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A second-order accurate (in time) and linear numerical scheme is proposed and analyzed for the nonlocal

Cahn–Hilliard equation. The backward differentiation formula is used as the temporal discretization,

while an explicit extrapolation is applied to the nonlinear term and the concave expansive term. In

addition, an O(Δt2) artificial regularization term, in the form of AΔN(φn+1 − 2φn + φn−1), is added for

the sake of numerical stability. The resulting constant-coefficient linear scheme brings great numerical

convenience; however, its theoretical analysis turns out to be very challenging, due to the lack of higher-

order diffusion in the nonlocal model. In fact, a rough energy stability analysis can be derived, where

an assumption on the �∞ bound of the numerical solution is required. To recover such an �∞ bound, an

optimal rate convergence analysis has to be conducted, which combines a high-order consistency analysis

for the numerical system and the stability estimate for the error function. We adopt a novel test function

for the error equation, so that a higher-order temporal truncation error is derived to match the accuracy

for discretizing the temporal derivative. Under the view that the numerical solution is actually a small

perturbation of the exact solution, a uniform �∞ bound of the numerical solution can be obtained, by

resorting to the error estimate under a moderate constraint of the time step size. Therefore, the result of

the energy stability is restated with a new assumption on the stabilization parameter A. Some numerical

experiments are carried out to display the behavior of the proposed second-order scheme, including the

convergence tests and long-time coarsening dynamics.

Keywords: nonlocal Cahn–Hilliard equation; second-order accurate scheme; higher-order consistency

analysis; rough error estimate and refined error estimate; energy stability.

1. Introduction

The nonlocal Cahn–Hilliard (NCH) equation is taken into consideration, which turns out to be the H−1

gradient flow with respect to the free energy functional with nonlocal interaction effect as follows (Bates

& Han, 2005a,b; Bates, 2006; Bates et al., 2006; Bates et al., 2009; Guan et al., 2017, 2014a,b):

E(φ) =

∫

Ω

(1

4
φ4 −

1

2
φ2 +

ε2

4

∫

Ω

J(x − y)(φ(x) − φ(y))2 dy
)

dx, (1.1)

where ε > 0 is an interfacial parameter and Ω =
∏d

i=1(−Xi, Xi) is a rectangular domain in R
d. The

kernel function J is required to satisfy the following conditions (Du et al., 2018; Li et al., 2021):
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1090 X. LI ET AL.

(a) J(x) � 0 for any x ∈ Ω , and
∫

Ω
J(x) dx > 0;

(b) J is Ω-periodic and even, i.e., J(−x) = J(x) for any x ∈ R
d;

(c) 1
2

∫

Ω
J(x)|x|2 dx = 1,

where condition (c) means that J has a finite second moment in Ω . A nonlocal linear operator is

introduced as L : ψ(x) �→
∫

Ω
J(x − y)(ψ(x) − ψ(y)) dy. Then, using condition (a), it is clear that

L ψ = (J ∗ 1)ψ − J ∗ ψ with the following periodic convolution (Guan et al., 2014b):

(J ∗ ψ)(x) =

∫

Ω

J(x − y)ψ(y) dy =

∫

Ω

J(y)ψ(x − y) dy.

By condition (c), a careful calculation yields an equivalent form of the energy (1.1) as

E(φ) =

∫

Ω

F(φ) dx +
ε2

2
(L φ, φ)L2 , with F(φ) =

1

4
φ4 −

1

2
φ2, (1.2)

and the chemical potential becomes

μ := δφE(φ) = φ3 − φ + ε2
L φ.

As a consequence, the corresponding NCH equation turns out to be

∂tφ = Δμ = Δ(φ3 − φ + ε2
L φ) = Δ[φ3 − φ + ε2((J ∗ 1)φ − J ∗ φ)], (1.3)

subject to the periodic boundary condition. The mass conservation of φ is obvious in the sense that
d
dt

∫

Ω
φ(x, t) dx = 0. In addition, the following diffusivity condition is taken:

γ0 := ε2(J ∗ 1) − 1 > 0. (1.4)

Without such a condition, the solution may exhibit some singular behaviors.

As a nonlocal variant of the classic Cahn–Hilliard equation (Cahn & Hilliard, 1958), the NCH

equation has increasingly attracted attention and been widely used in various areas ranging from

chemistry, material science to finance and image processing. The well-posedness of the NCH equation

(1.3) equipped with Neumann or Dirichlet boundary condition was studied in Bates & Han (2005a,b),

and it was pointed out in Guan et al. (2014b) that the existence and uniqueness of the solution to the NCH

equation subject to the periodic boundary condition may also be established by using a similar technique.

A brief review of some parabolic-like evolution equations was made in Fife (2003), including nonlocal

and pattern-formation problems, along with a comparison between the local and nonlocal equations.

Numerical investigations of nonlocal models have also attracted much attention in recent years. For

a family of nonlocal diffusion equations equipped with various boundary conditions, finite difference,

finite element and spectral approximations were discussed in Zhou & Du (2010), Tian & Du (2014), Du

et al. (2018) and Du et al. (2019b). Bates et al. (2006, 2009) studied �∞ stable and convergent numerical

schemes for the nonlocal Allen–Cahn equation and related equation. An exponential time differencing

method was applied to the nonlocal Allen–Cahn equation to establish first- and second-order accurate,

�∞ stable linear numerical schemes in Du et al. (2019a), and further extended to a class of semilinear

parabolic equations in Du et al. (2021). In particular, the energy stability (induced by the energetic

variational formulation) has played a very important role in the numerical approximations. A theoretical

justification of energy stability has been provided for a few first-order numerical schemes (Guan et al.,

2014b; Li et al., 2021), based on the convex splitting and linearized stabilization ideas, respectively.

For the second-order numerical schemes, the only existing energy stability and convergence analysis
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1091

has been reported for a higher-order convex splitting method (Guan et al., 2014a, 2017). Meanwhile,

the computational cost for such a numerical approach turns out to be expensive, because of an implicit

treatment for the nonlinear term (to ensure the energy stability).

Consequently, a second-order accurate, linear and energy stable numerical scheme is highly desired

for the NCH equation. In fact, this effort has been successful for the classic Cahn–Hilliard model (Li &

Qiao, 2017a,b), in which a stabilization term is added in the numerical scheme and a modified energy

stability is theoretically established. However, these works rely heavily on the higher-order surface

diffusion term in the classic Cahn–Hilliard model, so that the reported methodology is hardly applicable

to the NCH model. In this paper, we propose and analyze a second-order accurate and linear numerical

scheme for the NCH equation, with the energy stability and convergence analysis theoretically justified.

In more details, the second-order backward differentiation formula (BDF2) is chosen as the temporal

discretization, combined with an implicit treatment of the nonlocal term, as well as explicit extrapolation

for the nonlinear term and concave expansive term. Moreover, an O(Δt2) artificial stabilization term is

added in the form of AΔN(φn+1−2φn+φn−1). In turn, this numerical scheme can be solved by using the

fast Fourier transform, so that the nonlocal term does not cause much computation in comparison with

the Laplacian term in the classic Cahn–Hilliard equation. To establish the energy stability, a uniform �∞

bound of the numerical solution is assumed and the requirement for the stabilizing constant turns out

to depend on the unknown numerical solution. Subsequently, we conduct a novel convergence analysis

of the proposed stabilized BDF2 scheme to recover such a requirement, by applying the high-order

consistency analysis, so that the uniform �∞ bound of the numerical solution can be theoretically

justified. A crucial difference with the standard error estimate is that we adopt (−ΔN)−1(ên+1 − ên) to

test the error equation with respect to the numerical error function ên, instead of testing (−ΔN)−1ên+1 as

in a recent work (Li et al., 2021) for the first-order scheme (where (−ΔN)−1 is a spatial discrete operator

to be defined in the next section). In other words, the key point is to use the discrete temporal derivative

of the error function as the test function, rather than the error function directly, which would provide

a higher-order temporal truncation error to match the BDF2 discretization for the temporal derivative.

Resorting to the convergence result, we obtain a uniform �∞ bound of the numerical solution by viewing

it as a perturbation of the exact solution. As a result, the a priori assumption is recovered and a new

condition is derived for the stabilizing constant in the energy stability analysis.

The rest of the paper is organized as follows. In Section 2, the stabilized BDF2 scheme is presented

in the fully discrete form and an energy stability is established with respect to a modified energy under

an assumption of the uniform �∞ bound of the numerical solution. Convergence analysis is presented

in Section 3, which is the main part of the paper, including the high-order consistency analysis, a rough

error estimate based on the stability analysis and a refined error estimate based on a priori bound

obtained by the rough estimate. Consequently, the uniform �∞ bound of the numerical solution is

recovered and the energy stability result is restated under a new requirement on the stabilizing constant.

In Section 4, some numerical experiments are carried out to display the behavior of the proposed

numerical scheme. Finally, some concluding remarks are given in Section 5.

2. The numerical scheme and energy stability analysis

2.1 The Fourier pseudo-spectral spatial discretization

We adopt the two-dimensional Fourier pseudo-spectral method. An extension to the three-dimensional

spatial discretization is straightforward. To simplify the notations in the later analysis, we assume that

the domain is given by Ω = (−1, 1)2 and denote by Cm
per(Ω) the set of all Cm-functions with period 2,
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1092 X. LI ET AL.

along each coordinate direction. Let N be an even number: N = 2K for some K ∈ N; the analyses for

more general cases are a bit more tedious, but can be carried out without essential difficulty. The spatial

variables are evaluated on the standard two-dimensional numerical grid ΩN , which is defined by grid

points (xi, yj) with xi = −1 + ih, yj = −1 + jh, 0 � i, j � N and h = 2/N = 1/K.

The grid function space is defined as

Mh := {f : Z2 → R | f is ΩN -periodic}.

For any grid functions f , g ∈ Mh, the �2 inner product and norm are defined as

〈f , g〉 := h2
N−1
∑

i,j=0

fi,j · gi,j, ‖f ‖2 :=
√

〈f , f 〉.

The zero-mean grid function subspace is denoted as M 0
h := {f ∈ Mh | f = 0} with f := 1

4
〈f , 1〉. For

f ∈ Mh, we have the discrete Fourier expansion

fi,j =

K
∑

�,m=−K+1

f̂ N
�,m exp(π i(�xi + myj)), f̂ N

�,m :=
1

N2

N−1
∑

i,j=0

fi,j exp(−π i(�xi + myj)).

The Fourier pseudo-spectral first- and second-order derivatives of f are defined as

Dxfi,j :=

K
∑

�,m=−K+1

(π i�)f̂ N
�,m exp(π i(�xi + myj)),

D
2
x fi,j :=

K
∑

�,m=−K+1

(−π2�2)f̂ N
�,m exp(π i(�xi + myj)).

The differentiation operators in the y direction, Dy and D2
y , can be defined in the same fashion. In turn,

for any f ∈ Mh and f = (f 1, f 2) ∈ Mh ×Mh, the discrete gradient, divergence and Laplacian operators

are given respectively by

∇N f =

(

Dxf

Dyf

)

, ∇N · f = Dxf 1 + Dyf 2, ΔN f = D
2
x f + D

2
y f .

Moreover, the following summation-by-parts formulas are valid (Gottlieb et al., 2012; Gottlieb & Wang,

2012; Cheng et al., 2016; Li et al., 2021): for any periodic grid functions f , g ∈ Mh and g ∈ Mh × Mh,

〈f , ∇N · g〉 = −〈∇N f , g〉, 〈f , ΔNg〉 = −〈∇N f , ∇Ng〉 = 〈ΔN f , g〉.

In addition, −ΔN is self-adjoint and positive definite, and thus invertible, on M 0
h .
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1093

Since the NCH equation (1.3) is an H−1 gradient flow of (1.2), we need a discrete version of the

H−1 norm defined on M 0
h . For any f , g ∈ M 0

h , we define

〈f , g〉−1,N := 〈f , (−ΔN)−1g〉 = 〈(−ΔN)−
1
2 f , (−ΔN)−

1
2 g〉,

then the discrete H−1
h norm ‖ · ‖−1,N can be introduced as

‖f ‖−1,N :=
√

〈f , f 〉−1,N = ‖(−ΔN)−
1
2 f ‖2, f ∈ M

0
h .

In addition to the standard �2 norm, we also introduce the �p, 1 � p < ∞ and �∞ norms for a grid

function f ∈ Mh:

‖f ‖∞ := max
i,j

|fi,j|, ‖f ‖p :=
(

h2
N−1
∑

i,j=0

|fi,j|
p
) 1

p
, 1 ≤ p < ∞.

The definition of the discrete convolution follows similar notations in Guan et al. (2014b) and Li et

al. (2021). For any ψ , f ∈ Mh, the discrete convolution ψ f ∈ Mh is introduced at a component-wise

level:

(ψ f )ij = h2
N−1
∑

m,n=0

ψi−m,j−nfmn, 0 � i, j � N − 1.

In addition, the following preliminary estimate is needed in the convergence analysis; the detailed proof

has been provided in a recent work (Li et al., 2021), and the finite difference version has been analyzed

in Guan et al. (2014b).

Lemma 2.1 (Li et al., 2021) Suppose J ∈ C1
per(Ω) and define its grid restriction by Jij := J(xi, yj).

Then for any φ, ψ ∈ Mh and any α > 0, we have

|〈J φ, ΔNψ〉| � α‖φ‖2
2 +

CJ

α
‖∇Nψ‖2

2,

where CJ is a positive constant depending on J and Ω , but independent of h.

Given a kernel J satisfying conditions (a)–(c), the discrete version of the nonlocal operator L can

be represented as

LN f = (J 1)f − J f , f ∈ Mh.

It is easy to verify that LN commutes with ΔN , and is self-adjoint and positive semi-definite.

Meanwhile, the discrete version of the energy (1.2) is introduced as

EN(v) = 〈F(v), 1〉 +
ε2

2
〈LNv, v〉, v ∈ Mh.
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1094 X. LI ET AL.

For the sake of brevity, we use ∗, instead of , to denote the discrete convolutions below and the

meaning depends on the functions on both sides of the notation.

2.2 The fully discrete scheme and energy stability analysis

Set Δt as a uniform time step size and {tk = kΔt} as the sequence of discrete time instants. Denote φk

(k � 0) as the numerical solution of the phase variable at time step tk. The stabilized BDF2 scheme is

proposed as follows: given φn, φn−1 ∈ M 0
h , find φn+1 ∈ M 0

h such that

3
2
φn+1 − 2φn + 1

2
φn−1

Δt
= ΔN

(

(φ̆n+1)3 − φ̆n+1 + A(φn+1 − 2φn + φn−1) + ε2
LNφn+1

)

, (2.1)

where φ̆n+1 = 2φn − φn−1.

Since the proposed numerical scheme (2.1) is a two-step algorithm, an accurate approximation for

the phase variable value at t1 is needed in the initialization process. It is well known that a single-step

numerical method would create a numerical solution with higher-order temporal accuracy (than the order

of truncation error) in the first step, if the exact initial data is imposed. Also, see the detailed analysis

in the related works (Guo et al., 2016, 2021) for local Cahn–Hilliard equation, in which a single-step,

first-order semi-implicit algorithm creates a second-order accurate numerical solution in the first step.

For the NCH equation, a higher-order approximation at time step t1 is more preferred, to facilitate the

higher-order asymptotic consistency analysis presented in the later sections. For example, the second-

order Runge–Kutta (RK2) method could be applied in the first step, which in turn gives an O(Δt3 + hm)

approximation at t1, if an exact initial data is imposed.

We have the following result on the energy stability with respect to a modified energy.

Proposition 2.2 For the stabilized BDF2 scheme (2.1), a modified energy dissipation property is

available:

ẼN(φn+1, φn) � ẼN(φn, φn−1), (2.2)

where

ẼN(φn+1, φn) := EN(φn+1) +
A + 1

2
‖φn+1 − φn‖2

2 +
1

4Δt
‖φn+1 − φn‖2

−1,N ,

if the following constraints are valid with CJ dependent only on the kernel J and Ω:

A �
9

2γ0

(‖2φn − φn−1‖2
∞ + ‖φn+1‖2

∞)2 − 1, CJε
4Δt � γ0. (2.3)

Proof. Taking a discrete inner product with (2.1) by (−ΔN)−1(φn+1 − φn) gives

1

Δt

〈3

2
φn+1 − 2φn +

1

2
φn−1, φn+1 − φn

〉

−1,N
+ A〈φn+1 − 2φn + φn−1, φn+1 − φn〉

= −〈(φ̆n+1)3, φn+1 − φn〉 + 〈φ̆n+1, φn+1 − φn〉 − ε2〈LNφn+1, φn+1 − φn〉, (2.4)
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1095

in which summation-by-parts formulas have been repeatedly applied.

For the left-hand side term associated with the temporal stencil, the following estimate is straight-

forward:

〈3

2
φn+1 − 2φn +

1

2
φn−1, φn+1 − φn

〉

−1,N

=
〈3

2
(φn+1 − φn) −

1

2
(φn − φn−1), φn+1 − φn

〉

−1,N

�
3

2
‖φn+1 − φn‖2

−1,N −
1

4
(‖φn+1 − φn‖2

−1,N + ‖φn − φn−1‖2
−1,N)

=
5

4
‖φn+1 − φn‖2

−1,N −
1

4
‖φn − φn−1‖2

−1,N . (2.5)

For the artificial regularization term, the following identity is valid:

〈φn+1 − 2φn + φn−1, φn+1 − φn〉 =
1

2
(‖φn+1 − φn‖2

2 − ‖φn − φn−1‖2
2 + ‖φn+1 − 2φn + φn−1‖2

2).

(2.6)

For the second linear term on the right-hand side, noticing that

φ̆n+1 = φn+1 − (φn+1 − 2φn + φn−1), (2.7)

we have

〈φ̆n+1, φn+1 − φn〉 = 〈φn+1, φn+1 − φn〉 − 〈φn+1 − 2φn + φn−1, φn+1 − φn〉

=
1

2
(‖φn+1‖2

2 − ‖φn‖2
2 + ‖φn+1 − φn‖2

2)

−
1

2
(‖φn+1 − φn‖2

2 − ‖φn − φn−1‖2
2 + ‖φn+1 − 2φn + φn−1‖2

2). (2.8)

The nonlocal diffusion term on the right-hand side can be rewritten as follows:

ε2〈LNφn+1, φn+1 − φn〉 =
ε2

2
(〈LNφn+1, φn+1〉 − 〈LNφn, φn〉)

+
ε2

2
(J ∗ 1)‖φn+1 − φn‖2

2 −
ε2

2
〈J ∗ (φn+1 − φn), φn+1 − φn〉. (2.9)
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1096 X. LI ET AL.

For the term ε2〈J ∗ (φn+1 − φn), φn+1 − φn〉, we apply Lemma 2.1 and obtain

ε2〈J ∗ (φn+1 − φn), φn+1 − φn〉 = −ε2〈J ∗ (φn+1 − φn), ΔN((−ΔN)−1(φn+1 − φn))〉

�
1

2
CJε

4Δt‖φn+1 − φn‖2
2 +

2

Δt
‖∇N(−ΔN)−1(φn+1 − φn)‖2

2

=
1

2
CJε

4Δt‖φn+1 − φn‖2
2 +

2

Δt
‖φn+1 − φn‖2

−1,N , (2.10)

where CJ depends only on J and Ω . Subsequently, a combination of (2.9)–(2.10) yields

ε2〈LNφn+1, φn+1 − φn〉 �
ε2

2
(〈LNφn+1, φn+1〉 − 〈LNφn, φn〉)

+
(ε2

2
(J ∗ 1) −

1

4
CJε

4Δt
)

‖φn+1 − φn‖2
2 −

1

Δt
‖φn+1 − φn‖2

−1,N . (2.11)

For the nonlinear inner product, we begin with the following decomposition:

(φ̆n+1)3 − (φn+1)3 = −((φ̆n+1)2 + φ̆n+1φn+1 + (φn+1)2)(φn+1 − 2φn + φn−1),

where we have used the identity (2.7) again. In turn, the following estimate can be derived:

〈(φ̆n+1)3 − (φn+1)3, φn+1 − φn〉

� −‖(φ̆n+1)2 + φ̆n+1φn+1 + (φn+1)2‖∞ · ‖φn+1 − 2φn + φn−1‖2 · ‖φn+1 − φn‖2

� −
3

2
(‖φ̆n+1‖2

∞ + ‖φn+1‖2
∞) · ‖φn+1 − 2φn + φn−1‖2 · ‖φn+1 − φn‖2

� −
9

4γ0

(‖φ̆n+1‖2
∞ + ‖φn+1‖2

∞)2‖φn+1 − 2φn + φn−1‖2
2 −

γ0

4
‖φn+1 − φn‖2

2. (2.12)

Meanwhile, the following estimate is straightforward:

〈(φn+1)3, φn+1 − φn〉 �
1

4
(‖φn+1‖4

4 − ‖φn‖4
4), (2.13)

which comes directly from the convexity of ‖φ‖4
4 (in term of φ). Therefore, a combination of

(2.12)–(2.13) yields

〈(φ̆n+1)3, φn+1 − φn〉 �
1

4
(‖φn+1‖4

4 − ‖φn‖4
4) −

γ0

4
‖φn+1 − φn‖2

2

−
9

4γ0

(‖φ̆n+1‖2
∞ + ‖φn+1‖2

∞)2‖φn+1 − 2φn + φn−1‖2
2. (2.14)
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1097

Finally, a substitution of (2.5), (2.6), (2.8), (2.11) and (2.14) into (2.4) gives

1

4Δt
(‖φn+1 − φn‖2

−1,N − ‖φn − φn−1‖2
−1,N) +

A + 1

2
(‖φn+1 − φn‖2

2 − ‖φn − φn−1‖2
2)

+ EN(φn+1) − EN(φn) +
(1

2
(ε2(J ∗ 1) − 1) −

γ0

4
−

1

4
CJε

4Δt
)

‖φn+1 − φn‖2
2

+
(A + 1

2
−

9

4γ0

(‖φ̆n+1‖2
∞ + ‖φn+1‖2

∞)2
)

‖φn+1 − 2φn + φn−1‖2
2 � 0.

Making use of the assumption γ0 = ε2(J ∗ 1) − 1 > 0 (given by (1.4)), we get

ẼN(φn+1, φn) − ẼN(φn, φn−1) +
(γ0

4
−

1

4
CJε

4Δt
)

‖φn+1 − φn‖2
2

+
(A + 1

2
−

9

4γ0

(‖φ̆n+1‖2
∞ + ‖φn+1‖2

∞)2
)

‖φn+1 − 2φn + φn−1‖2
2 � 0.

Consequently, under the constraint (2.3), a modified energy stability estimate (2.2) is valid. This

completes the proof of Proposition 2.2. �

Note that the right-hand side of (2.3) involves the �∞ norms of the numerical solutions φn−1, φn

and φn+1. Therefore, we have to justify the lower bound of A by estimating these �∞ norms. As

mentioned before, a direct analysis given in Li et al. (2016) and Li & Qiao (2017a,b) for the classic

Cahn–Hilliard equation may be difficult to be extended to (2.1) due to the lack of higher order diffusion

terms. Instead, by resorting to the idea that the numerical solution can be regarded as a perturbation of

the exact solution, we will perform a local-in-time convergence analysis of (2.1) and then give the �∞

bound of the numerical solution by using the convergence result.

3. Convergence analysis

We use Φ to denote the exact solution to the NCH equation (1.3). The existence and uniqueness of Φ

may be established in a similar technique adopted in Bates & Han (2005a,b), and one can obtain

‖Φ‖L∞(0,T;L∞) +
∥

∥Φt

∥

∥

L∞(0,T;L∞)
� C, (3.1)

for any T > 0. Without loss of generality, we consider the two-dimensional case.

First, we introduce the (spatial) Fourier projection of the exact solution, which satisfies the discrete

mass-conserving property. Let BK be the space of trigonometric polynomials of degree up to K = N/2.

For a fixed time t, let ΦN( · , t) := PNΦ( · , t) be the Fourier projection of the exact solution into BK .

Since 1 ∈ BK , we have a useful property for the Fourier projection:

∫

Ω

ΦN( · , t) dx =

∫

Ω

Φ( · , t) dx. (3.2)
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1098 X. LI ET AL.

If Φ ∈ L∞(0, T; H�
per) for some � ∈ N, the projection approximation is standard:

‖ΦN − Φ‖L∞(0,T;Hk) � Ch�−k‖Φ‖L∞(0,T;H�), 0 � k � �. (3.3)

Then, the rest of the work is to estimate the difference between the numerical solution and the projection

solution ΦN .

Denote Φk
N = ΦN( · , tk). We denote by φk

N := PhΦN( · , tk) the values of ΦN at discrete grid points

at time tk. By (3.2) and the fact that the exact solution Φ is mass conservative at the continuous level,

we have

∫

Ω

ΦN(·, tk) dx =

∫

Ω

Φ(·, tk) dx =

∫

Ω

Φ(·, tk−1) dx =

∫

Ω

ΦN(·, tk−1) dx, ∀ k ∈ N.

Meanwhile, since ΦN ∈ BK and (3.2), the mass conservative property is available at the discrete level:

φk
N =

1

|Ω|

∫

Ω

ΦN(·, tk) dx =
1

|Ω|

∫

Ω

ΦN(·, tk−1) dx = φk−1
N , ∀ k ∈ N.

For the initial value φ0 of the numerical scheme (2.1), we apply the mass conservative projection:

φ0 = PhΦN( · , t = 0), that is, φ0
i,j := ΦN(xi, yj, t = 0). Then, the solution of the numerical scheme

(2.1) is mass conservative, i.e.,

φk = φk−1, ∀ k ∈ N.

And also, corresponding to the regularity (3.1), we have

max
1�j�Nk

∥

∥

∥φ
j
N

∥

∥

∥

∞
+ max

1�j�Nk

∥

∥

∥

∥

∥

φ
j
N − φ

j−1
N

Δt

∥

∥

∥

∥

∥

∞

< C∗.

Notice that the constant C∗ depends on ‖Φ‖C1(0,T;H2), with an application of two-dimensional Sobolev

inequality. Since φk
N and Φk

N have the same values on the discrete grid points, we just use the notation

Φk
N in the following discussions, for the sake of brevity.

With initial data of sufficient regularity, we can assume that the exact solution has regularity as

Φ ∈ R := H5(0, T; C0
per) ∩ H4(0, T; C2

per) ∩ L∞(0, T; Cm+2
per ), m � 3.

The following theorem is the main result on the error estimates of the stabilized BDF2 scheme (2.1).

Theorem 3.1 Suppose the unique, smooth, periodic solution for the NCH equation (1.3), given by

Φ(x, y, t) on Ω for 0 < t < ∞, is of regularity class R. In addition, the constant A is assumed to satisfy

A �
18(M0 + 1)4

γ0

− 1, with M0 = 1 + C∗, C∗ = max
1�j�Nk

(‖Φ
j
N‖∞ + ‖∂tΦ

j
N‖∞). (3.4)
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1099

Then, if Δt and h are sufficiently small, under linear refinement path constraint C1h � Δt � C2h with

fixed constants C1 and C2, we have

‖Φn
N − φn‖2 � C(Δt2 + hm), (3.5)

for all positive integers n such that nΔt � T , where C is independent of h and Δt.

The detailed proof will be presented in the following subsections. First, we will conduct the higher

order consistency analysis to provide a high order truncation error so that the desired order of error can

be recovered by using the inverse inequality. In fact, this approach has been adopted for the numerical

analysis of a large family of nonlinear PDEs, see, e.g., E & Liu (1995), Samelson et al. (2003), Wang et

al. (2004), Baskaran et al. (2013), Guan et al. (2014b), Wang et al. (2015), Guan et al. (2017), Duan et

al. (2020), Duan et al. (2021) and Liu et al. (2021). Subsequently, we carry out the stability estimates

for the numerical error function. Due to the complexity of the nonlinear term, it seems difficult to obtain

the expected results directly, so we have to divide this part into two steps: a rough estimate is first

performed in order to give the �∞ norms of the numerical solution, then a refined estimate is given,

combined with the �∞ bound obtained by the rough estimate, to derive the desired result of convergence

rate. In addition, instead of testing the error equation by (−ΔN)−1ên+1 as usual, we adopt a novel test

function (−ΔN)−1(ên+1 − ên) so that a higher-order temporal truncation error can be obtained to match

the second-order BDF discretization of the temporal derivative. This part is significantly different from

the stability estimate in a recent work (Li et al., 2021).

3.1 Higher-order consistency analysis

By consistency, the Fourier projection solution ΦN satisfies the discrete equation

3
2
Φn+1

N − 2Φn
N + 1

2
Φn−1

N

Δt
= ΔN

(

(Φ̆n+1
N )3 − Φ̆n+1

N + A(Φn+1
N − 2Φn

N + Φn−1
N ) + ε2

LNΦn+1
N

)

+ τ n+1
0 ,

where Φ̆n+1
N = 2Φn

N − Φn−1
N and τ n+1

0 is the truncation error satisfying ‖τ n+1
0 ‖−1,N � C(Δt2 + hm).

With the standard stability estimates, one can bound the H−1
h norm of the numerical error Φn

N −φn by the

same order O(Δt2 +hm). However, this convergence order is not enough to recover the �∞ bound of the

numerical solution and its discrete temporal derivative after the inverse inequality is used. To overcome

this difficulty, we will construct a supplementary field to correct ΦN so that a higher O(Δt3 + hm)

consistency can be obtained, which is enough to recover the �∞ bound of the numerical solution.

According to the consistency, applying the temporal discretization in (2.1) to the Fourier projection

solution ΦN , we can get

3
2
Φn+1

N − 2Φn
N + 1

2
Φn−1

N

Δt
= Δ

(

(Φ̆n+1
N )3 − Φ̆n+1

N + A(Φn+1
N − 2Φn

N + Φn−1
N ) + ε2

L Φn+1
N

)

+ Δt2(g(2))n+1 + O(Δt3) + O(hm), (3.6)

where the function g(2)(x, y, t) is sufficiently smooth and depends only on the higher-order partial

derivatives of ΦN by using the Taylor expansion in time.
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1100 X. LI ET AL.

With given profile (ΦN)2, we define the temporal correction function Φ
(2)
Δt as the solution of the

equation

∂tΦ
(2)
Δt = Δ

(

3(ΦN)2Φ
(2)
Δt − Φ

(2)
Δt + ε2

L Φ
(2)
Δt

)

− g(2), (3.7)

subject to the zero initial value and the periodic boundary condition. Note that (3.7) is a linear parabolic

equation, so that the existence and uniqueness of Φ
(2)
Δt can be guaranteed by conducting the Galerkin

approximation and Sobolev estimates (Temam, 2001). In addition, the solution Φ
(2)
Δt is smooth enough

and depends only on ΦN . Then, applying the temporal discretization to (3.7), we get

3
2
(Φ

(2)
Δt )n+1 − 2(Φ

(2)
Δt )n + 1

2
(Φ

(2)
Δ t)n−1

Δt

= Δ

(

3(Φ̆n+1
N )2(Φ̆

(2)
Δt )n+1 − (Φ̆

(2)
Δt )n+1 + A((Φ

(2)
Δt )n+1 − 2(Φ

(2)
Δt )n + (Φ

(2)
Δt )n−1)

+ ε2
L (Φ

(2)
Δt )n+1

)

− (g(2))n+1 + O(Δt2), (3.8)

where (Φ̆
(2)
Δt )n+1 = 2(Φ

(2)
Δt )n − (Φ

(2)
Δt )n−1. Subsequently, a correction of Φ is defined as

Φ̂ = ΦN + Δt2PNΦ
(2)
Δt . (3.9)

It is clear that Φ̂( · , t) ∈ BK and Φ̂ satisfies the mass conservation property. Multiplying the Fourier

projection of (3.8) by Δt2 and its sum with (3.6) leads to

3
2
Φ̂n+1 − 2Φ̂n + 1

2
Φ̂n−1

Δt
= Δ

(

(
˘̂

Φn+1)3 −
˘̂

Φn+1 + A(Φ̂n+1 − 2Φ̂n + Φ̂n−1) + ε2
L Φ̂n+1

)

+ O(Δt3) + O(hm),

where
˘̂

Φn+1 = 2Φ̂n − Φ̂n−1 and we have used the fact that

(
˘̂

Φn+1)3 =
(

Φ̆n+1
N + Δt2PN(Φ̆

(2)
Δt )n+1

)3

= (Φ̆n+1
N )3 + 3Δt2(Φ̆n+1

N )2
PN(Φ̆

(2)
Δt )n+1 + O(Δt4) + O(hm)

= (Φ̆n+1
N )3 + 3Δt2PN

(

(Φ̆n+1
N )2

PN(Φ̆
(2)
Δt )n+1

)

+ O(Δt4) + O(hm).

Finally, applying the spatial Fourier pseudo-spectral approximation, we obtain

3
2
Φ̂n+1 − 2Φ̂n + 1

2
Φ̂n−1

Δt
= ΔN

(

(
˘̂

Φn+1)3 −
˘̂

Φn+1 + A(Φ̂n+1 − 2Φ̂n + Φ̂n−1) + ε2
LNΦ̂n+1

)

+ τ n+1
2 ,

(3.10)
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1101

where τ n+1
2 is the truncation error satisfying ‖τ n+1

2 ‖−1,N � C(Δt3 + hm). Note that ‖τ n+1
2 ‖−1,N is well

defined since τ n+1
2 ∈ M 0

h , which is because Φ̂ is mass-conserving.

For the correction Φ̂ defined by (3.9), a detailed analysis implies that

‖Φ̂ − ΦN‖∞ � C̆0(Δt2 + hm),

since ‖PNΦ
(2)
Δt ‖∞ � C. Moreover, when Δt and h are sufficiently small so that

C̆0(Δt2 + hm) �
1

2
,

2C̆0(Δt2 + hm)

Δt
�

1

2
, i.e. Δt �

1

8C̆0

, h �

( C1

4C̆0

) 1
m−1

, C1h � Δt � C2h,

we have the following estimates:

‖Φ̂ − ΦN‖∞ � C(Δt2 + hm) �
1

2
⇒ ‖Φ̂‖∞ � ‖ΦN‖∞ + ‖Φ̂ − ΦN‖∞ � C∗ +

1

2
, (3.11)

∥

∥

∥

Φ̂ j − Φ̂ j−1

Δt
−

Φ
j
N − Φ

j−1
N

Δt

∥

∥

∥

∞
�

1

2
⇒

∥

∥

∥

Φ̂ j − Φ̂ j−1

Δt

∥

∥

∥

∞
� C∗ +

1

2
. (3.12)

In particular, an O(Δt3 + hm) bound between the numerical solution φ and the projection solution

ΦN could be obtained at the first time step t1:

φ1 − Φ1 = O(Δt3 + hm), Φ1 − Φ1
N = O(hm), so that φ1 − Φ1

N = O(Δt3 + hm),

in which the first estimate, φ1 − Φ1 = O(Δt3 + hm), comes from the fact that the RK2 numerical

algorithm creates a third-order accurate numerical solution in the first step. Meanwhile, since a trivial

zero initial data is imposed for Φ
(2)
Δt , we observe that

(Φ
(2)
Δt )1 = O(Δt + hm).

In turn, the construction formula (3.9) implies that

Φ̂1 = Φ1
N + Δt2PN(Φ

(2)
Δt )1 = Φ1

N + O(Δt3 + hm).

Then we arrive at the following estimate at the first time step t1:

φ1 − Φ̂1 = O(Δt3 + hm), i.e. ‖φ1 − Φ̂1‖2 � C(Δt3 + hm). (3.13)

3.2 A rough error estimate

We analyze the error between the numerical solution and the constructed solution Φ̂ to obtain a higher-

order convergence in the �2 norm. Define the error function êk := Φ̂k − φk, then êk ∈ M 0
h , and thus
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1102 X. LI ET AL.

‖êk‖−1,N is well defined for any k. The difference between (2.1) and (3.10) gives

3
2

ên+1 − 2ên + 1
2
ên−1

Δt
= ΔN

(

(
˘̂

Φn+1)3−(φ̆n+1)3 − ˘̂en+1+ A(ên+1− 2ên + ên−1)+ ε2
LN ên+1

)

+ τ n+1
2 ,

(3.14)

where ˘̂en+1 = 2ên − ên−1. To estimate the nonlinear terms, we make an assumption for the numerical

error function in the �2 and H−1
h norms at the previous time steps tn, tn−1:

‖êk‖2 � �t
19
8 + hm− 3

4 (k = n, n − 1),
1

�t
1
2

‖ên − ên−1‖−1,N � �t
19
8 + hm− 3

4 . (3.15)

Under the linear constraint Δt � C2h enforced in Theorem 3.1, an application of two-dimensional

inverse inequality reveals that

‖êk‖∞ �
C‖êk‖2

h
� C(Δt

11
8 + hm− 7

4 ), k = n, n − 1. (3.16)

Consequently, the �∞ bound for the numerical solutions at tn and tn−1, as well as their discrete temporal

derivative, becomes available:

‖φk‖∞ � ‖Φ̂k‖∞ + ‖êk‖∞ � C∗ +
1

2
+

1

2
= M0 (k = n, n − 1), (3.17)

∥

∥

∥

φn − φn−1

�t

∥

∥

∥

∞
�

∥

∥

∥

�̂n − �̂n−1

�t

∥

∥

∥

∞
+

∥

∥

∥

ên − ên−1

�t

∥

∥

∥

∞
� C∗ +

1

2
+ C(�t

3
8 + hm− 11

4 )

� C∗ +
1

2
+

1

2
= M0, (3.18)

where (3.11) and (3.12) have been used. The a priori assumption (3.15) will be recovered in the

convergence analysis presented later.

It is noticed that the a priori ‖ · ‖∞ assumption (3.15) is valid at k = 0, 1 and n = 1, which comes

from the fact that ê0 ≡ 0, and the initial error estimate (3.13) (at the first time step t1), combined with

the linear refinement requirement, C1h � Δt � C2h.

Taking a discrete inner product with (3.14) by (−ΔN)−1(ên+1 − ên) leads to

1

Δt

〈3

2
ên+1 − 2ên +

1

2
ên−1, ên+1 − ên

〉

−1,N
+ A〈ên+1 − 2ên + ên−1, ên+1 − ên〉

= −〈(
˘̂

Φn+1)3 − (φ̆n+1)3, ên+1 − ên〉 + 〈˘̂en+1, ên+1 − ên〉 − ε2〈LN ên+1, ên+1 − ên〉

+ 〈τ n+1
2 , ên+1 − ên〉−1,N . (3.19)
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1103

For the left-hand side term associated with the temporal stencil, the following estimate is straightfor-

ward:

〈3

2
ên+1 − 2ên +

1

2
ên−1, ên+1 − ên

〉

−1,N
=

〈3

2
(ên+1 − ên) −

1

2
(ên − ên−1), ên+1 − ên

〉

−1,N

�
3

2
‖ên+1 − ên‖2

−1,N −
1

4
(‖ên+1 − ên‖2

−1,N + ‖ên − ên−1‖2
−1,N)

�
5

4
‖ên+1 − ên‖2

−1,N −
1

4
‖ên − ên−1‖2

−1,N . (3.20)

For the artificial regularization term, we have the following identity:

〈ên+1 − 2ên + ên−1, ên+1 − ên〉 =
1

2
(‖ên+1 − ên‖2

2 − ‖ên − ên−1‖2
2 + ‖ên+1 − 2ên + ên−1‖2

2).

The last term on the right-hand side of (3.19) can be bounded by

〈τ n+1
2 , ên+1 − ên〉−1,N � ‖ên+1 − ên‖−1,N · ‖τ n+1

2 ‖−1,N �
1

4Δt
‖ên+1 − ên‖2

−1,N + Δt‖τ n+1
2 ‖2

−1,N .

For the second linear term on the right-hand side, a direct computation gives

〈˘̂en+1, ên+1 − ên〉 = 〈ên+1, ên+1 − ên〉 − 〈ên+1 − 2ên + ên−1, ên+1 − ên〉

=
1

2
(‖ên+1‖2

2 − ‖ên‖2
2 + ‖ên+1 − ên‖2

2)

−
1

2
(‖ên+1 − ên‖2

2 − ‖ên − ên−1‖2
2 + ‖ên+1 − 2ên + ên−1‖2

2), (3.21)

where we have used the fact that

˘̂en+1 = ên+1 − (ên+1 − 2ên + ên−1). (3.22)

The nonlocal linear term on the right-hand side can be rewritten as

−ε2〈LN ên+1, ên+1 − ên〉 = −ε2〈(J ∗ 1)ên+1 − J ∗ ên+1, ên+1 − ên〉

= −ε2(J ∗ 1)〈ên+1, ên+1 − ên〉 + ε2〈J ∗ ên+1, ên+1 − ên〉. (3.23)

For the first term appearing in above, the following identity is obvious:

〈ên+1, ên+1 − ên〉 =
1

2
(‖ên+1‖2

2 − ‖ên‖2
2 + ‖ên+1 − ên‖2

2).
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1104 X. LI ET AL.

Meanwhile, for the term ε2〈J ∗ ên+1, ên+1 − ên〉, we apply Lemma 2.1 and obtain

ε2〈J ∗ ên+1, ên+1 − ên〉 = −ε2〈J ∗ ên+1, ΔN((−ΔN)−1(ên+1 − ên))〉

� C3Δt‖ên+1‖2
2 +

1

4Δt
‖∇N(−ΔN)−1(ên+1 − ên)‖2

2

� C3Δt‖ên+1‖2
2 +

1

4Δt
‖ên+1 − ên‖2

−1,N , (3.24)

where C3 depends only on CJ and ε. Subsequently, a combination of (3.23)-(3.24) yields

−ε2〈LN ên+1, ên+1 − ên〉 � −
1

2
ε2(J ∗ 1)(‖ên+1‖2

2 − ‖ên‖2
2 + ‖ên+1 − ên‖2

2)

+ C3Δt‖ên+1‖2
2 +

1

4Δt
‖ên+1 − ên‖2

−1,N . (3.25)

For the nonlinear inner product on the right-hand side of (3.19), we begin with the following nonlinear

expansion:

(
˘̂

Φn+1)3 − (φ̆n+1)3 = ((
˘̂

Φn+1)2 +
˘̂

Φn+1φ̆n+1 + (φ̆n+1)2) ˘̂en+1. (3.26)

The consistency estimates (3.11) and (3.12), and a priori estimates (3.17) and (3.18) indicate that

‖
˘̂

Φn+1‖∞ � C∗ +
1

2
+

1

2
= M0, ‖

˘̂
φn+1‖∞ � C∗ + 1 +

1

2
� M0 + 1,

which in turn leads to

‖(
˘̂

Φn+1)2 +
˘̂

Φn+1φ̆n+1 + (φ̆n+1)2‖∞ � 3(M0 + 1)2. (3.27)

Then, we arrive at

‖(
˘̂

Φn+1)3 − (φ̆n+1)3‖2 � ‖(
˘̂

Φn+1)2 +
˘̂

Φn+1φ̆n+1 + (φ̆n+1)2‖∞ · ‖˘̂en+1‖2 � 3(M0 + 1)2‖˘̂en+1‖2.

As a consequence, the following rough estimate is available:

−〈(
˘̂

Φn+1)3 − (φ̆n+1)3, ên+1 − ên〉 � ‖(
˘̂

Φn+1)3 − (φ̆n+1)3‖2 · ‖ên+1 − ên‖2

� 3(M0 + 1)2‖˘̂en+1‖2 · ‖ên+1 − ên‖2

� 9(M0 + 1)4γ −1
0 ‖˘̂en+1‖2

2 +
γ0

4
‖ên+1 − ên‖2

2. (3.28)
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1105

Therefore, by substituting (3.20)-(3.21), (3.25) and (3.28) into (3.19), we obtain

3

4Δt
‖ên+1 − ên‖2

−1,N −
1

4Δt
‖ên − ên−1‖2

−1,N +
A + 1

2
(‖ên+1 − ên‖2

2 − ‖ên − ên−1‖2
2)

+
1

2
(ε2(J ∗ 1) − 1)(‖ên+1‖2

2 − ‖ên‖2
2 + ‖ên+1 − ên‖2

2) −
γ0

4
‖ên+1 − ên‖2

2

� C3Δt‖ên+1‖2
2 + 9(M0 + 1)4γ −1

0 ‖˘̂en+1‖2 + Δt‖τ n+1
2 ‖2

−1,N . (3.29)

Making use of the assumption γ0 = ε2(J ∗ 1) − 1 > 0 (given by (1.4)), we get

γ0

2
‖ên+1‖2

2 �
1

4Δt
‖ên − ên−1‖2

−1,N +
A + 1

2
‖ên − ên−1‖2

2 +
γ0

2
‖ên‖2

2

+ C3Δt‖ên+1‖2
2 + 9(M0 + 1)4γ −1

0 ‖˘̂en+1‖2
2 + Δt‖τ n+1

2 ‖2
−1,N .

Meanwhile, with the application of the a priori error estimate (3.15), we arrive at

γ0

4
‖ên+1‖2

2 � C4(Δt
9
2 + h2m− 3

2 ),

by combining with A+1
2

� Δt−
1
2 and C3Δt �

γ0

4
provided that Δt and h are sufficiently small, with a

linear refinement constraint C1h � Δt � C2h. Subsequently, an application of two-dimensional inverse

inequality implies that

‖ên+1‖∞ �
C‖ên+1‖2

h
� Ĉ1(Δt

5
4 + hm− 7

4 ) � Δt, with Ĉ1 := C(4C4γ
−1
0 )1/2,

provided that Δt �
( 1

2Ĉ1

)4
, h �

( C1

2Ĉ1

)
1

m− 11
4 and C1h � Δt � C2h,

(3.30)

under the same linear refinement requirement. As a consequence, the following a priori bounds can be

derived:

‖φn+1‖∞ � ‖Φ̂n+1‖∞ + ‖ên+1‖∞ � C∗ +
1

2
+

1

2
= M0, (3.31)

∥

∥

∥

φn+1 − φn

Δt

∥

∥

∥

∞
�

∥

∥

∥

Φ̂n+1 − Φ̂n

Δt

∥

∥

∥

∞
+

∥

∥

∥

ên+1 − ên

Δt

∥

∥

∥

∞
� C∗ +

1

2
+

1

2
= M0. (3.32)

These bounds will play a crucial role in the refined error estimate.

3.3 A refined error estimate

In this subsection, we perform a more refined error estimate for the nonlinear term to improve the

estimate (3.28), under the a priori estimate (3.32). As a result, an inductive argument can be applied to

the inequality (3.29).
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1106 X. LI ET AL.

The following nonlinear expansion (3.26) is still available. We begin with the following rewritten

form:

〈(
˘̂

Φn+1)3 − (φ̆n+1)3, ên+1 − ên〉

= 〈((
˘̂

Φn+1)2 +
˘̂

Φn+1φ̆n+1 + (φ̆n+1)2)ên+1, ên+1 − ên〉

− 〈((
˘̂

Φn+1)2 +
˘̂

Φn+1φ̆n+1 + (φ̆n+1)2)(ên+1 − 2ên + ên−1), ên+1 − ên〉, (3.33)

where we have used the identity (3.22). For the second term in (3.33), an application of (3.27) indicates

that

− 〈((
˘̂

Φn+1)2 +
˘̂

Φn+1φ̆n+1 + (φ̆n+1)2)(ên+1 − 2ên + ên−1), ên+1 − ên〉

� −3(M0 + 1)2‖ên+1 − 2ên + ên−1‖2 · ‖ên+1 − ên‖2

� −9(M0 + 1)4γ −1
0 ‖ên+1 − 2ên + ên−1‖2

2 −
γ0

4
‖ên+1 − ên‖2

2. (3.34)

For the first term in (3.33), we begin with the following obvious identity

ên+1(ên+1 − ên) =
1

2
((ên+1)2 − (ên)2 + (ên+1 − ên)2),

which in turn implies that

〈((
˘̂

Φn+1)2 +
˘̂

Φn+1φ̆n+1 + (φ̆n+1)2)ên+1, ên+1 − ên〉

�
1

2

(

〈(
˘̂

Φn+1)2 +
˘̂

Φn+1φ̆n+1 + (φ̆n+1)2, (ên+1)2〉 − 〈(
˘̂

Φn+1)2 +
˘̂

Φn+1φ̆n+1 + (φ̆n+1)2, (ên)2〉
)

=
1

2
〈(

˘̂
Φn+1)2 +

˘̂
Φn+1φ̆n+1 + (φ̆n+1)2, (ên+1)2〉 − In

nl, (3.35)

where In
nl := 1

2
〈(

˘̂
Φn+1)2+

˘̂
Φn+1φ̆n+1+(φ̆n+1)2, (ên)2〉. However, we observe that the first term in (3.35),

1
2
〈(

˘̂
Φn+1)2 +

˘̂
Φn+1φ̆n+1 + (φ̆n+1)2, (ên+1)2〉, is not equal to In+1

nl . To apply the induction analysis in

later steps, we have to estimate their difference. The following inequalities come from the consistency

estimate (3.12), and a priori estimates (3.18) and (3.32):

‖Φ̂n − Φ̂n−1‖∞, ‖Φ̂n+1 − Φ̂n‖∞, ‖φn − φn−1‖∞, ‖φn+1 − φn‖∞ � M0Δt,

which in turn imply that

‖
˘̂

Φn+2 −
˘̂

Φn+1‖∞ � 3M0Δt, ‖φ̆n+2 − φ̆n+1‖∞ � 3M0Δt.
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1107

Moreover, the following estimates are available:

‖(
˘̂

Φn+2)2 − (
˘̂

Φn+1)2‖∞ � ‖
˘̂

Φn+2 +
˘̂

Φn+1‖∞ · ‖
˘̂

Φn+2 −
˘̂

Φn+1‖∞ � 2M0 · 3M0Δt = 6M2
0Δt.

With similar arguments, we get

‖
˘̂

Φn+2φ̆n+2 −
˘̂

Φn+1φ̆n+1‖∞ � 6M2
0Δt, ‖(φ̆n+2)2 − (φ̆n+1)2‖∞ � 6M2

0Δt.

Then we arrive at

‖((
˘̂

Φn+2)2 +
˘̂

Φn+2φ̆n+2 + (φ̆n+2)2) − ((
˘̂

Φn+1)2 +
˘̂

Φn+1φ̆n+1 + (φ̆n+1)2)‖∞ � 18M2
0Δt.

As a direct consequence, the following bound is available:

∣

∣

∣I
n+1
nl −

1

2
〈(

˘̂
Φn+1)2 +

˘̂
Φn+1φ̆n+1 + (φ̆n+1)2, (ên+1)2〉

∣

∣

∣ � 9M2
0Δt‖ên+1‖2

2.

Its substitution into (3.35) yields

〈((
˘̂

Φn+1)2 +
˘̂

Φn+1φ̆n+1 + (φ̆n+1)2)ên+1, ên+1 − ên〉 � In+1
nl − In

nl − 9M2
0Δt‖ên+1‖2

2.

Combining with (3.33) and (3.34), we obtain a refined error estimate for the nonlinear inner product:

〈(
˘̂

Φn+1)3 − (φ̆n+1)3, ên+1 − ên〉

� In+1
nl − In

nl − 9(M0 + 1)4γ −1
0 ‖ên+1 − 2ên + ên−1‖2

2 −
γ0

4
‖ên+1 − ên‖2

2 − 9M2
0Δt‖ên+1‖2

2. (3.36)

As a result, a substitution of (3.20)-(3.21), (3.25) and (3.36) into (3.19) results in

3

4Δt
‖ên+1 − ên‖2

−1,N −
1

4Δt
‖ên − ên−1‖2

−1,N

+
A + 1

2
(‖ên+1 − ên‖2

2 − ‖ên − ên−1‖2
2) +

A + 1

2
‖ên+1 − 2ên + ên−1‖2

2 + In+1
nl − In

nl

+
1

2
(ε2(J ∗ 1) − 1)(‖ên+1‖2

2 − ‖ên‖2
2 + ‖ên+1 − ên‖2

2) −
γ0

2
‖ên+1 − ên‖2

2

� 9(M0 + 1)4γ −1
0 ‖ên+1 − 2ên + ên−1‖2

2 + (C3 + 9M2
0)Δt‖ên+1‖2

2 + Δt‖τ n+1
2 ‖2

−1,N .
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1108 X. LI ET AL.

Considering γ0 = ε2(J ∗ 1) − 1 > 0 and condition (3.4) for the parameter A, we get

1

4Δt
(‖ên+1 − ên‖2

−1,N − ‖ên − ên−1‖2
−1,N)

+
A + 1

2
(‖ên+1 − ên‖2

2 − ‖ên − ên−1‖2
2) + In+1

nl − In
nl +

γ0

2
(‖ên+1‖2

2 − ‖ên‖2
2)

� (C3 + 9M2
0)Δt‖ên+1‖2

2 + Δt‖τ n+1
2 ‖2

−1,N .

The following quantity is introduced:

Fn+1 :=
1

4Δt
‖ên+1 − ên‖2

−1,N +
A + 1

2
‖ên+1 − ên‖2

2 + In+1
nl +

γ0

2
‖ên+1‖2

2.

Then we get the following estimate:

Fn+1 − Fn
� C5ΔtFn+1 + Δt‖τ n+1

2 ‖2
−1,N , with C5 = 2(C3 + 9M2

0)γ −1
0 .

Using the discrete Gronwall inequality results in the desired convergence estimate:

Fn+1
� Ĉ2(Δt6 + h2m),

since ‖τ
j

2‖−1,N � C(Δt3 + hm) for j � n + 1. In particular, we see that

‖ên+1‖2,
1

�t
1
2

‖ên+1 − ên‖−1,N � CĈ2(�t3 + hm) � �t
19
8 + hm− 3

4 , (3.37)

so that the a priori assumption (3.15) has been recovered at time instant tn+1. In turn, the analysis can be

carried out in the induction style. This completes the error estimate for ê, the numerical error between

the numerical solution φ and the constructed approximation solution Φ̂.

Finally, the error estimate (3.5) is a direct consequence of the following identity

Φk
N − φk = êk − Δt2(PNΦ

(2)
Δt )k,

which comes from the construction (3.9), as well as the fact that ‖(PNΦ
(2)
Δt )k‖2 � C for any k � 0. The

proof of Theorem 3.1 is finished.

Remark 3.2 The proof of Theorem 3.1 can be extended to the three-dimensional case without any

essential difficulty. A key difference is an application of the three-dimensional inverse inequality, i.e.,

‖ψ‖∞ �
C

h
3
2

‖ψ‖2, ∀ψ ∈ Mh,

to revise the inequalities (3.16) and (3.30) accordingly. In addition, the quantities on the right-hand

side of the inequalities in (3.15) have to be replaced by Δt
11
4 + hm− 1

4 . As a result, following the similar

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
jn

a
/a

rtic
le

/4
3
/2

/1
0
8
9
/6

5
2
8
4
8
8
 b

y
 T

h
e
 H

o
n
g
 K

o
n
g
 P

o
ly

te
c
h
n
ic

 U
n
iv

e
rs

ity
 u

s
e
r o

n
 1

3
 A

p
ril 2

0
2
3



STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1109

derivations as the two-dimensional case, the last step of (3.37) can also be obtained by the same quantity,

so that the induction process is completed.

3.4 Theoretical justification of the energy stability

As proved in Proposition 2.2, the numerical scheme (2.1) is energy stable under the condition (2.3),

which involves the �∞ bound of the numerical solution. The proof of Theorem 3.1 implies that the �∞

bounds (3.17) and (3.31) for the numerical solution are available as long as another constraint (3.4) for

A is valid. Thus, we can give a theoretical justification of the energy stability as follows.

Corollary 3.3 Under the assumptions of Theorem 3.1, the energy stability, namely ẼN(φn+1, φn) �

ẼN(φn, φn−1), is valid under the constraint (3.4) for the regularization parameter A, combined with a

trivial constraint for Δt: CJε
4Δt � γ0.

4. Numerical experiments

In this section, we conduct some numerical experiments by using the proposed stabilized BDF2 scheme

(2.1) for solving the NCH equation (1.3) in the two-dimensional space. For the kernel involved in the

nonlocal diffusion operator, as reported in Du et al. (2018), we use a family of Gauss-type functions,

parameterized by a constant δ > 0, taking the form

Jδ(x) =
4

πδ4
e
−

|x|2

δ2 , x ∈ R
2. (4.1)

Since Jδ ∗ 1 = 4/δ2, the condition (1.4) is equivalent to δ < 2ε.

4.1 Convergence tests

First, we test the temporal convergence rate of the proposed scheme with different values of the

parameters ε and δ.

Example 4.1 Consider the NCH equation (1.3) in Ω = (−1, 1)× (−1, 1) subject to periodic boundary

condition and the initial value φ0(x, y) = 0.5 sin πx sin πy + 0.1 for the cases ε2 = 0.1 and ε2 = 0.01.

The kernel (4.1) is adopted with δ2 = ε2, δ2 = 2ε2 and δ2 = 3ε2, respectively. We test the temporal

convergence rate of the scheme (2.1) by calculating the numerical solution at t = 0.05.

We adopt the uniform 1024 × 1024 spatial mesh. According to our observation in the numerical

tests, such a spatial mesh is sufficiently fine so that the errors caused by the spatial approximation

can be ignored. We compute the numerical solutions with various time step sizes Δt = 2−kΔ, with

k = 0, 1, . . . , 8 and Δ = 0.005, which are the same as those in Du et al. (2018). The benchmark solution

for the computing errors is taken as the approximated solution obtained with a smaller time step size

Δt = 2−8Δ/5. The stabilizing constant is set to be A = 5.

Figure 1 plots the discrete �2 errors of the numerical solutions with various values of ε and δ. The

second-order convergence rates are obvious in each case. In comparison with the corresponding results

presented in Du et al. (2018), we find the numerical errors generated by the BDF2 scheme are less

sensitive to the value of δ, especially for large ε, than the ones computed by the Crank–Nicolson version.
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Fig. 1. Temporal convergence rates in Example 4.1.

Table 1 Coefficients of the linear fitting E(t) ∼ betme for the case δ = 0.05

ε 0.1 0.09 0.08 0.07 0.06 0.05 0.04

me −0.326 −0.314 −0.331 −0.321 −0.327 −0.341 −0.332
be 22.763 21.511 19.737 18.312 16.240 14.214 12.365

4.2 Coarsening dynamics

It is known (Dai & Du, 2016) that the energy corresponding to the classic Cahn–Hilliard equation

satisfies the − 1
3

power law for the rate of decay, that is, E(t) ∼ t−
1
3 for large t, while there is no similar

theoretical result for the NCH equation (1.3). In the following experiment, we will simulate the power

law for the NCH equation (1.3) numerically. In fact, the constraints on the time step size declared in

the theoretical results are sufficientm but not necessary, and a moderately larger time step will not lead

to the violation of the energy stability in practical computations. Thus, to accelerate the simulation of

the power law, we will use variable time step sizes in the following experiment without sacrificing the

numerical accuracy, as done by Chen et al. (2014) and Ju et al. (2018).

Example 4.2 Setting Ω = (−2π , 2π) × (−2π , 2π), we simulate the coarsening dynamics of phase

transition process with various values of ε and δ shown later. The initial configuration is set to be a

random initial data ranging uniformly in [−0.1, 0.1] on each grid point in a uniform mesh. The time step

size is set as: Δt = 0.001 on the time interval [0, 1000), Δt = 0.01 on [1000, 10000) and Δt = 0.1 for

t � 10000 if needed. The stabilizing constant is given by A = 5.

First, we choose δ = 0.05 and N = 512, and set ε decreasing from 0.1 to 0.04. Figure 2 displays

the evolution of the computed solutions at t = 1, 3, 10, 100, 400 and 5000 for the case ε = 0.04. It is

obviously observed that the dynamic evolves from the initial disorder state to the ordered states rapidly

and then reaches the steady state around t = 5000. Figure 3 (left) presents of the energy evolution curves

for ε = 0.1, 0.08, 0.06 and 0.04. In comparison with the reference line corresponding to Ct−
1
3 , it can

be observed that the rates of energy decay comply with the − 1
3

power law well for all cases. Table 1

presents the digits of the coefficients of the linear fitting of the energy in the form E(t) ∼ betme . In fact,
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1111

Fig. 2. Computed solutions at t = 1, 3, 10, 100, 400 and 5000 for the case δ = 0.05 and ε = 0.04 in Example 4.2.
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time
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Fig. 3. Evolutions of the energies for case δ = 0.05 (left) and δ = 0.005 (right) in Example 4.2.

this scaling function is nonlinear, while the linear fitting is applied to ln(E(t)), in terms of ln t. All the

values of me approach to − 1
3
, which also implies the expected power law.

Then, we set δ = 0.005 and N = 1024, and still let ε decrease from 0.1 to 0.04. Paralleled to the

first case, Fig. 3 (right) and Table 2 show the evolution curves and the coefficients of the fitting of the

energies, respectively. Again, the − 1
3

power law of the energy decay rate is verified.
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Table 2 Coefficients of the linear fitting E(t) ∼ betme for the case δ = 0.005

ε 0.1 0.09 0.08 0.07 0.06 0.05 0.04

me −0.334 −0.324 −0.341 −0.337 −0.334 −0.344 −0.343
be 11.274 10.604 9.675 8.821 7.938 6.943 6.020

5. Conclusion

In this paper, we study a second-order (in time) stabilized BDF-type numerical scheme for the NCH

equation, where the Fourier spectral collocation method is adopted for the spatial approximation. The

main theoretical results consist of the convergence analysis, by performing a high order consistency

analysis, combined with rough error estimate and refined error estimate. In turn, a modified energy

stability becomes available. In comparison with a previous work (Li et al., 2021), we apply the second-

order convergence estimate to recover an �∞ bound of the numerical solution, i.e., the numerical solution

can be regarded as a small perturbation of the exact solution. The crucial different technique used for

the error estimate is that we use (−ΔN)−1(ên+1 − ên) as the test function, rather than the standard form

(−ΔN)−1ên+1, for the error equation, so that a higher order temporal truncation error is provided to

match the BDF2 discretization.

The spectral accuracy order in the spatial discretization, as indicated by the estimate (3.3), has greatly

facilitated the convergence analysis, provided that m is large enough. Of course, one can also adopt

the finite difference or other local approaches of spatial discretization. Due to the periodic boundary

condition, the matrix for the discrete Laplacian is circulant, and the product of such a circulant matrix

and a vector can also be implemented by the fast Fourier transform. In other words, the evaluation of the

discrete Laplacian in the central difference method has more or less the same computational cost as the

spectral method. However, the central difference yields a truncation error of order O(h2), which is not

high enough to ensure the �∞ bound of the discrete temporal derivative, i.e., (3.18) with only m = 2.

To overcome this difficulty, one needs to conduct a higher order asymptotic analysis to supplement the

consistency order in both time and space, by constructing a correction field with the truncation error of

order O(Δt3 + h4). This technique is similar to the analysis presented in Section 3.1; also see related

works Guan et al. (2017, 2014a,b).

Another natural way to develop the second-order numerical schemes is to consider the Crank–

Nicolson approximation combined with an appropriate extrapolation for the nonlinear term. However,

whether the second-order stabilized linear scheme proposed in Du et al. (2018) can be proved to be

energy stable with respect to a modified energy is still an open question, which will be our future work.
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