a period of 4 epochs.

Similar to the continual learning experiments conducted
on split-MNIST, benchmark incremental-domain learning
experiments were also carried out by randomly permuting the
order of pixels of the images in the MNIST dataset in accordance
with Hsu et al. (2018) which is referred as the Permuted-MNIST.
The architecture of the neural network employed is similar to the
one for the split-MNIST with the exception of being equipped
with 1,000 neurons in each of the two hidden layers instead of
400 and with 10 neurons in the output layer instead of 2. This
essentially means that at each task, the network learns a new set
of permutations of the 10 digits. The network was trained on 10
such tasks for 3 epochs using a learning rate of 0.0001 for ADAM
and 0.001 for ADAGRAD.

Corresponding to every weight/bias in the MLP, an instance
of the FN-synapse model was created and initialized to
a tunneling region according to the initial W, value. As
demonstrated by the measured results, AW, can be modulated
linearly and precisely by changing the pulse-width of the
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potentiation/depression pulses. Therefore, each weight update
(calculated according to the optimizer in use) is mapped as
an input pulse of proportional duration for the FN synapse
instance. Then, every instance of the FN-synapse model is
updated according to Equation (27) and the W thus obtained in
voltage is scaled back to a unit-less value and within the required
range of the network.

4. Discussion

In this paper, we reported a differential FN quantum-
tunneling based synaptic device that can exhibit near-optimal
memory consolidation that has been previously demonstrated
using only algorithmic models. The device called FN-synpase,
like its algorithmic counterparts, stores the value of the weight
and a relative usage of the weight that determines the plasticity
of the synapse. Similar to algorithmic consolidation models,
an FN-synapse, “protects” important memory by reducing the
plasticity of the synapse according to its usage for a specific
task. However, unlike its algorithmic counterparts like the
cascade or EWC models, the FN-Synapse doesn’t require any
additional computational or storage resources. In EWC models
memory consolidation in continual learning is achieved by
augmenting the loss function using penalty terms that are
associated with either Fisher information (Kirkpatrick et al.,
2017) or the historical trajectory of the parameter over the
course of learning (Chaudhry et al., 2018; Liu et al, 2018).
Thus, the synaptic updates require additional pre-processing of
the gradients, which in some cases could be computationally
and resource intensive. FN-synapse on the other hand, does
not require any pre-processing of gradients and instead can
exploit the physics of the device itself for synaptic intelligence
and for continual learning. For some benchmark tasks, we have
shown an FN-synapse network shows better multi-task accuracy
compared to other continual learning approaches. This leads
to the possibility that the intrinsic dynamics of the FN-synapse
could provide important clues on how to improve the accuracy
of other continual learning models as well.

Figures 6A, B also show the importance of the learning
algorithm in fully exploiting the available network capacity.
While the entropy of the FN-synapse weights for the output
layer is relatively high, the entropy of the weights of the
input layer is still relatively low, implying most of the input
layer weights remain unused. This is an artifact of vanishing
gradients in a standard backpropagation based neural network
learning. Thus, it is possible that improved backpropagation
algorithms (Deng et al., 2016; Tan and Lim, 2019) might be
able to mitigate this artifact and in the process enhance the
capacity and the performance of the FN-synapse network. In
Supplementary Figure 8, we show that FN-synapse based neural
network is able to maintain its performance even when the
network size is increased. Thus, it is possible that the network
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becomes capable of learning more complex tasks due to increase
in overall plasticity of the network while ensuring considerably
better retention than neural networks with traditional synapses.

In addition to being physically realizable, the FN-synapse
implementation also allows interpolation between a steady state
consolidation model and the EWC consolidation models. This
is important because it is widely accepted that the EWC model
can potentially suffer from blackout catastrophe (Kirkpatrick
et al., 2017) as the learning network approaches its capacity.
During this phase, the network becomes incapable of retrieving
any previous memory as well as is unable to learn new
ones (Kirkpatrick et al,, 2017). Steady-state models such as
the cascade consolidation models and SGD-based continuous
learning models avoid this catastrophe by gracefully forgetting
old memories. As shown in Figure 5A, an FN-synapse network,
through the use of a global modulation factor m(t), is able
to interpolate between the two models. In fact, the results in
Figures 5A, B, show that the number of patterns/memories
retained in an FN-synapse network under modulation profile
my(t) at steady state is higher compared to that of a high-
complexity cascade model for a network size of N = 1,000
synapses. Even though we have not used the interpolation
feature for benchmark experiments, we believe that this attribute
is going to provide significant improvements for continuous
learning of a large number of tasks.

The interpolation property of FN-synapse could mimic
some attributes of metaplasticity observed in biological synapses
and dendritic spines (Mahajan and Nadkarni, 2019). The role
of metaplasticity, the second-order plasticity of a synapse which
assigns a task-specific importance to every successive task being
learned (Laborieux et al, 2021), is widely accepted as the
fundamental component of neural processes key to memory
and learning in the hippocampus (Abraham and Bear, 1996;
Abraham, 2008). Since unregulated plasticity leads to runaway
effects resulting in previously stored memories to be impaired at
saturation of synaptic strength (Brun et al., 2001), metaplasticity
serves as a regulatory mechanism which dynamically links the
history of neuronal activity with the current response (Hulme
et al, 2014). The FN-synapse mimics the same regulatory
mechanism through the decaying term r(¢) that takes into
account the history of usage or neuronal activity to determine
the plasticity of the synapse for future use as well as prevents
runaway effects by making the synapses rigid at saturation.

The on-device memory consolidation in FN-synapse can not
only minimize the energy requirements in continual learning
tasks, additionally, the energy required for a single synaptic
weight update is also lower than memristor-based synaptic
updates for a fixed precision of update. This attribute has been
validated in our previous works (Mehta et al., 2022) where the
update energy was estimated to be as low as 5f ] increasing up to
2.5p ] depending on the status of the FN-synapse and the desired
change in synaptic weights. Note that the energy required to
change the synaptic weight is derived from the FN-tunneling
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current and not from the electrostatic energy used for charging
the coupling capacitor. Thus, by designing more efficient charge-
sharing techniques across the coupling capacitors the energy-
efficiency of FN-synaptic updates can be significantly improved.
Furthermore, when implemented on more advanced silicon
process nodes, the capacitances could be scaled which can
improve the energy-efficiency of FN-synapse by an order of
magnitude. Compared to memristor-based synapses, the FN-
synapse can also exhibit high endurance 109 —107 cycles without
any deterioration. However, the key distinction lies in terms
of the dynamic range of the stored weights. Generally, a single
memristor has two distinct conductive states (corresponding to
“0” or “1”) which give each device a 1-bit resolution. When used
in a crossbar array, highly-dense designs can reach densities
up to 76.5 nm? per bit as reported by Poddar et al. (2021)
where a 3-D memristor array was constructed using Perovskite
quantum wires. The dynamic range or resolution of such designs
is determined by the number of memristive devices that can
be packed into the smallest feasible physical form factor. If
we consider multi-level memristors instead, the resolution per
memristor can reach up to 3-5 bits depending on the number
of stable distinguishable conductive states (He et al., 2017; Wu
et al., 2019; Lee et al, 2021). In comparison, the dynamic
range of the FN-synapse (a single device) is considerably
higher as it is determined by the number of electrons stored
on the floating-gates which in-turn is determined by the
FN-synapse form-factor and the dielectric property of the
tunneling barrier. Thus, theoretically, the dynamic range and
the operational-life of the FN-synapse seems to be constrained
by the single-electron quantization. However, at low-tunneling
regimes, the transport of single electrons across the tunneling
barrier becomes probabilistic where the probability of tunneling
is now modulated by the external signals X(t) and m(t). In
the Section 3 and in Supplementary Figure 4, we show that
a stochastic dynamical system model emulating the single-
electron dynamics in the FN-synapse can produce O(1 /1)
consolidation characteristics for the benchmark random input
patterns experiment for an empty network. The SNR still follows
the power-law curve and the FN-synapse network continues
to learn new experiences even if the synaptic updates are
based on discrete single-electron transport. A more pragmatic
challenge in using the FN-synapse will be the ability of the read-
out circuitry to discriminate between the changes in floating-
gate voltage due to single-electron tunneling events. For the
magnitude of the floating-gate capacitance, the change in voltage
would be in the order of 100 nV per tunneling event. A more
realistic scenario would be to measure the change in voltage after
1,000 electron tunneling events which would imply measuring
100 1V changes. Although this will reduce the resolution of the
stored weights/updates to 14 bits, recent studies have shown that
neural networks with training precisions as low as 8 bits (Sun
et al.,, 2019) and networks with inference precisions as low as
2-4 bits (Choi et al., 2018, 2019) are often capable of exhibiting
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remarkably good learning abilities. In Supplementary Figure 9,
we show that for the split-MNIST task, the performance of the
FN-synapse based neural network remains robust even in the
presence of 5% device mismatch.

Another point of discussion is whether the optimal decay
profile r(t) =~ O(1/t) can be implemented by other
synaptic devices, in particular, the energy-efficient memristor-
based synapses that have been proposed for neuromorphic
computing (Tuma et al, 2016; Fuller et al.,, 2019; Pal et al,
2019a,b; Karunaratne et al., 2020; Mehonic et al., 2020). Recent
works using memristive devices have demonstrated on-device
metaplasticity (Giotis et al., 2022), however, achieving an optimal
decay profile would require additional control circuitry, storage
and read-out circuits. In this regard, we believe that the FN-
synapse represents one of the few, if not the only class of synaptic
devices that can achieve optimal memory consolidation on a
single device.
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