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A second-order accurate (in time) and linear numerical scheme is proposed and analyzed for the nonlocal
Cahn-Hilliard equation. The backward differentiation formula is used as the temporal discretization,
while an explicit extrapolation is applied to the nonlinear term and the concave expansive term. In
addition, an O(Af?) artificial regularization term, in the form of AAN (¢" ! — 2¢" + ¢"~ 1), is added for
the sake of numerical stability. The resulting constant-coefficient linear scheme brings great numerical
convenience; however, its theoretical analysis turns out to be very challenging, due to the lack of higher-
order diffusion in the nonlocal model. In fact, a rough energy stability analysis can be derived, where
an assumption on the £°° bound of the numerical solution is required. To recover such an £°° bound, an
optimal rate convergence analysis has to be conducted, which combines a high-order consistency analysis
for the numerical system and the stability estimate for the error function. We adopt a novel test function
for the error equation, so that a higher-order temporal truncation error is derived to match the accuracy
for discretizing the temporal derivative. Under the view that the numerical solution is actually a small
perturbation of the exact solution, a uniform ¢°° bound of the numerical solution can be obtained, by
resorting to the error estimate under a moderate constraint of the time step size. Therefore, the result of
the energy stability is restated with a new assumption on the stabilization parameter A. Some numerical
experiments are carried out to display the behavior of the proposed second-order scheme, including the
convergence tests and long-time coarsening dynamics.

Keywords: nonlocal Cahn—Hilliard equation; second-order accurate scheme; higher-order consistency
analysis; rough error estimate and refined error estimate; energy stability.

1. Introduction

The nonlocal Cahn—Hilliard (NCH) equation is taken into consideration, which turns out to be the H -1
gradient flow with respect to the free energy functional with nonlocal interaction effect as follows (Bates
& Han, 2005a,b; Bates, 2006; Bates et al., 2006; Bates et al., 2009; Guan et al., 2017, 2014a,b):

_ 1 4_1 2 i _ _ 2
E(¢>)—/Q(Z¢> A /Qf(x VX — $¥)?dy) dx (1.1)

where ¢ > 0 is an interfacial parameter and 2 = H?:l (—X;,X;) is a rectangular domain in R<. The
kernel function J is required to satisfy the following conditions (Du et al., 2018; Li et al., 2021):
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1090 X.LIET AL.

(@) J(x) = 0 foranyx € §2, and fQJ(x)dx>0;
(b) Jis £2-periodic and even, i.e., J(—x) = J(x) for any X € RY;
© 3 Jol®IxPdx=1,

where condition (c) means that J has a finite second moment in £2. A nonlocal linear operator is
introduced as . : ¥ (X) > f o J(X —¥)(¥(x) — ¥(y)) dy. Then, using condition (a), it is clear that
LY = (= 1)y — J x ¢ with the following periodic convolution (Guan ef al., 2014b):

(Jw)(x):/Qj(x_y)wy)dy=/QJ(y)¢(x_y)dy.

By condition (c), a careful calculation yields an equivalent form of the energy (1.1) as

g? . Ly 1,
E(¢) =/ F(¢)dx + ?($¢,¢)L2, with F(¢) = 7¢" — 5¢%, (1.2)
2

and the chemical potential becomes
wi=38,E(@) =¢> — ¢+ L.
As a consequence, the corresponding NCH equation turns out to be
09 =An =A@ — ¢ +2.29) = Alp’ — ¢ + (U x D¢ —J % )], (1.3)

subject to the periodic boundary condition. The mass conservation of ¢ is obvious in the sense that
% f o ®(x,1) dx = 0. In addition, the following diffusivity condition is taken:

Yo =X x1)—1>0. (1.4)

Without such a condition, the solution may exhibit some singular behaviors.

As a nonlocal variant of the classic Cahn—Hilliard equation (Cahn & Hilliard, 1958), the NCH
equation has increasingly attracted attention and been widely used in various areas ranging from
chemistry, material science to finance and image processing. The well-posedness of the NCH equation
(1.3) equipped with Neumann or Dirichlet boundary condition was studied in Bates & Han (2005a,b),
and it was pointed out in Guan et al. (2014b) that the existence and uniqueness of the solution to the NCH
equation subject to the periodic boundary condition may also be established by using a similar technique.
A brief review of some parabolic-like evolution equations was made in Fife (2003), including nonlocal
and pattern-formation problems, along with a comparison between the local and nonlocal equations.

Numerical investigations of nonlocal models have also attracted much attention in recent years. For
a family of nonlocal diffusion equations equipped with various boundary conditions, finite difference,
finite element and spectral approximations were discussed in Zhou & Du (2010), Tian & Du (2014), Du
etal. (2018) and Du et al. (2019b). Bates et al. (2006, 2009) studied £°° stable and convergent numerical
schemes for the nonlocal Allen—Cahn equation and related equation. An exponential time differencing
method was applied to the nonlocal Allen—Cahn equation to establish first- and second-order accurate,
£%° stable linear numerical schemes in Du ef al. (2019a), and further extended to a class of semilinear
parabolic equations in Du ef al. (2021). In particular, the energy stability (induced by the energetic
variational formulation) has played a very important role in the numerical approximations. A theoretical
justification of energy stability has been provided for a few first-order numerical schemes (Guan et al.,
2014b; Li et al., 2021), based on the convex splitting and linearized stabilization ideas, respectively.
For the second-order numerical schemes, the only existing energy stability and convergence analysis
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1091

has been reported for a higher-order convex splitting method (Guan et al., 2014a, 2017). Meanwhile,
the computational cost for such a numerical approach turns out to be expensive, because of an implicit
treatment for the nonlinear term (to ensure the energy stability).

Consequently, a second-order accurate, linear and energy stable numerical scheme is highly desired
for the NCH equation. In fact, this effort has been successful for the classic Cahn—Hilliard model (Li &
Qiao, 2017a,b), in which a stabilization term is added in the numerical scheme and a modified energy
stability is theoretically established. However, these works rely heavily on the higher-order surface
diffusion term in the classic Cahn—Hilliard model, so that the reported methodology is hardly applicable
to the NCH model. In this paper, we propose and analyze a second-order accurate and linear numerical
scheme for the NCH equation, with the energy stability and convergence analysis theoretically justified.
In more details, the second-order backward differentiation formula (BDF2) is chosen as the temporal
discretization, combined with an implicit treatment of the nonlocal term, as well as explicit extrapolation
for the nonlinear term and concave expansive term. Moreover, an O(A#) artificial stabilization term is
added in the form of AA N(q&’“rl —2¢"+¢" ). In turn, this numerical scheme can be solved by using the
fast Fourier transform, so that the nonlocal term does not cause much computation in comparison with
the Laplacian term in the classic Cahn—Hilliard equation. To establish the energy stability, a uniform £*°
bound of the numerical solution is assumed and the requirement for the stabilizing constant turns out
to depend on the unknown numerical solution. Subsequently, we conduct a novel convergence analysis
of the proposed stabilized BDF2 scheme to recover such a requirement, by applying the high-order
consistency analysis, so that the uniform £°° bound of the numerical solution can be theoretically
justified. A crucial difference with the standard error estimate is that we adopt (—A)~!(@"*! — ") to
test the error equation with respect to the numerical error function ¢, instead of testing (—Ay)~ en+1 as
in a recent work (Li et al., 2021) for the first-order scheme (where (—A N)_l is a spatial discrete operator
to be defined in the next section). In other words, the key point is to use the discrete temporal derivative
of the error function as the test function, rather than the error function directly, which would provide
a higher-order temporal truncation error to match the BDF2 discretization for the temporal derivative.
Resorting to the convergence result, we obtain a uniform £°° bound of the numerical solution by viewing
it as a perturbation of the exact solution. As a result, the a priori assumption is recovered and a new
condition is derived for the stabilizing constant in the energy stability analysis.

The rest of the paper is organized as follows. In Section 2, the stabilized BDF2 scheme is presented
in the fully discrete form and an energy stability is established with respect to a modified energy under
an assumption of the uniform £°° bound of the numerical solution. Convergence analysis is presented
in Section 3, which is the main part of the paper, including the high-order consistency analysis, a rough
error estimate based on the stability analysis and a refined error estimate based on a priori bound
obtained by the rough estimate. Consequently, the uniform £°° bound of the numerical solution is
recovered and the energy stability result is restated under a new requirement on the stabilizing constant.
In Section 4, some numerical experiments are carried out to display the behavior of the proposed
numerical scheme. Finally, some concluding remarks are given in Section 5.

2. The numerical scheme and energy stability analysis
2.1 The Fourier pseudo-spectral spatial discretization

We adopt the two-dimensional Fourier pseudo-spectral method. An extension to the three-dimensional
spatial discretization is straightforward. To simplify the notations in the later analysis, we assume that
the domain is given by £2 = (—1, 1)? and denote by Cper(82) the set of all C™-functions with period 2,
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1092 X.LIET AL.

along each coordinate direction. Let N be an even number: N = 2K for some K € N; the analyses for
more general cases are a bit more tedious, but can be carried out without essential difficulty. The spatial
variables are evaluated on the standard two-dimensional numerical grid §2,, which is defined by grid
points (x;,y;) withx; = =1 +ih, y; = —1+jh, 0 <i,j < Nandh =2/N = 1/K.

The grid function space is defined as

My, = 1{f 7* - R|fis £2y -periodic}.

For any grid functions f, g € .#),, the £2 inner product and norm are defined as

N—-1
fo8) =0 fii-gij Wy = V0.
ij=0

The zero-mean grid function subspace is denoted as //1}? = {f € 4, |f = 0} with f := }‘(f, 1). For
f € A, we have the discrete Fourier expansion

K N—1
. ) . 1 ,
fii= lem exp(wi(lx; + my;)), fé\,{m = — [ exp(=mi(lx; + my;)).
J J N2 J J
Lm=—K+1 ij=0

The Fourier pseudo-spectral first- and second-order derivatives of f are defined as

K
D= > (@O, exp(ri(ty; +my)),
lim=—K+1
K
D= D, (—mO, exp(rillx; + my)).
L,m=—K+1

The differentiation operators in the y direction, @y and 22, can be defined in the same fashion. In turn,

forany f € .4, andf = (f L) e, W X M, the discrete gradient, divergence and Laplacian operators
are given respectively by

2.f
7

Moreover, the following summation-by-parts formulas are valid (Gottlieb er al., 2012; Gottlieb & Wang,
2012; Cheng et al., 2016; Li et al., 2021): for any periodic grid functions f, g € .#), and g € 4}, x M4,

VNfz( ) VN.f=@J1+@yf2, ANf=23f+@yf.

(f’ vN g) = _(va’g>7 (fv ANg> = _<VNf9 VNg> = (ANf’g)

In addition, — A, is self-adjoint and positive definite, and thus invertible, on .#, }?.
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1093

Since the NCH equation (1.3) is an H -1 gradient flow of (1.2), we need a discrete version of the
H~! norm defined on .# ;? .Forany f, g € 4, ;? , we define

(28w = (s (—Ap) T8) = (=2 3. (=4 g,

then the discrete Hh_1 norm || - ||_; » can be introduced as

WVl = L)y = (=D 2 flly,  f € AL,

In addition to the standard ¢2 norm, we also introduce the €7, 1 < p < oo and £*° norms for a grid
function f € .#),:

N—1 1
Wl = max il fl = (¥ 1), 1=p <o

ij=0

The definition of the discrete convolution follows similar notations in Guan et al. (2014b) and Li et
al. (2021). For any ¥, f € .4, the discrete convolution ® f € .#, is introduced at a component-wise
level:

N—-1
GO =0 D Vi iafome  O<ij<N—1.

m,n=0

In addition, the following preliminary estimate is needed in the convergence analysis; the detailed proof
has been provided in a recent work (Li et al., 2021), and the finite difference version has been analyzed
in Guan et al. (2014b).

LeEmMA 2.1 (Li ef al., 2021) Suppose J € Cl_(£2) and define its grid restriction by Jij = J(xl-,yj).

per

Then for any ¢, ¢ € .#), and any o > 0, we have

C
B, Ayv)| < alldlls + ;anu%,

where C is a positive constant depending on J and 2, but independent of 4.

Given a kernel J satisfying conditions (a)—(c), the discrete version of the nonlocal operator . can
be represented as

Lf =B —JOf, fe.,

It is easy to verify that %y commutes with Ay, and is self-adjoint and positive semi-definite.
Meanwhile, the discrete version of the energy (1.2) is introduced as

2
Ey(v) = (FO). 1) + %(.,Z”Nv, v, ve.,
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1094 X.LIET AL.

For the sake of brevity, we use *, instead of @, to denote the discrete convolutions below and the
meaning depends on the functions on both sides of the notation.

2.2 The fully discrete scheme and energy stability analysis

Set At as a uniform time step size and {f, = kAt} as the sequence of discrete time instants. Denote P~
(k > 0) as the numerical solution of the phase variable at time step #;. The stabilized BDF2 scheme is
proposed as follows: given ¢", ¢"~! € ///,?, find ¢"*! € ///,? such that

3 in+l1 — 2" 1. n—1 . .

where ¢! = 2¢" — 1.

Since the proposed numerical scheme (2.1) is a two-step algorithm, an accurate approximation for
the phase variable value at ¢; is needed in the initialization process. It is well known that a single-step
numerical method would create a numerical solution with higher-order temporal accuracy (than the order
of truncation error) in the first step, if the exact initial data is imposed. Also, see the detailed analysis
in the related works (Guo e al., 2016, 2021) for local Cahn—-Hilliard equation, in which a single-step,
first-order semi-implicit algorithm creates a second-order accurate numerical solution in the first step.
For the NCH equation, a higher-order approximation at time step ¢; is more preferred, to facilitate the
higher-order asymptotic consistency analysis presented in the later sections. For example, the second-
order Runge—Kutta (RK2) method could be applied in the first step, which in turn gives an O(A#> + k™)
approximation at #{, if an exact initial data is imposed.

We have the following result on the energy stability with respect to a modified energy.

ProrosiTiON 2.2 For the stabilized BDF2 scheme (2.1), a modified energy dissipation property is
available:

En(@"t, o™ < Ey(g" 0", (2.2)

where

. A+1 1

En@"¢") = Ey(@"Th) + ——Il¢" T — "5 + 6" — ¢"1I%

2 4At
if the following constraints are valid with C; dependent only on the kernel J and £2:
9
A> 312" - ¢" 5+ 19" 5 — 1, Cetar < (2.3)
0

Proof. Taking a discrete inner product with (2.1) by (—A N)_1 (@™ — 9™ gives

143 1
E<§¢n+l _ 2¢n + §¢n—1,¢n+l _ ¢n>_1N +A<¢n+l _ 2¢n +¢n—1’¢n+l _ ¢n>

— _(($n+1)3’¢n+1 _ ¢n> + <¢‘;n+1’¢n+l _ ¢n> _ 82<$N¢n+1’¢n+1 _ ¢n>’ (24)
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in which summation-by-parts formulas have been repeatedly applied.
For the left-hand side term associated with the temporal stencil, the following estimate is straight-
forward:

é n+1 _ n l n—1  n+1 _ n
(For! 20"+ 50 e —gt)

1
_(d)n _ ¢n—1)’¢n+1 _ ¢n>

g n+l _ . ny _
2(¢ ¢") 2

—

-1,N

3 1 _
> S =92y = U™ = @Iy 110" = "2 )
= 2 = 1y — 6" — ¢ (2.5)
- 4 —1,N 4 —1,N"* N

For the artificial regularization term, the following identity is valid:

1
(@t — 29" + 9" 9" — 9" = 5<||¢"+l — "5 — 9" — ¢" 13+ 9" — 29" + 9" 1)13).
(2.6)

For the second linear term on the right-hand side, noticing that
Ml = gt _ (" — 29" 4 ), 2.7)
we have
(@ ML — gty = ("L, M — gy — (" — 2" 4 ¢ T — )

1
= 5(||¢>"+‘ 13 — 19" 113 + llg™ ' — ¢™113)

1
- 5(||<z>"+1 — "5 — 9" — "3+ le"T — 29" + 9" 1D, (2.8)

The nonlocal diffusion term on the right-hand side can be rewritten as follows:

2
82<$N¢n+1,¢n+1 _ ¢n> — %(<$N¢n+l,¢n+l> _ ($N¢n’¢n>)

82 82
+ U D" —¢"I3 - ik (@t — M), 0"T =", (2.9)
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1096 X.LIET AL.
For the term &2 (J % (¢"+! — ¢™), "+ — ¢"), we apply Lemma 2.1 and obtain
(% (" = ™M), 9" — ") = =2 (% (9" — ¢"), Ay((—Ay) T (9" = ¢™)
< %CJe“AzW“ — "5+ A%IIVN(—AN)” @™ = ¢"Ii3

1 2
= SCet At — "5 + A—tnqb"“ —¢"12 1 (2.10)

where C; depends only on J and §2. Subsequently, a combination of (2.9)-(2.10) yields

|38

82<$N¢n+1’¢n+1 _ ¢l’l> 2 %(<$N¢n+l’¢n+l> _ <$N¢n’ ¢n>)

82

1 1
+(FUxD =0t a) 19" = g5 — 9" = @12 . 2.11)
For the nonlinear inner product, we begin with the following decomposition:

((Z)n+])3 _ (¢n+1)3 — _((él’H’l)Z +q‘5n+l¢n+l + (¢n+1)2)(¢n+l _ 2¢n _,’_¢n71),

where we have used the identity (2.7) again. In turn, the following estimate can be derived:

<(¢‘;n+1)3 _ (¢n+1)3’¢n+1 _ ¢n>
> —[l(¢"TH? + " 4 ("2 - " — 20" + "y - 1" — ",

3 _
> —5(||<z>"+1||§o + 1" ) - " — 29" + "y - 1™ — 9",

9 o _ Y ¥
> _E(”"W 12+ 1e" T 1202 1™ — 2™ + ™13 — ZOIWH — ¢"|I5. (2.12)
0
Meanwhile, the following estimate is straightforward:
1
(@13, "t — ™) > Z(||¢>"+‘ I3 — o™ ID), (2.13)

which comes directly from the convexity of ||¢||2 (in term of ¢). Therefore, a combination of
(2.12)—(2.13) yields

o 1
(@1 9" — ™) > Z(IIdJ”“ I3 — o™ 15 — %W“ —¢"I13

9 o _
- W(WH 12+ le" T 122" — 20" + "3 (2.14)
0
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1097

Finally, a substitution of (2.5), (2.6), (2.8), (2.11) and (2.14) into (2.4) gives

1 _ A+1 _
E(W“ — "2,y — llp" — ¢" l||2_1,N>+T<n¢n“—<z>”||%—||¢n—</>" i3

1 1
+ Ey@™) = Ey@") + (5670 1 ) = 1) = 22— et ar) 974 — 91

A+1 9 -
+ (55 = U IR + 1 %) e = 29" + 9" < 0.

Making use of the assumption y, = g2(J % 1) — 1 > 0 (given by (1.4)), we get

%

1 4 1 2
0 et an) et - 91

Ex(@'.¢" — Ey@".0" ) + (
(A +1

9 v
= U I + 19" 1207 o™ = 267 + 6" I < 0.
2 4y

Consequently, under the constraint (2.3), a modified energy stability estimate (2.2) is valid. This
completes the proof of Proposition 2.2. ([l

Note that the right-hand side of (2.3) involves the £>° norms of the numerical solutions ¢"~!, ¢"
and ¢"!. Therefore, we have to justify the lower bound of A by estimating these £*° norms. As
mentioned before, a direct analysis given in Li ef al. (2016) and Li & Qiao (2017a,b) for the classic
Cahn—Hilliard equation may be difficult to be extended to (2.1) due to the lack of higher order diffusion
terms. Instead, by resorting to the idea that the numerical solution can be regarded as a perturbation of
the exact solution, we will perform a local-in-time convergence analysis of (2.1) and then give the £*°
bound of the numerical solution by using the convergence result.

3. Convergence analysis

We use @ to denote the exact solution to the NCH equation (1.3). The existence and uniqueness of @
may be established in a similar technique adopted in Bates & Han (2005a,b), and one can obtain

”(p”L""(O,T;LOO) + ” gzjt||L°<>(0,T;L°°) <G G.1)

for any T > 0. Without loss of generality, we consider the two-dimensional case.

First, we introduce the (spatial) Fourier projection of the exact solution, which satisfies the discrete
mass-conserving property. Let 2K be the space of trigonometric polynomials of degree up to K = N/2.
For a fixed time 7, let @ (-,t) := PyP(-,1) be the Fourier projection of the exact solution into K.
Since 1 € %X, we have a useful property for the Fourier projection:

/@N(-,t)dx=/ @(-,1dx. 3.2)
2 2
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1098 X.LIET AL.

If® € L*(0,T; Hﬁer) for some ¢ € N, the projection approximation is standard:

1Dy — Pl o1ty < Ch KNty 0 <k < €. (3.3)

Then, the rest of the work is to estimate the difference between the numerical solution and the projection
solution @,,.

Denote CD]]f, = @y (-,1). We denote by ¢1'§, = P, Py (-, 1) the values of @ at discrete grid points
at time f,. By (3.2) and the fact that the exact solution @ is mass conservative at the continuous level,
we have

/ ¢N(’tk) dX == / ¢(’tk) dX == / dj(’tk—l) dX == / ¢N(’tk—l) dX, Vk (S] N
2 [%) [%) 2

Meanwhile, since @y, € X and (3.2), the mass conservative property is available at the discrete level:

N 1 1 —
% k—1
5= o= g [ enennx= o vien

For the initial value ¢° of the numerical scheme (2.1), we apply the mass conservative projection:
¢° = P, @y (-,t = 0), that is, ¢l j = Py(x;y;,1 = 0). Then, the solution of the numerical scheme
(2.1) is mass conservative, i.e.,

Sk =gk 1, VikeN.
And also, corresponding to the regularity (3.1), we have

oy =N

At

max < C*.

IS

d)l H + max
S AN/
o

Notice that the constant C* depends on || || -1 (0,1:H2)> With an application of two-dimensional Sobolev
inequality. Since qjjlf, and dﬁlli, have the same values on the discrete grid points, we just use the notation

<D]’§, in the following discussions, for the sake of brevity.
With initial data of sufficient regularity, we can assume that the exact solution has regularity as

2 YNL®0,T;C"?), m > 3.

@ eZ:=HOT,C )NH*0,T;C o

per per

The following theorem is the main result on the error estimates of the stabilized BDF2 scheme (2.1).

THEOREM 3.1 Suppose the unique, smooth, periodic solution for the NCH equation (1.3), given by
P (x,y,t) on §2 for 0 < t < o0, is of regularity class . In addition, the constant A is assumed to satisfy

S 18(M, + 1*

-1, ith My=14+C*, C*= @ 845 34
” with My =1+ 123\}(” Voo + 119, Pyll0)- 34
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Then, if At and h are sufficiently small, under linear refinement path constraint C;h < At < C,h with
fixed constants C; and C,, we have

DN — ¢"ll, < C(AP + ™), (3.5)

for all positive integers n such that nAt < T, where C is independent of & and At.

The detailed proof will be presented in the following subsections. First, we will conduct the higher
order consistency analysis to provide a high order truncation error so that the desired order of error can
be recovered by using the inverse inequality. In fact, this approach has been adopted for the numerical
analysis of a large family of nonlinear PDEs, see, e.g., E & Liu (1995), Samelson ef al. (2003), Wang et
al. (2004), Baskaran et al. (2013), Guan et al. (2014b), Wang et al. (2015), Guan et al. (2017), Duan et
al. (2020), Duan et al. (2021) and Liu et al. (2021). Subsequently, we carry out the stability estimates
for the numerical error function. Due to the complexity of the nonlinear term, it seems difficult to obtain
the expected results directly, so we have to divide this part into two steps: a rough estimate is first
performed in order to give the £°° norms of the numerical solution, then a refined estimate is given,
combined with the £°° bound obtained by the rough estimate, to derive the desired result of convergence
rate. In addition, instead of testing the error equation by (—A N)’lé”+1 as usual, we adopt a novel test
function (—A N)’1 (e"t1 — &™) so that a higher-order temporal truncation error can be obtained to match
the second-order BDF discretization of the temporal derivative. This part is significantly different from
the stability estimate in a recent work (Li et al., 2021).

3.1 Higher-order consistency analysis

By consistency, the Fourier projection solution @, satisfies the discrete equation

3pntl L pn—1
3Py — 2%+ 3%
At

- AN(@,’@“P — G L A@I — 20l + on )+ szqu);@“) +ot

where du>1’\1,+1 =20} — @1’\’,*1 and ré’“ is the truncation error satisfying ||r(’)”rl l_in < C(AZ + WM.
With the standard stability estimates, one can bound the Hh_1 norm of the numerical error @y, —¢" by the
same order O(Ar> + h™). However, this convergence order is not enough to recover the £ bound of the
numerical solution and its discrete temporal derivative after the inverse inequality is used. To overcome
this difficulty, we will construct a supplementary field to correct @, so that a higher O(AP + 1'™)
consistency can be obtained, which is enough to recover the £°° bound of the numerical solution.

According to the consistency, applying the temporal discretization in (2.1) to the Fourier projection
solution @,,, we can get

3 +1 1 —1
3PN =20y + 7Py
At

= A(@ - Bt +A@ - 20 + &) + 2z o)

+ AP EP) ! £ 0(AP) + O™, (3.6)

where the function g (x,y, ) is sufficiently smooth and depends only on the higher-order partial
derivatives of @, by using the Taylor expansion in time.
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1100 X.LIET AL.

With given profile (<DN)2, we define the temporal correction function <1>(Azt) as the solution of the

equation
005 = A(3@) 0l - 0f) +2207)) ~ @, (3.7)

subject to the zero initial value and the periodic boundary condition. Note that (3.7) is a linear parabolic
equation, so that the existence and uniqueness of <P(Az[) can be guaranteed by conducting the Galerkin

approximation and Sobolev estimates (Temam, 2001). In addition, the solution <D(Azt) is smooth enough
and depends only on @,,. Then, applying the temporal discretization to (3.7), we get

2 2 2 —
%((p(Al))nH _ 2(¢(At))n + %(@(A)t)n 1
At
— A(3((51’\1/+1)2(¢‘522))n+1 (¢(2))n+l +A((¢(2))n+l 2(@(2))11 (@(2))71—1)
t

+ 82$(¢(2))n+1) _ (g(Z))n+1 + O(Atz), (38)

where (éft))"“ 2((15(2))" - ((th))”_l. Subsequently, a correction of @ is defined as
s _ 2 2
D =Dy + A" PyD ;. 3.9

It is clear that ®(-,7r) € #X and @ satisfies the mass conservation property. Multiplying the Fourier
projection of (3.8) by Af? and its sum with (3.6) leads to

%d'sn—&-l _ Zén + %(ﬁn—l
At

_ A(((ﬁn+l)3 — & L AT 28" 4 1 +82$(ﬁn+])

+ 0(AP) 4+ O(h™),
where @1 = 26" — d"! and we have used the fact that

(q§n+1)3 = (&1 + AIZ@N(@(AZ,))"H)S
(¢n+1)3 + AL (@l’H‘l)Z@N(@(Z))n-‘rl + O(At4) + O(hm)
= (B11) 4342 2 (B2 2y (@) + 0(ar) + O™,

Finally, applying the spatial Fourier pseudo-spectral approximation, we obtain

%(ﬁn—&-l _ 2én + %(ﬁn—l
At

AN((qgn+1)3 — " L AP — 2" 4 1) 4 82$N43n+1) + .L.2n+l,
(3.10)
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1101

where '1:2"‘H is the truncation error satisfying ||réHrl v < C(Af + ™). Note that ||'l:2"‘H l_; nis well

defined since ‘L'2n+1 S ,///,?, which is because @ is mass-conserving.

For the correction @ defined by (3.9), a detailed analysis implies that
1& — Dyl < Co(AL + 1™,

2)

since || QZNQP(AI loc < C. Moreover, when At and h are sufficiently small so that

1 2C, (A2 +h™) 1 1 Cy \ it
. 26 (A + i) )g—, ie. At< — ,h<( J) L Ch < At < Goh,
2 At 2 8C, 4C,

Co(AP +1™) <
we have the following estimates:

. A A 1
16 — Dyl S CAP+HM) < 5 = [l < [Pyl + 1D — Pyl < C* + 7 (G.11)

N =

i i
At Hoo

At At Hoo

di— i1 @l — @l 1
H N" %N <CHF - (3.12)

<':>H 2

2

In particular, an O(A#*> + &™) bound between the numerical solution ¢ and the projection solution
@, could be obtained at the first time step f,:

o' — o' = 0P + ™), @' — o) = 0™, sothat ¢! — &L = 0(AF + 1™,
in which the first estimate, ¢1 — ol = O(At3 + h™), comes from the fact that the RK2 numerical

algorithm creates a third-order accurate numerical solution in the first step. Meanwhile, since a trivial

zero initial data is imposed for <D(Azt), we observe that

(@ = oAt + 1").
In turn, the construction formula (3.9) implies that
! = @) + AP DY@ = D) + O(AP + B,
Then we arrive at the following estimate at the first time step #;:
o' — ' = 0(Ar + 1), e ¢! — D, < CAP +H™). (3.13)

3.2 A rough error estimate

We analyze the error between the numerical solution and the constructed solution @ to obtain a higher-
order convergence in the £2 norm. Define the error function e := @ — qbk, then &k ¢ J//,? , and thus
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1102 X.LIET AL.

IES |_; n is well defined for any k. The difference between (2.1) and (3.10) gives

3an+l _ Hon 1sn—1
se 2¢" + 5e
At

= Ay ((QS"+1)3—(¢;H+1)3 — et AT — 26 4o 4 82$Nén+1) " Tznﬂ,
(3.14)

where ¢"t! = 28" — ¢"~! To estimate the nonlinear terms, we make an assumption for the numerical
error function in the ¢% and H, ! norms at the previous time steps L

1
10, < ALY + 1" (k=nn—1), —]l" =" _,y < ALF 4 HE (3.15)

At2

Under the linear constraint At < C,h enforced in Theorem 3.1, an application of two-dimensional
inverse inequality reveals that

Clle |,

11 7
L S C(AIS +1"5), k=nn—1. (3.16)

Sk
e loo <

Consequently, the £°° bound for the numerical solutions at £, and f,,_;, as well as their discrete temporal
derivative, becomes available:

k < sk ~k < k l l_ _ _1 1
8%l S 1Pl + 1€l S C"+ 5+ 5 =My (k=n,n—1), (3.17)
2 2
H 9" — ¢! H _ H dn — -l H en—! H <C 4 E o 4t
At o At ) At o 2
. 11
<C +§+§=M(), (3.18)

where (3.11) and (3.12) have been used. The a priori assumption (3.15) will be recovered in the
convergence analysis presented later.

It is noticed that the a priori || - ||, assumption (3.15) is valid at k = 0,1 and n = 1, which comes
from the fact that ¢ = 0, and the initial error estimate (3.13) (at the first time step #;), combined with
the linear refinement requirement, C;h < At < Cyh.

Taking a discrete inner product with (3.14) by (—A N)_1 @t — &) leads to

13, R 1,1 A R . o Anel A R
E<§en+l 2" 4+ 5en l,en-i-l —€n>_1’N+A<€n+l Y L l’en—&-l —g”)

v

— _(((ﬁn+l)3 _ (J)n+l)3’én+l _ én) + (én+l,én+l _ én) _ 82<$N’én+],én+1 _ én)

+ (et — ey (3.19)
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1103

For the left-hand side term associated with the temporal stencil, the following estimate is straightfor-
ward:

<§én+l —2" 4 1@"‘1 én+l _ é”> _ <3(An+1 An) _ l(é" _ én—l) én—t—l _ @")
2 2 ’ -1N \2 2 ’ LN
3 An+l 1 An+1 o 2 ~An o 1
> 5lle &N — ZUle el y+lle” - [F%)
5 1
1 ~An 2 ~ n—1p2
> Z” 4 T ZIIE" — & N (3.20)
For the artificial regularization term, we have the following identity:
(én—i-l — 2"+ én—l,én+l > (”An-‘rl An”% _ ||é" _ o l” + ”'\n+l 28" + én—l”%)
The last term on the right-hand side of (3.19) can be bounded by
1
1 antl 4 bl 1 Antl 1
(et ey <N =2y - I gy < Al S NP N+ Aty
For the second linear term on the right-hand side, a direct computation gives
(2n+1, 2n+1 ) <An+1 én+ ) (An+1 20" + 2n71’ 2n+1 _ é")
1
sn+12 sn+1 _ any2
= —(||€”Jr 13— 115 + 12" —e13)
Akl ang2 N An+1 an | an—1
(|| gy — et = 4 1t — 28 + 3, (3.21)
where we have used the fact that
et = et — (gt —2en 4 on . (3.22)
The nonlocal linear term on the right-hand side can be rewritten as
(Z An+l An+l é”) — ((J* I)An+l Txe An+1 én+l _ é”)
= —2(x )T ot oy 4 2wt e — oy, (3.23)

For the first term appearing in above, the following identity is obvious:

1
A+l oantl 4 ant102 a2 o nantl ey
et ertl — e = E(”en+ 15 = 1"115 + 1"+ —&*113).
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1104 X.LIET AL.

Meanwhile, for the term 2 (J % &"+1, 2"+ — &") we apply Lemma 2.1 and obtain

£2<J*én+l’én+l o = (J*en+l Ay((—Ay)~ (An+l &)
< CAt]e" 3 + Enw—Aer(é”“ -3
< Gz A3 + ﬁné”“ — "2 n (3.24)
where C5 depends only on C; and ¢. Subsequently, a combination of (3.23)-(3.24) yields
—e2 (et et — o) < —%szu * 1>(||é”+1||§ — [le"I3 + "t —2"3)

+ Gz At 3 + ||”’+1 A (3.25)

For the nonlinear inner product on the right-hand side of (3.19), we begin with the following nonlinear
expansion:

(dsn+1)3 _ (én-l—l):i — ((én-‘r])z + én—i—ld‘;n—i-l + (d\;l’H—l)Z)én-‘rl' (326)

The consistency estimates (3.11) and (3.12), and a priori estimates (3.17) and (3.18) indicate that
Xn+1 * 1 1 XVL+1 « 1
2" o < C +§+§=M0, 6" oo < C +1+§<M0+1,
which in turn leads to
Snt1N2 | Akl Intl Ynbly2 2
[(@"7)+ @™ " + (0" )Ml < 3(My+ 1)”. (3.27)
Then, we arrive at
1@ = ()1l < @2 4+ S G2 - 187, < 30y + DA

As a consequence, the following rough estimate is available:

_((43}14-1)3 _ ((5714-1)3’&”4—1 _ én) < ||(én+l)3 _ ($n+1)3”2 ”eVH-l ”2
<3(My + D2, - & =2,
_1.X% Yo .~ N
<OMy+ Dy e 3 + 22 pentt — 3. (3.28)

4
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1105

Therefore, by substituting (3.20)-(3.21), (3.25) and (3.28) into (3.19), we obtain

. 1 o A+1 . O
|| Ly — e =e N2+ T(ne"“ =" —l1e" — e 3)
A N ~ N Yo . ~ N
+ _(82(1* D — DA™ 3 — fem3 + et — el — Z‘)ne"“ — &3
< G AE + 9y + Dy 18, + At 2 (3.29)

Making use of the assumption y, = E2Ux1)—1>0 (given by (1.4)), we get

% e

Y0 ant1,2 [ o1y A+l an—12 .
2l < —" =2 v+ —— " =" s+ 2 &3
2

4At 2
+ C3 AL E oMy + Diyg e + Atur"“ 1% -

Meanwhile, with the application of the a priori error estimate (3.15), we arrive at

%né”“ 12 < Cu(A12 + HPm3),

.. . _1 . - .
by combining with # < A7 and C3Ar < % provided that Ar and h are sufficiently small, with a
linear refinement constraint C1h < At < C,h. Subsequently, an application of two-dimensional inverse
inequality implies that

Clie",

an+1
e
lle™ "l h

A 51 Lo —1,1/2
< C (AT +1""1) < Ar, with C) == C(AC,y5 )2,
(3.30)

1 \4 c
provided that  Af < ( - ) L h< ( ! )'"*'4*‘ and C;h < At < Cyh,
20, 20,

under the same linear refinement requirement. As a consequence, the following a priori bounds can be
derived:

~ 1 1
16" oo < 16" g + 12" g < C* 4 5+ 5 = My, (3.31)
H¢n+l_¢n <H(§n+l_q§n — " <C*+1+1—M (3.32)
LS Y o S 2 2 70 '

These bounds will play a crucial role in the refined error estimate.

3.3 A refined error estimate

In this subsection, we perform a more refined error estimate for the nonlinear term to improve the
estimate (3.28), under the a priori estimate (3.32). As a result, an inductive argument can be applied to
the inequality (3.29).
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1106 X.LIET AL.

The following nonlinear expansion (3.20) is still available. We begin with the following rewritten
form:

<(¢§n+1)3 — (@3, el
<((¢n+1)2 + ¢n+1¢n+1 + (¢n+1) )’\I’l+1 él’l+1 _ én>

_ <((én+l)2 + én+l$n+l + ($n+l)2)(éﬂ+l _ 22‘}’1 + én—l)’én-l—l _ én>’ (333)

where we have used the identity (3.22). For the second term in (3.33), an application of (3.27) indicates
that

_ (((én-i-l)Z + én-l—lén-‘rl + (J)n+l)2)(én+l — 20" + én—l)’én—i-l _ é")
3(M0 + 1) ”An+l 20" _i_énf] ” ||An+1 An”2

9y + yg 18 28" + & - Rt — e, (3.34)
For the first term in (3.33), we begin with the following obvious identity

An-‘,-] ("n-‘rl én) — %((én-ﬁ—l)z (An)z + ("n-‘r] "11)2)’

which in turn implies that

<((q§n+1)2 " q§n+1q;n+1 F (@rHH2)entt ot pny

> %(<(q§n+l)2 n q§n+1d;n+1 + (T2, @ty — ((5n+1)2 4 q§n+1¢;n+1 +(@H2 @)

<((pn+l)2+(pn+l¢n+l +(¢n+1)2 @ th2y — (3.35)

nl’

where [, := 2((<15”+1)2+<15”+1<15”+1 +(@"1)2, (¢")2). However, we observe that the first term in (3.35),

1((<P”+1)2 + <1>"+1¢”+1 + (¢"H2, (&"t1?2), is not equal to I'H'l To apply the induction analysis in
later steps, we have to estimate their difference. The following mequalities come from the consistency
estimate (3.12), and a priori estimates (3.18) and (3.32):

An _ gn-l Antl _ 4 -1 1
[@" = &" Mgy 10" = D"y 18" = " ooy 119" = ¢" o < MpAr,

which in turn imply that

1872 — ™|, <3MyAL, " — ¢ < 3MAL.
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1107

Moreover, the following estimates are available:

”(43n+2)2 _ (én+1)2||oo < ”él’l+2 + én+l ”oo . ”éFH’z _ én+l < 2M0 . 3M0At — 6M%At

lloo

With similar arguments, we get

”q§n+2¢;n+2 _ q§n+l¢‘;n+l||oo <OMEAL, ("2 — "2, < 6MRA.
Then we arrive at

”((q§n+z)2 i q§n+2¢;n+2 (@) — ((5n+1)2 n q§n+1¢;n+1 @) < 18M2 A,

As a direct consequence, the following bound is available:

I::l+1 . %<(én+l)2 i q§n+1q;n+1 + @ H2, @] < amB A2,
Its substitution into (3.35) yields

<((q§n+1)2 n q§n+1¢;n+1 (@Yt ot oy > Izl+1 1 —oMR ArerH 2,

Combining with (3.33) and (3.34), we obtain a refined error estimate for the nonlinear inner product:

<(£n+1)3 _ ((571-‘1-1)3,211-‘1-1 _ én>

1A ~ A Yo, ~ ~ ~
>I5T 1 — oMy + Dy et — 28 e - ZOHe"H — &3 — IMZ At 3. (3.36)

As aresult, a substitution of (3.20)-(3.21), (3.25) and (3.36) into (3.19) results in

3 1
An+1 Anp2 an_ an—1p2
— " —e ——|e" —e
4At” ”_I’N 4At” ”_I’N
A+1 1 2 12 A+1 1 12
~ ~ ~ Ap— ~ ~ An— +1
+—— (et —em3 — et — & 1) +—— et — 22" "3+ Iy -1

1 . . . R Yo o » .
+ E(szu* D) — D3 — e + e —em3) — 50||e"+1 — "3

<9My + Dyy et — 28" + "3 + (G5 + IMD Ar|e" T3 + Ary 2
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1108 X.LIET AL.

Considering y, = g?(J % 1) — 1 > 0 and condition (3.4) for the parameter A, we get

1
Al A An—1
4—At(||e'”r A T el (AR LY

A+1 R . o Y0 i1~ n
+ T(ne"*‘ — M3 — et =3y 1T — 1+ 0<|| I3 —1em13)
< (Cy + IMG) AL 3 + Ar| Ty

The following quantity is introduced:

1 . N A+1 A Y0
Fn+1 = 4_At||en+1 n”_lN + 5 ”e}’H-l _ en”% +Inl+l 4 _0||el’l+1||%

Then we get the following estimate:
PP — U Cs AP 4 A2y, with Cs = 2(C5 + 9MD)yg
Using the discrete Gronwall inequality results in the desired convergence estimate:
F'™ < Oy (AL + hP™,

since ||ré||_1’N < C(AP + ™) for j < n+ 1. In particular, we see that
12+, —7 Lo =y < CEy AR + ) < ArF (3.37)

so that the a priori assumption (3.15) has been recovered at time instant ¢,,, ;. In turn, the analysis can be
carried out in the induction style. This completes the error estimate for e, the numerical error between
the numerical solution ¢ and the constructed approximation solution ®.

Finally, the error estimate (3.5) is a direct consequence of the following identity

A 2
ok — ¢k =k — AP (2 o O,

which comes from the construction (3.9), as well as the fact that || (QZNQD(ZI)) I, < Cforany k > 0. The
proof of Theorem 3.1 is finished.

REMARK 3.2 The proof of Theorem 3.1 can be extended to the three-dimensional case without any
essential difficulty. A key difference is an application of the three-dimensional inverse inequality, i.e.,

| a

[¥lloo < fE IVl Y €.,

[N

to revise the inequalities (3.16) and (3.30) accordingly. In addition, the quantities on the right-hand
side of the inequalities in (3.15) have to be replaced by ArT + W1, As a result, following the similar
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STABILIZED BDF2 SCHEME FOR THE NCH EQUATION 1109

derivations as the two-dimensional case, the last step of (3.37) can also be obtained by the same quantity,
so that the induction process is completed.

3.4 Theoretical justification of the energy stability

As proved in Proposition 2.2, the numerical scheme (2.1) is energy stable under the condition (2.3),
which involves the £°° bound of the numerical solution. The proof of Theorem 3.1 implies that the £*°
bounds (3.17) and (3.31) for the numerical solution are available as long as another constraint (3.4) for
A is valid. Thus, we can give a theoretical justification of the energy stability as follows.

CoOROLLARY 3.3 Under the assumptions of Theorem 3.1, the energy stability, namely E N(qﬁ”“, ") <
EN(qb”, "1, is valid under the constraint (3.4) for the regularization parameter A, combined with a
trivial constraint for At: C J84At < Y-

4. Numerical experiments

In this section, we conduct some numerical experiments by using the proposed stabilized BDF2 scheme
(2.1) for solving the NCH equation (1.3) in the two-dimensional space. For the kernel involved in the
nonlocal diffusion operator, as reported in Du ef al. (2018), we use a family of Gauss-type functions,
parameterized by a constant § > 0, taking the form

Ix|?

4 _i?
J(S(x)zme 2, xeR%. 4.1)

Since Jg x 1 = 4/82, the condition (1.4) is equivalent to § < 2¢.

4.1 Convergence tests

First, we test the temporal convergence rate of the proposed scheme with different values of the
parameters ¢ and 4.

ExampLE 4.1 Consider the NCH equation (1.3) in 2 = (—1, 1) x (—1, 1) subject to periodic boundary
condition and the initial value ¢ (x,y) = 0.5sinzxsinmy + 0.1 for the cases g2 = 0.1 and &% = 0.01.
The kernel (4.1) is adopted with 82 = &2, §% = 2¢2 and 8% = 3&2, respectively. We test the temporal
convergence rate of the scheme (2.1) by calculating the numerical solution at = 0.05.

We adopt the uniform 1024 x 1024 spatial mesh. According to our observation in the numerical
tests, such a spatial mesh is sufficiently fine so that the errors caused by the spatial approximation
can be ignored. We compute the numerical solutions with various time step sizes Ar = 27¥A, with
k=0,1,...,8and A = 0.005, which are the same as those in Du et al. (2018). The benchmark solution
for the computing errors is taken as the approximated solution obtained with a smaller time step size
At =278 A /5. The stabilizing constant is set to be A = 5.

Figure 1 plots the discrete £> errors of the numerical solutions with various values of & and . The
second-order convergence rates are obvious in each case. In comparison with the corresponding results
presented in Du et al. (2018), we find the numerical errors generated by the BDF2 scheme are less
sensitive to the value of §, especially for large ¢, than the ones computed by the Crank—Nicolson version.
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102 F

104 F

L2 error

100 ¢

108

- —p— % =32 =0.03
.

10 10 10° 102
time step size

Fi1G. 1. Temporal convergence rates in Example 4.1.

TABLE 1 Coefficients of the linear fitting E(t) ~ b t™¢ for the case 6 = 0.05

£ 0.1 0.09 0.08 0.07 0.06 0.05 0.04
m, —0.326 —-0.314 —0.331 —0.321 —0.327 —0.341 —0.332
b 22.763 21.511 19.737 18.312 16.240 14.214 12.365

e

4.2 Coarsening dynamics

It is known (Dai & Du, 2016) that the energy corresponding to the classic Cahn—Hilliard equation

satisfies the —% power law for the rate of decay, that is, E(f) ~ t_% for large ¢, while there is no similar
theoretical result for the NCH equation (1.3). In the following experiment, we will simulate the power
law for the NCH equation (1.3) numerically. In fact, the constraints on the time step size declared in
the theoretical results are sufficientm but not necessary, and a moderately larger time step will not lead
to the violation of the energy stability in practical computations. Thus, to accelerate the simulation of
the power law, we will use variable time step sizes in the following experiment without sacrificing the
numerical accuracy, as done by Chen et al. (2014) and Ju et al. (2018).

ExaMPpLE 4.2 Setting 2 = (—27,21) x (—2m,2mw), we simulate the coarsening dynamics of phase
transition process with various values of ¢ and § shown later. The initial configuration is set to be a
random initial data ranging uniformly in [—0.1, 0.1] on each grid point in a uniform mesh. The time step
size is set as: At = 0.001 on the time interval [0, 1000), Ar = 0.01 on [1000, 10000) and At = 0.1 for
¢t > 10000 if needed. The stabilizing constant is given by A = 5.

First, we choose § = 0.05 and N = 512, and set ¢ decreasing from 0.1 to 0.04. Figure 2 displays
the evolution of the computed solutions at # = 1, 3, 10, 100, 400 and 5000 for the case ¢ = 0.04. It is
obviously observed that the dynamic evolves from the initial disorder state to the ordered states rapidly
and then reaches the steady state around ¢ = 5000. Figure 3 (left) presents of the energy evolution curves
for ¢ = 0.1, 0.08, 0.06 and 0.04. In comparison with the reference line corresponding to Ct_%, it can
be observed that the rates of energy decay comply with the —% power law well for all cases. Table 1
presents the digits of the coefficients of the linear fitting of the energy in the form E(¢) ~ b, In fact,

€202 Iudy €1 uo Josn AjisioAlun o1uydalAlod Buoy BUOH auL Aq 88%8259/6801/Z/€ p/alonJe/eulew/woo dno oiuapes.//:sdiy Wo.y papeojumod



STABILIZED BDF2 SCHEME FOR THE NCH EQUATION

a R

energy
energy

102 107 10° 10 102 108 10* 102 107 10° 10’ 102 108
time time

F1G. 3. Evolutions of the energies for case § = 0.05 (left) and § = 0.005 (right) in Example 4.2.

this scaling function is nonlinear, while the linear fitting is applied to In(E(?)), in terms of In¢. All the

values of m, approach to —1 which also implies the expected power law.

Then, we set § = 0.005 and N = 1024, and still let ¢ decrease from 0.1 to 0.04. Paralleled to the
first case, Fig. 3 (right) and Table 2 show the evolution curves and the coefficients of the fitting of the

energies, respectively. Again, the —% power law of the energy decay rate is verified.
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TABLE 2 Coefficients of the linear fitting E(t) ~ bt for the case § = 0.005

€ 0.1 0.09 0.08 0.07 0.06 0.05 0.04
m, —0.334 —0.324 —0.341 —0.337 —0.334 —0.344 —0.343
b 11.274 10.604 9.675 8.821 7.938 6.943 6.020

e

5. Conclusion

In this paper, we study a second-order (in time) stabilized BDF-type numerical scheme for the NCH
equation, where the Fourier spectral collocation method is adopted for the spatial approximation. The
main theoretical results consist of the convergence analysis, by performing a high order consistency
analysis, combined with rough error estimate and refined error estimate. In turn, a modified energy
stability becomes available. In comparison with a previous work (Li et al., 2021), we apply the second-
order convergence estimate to recover an £°° bound of the numerical solution, i.e., the numerical solution
can be regarded as a small perturbation of the exact solution. The crucial different technique used for
the error estimate is that we use (—A N)’1 (e"t1 — &) as the test function, rather than the standard form
(—A N)_l?z"“, for the error equation, so that a higher order temporal truncation error is provided to
match the BDF2 discretization.

The spectral accuracy order in the spatial discretization, as indicated by the estimate (3.3), has greatly
facilitated the convergence analysis, provided that m is large enough. Of course, one can also adopt
the finite difference or other local approaches of spatial discretization. Due to the periodic boundary
condition, the matrix for the discrete Laplacian is circulant, and the product of such a circulant matrix
and a vector can also be implemented by the fast Fourier transform. In other words, the evaluation of the
discrete Laplacian in the central difference method has more or less the same computational cost as the
spectral method. However, the central difference yields a truncation error of order O(hz), which is not
high enough to ensure the £°° bound of the discrete temporal derivative, i.e., (3.18) with only m = 2.
To overcome this difficulty, one needs to conduct a higher order asymptotic analysis to supplement the
consistency order in both time and space, by constructing a correction field with the truncation error of
order O(A#? + h*). This technique is similar to the analysis presented in Section 3.1; also see related
works Guan et al. (2017, 2014a,b).

Another natural way to develop the second-order numerical schemes is to consider the Crank—
Nicolson approximation combined with an appropriate extrapolation for the nonlinear term. However,
whether the second-order stabilized linear scheme proposed in Du ez al. (2018) can be proved to be
energy stable with respect to a modified energy is still an open question, which will be our future work.
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