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Abstract—At the fundamental level, an energy imbalance
exists between training and inference in machine learning (ML)
systems. While inference involves recall using a fixed or learned
set of parameters that can be energy-optimized using compres-
sion and sparsification techniques, training involves searching
over the entire set of parameters and hence requires repeated
memorization, caching, pruning, and annealing. In this paper, we
introduce three “performance walls’’ that determine the training
energy efficiency, namely, the memory-wall, the update-wall, and
the consolidation-wall. While the emerging compute-in-memory
ML architectures can address the memory-wall bottleneck (or
energy-dissipated due to repeated memory access) the approach
is agnostic to energy-dissipated due to the number and precision
required for the training updates (the update-wall) and is agnostic
to the energy-dissipated when transferring information between
short-term and long-term memories (the consolidation-wall). To
overcome these performance walls, we propose a learning-in-
memory (LIM) paradigm that prescribes ML system memories
with metaplasticity and whose thermodynamical properties match
the physics and energetics of learning.

Index Terms—Machine Learning, Training, Neuromorphic
Systems, Energy Efficiency, Memory, Thermodynamics

I. INTRODUCTION

There exists an imbalance between the energy budget re-
quired to train a machine learning (ML) system versus the
energy budget required for performing inference using the
same ML system. As an example, a recent study reported that
the carbon footprint of training a single neural architecture
search on a 213 million parameter deep neural network (DNN)
could be five times the carbon footprint of a US car over its
entire lifetime [1], whereas the same size DNN can perform
inference at a significantly lower energy-budget. At the funda-
mental level, this imbalance arises because inference involves
recall using a fixed or learned set of parameters that can be
optimized through compression, sparsification, and compute-
in-memory (CIM) techniques, whereas learning and training
involve searching over a large set of parameters and hence
require repeated memorization, caching, and pruning. Thus,
energy dissipation is dominated by the energy cost of moving
data between slow and vast external memory, and fast and
sequential processing in the Turing formalism. We quantify
this bottleneck using three performance-walls, namely: the

This work is supported by the National Science Foundation with research
grant FET-2208770.

Gert Cauwenberghs
Department of Bioengineering
University of California San Diego
La Jolla, CA, USA
gert@ucsd.edu

Training
Bottlenecks

Consolidation wall

(b) Compute{ Fetch [Storage
Updates
(c) /\/"\
Compute | Stdrage)
\_/
(d)
Short |~ \{ Long
Computel Fetch [ term Fetch | term
Storage Storage

Fig. 1. (a) Three main challenges or performance walls that affect the energy-
efficiency of training machine learning systems: (b) Memory-wall; (c) Update-
wall;, and (d) Consolidation-wall.

memory-wall, the update-wall, and the consolidation-wall as
shown in Fig. 1(a). The memory-wall [8] arises because of
energy-dissipation due to repeated memory access (depicted in
Fig. 1(b)) and can be addressed using CIM architectures [4],
[5]. However, the CIM approach is agnostic to the energy
bottleneck due to the number/precision of parameter updates,
referred to as the update-wall shown in Fig. 1(c), or the energy
bottleneck incurred when transferring data between short-
term memories (cache, DRAM) and long-term memories (non-
volatile SSD), referred to as the consolidation-wall shown in
Fig. 1(d).

Can inspiration from neurobiology provide cues on how
to address these performance bottlenecks? While synaptic
computations have inspired the CIM paradigm [6], there is
growing evidence that biological synapses are inherently a
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Fig. 2. (a) Learning using conventional memory where states are separated from each other by energy-barriers. (b) A two-state potential barrier between two
wells. (c) Adaptive memory profile [7] where the energy-barrier height is modulated. (d) Thermodynamics of memory state transitions during learning.

complex high-dimensional dynamical system in itself [10],
[11] as opposed to the simple, static storage unit that is typi-
cally assumed in standard neural networks. This neuromorphic
viewpoint has been experimentally validated by metaplasticity
observed in biological synapses [12], [13] where the synaptic
plasticity (ease of update) has been observed to vary depend-
ing on age and task-specific information accumulated during
learning/training. Metaplasticity can be physically emulated in
artificial synapses [7] resulting in energy-efficient training and
higher memory capacity. In this paper, we argue the benefits
of metaplasticity from a thermodynamic and an information-
theoretic point of view and analytically show its connection to
the update-wall and the consolidation-wall. Using the analyti-
cal expressions we also show how to approach the fundamental
energy limits of training by adjusting the plasticity of the
memory devices to match the physics of the learning. We refer
to this paradigm as Learning-in-Memory (LIM).

II. THERMODYNAMICS OF LEARNING AND MEMORY
RETENTION

At the physical level, the memory elements used for storing
ML parameters wy € R,d = 1, .., D are static in nature where
each of the memory states is separated from each other by a
physical energy barrier E°, as shown in Fig. 2(b). This energy
barrier is generally chosen to be high enough to prevent pa-
rameter leakage due to thermal fluctuations, especially, during
inference when the memory needs to be non-volatile. There-
fore, an ML training algorithm that adapts the stored weights
in quantized steps (..., Wd,n—1,Wd,n, Wdn+1s ---) SO as to
minimize some system-level loss-function L consumes energy
to overcome the energy-barrier £V for each of the param-
eter/memory updates, despite the overall descending energy
profile for L in descending steps (..., AE,_1,AE,,AE, 1,
...) towards convergence. In most memory implementations,
the energy incurred per update to traverse this barrier E°
is irreversibly lost and dissipated as heat. While energy per
memory update could be relatively small (for example 13f]J
for a single RRAM write [5]), when combined with the
total computational requirements for training (which could be
greater than 1023 for transformer networks), the energy cost
could be prohibitively high. As a result, conventional memory
elements are unable to exploit the dynamics of the learning
process to optimize its energy efficiency, leading to the update-

wall. In [7] we introduced a LIM paradigm where the energy
barrier height EY separating consecutive memory states during
the training process can be adapted, as shown in Fig. 2(c).
We showed that by matching the memory retention rates to
the process of weight decay used in ML training, energy
efficiency could be significantly improved. Here, we derive
analytic expressions that will connect the thermodynamics of
learning and memory retention with the celebrated Landauer
limit.

A. Landauer thermodynamic energy limit

Landauer [2], [3] established physical limits on the energy
efficiency of computation based on the thermodynamics of
dissipative systems implementing the computation in an irre-
versible manner, incurring a loss of energy in exchange for
negentropy at a rate of k7 log(2) per bit, roughly 3 x 10721 J
or 18 meV at room temperature. However, in practice, states
in typical digital systems are separated from each other by
energy-barrier greater than 10 k7" due to memory retention re-
quirements. Also, the Landauer limit is achievable only under
adiabatic conditions where the state-transition rate is asymptot-
ically near zero. Below we derive analytic expressions that will
show how the memory energy-barrier (or the metaplasticity of
a synapse) can be modulated such that training proceeds at
a finite rate (information rate) while asymptotically achieving
reliable parameter storage (for inference).

B. Energy-barrier profile and energy dissipation

Fig. 2(b) shows a potential-well configuration with two
memory states wq,,—1 and wq,,, separated by an energy-barrier
ED. At steady-state equilibrium, reached at convergence in
the loss L, the potential well for both states are symmetrical
with respect to the barrier-height, such that the state update
rate (or equivalently, transition probability) R" is symmetrical,
identical from wg,—1 to wq,, and vice versa, and given by

0
R® = Ryaz €Xp (—%) . (1)

R,.q2 1s a process and device-specific constant that corre-
sponds to the spontaneous rate in the absence of a barrier.
For reliable storage, the transition rate (1) should be R% — 0
implying a barrier height E0 > kT such as > 109kT.
However, during training, away from equilibrium, an energy
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Fig. 3. (a) Energy barrier-height versus gradient energy for different normalized update rates R; and (b) Normalized Update-rate and memory barrier height

for a specific learning-rate profile.

differential AFE,, applies across the potential wells as shown
in Fig. 2(d), and the rates across the barriers differ from each
other as given by

E° 1
Ry_1on = RSL + R, = Ras exp (_W)
E? 1
Ry_1en = R% — Ry, = Rpyaz €xXp (_ n];T<—n> )

where EY_, . = E%_,_, — AFE,, and with a net transition
rate in the learning update given by the two-sided differential
2R,. Hence, the parameter R, quantifies the update-wall.
Note that 0 < R,, < R%. From Eqn. (2) one obtains

EO\ exp(—5E:) -1
Rn:R’r ax €X - '¢. 3
Eqn. (3) leads to
Rmaw —&88n) 1
E = kTlog Lo (=) o)
Ry exp (—57+) +1

which specifies how the barrier-height E? should change with
respect to time n for a given information-rate R,, and extrinsic
energy AF,.

Eqn. (4) could now be connected to the physics of learning
by noting that the extrinsic energy AF,, required to support
the update-rate R, is provided by the change in network
energy (or loss) function AL, in Fig. 2(c). The change in
loss-function can be written in terms of the change in the
parameters Awg ,, as

D
AL -3 (aaLn

w,
a=1 d,n

> Awg,p ®)

where the factor D accounts for the number of training
parameters. If the parameter w, is adapted according to the
steepest gradient-descent rule (or equivalently the Lyapunov’s
criterion) then

0Ly,

€
" 6wd7n

(6)

Awd’n = —

where €, is the learning rate at time instant n. Substituting
Eqgn. (6) into Eqn. (5) leads to an expression that relates the
extrinsic energy applied to each memory element to square
magnitude gradient update energy as

2
AE, = —kTe, ( 0Ly )
8u}d,n

where the thermal energy kT has been introduced as a
normalization factor. Assuming that the gradient is bounded

2
L,
D n) <1, Eqn.

from above or, without loss of generality, (
(4) leads to a general relationship

Rmuw €xp (6”) -1
R,  exp(en)+1

that connects the memory energy barrier-height modulation
(or synaptic metaplasticity) to two learning parameters: (a)
the update-rate R,, quantifying the update-wall; and (b) the
learning-rate €, quantifying the consolidation-wall. We will
further study this relationship in the next section with some
simple case studies.

E? > kT log [ (7)

III. THEORETICAL RESULTS

Fig. 3(a) plots the barrier-energy profile E° according to
Eqn. (4) as a function of the energy gradient A E,, for different
values of update rates R,. Note that during the process
of learning, computation proceeds at a fixed rate R, > 0
but asymptotically as n — oo, R, — 0, ¢, — 0, and
E° 3 kT10g[Rmas/R°] which is the equilibrium potential-
well configuration in Fig. 2(b). Different learning algorithms
will traverse this space along different trajectories, as shown in
Fig. 3(a). In the process, the total energy dissipated is given
by Egissn = E? + AE, per computational step where the
assumption is the external energy A F,, that is supplied cannot
be recovered. Initially, at n = 0 the learning-rate and barrier-
height are set such that the update-rate proceeds at a maximum
value or Ry = Rynq.. To satisfy the asymptotic conditions
E® — kT log[Rymax/R2] and €, — 0 as n — oo, the update-
rate R,, could proceed according to R, ~ Rmme,lfo‘ where
0<a<l
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Fig. 4. Energy efficiency spectrum of computation interfacing to memory, relative to the thermodynamic limit.

Fig. 3(b) plots the update-rate profile and barrier-height
profile when the learning-rate follow the asymptotics €, =
O (1/n). As expected, the barrier-height initially is low and
then increases to support the memory retention requirements.

IV. DISCUSSIONS AND CONCLUSIONS

The thermodynamic analysis presented in this paper and
in particular Eqn. (7) describes how the memory energy
barrier-height is connected to two important parameters: (a)
the parameter-update rate; and (b) the learning-rate, both
which determine two of the three performance walls, namely,
the update-wall and the consolidation-wall. For instance, the
update-wall is reflected in the profile of the update-rate R,
for each of the parameters and Eqn. (7) shows how a spe-
cific update-profile R,, can be achieved by modulating the
barrier-profile according to Fig. 3(a), hence, the learning-in-
memory paradigm. Similarly, the learning-rate €, determines
the consolidation-wall. Several adaptive synaptic models have
been proposed [10], [11] that show how a specific learning-rate
profile can lead to optimal information transfer-rate between
short-term and long-term memories. In the LIM paradigm, the
memory energy-barrier can be modulated to also control ¢,
according to Eqn. (7). Energy-barrier modulation supporting
the LIM paradigm could be implemented in a variety of
physical substrates using emerging memory devices. For in-
stance, recently, we reported a dynamic memory device [7] that
could also be used to modulate the memory retention profile
and could be an attractive candidate to implement the LIM
paradigm. However, note that to approach the fundamental
energy limits of training/learning one would need to address
all three performance walls. Fig. 4 summarizes some of
the computation-to-memory interfaces that could address this.
Compute-in-memory (CIM) alternatives where the computa-
tion and memory are vertically integrated in massively parallel,
distributed architecture (Fig. 4, center) offer substantially
greater computational bandwidth and energy efficiency in
memristive neuromorphic cognitive computing [5] approach-
ing the nominal energy efficiency of synaptic transmission in
the human brain [6]. Resonant adiabatic switching techniques
in charge-based CIM [9] further extend the energy efficiency

by recycling the energy required to move charge by coupling
the capacitive load to an inductive tank at resonance, providing
a path towards efficiencies in cognitive computing superior to
biology and, in principle, beyond the Landauer limit by over-
coming the constraints of irreversible dissipative computing.
It is an open question whether the learning-in-memory energy
bounded by Eqn. (7) could also be at least partially recovered
through principles of adiabatic energy recycling.
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