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Building the Model

Challenges and Considerations of Developing and Implementing Machine Learning
Tools for Clinical Laboratory Medicine Practice

He S. Yang, PhD; Daniel D. Rhoads, MD; Jorge Sepulveda, MD, PhD,; Chengxi Zang, PhD; Amy Chadburn, MD; Fei Wang, PhD

® Context.—Machine learning (ML) allows for the analysis
of massive quantities of high-dimensional clinical labora-
tory data, thereby revealing complex patterns and trends.
Thus, ML can potentially improve the efficiency of clinical
data interpretation and the practice of laboratory medi-
cine. However, the risks of generating biased or unrepre-
sentative models, which can lead to misleading clinical
conclusions or overestimation of the model performance,
should be recognized.

Objectives.—To discuss the major components for
creating ML models, including data collection, data
preprocessing, model development, and model evaluation.
We also highlight many of the challenges and pitfalls in
developing ML models, which could result in misleading
clinical impressions or inaccurate model performance, and
provide suggestions and guidance on how to circumvent
these challenges.

Data Sources.—The references for this review were
identified through searches of the PubMed database, US

Machine learning (ML)" has emerged as a powerful tool
for analyzing and interpreting laboratory test results
as well as integrating clinical findings with laboratory data.?
Inrecent years, there has been a surge of interest in using ML
in the clinical laboratory to predict the accuracy of measured
laboratory results,? identify preanalytical errors,® interpret
complicated biochemical laboratory panels®® and molecular
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Food and Drug Administration white papers and guide-
lines, conference abstracts, and online preprints.

Conclusions.—With the growing interest in developing
and implementing ML models in clinical practice, labora-
torians and clinicians need to be educated in order to
collect sufficiently large and high-quality data, properly
report the data set characteristics, and combine data from
multiple institutions with proper normalization. They will
also need to assess the reasons for missing values,
determine the inclusion or exclusion of outliers, and
evaluate the completeness of a data set. In addition, they
require the necessary knowledge to select a suitable ML
model for a specific clinical question and accurately
evaluate the performance of the ML model, based on
objective criteria. Domain-specific knowledge is critical in
the entire workflow of developing ML models.

(Arch Pathol Lab Med. 2023;147:826-836; doi: 10.5858/
arpa.2021-0635-RA)

results such the polymerase chain reaction (PCR),” establish
population-specific reference intervals,'®* automate analy-
sis of digital images, '™ improve test utilization,'>'® enhance
quality review,'” and predict the onset and behavior of
human diseases.’®?° Selected examples are listed in the
Table. The objective interpretation provided by ML can also
be used as a tool to support decisions in laboratory medicine
practice.?* The clinical laboratory, at the interface of
massive amounts of patient data and objective and subjective
clinical practice, is the optimal area of medicine to lead the
development, implementation, and integration of ML
models for patient care.

Laboratory medicine is data rich owing to the enormous
volume of laboratory test results produced by different
sections of the clinical laboratory.* It is estimated that up to
70% of the data in the electronic health record (EHR) are
derived from the clinical laboratory.* Most of these data are
test results reported as individual numerical or categorical
values in a structured format. Patient laboratory test profiles
are high-dimensional data sets, as each patient usually has
multiple individual laboratory test results generated from a
single physician visit as well as longitudinal test results to
monitor “wellness” status or to follow one or more disease
processes.” The enormity of the data, including the number
of tests and interdependent multidimensional relationships
of different test results, is difficult for us, as humans, to

Developing Machine Learning Models in Lab Medicine—Yang et al
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Model Development

by AR

Four major components in the workflow of developing machine learning (ML) models: data collection (A), data preprocessing (B), ML

model development (C), and ML model evaluation (D). The analysis of laboratory data may require several iterations of the above steps.
Abbreviations: AUC, area under the receiving operating characteristic curve; EHR, electronic health record.

interpret without computational assistance. To compensate
for this complexity, medicine often uses data simplification
methods, including scoring tools, such as APACHE* and
MELD.?” However, optimal ML algorithms, which can
evaluate larger data sets, have the potential to more
accurately and automatically predict disease acuity, diagno-
sis, and prognosis. An ML approach could also identify
vitally important minor variables that are not incorporated in
current manual scoring models. Thus, ML technology not
only offers tools to analyze massive quantities of clinical data
but also can discover “hidden” patterns behind the data.
The development of ML models for laboratory data
analysis requires 4 major components: data collection, data
preprocessing, model development, and model evaluation
(Figure 1, A through D). Although there is an increasing
number of reports on a variety of applications for ML in the
clinical laboratories,®** only a few publications have
focused on the challenges and pitfalls of each of these

828 Arch Pathol Lab Med—Vol 147, July 2023

components. While ML holds tremendous potential to
improve laboratory medicine practice efficacy, there is also a
risk of generating biased or unrepresentative models,
leading to misguided conclusions or overoptimistic estima-
tions of model performance. Furthermore, despite familiar-
ity with traditional data approaches, many laboratory
professionals are not familiar with the workflow of ML
analysis, resulting in a knowledge gap with respect to the
development, understanding, and use of ML models. To
address these issues, this review will discuss key consider-
ations for each of the 4 major components of ML model
development, highlight the challenges of developing and
evaluating an ML model, and discuss the steps for creating a
new ML algorithm for use in the clinical laboratory setting.

DATA COLLECTION

The collection of sufficiently large high-quality data sets is
of paramount importance for building an ML model. An

Developing Machine Learning Models in Lab Medicine—Yang et al



ideal training data set should cover the variability of samples
across the demographic and geographic spectrum of the
patients served by the laboratory, as well as the different
aspects of their diseases, including associated comorbidities
and temporal variations. An example of such a comprehen-
sive training data set, collected by Cohen et al,'® was to build
personalized models consisting of 2.1 billion laboratory
results obtained from 92 different laboratory tests performed
for 2.8 million adults during a span of 18 years. The
multivariate longitudinal analysis, based on trajectories of
the patients” within-normal laboratory test results, predicted
individual patient risks of future laboratory abnormalities
and subsequent related diseases. The model had the added
value of establishing age-adjusted reference ranges for a
variety of laboratory tests. In contrast, insufficient or
nonrepresentative training data may lead to discrepant
model performance between the training set and an
independent test data set. The size of the data set required
by a specific ML model depends on its complexity, that is,
the number of parameters to be included in the model.
Complex ML models, such as deep neural networks,? built
upon insufficient training samples, tend to be sensitive to
changes in data distribution. As such, the model cannot be
generalized to the real-world setting, as it would lead to
unintended bias in decision-making. For example, a model
predicting acute kidney injury would be biased if a
disproportionate amount of data was collected from White
patients without sufficient data from other racial groups.
Similarly, a prediction model of COVID-19 disease pro-
gression would not perform well in the intensive care unit
setting if the training set was collected from outpatients.
Therefore, the completeness, quality, and appropriateness of
the data set should be carefully evaluated before training an
ML model.

Equally important is the transparent reporting of data set
characteristics from which an ML model is trained, as these
data directly affect the reproducibility, generalizability, and
interpretation of an ML model.***' However, to the best of
our knowledge, there are no specific guidelines for the
development and application of ML in laboratory medicine.
Reporting guidelines, such as the 25-item Consolidated
Standards of Reporting Trials (CONSORT)*? and the 33-
item checklist on the Standard Protocol Items: Recommen-
dations for Interventional Trials (SPIRIT),* which mainly
apply to clinical trials or health care studies in general, were
recently extended to include clinical trials evaluating
interventions with an artificial intelligence (Al) compo-
nent.?* In addition, the MINimum Information for Medical
Al Reporting (MINIMAR) guideline has been proposed for
general Al models developed for enhancing “clinical
decision-making for diagnosis, treatment and prognosis.”*
The MINIMAR guideline outlines the essential components
that should be reported, including the study population and
setting, data source and cohort selection criteria, and patient
demographic characteristics such as age, sex, race, ethnicity,
and socioeconomic status. These factors are also crucial in
reporting the ML models developed for clinical laboratory
medicine. Moreover, the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) statement also provides guidelines,® in
the form of a 22-item checklist, for the standardization of
ML model reporting. The TRIPOD guidelines were used by
Than et al'® in their study using ML to predict myocardial
infarction.

Arch Pathol Lab Med—Vol 147, July 2023

Collection of a sufficiently large and comprehensive data
set from a single institution is sometimes challenging. Thus,
integration of clinical laboratory data from multiple sites
may be necessary. The establishment of clinical collaborative
consortia involving multiple institutions, such as the
Observational Health Data Science and Informatics (OHD-
SI)%¢ and the National Patient-Centered Clinical Research
Network (PCORNET),* is vitally important. While data
from multiple institutions could improve the performance of
ML models, the variations among the different laboratories,
including instrument platforms, test methodologies, test
reagents, and sample handling, pose technical difficulties for
data aggregation. For example, the mean test result of
neonatal total bilirubin from the same proficiency testing
sample performed on several different chemistry analyzers
using diverse methodologies ranged from 14.96 to 19.77 mg/
dL.* Therefore, before combining interinstitutional data, it
is important to understand the distribution, that is, mean
and variation, of each laboratory test as well as the number
of samples from each platform to align the results across
multiple platforms.

The issue of laboratory data normalization is complex, and
there is no universally agreed-upon standardized approach.
If there is no proportional bias between assays, this can be
accomplished by using data normalization (eg, with z-score,
standard deviation units, multiple of median, reference
change values) with respect to each assay before aggrega-
tion. If there are parallel comparison studies and the assays
are linear, linear regression can be used, with the slope of
the regression line and the intercept adjusting for propor-
tional bias and systematic bias, respectively.® If there are no
method comparison studies, normalization can be achieved
by harmonizing distributions and reference intervals,*
although these normalization methods may not preserve
all the information content of the original results.*!

Vital sign names, laboratory test names, and measure-
ment units should also be normalized between all facilities
from which the cohorts are derived, using appropriate
ontologies, such as the Logical Observation Identifier
Names and Codes (LOINGC; https://loinc.org, accessed June
15, 2022),*** Ontology of Units of Measure,** or Disease
Ontology.* In the data collection step, domain expertise is
necessary to determine if the results of an analyte
determined by different methodologies can be combined.
For example, tacrolimus levels in transplant patients,
measured by immunoassay, may require complex normal-
ization to be combined with results obtained by mass
spectrometry, as the latter assay is specific to the tacrolimus
molecule, whereas the former assay cross-reacts with
tacrolimus metabolites.**

Differences in ordering practices can introduce bias when
aggregating data from multiple institutions. One approach is
to analyze ordering practices separately to ascertain bias by
using mean abnormal result rates*® or Bayesian test
utilization statistics.* Another potential source of bias is
relying on labeling designed for billing, such as the
International Classification of Diseases, which may not be
accurate or contain enough details for the purposes of the
ML project. Manual review of health records and automated
natural language processing tools to extract the relevant
information from the EHR® may result in better data for ML
development.

An algorithm for the interpretation of primary data, such
as digital images, can be developed by using data from the
laboratory in which the algorithm will be deployed.”*

Developing Machine Learning Models in Lab Medicine—Yang et al 829



Interpretations may be different in different laboratory
practices, such as the microbiology laboratory.” If the ML
tool is intended to be used as an aid in the interpretation in
multiple laboratories, then additional preprocessing steps
are usually needed in the workflow to ensure data inputs are
interpreted similarly and accurately.’ In addition, uncom-
mon findings can confound model interpretation if the
model has not been trained how to interpret them.>!
Uncommon inputs can be amplified in the training set by
augmenting the limited training inputs that are available.”"

DATA PREPROCESSING

The quality of data is also critical for the development of an
optimal ML model.?* Sensible model performance stems
primarily from high-quality training data with a minimum
number of missing values and outliers. Missing values can
result from systematic missingness and/or random missing-
ness. For instance, laboratory tests are not always ordered on
a regular basis for all patients in clinical practice, especially
with different institutional practices, leading to systematic
missing values. This “missingness” can be mitigated by ML
approaches. Systematic missing values, however, can be
informative in identifying temporal patterns of laboratory
ordering missingness.® In contrast, random missing values
occur when a laboratory test cannot be performed or reported
owing to preanalytical and analytical issues, such as the wrong
tube type, insufficient sample volume, substance interference,
or sample out-of-stability range (time or temperature). Thus,
the missing value rate of each laboratory test should be
assessed before training an ML model. For laboratory tests
with a missing rate exceeding a certain threshold (eg, 30%),
an investigation into potential reasons for the high missing
rate and an evaluation of the reliability of the remaining
available data are necessary to determine if the data are
suitable for model training. Our investigation of laboratory
test result profiles in patients with SARS-CoV-2 infection
showed that the missing data rate of specific laboratory tests
changed over time from the initial COVID-19 outbreak in
March and April 2020 to a period of declining infections in
May and June 2020. Particularly in our hospital, inflammatory
markers, such as ferritin, C-reactive protein, and procalcitonin,
were ordered frequently for patients with COVID-19 in March
and April but were ordered less frequently in May and June.
Thus, the missing rate of these tests was higher in the post-
apex phase of COVID-19. One should also determine
whether it is reliable to impute the missing values from the
remaining results by using techniques such as multiple
imputation.>

In addition, outlier laboratory results, specifically those
exceeding 3 times the standard deviation from the mean of
that specific test if the distribution is normal, can occur
owing to (1) pathophysiologic reasons, for example,
exceptionally elevated creatinine kinase level in rhabdomy-
olysis cases® or unusually high troponin level in the setting
of septic shock®; (2) preanalytical errors, for example, wrong
tube type or sample out of stability®’; or (3) analytical errors
such as those caused by instrument or reagent issues. These
outliers can skew the ML process. It is therefore recom-
mended to check the distributions of laboratory results,
through statistical means such as a box plot or a violin plot,
to identify the outliers before initiating the process of
developing an ML model. The causes of the outliers should
be investigated to determine whether to include or exclude
specific results. Thus, while some outliers may be informa-
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tive, requiring separate treatment using, for example, the
robust loss function,®® others are erroneous and should be
removed.

Furthermore, when interpreting images in the laboratory
using ML tools, it may be appropriate to preprocess the data
to ensure all data inputs are normalized in size, color shift,
and magnification.'? It may also be appropriate to downsize,
flatten, or remove the complexity of image data in order to
decrease the computational burden needed to develop the
model.

Missing values and outliers are often not easily recog-
nized by manual inspection of the data. Visualization of the
data structure before training and tuning ML models
allows for a quick evaluation for possible problems in data
preprocessing. Visualizing the structure or distribution of
the data also facilitates better understanding of the data
and an opportunity for inspiring insights into the selection
of ML models. The high-dimensional data obtained from
clinical tests are challenging to visualize directly. As such,
dimension reduction and embedding techniques can be
used to map high-dimensional data to 2D or 3D low-
dimensional spaces while exhibiting their local and global
structures. Commonly used visualization methods include
principal component analysis (PCA), t-distributed stochas-
tic neighbor embedding (t-SNE), and unified manifold
approximation and projection (UMAP) analysis. Specifi-
cally, PCA is a linear transformation that projects original
higher-dimensional data into a lower orthonormal space in
which each dimension tries to preserve as much of the
data’s variation as possible. t-SNE directly solves for low-
dimensional coordinates of high-dimensional data sam-
ples, which preserves the local neighborhood structures of
the data samples in their original high-dimensional space.
UMAP learns an explicit mapping function to achieve the
same goal as t-SNE such that the embeddings can be
conveniently extended to unseen testing data. A simplified
example is shown in Figure 2, A through D, where a
mixture of four 3-dimensional Gaussian distributed data is
projected onto a 2-dimensional space by using PCA, t-
SNE, and UMAP analysis. Overall, these visualization
methods show to some extent the underlying structure of
data distribution and allow insights into the complexities of
the clinical questions that the ML model will be designed
to address. For instance, t-SNE analysis revealed intrinsic
distinctions between the clotted and no-clot-detected
samples, based on the results of a panel of coagulation
tests, which supported the development of backpropaga-
tion neural networks to automatically identify clotted
specimens.” In addition, UMAP analysis visualized the
distinct differences in laboratory test result profiles
between SARS-CoV-2 reverse transcription-polymerase
chain reaction (RT-PCR)-positive and RT-PCR-negative
patients, which was used to improve the understanding of
an ML model performance in predicting SARS-CoV-2
infection in emergency department patients.®

After missing values and outliers in a data set are
properly accounted for, an appropriate mathematical
representation form should be constructed that collects
all laboratory test results for the downstream ML task. The
“appropriateness” of such representation is dependent on
the clinical problem and the specific ML model. For
example, the results of a collection of laboratory tests for
a particular patient are represented as a vector, with each
dimension of the vector corresponding to the value of a
specific laboratory test. This vector can be used to build an

Developing Machine Learning Models in Lab Medicine—Yang et al



A Original

B PCA

Figure 2.

Hlustration of different dimension reduction algorithms on the same synthetic data set. A, The synthetic data points were sampled from a

mixture of four 3-dimensional Gaussian distributions. High-dimensional data in the real world may not be Gaussian or with clear clusters. Here,
different colors are used to represent different Gaussian distributions as a simplified example. B, The first 2 principal components of the principal
component analysis (PCA) on the original data. In this example, PCA is not able to distinguish original data in the linearly transformed 2-dimensional
space. C, The first 2 dimensions of the original data transformed by t-distributed stochastic neighbor embedding (t-SNE) analysis, which is a nonlinear
dimension reduction technique. PCA analysis is used for initialization before t-SNE to keep the global structure of the original data. Here, t-SNE
analysis can distinguish different data clusters in a 2-dimensional space. D, The first 2 dimensions of the original data transformed by unified manifold
approximation and projection (UMAP) analysis, another nonlinear dimensionality reduction technique. UMAP analysis successfully distinguishes 4

data clusters in a lower space after PCA initialization.

ML model to predict clinical outcomes for patients in
particular clinical settings, for example, SARS-CoV-2
infection.®’ There are other clinical scenarios where the
temporal trends of specific laboratory tests are investigated.
In these situations, the values of laboratory tests over time
are concatenated in longitudinal sequences.®® Time series
analysis and ML have also been used to calculate the
“shelf-life” of a laboratory result®® and to optimize
repeated ordering practices.®*®® Some commercial autoML
software or cloud service automates the data preprocessing
steps, including data cleaning or representation construc-
tion, in order to simplify the workflow and save users’
effort. However, it is recommended to inspect the inputs
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and outputs of the autoML software for optimizing ML
model performance as well as debugging errors.

MODEL DEVELOPMENT

The suitability of an ML approach for a particular
application depends on how the data and labels are
collected as well as the availability of the data during the
ML model training process. There are 3 basic approaches in
ML: (1) supervised learning, (2) unsupervised learning, and
(3) reinforcement learning. (1) Supervised learning builds a
model by mapping the input feature variables to a target
variable, which could be numerical (a.k.a. regression) or
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categorical (a.k.a. classification). Supervised learning algo-
rithms are suitable for clinical situations where the training
data and their corresponding labels can be collected offline
with relationships that are assumed to be consistent with
the unknown test data. Thus, the ML model trained by
training data can be used to predict the value or
classification of unknown observations. For example, a
random forest model built on plasma concentrations of a
panel of steroids resulted in an accurate classification of
patients with or without primary aldosteronism.®® Addi-
tionally, an ensemble of 3 supervised ML models predicted
the interpretation of a plasma amino acid profile, thereby
supporting the diagnosis of inherited metabolic disorders.®
(2) Unsupervised learning, such as clustering or unsuper-
vised dimensionality reduction, aims to build models to
better characterize data when specific outcomes are not
available or are unknown beforehand. Unsupervised learn-
ing is a discovery type of analysis to better understand the
subgroups in a data set.®” For example, Su et al®® identified
subphenotypes of patients with COVID-19 by performing
hierarchical agglomerative clustering on laboratory test
profiles at their onsets.®* (3) Reinforcement learning aims
to learn a sequence of actions toward a specific goal by
maximizing certain cumulative rewards. Reinforcement
learning is suitable for dynamic online learning scenarios
where the data and labels come in gradually and their
distributions may change over time.®® Komorowski et al*
applied reinforcement learning to adjust the dosage of
vasopressors in intravenous fluids for treating septic patients
in the intensive care unit, with the goal of maximizing
patient survival. Therefore, it is necessary to first specify the
problem formulation and then select the appropriate
learning model candidates.

The intended audience and intended use should also be
considered when generating an ML system. For example, an
ML model could be designed to alert a nurse on the floor
that the patient might be at the beginning stages of sepsis,*
or to interpret whether a laboratory testing is positive or
not.° Depending on the intended audience and use, the
performance target of the algorithm may differ. For
example, if alerting the nurse of possible sepsis, the
acceptable limit of falsely positive results may be higher
than for interpreting a PCR fluorescent curve in a laboratory
setting.

The data input also needs to be considered, including
sample size and number of independent variables, that is,
feature dimensions, in the sample representations. A
general rule is that the sample size needs to be at least on
the same level as feature dimensions for the ML model
learning in order to be properly fit. However, some deep
learning models™ are particularly “data hungry” and may
require orders of magnitude more samples than feature
dimensions. For example, a deep learning model built on a
data set of 159 969 expert-annotated serum protein
electrophoresis entries resulted in highly accurate identifi-
cation and quantification of monoclonal gammopathies.”
However, if the amount of data is not sufficiently large,
strategies such as dimension reduction” and model
pretraining” could be considered. Dimension reduction
methods reduce the number of features so the model can be
more reliably trained.” For example, PCA™ maps the
original high-dimensional feature space to a low-dimen-
sional space with maximal information preservation through
linear transformation, and deep autoencoders™ achieve the
same goal with nonlinear transformation. Eventually, an
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appropriate ML model should be chosen to match the
clinical task and the size of available data sets. Choosing
such a model may well result in a trade-off among
sensitivity, specificity, and accuracy, as well as computa-
tional cost. When developing an algorithm attempting to
identify rare errors or uncommon results, it may be
necessary to augment the data set with available real error
data or uncommon results.”

Most ML models involve hyperparameters, which are
parameters defining the model architecture, controlling the
learning process, and determining the values of model
parameters, such as the number of trees in a random forest
model or the number of clusters in a K-means model. The
values of model hyperparameters cannot be estimated from
training data; instead they are usually specified by the users.
The process of searching for model hyperparameters is often
referred to as hyperparameter tuning. For predictive
modeling, cross validation can be performed to determine
the best model hyperparameter settings. For clustering,
quantitative model selection criteria, such as the Bayesian
information criterion”” or Akaike information criterion,”® can
be used to select the optimal number of clusters.

MODEL EVALUATION

Last but not least, model performance is evaluated with a
diverse set of criteria, such as accuracy, sensitivity or recall,
precision or positive predictive value, specificity, and area
under the receiver operating characteristic curve (AUROC)
for predictive models, while normalized mutual informa-
tion” or the Silhouette index® is used for clustering models.
The receiver operating characteristic (ROC) curve is used to
depict the performance of a binary classification model,
based on its sensitivity and specificity as the threshold
changes (Figure 3, A and B). The ROC curve helps to
visualize the trade-off between the true-positive rate and
the false-positive rate of an ML model using different
thresholds: sensitivity increases with the compromise of
specificity, and vice versa. Higher sensitivity may be needed
for ML-based classification models that generate screening-
type alerts (yellow star in Figure 3), whereas high specificity
may be needed for models used for the purposes of disease
confirmation (green star). The ROC curve is more appro-
priate when positive cases and negative cases are relatively
balanced. AUROC represents the ability of a classifier to
distinguish between 2 classes. The higher the AUROC, one
can assume better performance of the classifier. However,
no AUROC threshold can guarantee successful model
application in clinical practice. For rare diseases, an AUROC
value could be misleading because of the extreme imbalance
between patients with and without the outcome event. In
such a situation, the precision-recall plot, which is a plot of
precision on the y-axis and the recall on the x-axis, is
recommended to visualize model performance for an
imbalanced data set (Figure 3, B). The precision-recall plot
illustrates the trade-off between the true-positive rate and
positive predictive value for a predictive model using
different thresholds.

To measure the sensitivity and specificity of a model, an
operating point on the ROC curve corresponding to a
particular threshold should be determined. The operating
point is the optimized threshold chosen to maximize
model performance in the training set. The selection of an
operating point could be based on clinical needs, or
compared with a gold standard, such as human manual
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adjudication. Alternatively, the maximum Youden index®!
can be chosen, where the sum of sensitivity and specificity
is the highest on the ROC curve (red star in Figure 3, B), as
shown in Yang et al.®* Once the operating point of an ML
model is chosen, a confusion matrix, as well as precision,
recall, and accuracy, can be calculated to summarize the
model performance. Precision in this context is the same
as positive predictive value, which indicates the proportion
of positive cases that were correctly identified. Sensitivity
or recall indicates the proportion of actual positive cases
that are identified correctly (Figure 3, B). It is noteworthy
that some of these measures, when used alone, may be
misleading in certain clinical scenarios. For example,
prediction accuracy can lead to over-optimistic results
when predicting rare clinical outcomes.®* Therefore, it is
strongly recommended to use multiple criteria to com-
prehensively evaluate model performance rather than a
single criterion.

When conducting a quantitative evaluation, the entire
data set should be partitioned into nonoverlapping training,
validation, and testing sets (Figure 3, A). This is to avoid the
issue of model overfitting, that is, the learned model fits the
training data perfectly, but its performance does not
generalize well on unseen testing data. Another potential
issue is model underspecification,® which can result in the
model trained in hospital A not “working” for hospital B
because of the “dataset shift” between the hospitals.®*
Therefore, at least one independent external testing data
set is needed for understanding model generalizability.
Moreover, as the ML model is typically developed from
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retrospective data, it is important to evaluate the model in
the prospective setting, since laboratory test results evolve
over time.

Besides quantitative performance metrics, model inter-
pretability is also essential as clinicians prefer to use models
that they can understand, including how conclusions are
reached, and models that align well with their experience
and knowledge.®* In this context, most of the conventional
ML models, such as logistic regression and decision tree, are
self-interpretable owing to their linear or rule-based nature.
In contrast, more recent ML models, such as deep neural
networks, are largely “black boxes.” Although there has
been research suggesting accuracy could be more important
than interpretability,® the assumption is that such accuracy
should be widely tested and proven to be generalizable,
which is challenging in many clinical scenarios. Model
interpretation can transform the quantitative model into
explainable and understandable data, increasing the adop-
tion and generalization of these models. For “black-box”
models, post-hoc interpretation approaches could be
applied for distilling their dark knowledge. Specifically, after
learning, a black-box model can generate an output given
any specific input. Then all model input-output pairs can be
collected and used to learn another more explainable model,
such as the decision tree model or linear model to map these
inputs to their corresponding outputs. The Shapley additive
explanations (SHAP) technique is an approach of this
kind,* decomposing the model prediction for each sample
as an additive integration of the contributions from each
individual feature.
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It is important to realize the workflow of developing an
ML model is not necessarily a one-way, one-time process. It
is usually an iterative process, re-refining every step to
improve the accuracy and generalizability of the model.
When an ML model is deployed in real world of clinical
practice, its performance should be closely monitored, as
there may be changes due to disease evolution, patient
population drift, or testing platform changes.®” Thus, data
need to be continuously collected with constant model
adaptation, that is, fine tuning and retraining of the ML
model over time. For this to be achieved, flexible IT
infrastructure is also needed to facilitate continuous model
improvement.

IMPLEMENTATION OF MACHINE LEARNING MODELS
IN CLINICAL PRACTICE

After optimization and evaluation using criteria as
described above, the ML model is ready for implementation.
Typically, implementation of the model requires less
computational resources than those required for derivation
of the model. Even with large deep neural networks, which
have thousands of feature inputs, the final model may
require only a handful of extracted features for use.
Therefore, relatively simple models can be implemented
by using calculations and rule-based approaches in the
laboratory information systems and/or EHR. Alternatively,
external ML software can be incorporated into the EHR by
using the “app store” concept popularized with cell phone
applications, which is available for major commercial EHR
systems. In addition to allowing third-party ML software to
interact with their system, major EHR developers have
begun to incorporate ML modules, most of which are
concerned with predicting future outcomes and events.
Although these modules may incorporate laboratory data,
specific applications in laboratory medicine are not yet
routinely available. Less desirable is to use external software
that is not connected to the EHR data. However, decision
support systems in the EHR may be able to identify use
cases and provide links and custom HL7/Fast Healthcare
Interoperability Resources (FHIR) interfaces to the external
ML software for further processing.

Despite these advances, many challenges remain to be
overcome before there will be widespread implementation
of ML in the health care system.*®* Some of these
challenges include high cost, privacy and security concerns,
lack of explainability of the model outputs (particularly the
deep learning “black box” systems), unintended bias,
brittleness (susceptibility to irrelevant inputs), and lack of
reproducibility. In addition, many laboratorians and clini-
cians are uncomfortable with the paucity of external
validations as well as the lack of clinical accuracy expressed
as sensitivity and specificity at various cutoff points for
practical clinical application. It is appropriate for laboratories
to consider ML models as test systems and validate these in-
silico tools in a manner similar to how in vitro assays are
validated. Reviewing this validation process before imple-
mentation can identify unexpected failures and potentially
prevent implementing a solution that does not perform as
anticipated.

The regulatory environment is another obstacle impeding
the implementation of ML algorithms in clinical practice.
Just recently the US Food and Drug Administration has
proposed a regulatory framework for addressing the use of
ML algorithms in medical devices, which includes in vitro
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diagnostic testing.” This framework is particularly focused
on adaptive ML technologies that may continually or
iteratively update and improve underlying algorithms as
further inputs and human feedback are obtained. The
regulatory framework relies on premarket review and
approval of prespecified requirements for “Quality Systems
and Good Machine Learning Practices,” including the
prespecification of the types of changes allowed when the
ML system is in use and algorithm change protocols in place
to appropriately control the risks of the predicted modifi-
cations, as well as continuous postmarket review of the ML
performance.”

SUMMARY

The application of ML tools in laboratory medicine is
rapidly expanding, as demonstrated by the exponential
increase in publications during the past decade.”® Mining
laboratory big data has limitless potential to improve the
efficiency of laboratory workflows as well as in assisting in
the interpretation of clinical and laboratory data, and as
such is likely to expand significantly in the near future.
With the growing interest in building ML models,
laboratorians and clinicians will be able to properly collect
data, to combine data from multiple institutions, and to
correctly handle missing data and outliers. In addition,
they will require the necessary knowledge to select a
suitable ML model and properly evaluate model perfor-
mance, based on objective criteria. The role of laboratori-
ans is not just to provide data, but also to use their clinical
knowledge with the data to guide model development, to
correctly interpret the model, and to evaluate its perfor-
mance in the patient care setting. The future of personal-
ized and generalized medicine requires interdisciplinary
collaboration between laboratory medicine and data
science experts to create innovative, accurate ML learning
models, which will advance the medical field, provide
needed support in periods of health care crisis, and best
treat individual patients.

The authors would like to thank Ming Yang, PhD, and Zehra
Abedi, MS, for their efforts on proofreading and editing the
language of this paper.
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