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a b s t r a c t

In this paper we propose and analyze a temporally second-order accurate numerical
scheme for the Cahn–Hilliard-Magnetohydrodynamics system of equations. The scheme
is based on a modified Crank–Nicolson-type approximation for the time discretization
and a mixed finite element method for the spatial discretization. The modified Crank–
Nicolson approximation enables us to carry out the mass conservation and the energy
stability analysis. Error estimates are derived for the phase field in the L1

⌧ (0, T ;H1)
norm, and for the velocity and the magnetic fields in the L1

⌧ (0, T ; L2) norm, respectively.
Numerical examples are presented to validate the theoretical results of the proposed
scheme.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider a two-phase incompressible fluid, where the phases interact through a magnetic field. The
physical system is modeled by a diffuse interface framework and is formulated as follows [1]:

@t� + r · (�u) = "r · (M(�)rw), (1)

"�1(�3 � �) � "�� = w, (2)

⇢(@tu + (u · r)u) � r · (⌘(�)ru) + rp + ��rw = µ(r ⇥ B) ⇥ B, (3)

@tB + µ�1r ⇥ (� (�)�1r ⇥ B) � r ⇥ (u ⇥ B) = 0, (4)

r · u = 0, (5)

over ⌦ ⇥[0, T ], where ⌦ is a bounded and convex polyhedral domain in R
3 (or polygonal domain in R

2), and T stands for
the final time. The above system is known as the Cahn–Hilliard-Magnetohydrodynamic (CH-MHD) model. In the above
equations, the unknown u denotes the velocity vector; B, the magnetic field; p, the pressure; �, the phase field; and w,
the chemical potential. The constant µ is the magnetic permeability, and " > 0 represents the interfacial width between

⇤ Corresponding author.

E-mail addresses: cwang1@umassd.edu (C. Wang), wangjilu@hit.edu.cn (J. Wang), swise1@utk.edu (S.M. Wise), xiazeyu@hit.edu.cn (Z. Xia),

xul@uestc.edu.cn (L. Xu).

https://doi.org/10.1016/j.cam.2023.115409

0377-0427/© 2023 Elsevier B.V. All rights reserved.



C. Wang, J. Wang, S.M. Wise et al. Journal of Computational and Applied Mathematics 436 (2024) 115409

two phases. The coefficient ⇢ is a positive constant representing the fluid density, and we set it to be 1 for brevity. The
parameters ⌘(�) and � (�) stand for the hydrodynamic viscosity and electric conductivity, respectively, which are assumed
to satisfy

0 < ⌘ := min(⌘1, ⌘2)  ⌘(�)  max(⌘1, ⌘2) =: ⌘,

0 < � := min(�1, �2)  � (�)  max(�1, �2) =: � ,

where ⌘i and �i (i = 1, 2) denote the viscosity and electric conductivity of the pure phase fluid i. It is assumed that ⌘(�)
and � (�)�1 are Lipschitz continuous functions with respect to �. Specific expressions of functions ⌘(�) and � (�) can be
found in [1]. For the sake of simplicity, we assume ⌘(�) ⌘ ⌘ and � (�) ⌘ � in this paper, where ⌘ and � are positive
constants, for the sake of simplicity. Furthermore, the mobility function M(�) is set to be 1. The term ��rw represents
the continuum surface tension force with � being a positive constant [2,3].

With the assumptions mentioned above, we can simplify the system (1)–(5) as

@t� + r · (�u) = "�w, (6)

"�1(�3 � �) � "�� = w, (7)

@tu + (u · r)u � ⌘�u + rp + ��rw = µ(r ⇥ B) ⇥ B, (8)

µ@tB + ��1r ⇥ (r ⇥ B) � µr ⇥ (u ⇥ B) = 0, (9)

r · u = 0. (10)

The following boundary and initial conditions are used:

@�

@n
=

@w

@n
= 0, u = 0, B ⇥ n = 0, on @⌦ ⇥ [0, T ], (11)

�|t=0 = �0, w|t=0 = w0, u|t=0 = u0, B|t=0 = B0, in ⌦, (12)

where n denotes the outward unit normal vector on @⌦ . It is supposed that the initial condition r ·B0 = 0, which implies
r · B(·, t) = 0 for any t > 0.

In [1], Yang et al. proved the existence of weak solutions for the two-phase MHD system (1)–(5), and designed a
temporally first-order accurate numerical scheme with mass-conservation, unique solvability, and unconditional energy
stability. An abstract convergence result was also established. In [4], second-order linear schemes were proposed for
solving the CH-MHD equations, based on the second-order backward differential formulation (BDF2) and Crank–Nicolson
methods. In [5], Zhao et al. proposed and analyzed a linearized Crank–Nicolson scheme for the system (1)–(5), where the
SAV method was used to deal with the nonlinear term in the Cahn–Hilliard equation. In [6], Su et al. proposed an efficient
scheme to solve the CH-MHDmodel, where the IEQ method and projection method were applied to approximate the phase
field equations and the MHD equations, respectively. The unconditional energy stabilities of the semi- and full-discrete
schemes were also proved in [6]. In these previous works, error estimates of the fully discrete numerical schemes have
not been available for the CH-MHD model.

The system (6)–(10) contains a challenging part, the incompressible MHD system, which describes the interaction
between the fluid and the magnetic fields. This part has been widely applied in the engineering modeling, such as the
plasma motion and the liquid-metal processing [7,8]. The incompressible MHD model is formulated as [9]

µ@tB + ��1r ⇥ (r ⇥ B) � µr ⇥ (u ⇥ B) = 0, (13)

⇢(@tu + u · ru) � �u + rp � µ(r ⇥ B) ⇥ B = 0, (14)

r · u = 0. (15)

There have been extensive works on regularity analysis for the continuous MHD system (13)–(15) [10–14]. In terms of
numerical simulations, the H1(⌦)-conforming finite element methods (FEMs) have been widely adopted to approximate
this system. Here, d = 2, 3, denotes the dimension of the domain. In [15], Gunzburger, Meir, and Peterson designed a
numerical scheme based on H1(⌦)-conforming FEMs for the stationary MHD system. In [16], He proposed a first-order
Euler semi-implicit scheme for solving the time-dependent MHD model, where the H1(⌦)-conforming FEM was used
to approximate the magnetic field, and the convergence analysis of the scheme was considered. More developments on
the H1(⌦)-conforming FEMs could be found in [17–22]. For the time-dependent MHD system, many existing works are
dedicated to the study of temporally first-order accurate schemes, such as [16,23–25]. Recently, higher-order accurate
temporal schemes have also attracted interest, in particular, BDF2-based methods in [26–28], and Crank–Nicolson-based
methods in [29,30].

In addition to the fluid motion and the magnetic field evolution processes, another key feature in the physical system
(6)–(10) is phase transition. The Allen–Cahn (AC) [31] and the Cahn–Hilliard (CH) [32] equations are fundamental gradient
flow models in the description of the phase transition. Many numerical works have been reported [33–35], and the
corresponding energy stability results have been proved. Neglecting the effect of magnetic fields, a combination of a
phase field model and the Navier–Stokes equation [36,37], namely the Cahn–Hilliard–Navier–Stokes (CHNS) equations,
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has been proposed to describe some natural phenomena, such as two-phase flows with topological change, including
pinch-off and droplet merging. Error estimates and energy stability analyses of various numerical methods for solving
the CHNS system have been analyzed in [37–39]. In [37], Diegel et al. proposed a numerical scheme with finite element
spatial discretization and a modified Crank–Nicolson method for the CHNS model and presented the analysis of unique
solvability, mass conservation, unconditional energy stability, and error estimates. More related numerical works related
to the models coupling with the phase fields can be found in [2,40–47] and the references therein.

In this paper we design a fully discrete numerical scheme, which combines the H1(⌦)-conforming FEM spatial
discretization and a modified Crank–Nicolson temporal approximation, to solve the CH-MHD system (6)–(10). Precisely, a
modified Crank–Nicolson discretization is applied to the nonlinear part associated with the double-well potential, which
together with the Adams–Bashforth extrapolation to the concave term and a second-order convex splitting technique
enables us to theoretically justify the unconditional energy stability of the numerical algorithm. Another modified Crank–
Nicolson-type approximation is applied to the phase diffusion term. As a result, we can obtain the certain boundness
of the numerical approximation for the phase field. With the above numerical design, we are able to prove the unique
solvability, discrete mass conservation, unconditional energy stability, and error estimates for the proposed scheme.

This paper is organized as follows. In Section 2 we outline the variational formulation and derive the energy stability
for the continuous system. The numerical scheme is constructed in Section 3, and the unique solvability, discrete mass-
conservation, and energy stability of the scheme are established as well. The proof of error estimates is provided in
Section 4. Several numerical examples and concluding remarks are presented in Sections 5 and 6, respectively.

2. Variational formulation and stability analysis

We adopt the conventional Sobolev spacesW k,p(⌦), for k � 0 and 1  p  1, with the abbreviations Lp(⌦) = W 0,p(⌦)
and Hk(⌦) = W k,2(⌦), and define

H1
0 (⌦) :=

�
v 2 H1(⌦) | v|@⌦ = 0

 
, L20(⌦) =

⇢
v 2 L2(⌦)

���
Z

⌦

v dx = 0

�
.

The corresponding vector spaces are given by

Lp(⌦) = [Lp(⌦)]d, Wk,p(⌦) = [W k,p(⌦)]d,

H1
0(⌦) = [H1

0 (⌦)]d, H̊
1
(⌦) =

�
v 2 H1(⌦) | v ⇥ n|@⌦ = 0

 
,

where d = 2, 3, denotes the dimension of the domain ⌦ . In addition, the L2 inner product is denoted by (·, ·).
The exact solution (�, w, u,B, p) of (6)–(10) satisfies the following weak formulation: for almost all t 2 [0, T ],

(@t�, ⇠ ) � (�u, r⇠ ) + "(rw, r⇠ ) = 0, (16)

"�1(�3 � �, ') + "(r�, r') = (w, '), (17)

(@tu, v) + b(u, u, v) + ⌘(ru, rv) � (p, r · v) + �(�rw, v) = µ((r ⇥ B) ⇥ B, v), (18)

µ(@tB, l) + ��1(r ⇥ B, r ⇥ l) � µ(u ⇥ B, r ⇥ l) = 0, (19)

(r · u, q) = 0, (20)

for any (⇠ , ', v, l, q) 2 (H1(⌦),H1(⌦),H1
0(⌦), H̊

1
(⌦), L2(⌦)), where b(·, ·, ·) is defined by

b(u, v,w) =
1

2

⇥
(u · rv,w) � (u · rw, v)

⇤
, 8u, v,w 2 H1

0(⌦). (21)

Clearly, we have b(u, v, v) = 0 for any u, v 2 H1
0(⌦).

A substitution of ⇠ = �w, ' = �@t�, v = u, l = B and q = p into (16)–(20) leads to

1

2

d

dt

✓
kuk2

L2
+ µkBk2

L2
+

�

2"
k�2 � 1k2

L2
+ �"kr�k2

L2

◆

+ �"krwk2

L2
+ ⌘kruk2

L2
+ ��1kr ⇥ Bk2

L2
= 0.

Thus by removing the non-negative terms and defining the total free energy as

⇥ := kuk2

L2
+ µkBk2

L2
+

�

2"
k�2 � 1k2

L2
+ �"kr�k2

L2
,

which is composed of the phase field free energy, and the kinematic and magnetic free energies, we get

d⇥

dt
 0. (22)

This gives the total free energy dissipation for the two-phase MHD model (6)–(10).
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3. Numerical method and main results

In this section, we will present a second-order Crank–Nicolson finite element scheme for solving the system (6)–(10).
The unique solvability, mass conservation, and unconditional energy stability of the scheme will be established as well.

3.1. Fully discrete numerical scheme and main results

Let Th be a quasi-uniform partition of ⌦ into tetrahedrons Kj in R
3 (or triangles in R

2), j = 1, 2, . . . ,M , with mesh
size h = max1jM diam(Kj). To solve for the unknowns � and w, the following finite element space is employed:

Yh =

n
vh 2 H1(⌦) | vh|Kj 2 Pr (Kj)

o
,

for any integer r � 2, where Pr (Kj) stands for the space of polynomials with degree at most r in Kj. The Taylor–Hood
elements are utilized to approximate u and p, and the corresponding finite element spaces are defined by

Xh =

n
vh 2 H1

0(⌦) | vh|Kj 2 Pr (Kj)
o

,

Mh =

n
vh 2 L20(⌦) | vh|Kj 2 Pr�1(Kj)

o
,

with Pr (Kj) = [Pr (Kj)]
d. Moreover, the following finite element space is introduced for solving for B:

Sh =

n
vh 2 H̊

1
(⌦) | vh|Kj 2 Pr (Kj)

o
.

Let {tn = n⌧ }Nn=0 be a uniform partition of the time interval [0, T ] with the time step size ⌧ = T/N . We denote by vn the
abbreviation for v( · , tn), and then define

evn+ 1
2 :=

1

2
(3vn � vn�1), vn+ 1

2 :=
1

2
(vn+1 + vn),

qvn+ 1
2 :=

1

4
(3vn+1 + vn�1), �⌧v

n+ 1
2 :=

1

⌧
(vn+1 � vn).

(23)

Based on finite element spatial approximation and a modified Crank–Nicolson temporal discretization, we propose a
fully discrete scheme for solving the incompressible Cahn–Hilliard-MHD system (6)–(10): find (�n+1

h , wn+1
h , un+1

h ,Bn+1
h ,

pn+1
h ) 2 (Yh, Yh,Xh, Sh,Mh), such that

�
�⌧�

n+ 1
2

h , ⇠h
�
�
�e�n+ 1

2
h u

n+ 1
2

h , r⇠h
�
+ "

�
rw

n+ 1
2

h , r⇠h
�

= 0, (24)

"�1
�
�

n+ 1
2

h

(�n+1
h )2 + (�n

h )
2

2
, 'h

�
� "�1

�e�n+ 1
2

h , 'h

�
+ "

�
r q�

n+ 1
2

h , r'h

�
=
�
w

n+ 1
2

h , 'h

�
, (25)

�
�⌧u

n+ 1
2

h , vh

�
+ b

�
eun+ 1

2
h , u

n+ 1
2

h , vh

�
+ ⌘

�
ru

n+ 1
2

h , rvh

�
�
�
p
n+ 1

2
h , r · vh

�

+ �
�e�n+ 1

2
h rw

n+ 1
2

h , vh

�
= µ

�
(r ⇥ B

n+ 1
2

h ) ⇥eBn+ 1
2

h , vh

�
, (26)

µ
�
�⌧B

n+ 1
2

h , lh
�
+ ��1

�
r ⇥ B

n+ 1
2

h , r ⇥ lh

�
+ ��1

�
r · B

n+ 1
2

h , r · lh
�

� µ
�
u
n+ 1

2
h ⇥eBn+ 1

2
h , r ⇥ lh

�
= 0, (27)

�
r · un+1

h , qh
�

= 0 (28)

for any (⇠h, 'h, vh, lh, qh) 2 (Yh, Yh,Xh, Sh,Mh), and n = 1, 2, . . . ,N � 1.
For the error estimates, we shall assume the following regularities of solutions:

� 2 W 1,1(0, T ;Hr+1(⌦)) \ H2(0, T ;H3(⌦)) \ C3(0, T ; L2(⌦)),

�2 2 H2(0, T ;H1(⌦)),

w 2 L1(0, T ;Hr+1(⌦)),

u 2 W1,1(0, T ;Hr+1(⌦)) \ H2(0, T ;H3(⌦)) \ C3(0, T ; L2(⌦)),

B 2 W1,1(0, T ;Hr+1(⌦)) \ H2(0, T ;H3(⌦)) \ C3(0, T ; L2(⌦)),

p 2 L1(0, T ;Hr (⌦)) \ L20(⌦),

where r � 2 is the spatial approximation order. Then, we have the following results of the numerical scheme (24)–(28).

Theorem 3.1. Assume that the solution (�, w, u,B, p) of the CH-MHD system (6)–(10) is sufficiently smooth. Then, there

exists a positive constant ⌧0 such that when ⌧ < ⌧0, the following error estimates could be established for the numerical
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scheme (24)–(28):

max
1nN�1

⇣
kr(�n+1 � �n+1

h )kL2 + kun+1 � u
n+1
h kL2 + kBn+1 � B

n+1
h kL2

⌘
 C0(h

r + ⌧ 2), (29)

⌧

N�1X

n=1

⇣
kr(wn+ 1

2 � w
n+ 1

2
h )k2

L2
+ kr(u

n+ 1
2 � u

n+ 1
2

h )k2

L2
+ kr · (B

n+ 1
2 � B

n+ 1
2

h )k2

L2

+ kr ⇥ (B
n+ 1

2 � B
n+ 1

2
h )k2

L2

⌘ 1
2

 C0(h
r + ⌧ 2), (30)

where C0 is a positive constant independent of h, ⌧ , and n.

The proof of Theorem 3.1 will be given in Section 4.

Remark 3.1. A stabilized term ��1
�
r · B

n+ 1
2

h , r · lh
�
has been added to ensure the coercivity of the magnetic equation,

which will facilitate the analysis of unique solvability of Eq. (27).

Remark 3.2. In this paper, the Crank–Nicolson method enables us to obtain unconditional energy stability for the
numerical scheme. It is straightforward to extend the Crank–Nicolson scheme to the case of nonuniform meshes and
the corresponding theoretical analyses are similar. Note that a modified Crank–Nicolson approximation has been applied
to the chemical potential associated with the double-well energy potential. The resulting nonlinear system could be solved
effectively by using the Newton’s iteration method, due to the fact that the nonlinear term in (25) is convex. To avoid the
nonlinearity of the numerical scheme, an alternative approach based on the invariant energy quadratization (IEQ) method
can be used, which results in a linear discrete scheme and can maintain a discrete IEQ modified energy dissipation law
(cf. [48,49] and the references therein).

Remark 3.3. For the sake of brevity, we assume that the numerical solutions at the first time step are given and satisfy
the estimates (29)–(30). One approach to constructing numerical schemes at the first time step is to use methods such
as the Crank–Nicolson method or the backward Euler method with a very small time size. Then the resulting schemes
satisfy the convergence in (29)–(30).

Remark 3.4. A temporal discretization r q�
n+ 1

2
h = 3

4
r�n+1

h + 1
4
r�n�1

h , i.e., the modified Crank–Nicolson method, is used
in (25) to ensure the bound of k�n

hkL1 ; see Lemma 4.4.

Remark 3.5. In this work, we focus on the error estimates of u,B, �, w. The error estimate of p can be obtained by
using the discrete inf–sup condition. For the sake of brevity, we omit the proof and refer readers to [50] for more details.
Theoretical results in Theorem 3.1 show that the spatial convergence orders for �, w, and u are optimal in H1 semi-norm.

In this paper, we denote by C a generic positive constant which could vary at different places and by ⇣ a generic small
positive constant, which are independent of n, h, ⌧ , and C0.

3.2. Discrete mass conservation and unconditional energy stability

Theorem 3.2. The fully discrete FEM system (24)–(28) admits a unique solution, for any ⌧ > 0 and h > 0, and, in addition,

the following discrete mass conservation is valid:
Z

⌦

�n+1
h dx =

Z

⌦

�0
hdx, (31)

for n = 1, 2, . . . ,N � 1. Furthermore, the numerical solution (�n
h , w

n� 1
2

h , un
h,B

n
h, p

n
h) to the fully discrete scheme (24)–(28)

satisfies the following discrete energy estimate:

⇥n+1
h  ⇥n

h , (32)

for any n = 1, 2, . . . ,N � 1, where

⇥n
h :=

�

2"

⇣
k(�n

h )
2 � 1k2

L2
+ k�n

h � �n�1
h k2

L2

⌘
+ �"

⇣
kr�n

hk
2

L2
+

1

4
kr�n

h � r�n�1
h k2

L2

⌘

+ kun
hk

2

L2
+ µkBn

hk
2

L2
,

(33)

for any time step size ⌧ > 0 and any space step size h > 0.

Proof. Following similar arguments to those as given in [1, Theorem 4.5], we can get the unconditional unique solvability
of solutions of system (24)–(28). We will suppress that argument for the sake of brevity.
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To obtain the discrete mass conservation, we take ⇠h = 1 in (24) and get

(�⌧�
n+ 1

2
h , 1) = 0,

which yields the discrete mass conservation equality (31).

Next we proceed with the proof of discrete energy stability. Taking ⇠h = �w
n+ 1

2
h , 'h = ��⌧�

n+ 1
2

h , vh = u
n+ 1

2
h , lh =

B
n+ 1

2
h , qh = p

n+ 1
2

h in (24)–(28), respectively, and summing up the resulting equations lead to

�"�1
�
�

n+ 1
2

h

(�n+1
h )2 + (�n

h )
2

2
�e�n+ 1

2
h , �⌧�

n+ 1
2

h

�
+ �"

�
r q�

n+ 1
2

h , r�⌧�
n+ 1

2
h

�

+ �"krw
n+ 1

2
h k2

L2
+
�
�⌧u

n+ 1
2

h , u
n+ 1

2
h

�
+ µ

�
�⌧B

n+ 1
2

h ,B
n+ 1

2
h

�

+ ⌘kru
n+ 1

2
h k2

L2
+ ��1kr ⇥ B

n+ 1
2

h k2

L2
+ ��1kr · B

n+ 1
2

h k2

L2
= 0.

(34)

With the help of the following identities
✓
3

4
a +

1

4
c

◆
(a � b) =

1

2
(a2 � b2) +

1

8
[(a � b)2 � (b � c)2 + (a � 2b + c)2],

✓
a + b

2

a2 + b2

2
�

3b � c

2

◆
(a � b) =

1

4
[(a2 � 1)2 � (b2 � 1)2

+ (a � b)2 � (b � c)2 + (a � 2b + c)2],

(34) becomes

�"�1

4⌧
(k(�n+1

h )2 � 1k2

L2
� k(�n

h )
2 � 1k2

L2
+ k�n+1

h � �n
hk

2

L2
� k�n

h � �n�1
h k2

L2

+ k�n+1
h � 2�n

h + �n�1
h k2

L2
) +

�"

8⌧
(4kr�n+1

h k2

L2
� 4kr�n

hk
2

L2

+ kr(�n+1
h � �n

h )k
2

L2
� kr(�n

h � �n�1
h )k2

L2
+ kr(�n+1

h � 2�n
h + �n�1

h )k2

L2
)

+
1

2⌧
(kun+1

h kL2 � kun
hk

2

L2
+ µkB

n+1
h k2

L2
� µkBn

hk
2

L2
)

+ �"krw
n+ 1

2
h k2

L2
+ ⌘kru

n+ 1
2

h k2

L2
+ ��1kr · B

n+ 1
2

h k2

L2
+ ��1kr ⇥ B

n+ 1
2

h k2

L2
= 0.

(35)

The discrete energy stability (32) follows immediately for n = 1, 2, . . . ,N � 1.
Meanwhile, (35) also leads to the boundness of the numerical solution that

max
2nN

⇣
k(�n

h )
2kL2 + kr�n

hkL2 + kun
hkL2 + kBn

hkL2

⌘
 C, (36)

⌧

N�1X

n=1

⇣
krw

n+ 1
2

h k2

L2
+ kru

n+ 1
2

h k2

L2
+ kr · B

n+ 1
2

h k2

L2
+ kr ⇥ B

n+ 1
2

h k2

L2

⌘
 C, (37)

which will be used in the error estimates in the next section. ⇤

4. Error estimates

In this section we carry out error estimates of the numerical scheme (24)–(28), as given by Theorem 3.1.

4.1. Some preliminary results

First of all, we introduce several projections and the corresponding consistency estimates. The Ritz projection Qh :

H1(⌦) ! Yh is defined by

(r(v � Qhv), rvh) = 0, v 2 H1(⌦), 8vh 2 Yh, (38)

with
R

⌦
(v � Qhv) dx = 0. The Stokes projection (Rhu, Rhp) of (u, p) 2 H1

0(⌦) ⇥ L20(⌦) is defined by

⌘(r(u � Rhu), rvh) � (p � Rhp, r · vh) = 0, 8vh 2 Xh, (39)

(r · (u � Rhu), qh) = 0, 8qh 2 Mh. (40)

Furthermore, ⇧h : H̊
1
(⌦) ! Sh denotes the Maxwell projection satisfying

�
r ⇥ (B � ⇧hB), r ⇥ lh

�
+
�
r · (B � ⇧hB), r · lh

�
= 0, B 2 H̊

1
(⌦), 8lh 2 Sh. (41)

6
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In the following, we recall several existing results, which will be used frequently in the proof of Theorem 3.1.

Lemma 4.1 ([51–53]). The following inequalities hold for the Ritz projection, Stokes projection, and Maxwell projection:

kv � QhvkL2 + hkv � QhvkH1  Ch`+1kvkH`+1 , (42)

for 0  `  r,

kRhukW1,4 + kRhukL1  C(kukH2 + kpkH1 ), (43)

ku � RhukL2 + hku � RhukH1  Ch`+1(kukH`+1 + kpkH` ), (44)

kp � RhpkL2  Ch`(kukH`+1 + kpkH` ), (45)

for 0  `  r, and

kB � ⇧hBkL2 + hkB � ⇧hBkH1  Chr+1kBkHr+1 . (46)

for 0  `  r, where C is a positive constant independent of h.

Lemma 4.2 ([51]). For any vh in the finite spaces Yh, Mh, Xh, or Sh, it holds that

kvhkWm,s  Ch
n�m+ d

s � d
q kvhkWn,q , (47)

for 0  n  m  1, 1  q  s  1, where d is the dimension of the space, and C is a positive constant independent of h.

Let Y̊h := Yh \ L20(⌦). We define a linear operator Th : Y̊h ! Y̊h such that for given vh 2 Y̊h,

(rThvh, r⇠h) = (vh, ⇠h), 8⇠h 2 Y̊h. (48)

Then for vh, ⇠h 2 Y̊h, the discrete H�1 inner product is introduced as

(vh, ⇠h)�1,h := (Thvh, ⇠h). (49)

It is known [36, Lemma 2.6] that (·, ·)�1,h defines an inner product on Y̊h, and the induced negative norm is given by

kvhk�1,h :=
p
(vh, vh)�1,h. (50)

For the above negative norm, we have the following result.

Lemma 4.3 ([36, Lemma 2.6]). For all � 2 Yh and all vh 2 Y̊h, it holds that

(vh, � )  Ckvhk�1,hkr�kL2 , (51)

where C is a positive constant independent of h.

In the error estimates of the numerical scheme (24)–(28), the following lemma will be frequently used.

Lemma 4.4. The numerical solution �n
h to the system (24)–(28) satisfies

k�n
hkL1 + kr�n

hkL3  C(T + 1), (52)

where C is a positive constant independent of h, ⌧ , and T (the final time).

Proof. We refer to Proposition 2.8, Lemma 2.10, and Lemma 2.13 in [37] for the proof of estimate (52). The details are
basically the same. ⇤

4.2. Error equations

With the projections defined in the previous subsection, we rewrite Eqs. (16)–(20) into the following form:

�
�⌧Qh�

n+ 1
2 , ⇠h

�
�
�e�n+ 1

2 u
n+ 1

2 , r⇠h
�
+ "

�
rQhw

n+ 1
2 , r⇠h

�
= T�(⇠h), (53)

"�1
�
�

n+ 1
2
(�n+1)2 + (�n)2

2
, 'h

�
� "�1

�
Qh
e�n+ 1

2 , 'h

�
+ "

�
rQh

q�n+ 1
2 , r'h

�

=
�
Qhw

n+ 1
2 , 'h

�
+ Tw('h), (54)

�
�⌧Rhu

n+ 1
2 , vh

�
+ b

�
eun+ 1

2 , u
n+ 1

2 , vh

�
+ ⌘

�
rRhu

n+ 1
2 , rvh

�
�
�
Rhp

n+ 1
2 , r · vh

�

+ �
�e�n+ 1

2 rwn+ 1
2 , vh

�
= µ

�
(r ⇥ B

n+ 1
2 ) ⇥eBn+ 1

2 , vh

�
+ Tu(vh), (55)

7
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µ
�
�⌧⇧hB

n+ 1
2 , lh

�
+ ��1

�
r ⇥ ⇧hB

n+ 1
2 , r ⇥ lh

�
+ ��1

�
r · ⇧hB

n+ 1
2 , r · lh

�

� µ
�
u
n+ 1

2 ⇥eBn+ 1
2 , r ⇥ lh

�
= TB(lh), (56)

�
r · Rhu

n+1, qh
�

= 0, (57)

for any (⇠h, 'h, vh, lh, qh) 2 (Yh, Yh,Xh, Sh,Mh), and 1  n  N . Here, the truncation error terms T� , Tw , Tu, TB, Tp are given
by

T�(⇠h) =
�
�⌧Qh�

n+ 1
2 � @t�

n+ 1
2 , ⇠h

�
+ "

�
r(wn+ 1

2 � wn+ 1
2 ), r⇠h

�

�
�e�n+ 1

2 u
n+ 1

2 � �n+ 1
2 u

n+ 1
2 , r⇠h

�
,

Tw('h) ="�1
�
�

n+ 1
2
(�n+1)2 + (�n)2

2
� (�n+ 1

2 )3, 'h

�
� "�1

�
Qh
e�n+ 1

2 � �n+ 1
2 , 'h

�

+ "
�
r(q�n+ 1

2 � �n+ 1
2 ), r'h

�
+
�
wn+ 1

2 � Qhw
n+ 1

2 , 'h

�
,

Tu(vh) =
�
�⌧Rhu

n+ 1
2 � @tu

n+ 1
2 , vh

�
+ b

�
eun+ 1

2 , u
n+ 1

2 , vh

�
� b

�
u
n+ 1

2 , un+ 1
2 , vh

�

+ ⌘
�
r(u

n+ 1
2 � u

n+ 1
2 ), rvh

�
�
�
p
n+ 1

2 � pn+
1
2 , r · vh

�

+ �
�e�n+ 1

2 rwn+ 1
2 � �n+ 1

2 rwn+ 1
2 , vh

�

� µ
�
(r ⇥ B

n+ 1
2 ) ⇥eBn+ 1

2 � (r ⇥ B
n+ 1

2 ) ⇥ B
n+ 1

2 , vh

�
,

TB(lh) =µ
�
�⌧⇧hB

n+ 1
2 � @tB

n+ 1
2 , lh

�
� µ

�
u
n+ 1

2 ⇥eBn+ 1
2 � u

n+ 1
2 ⇥ B

n+ 1
2 , r ⇥ lh

�

+ ��1
�
r ⇥ (B

n+ 1
2 � B

n+ 1
2 ), r ⇥ lh

�
+ ��1

�
r · (B

n+ 1
2 � B

n+ 1
2 ), r · lh

�
.

Now, we analyze the errors between the numerical solutions and the projection functions and thus define

en� := Qh�
n � �n

h , enw := Qhw
n � wn

h,

en
u

:= Rhu
n � u

n
h, en

B
:= ⇧hB

n � B
n
h, enp := Rhp

n � pnh.

Subtracting (24)–(28) from (53)–(57) yields a system of error evolutionary equations:

�
�⌧ e

n+ 1
2

� , ⇠h
�
�
�e�n+ 1

2 u
n+ 1

2 �e�n+ 1
2

h u
n+ 1

2
h , r⇠h

�
+ "

�
re

n+ 1
2

w , r⇠h
�

= T�(⇠h), (58)

"�1
�
�

n+ 1
2
(�n+1)2 + (�n)2

2
� �

n+ 1
2

h

(�n+1
h )2 + (�n

h )
2

2
, 'h

�
� "�1

�
een+

1
2

� , 'h

�

+ "
�
rqe

n+ 1
2

� , r'h

�
=
�
e
n+ 1

2
w , 'h

�
+ Tw('h), (59)

�
�⌧ e

n+ 1
2

u , vh

�
+ b

�
eun+ 1

2 , u
n+ 1

2 , vh

�
� b

�
eun+ 1

2
h , u

n+ 1
2

h , vh

�
�
�
e
n+ 1

2
p , r · vh

�

+ ⌘
�
re

n+ 1
2

u , rvh

�
+ �

�e�n+ 1
2 rwn+ 1

2 �e�n+ 1
2

h rw
n+ 1

2
h , vh

�

= µ
�
(r ⇥ B

n+ 1
2 ) ⇥eBn+ 1

2 � (r ⇥ B
n+ 1

2
h ) ⇥eBn+ 1

2
h , vh

�
+ Tu(vh), (60)

µ
�
�⌧ e

n+ 1
2

B
, lh
�
+ ��1

�
r ⇥ e

n+ 1
2

B
, r ⇥ lh

�
+ ��1

�
r · e

n+ 1
2

B
, r · lh

�

� µ
�
u
n+ 1

2 ⇥eBn+ 1
2 � u

n+ 1
2

h ⇥eBn+ 1
2

h , r ⇥ lh

�
= TB(lh), (61)

�
r · en+1

u
, qh
�

= 0, (62)

for any (⇠h, 'h, vh, lh, qh) 2 (Yh, Yh,Xh, Sh,Mh), and n = 1, 2, . . . ,N � 1.
In the following subsection, we will analyze the above error equations and present the proof of Theorem 3.1.

4.3. Proof of Theorem 3.1

Proof. Step 1: Substituting ⇠h = e
n+ 1

2
w in (58) and 'h = �⌧ e

n+ 1
2

� in (59) gives

"

2⌧
(kren+1

� k2

L2
� kren�k2

L2
) + "kre

n+ 1
2

w k2

L2
+

"

8⌧
(kr(en+1

� � en�)k
2

L2
� kr(en� � en�1

� )k2

L2

+ kr(en+1
� � 2en� + en�1

� )k2

L2
)

= �"�1
�
�

n+ 1
2
(�n+1)2 + (�n)2

2
� �

n+ 1
2

h

(�n+1
h )2 + (�n

h )
2

2
, �⌧ e

n+ 1
2

�

�
+ "�1

�
een+

1
2

� , �⌧ e
n+ 1

2
�

�

8
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+
�e�n+ 1

2 u
n+ 1

2 �e�n+ 1
2

h u
n+ 1

2
h , re

n+ 1
2

w

�
+ T�(e

n+ 1
2

w ) + Tw(�⌧ e
n+ 1

2
� )

:=

5X

i=1

I1,i. (63)

Now, we estimate I1,i, i = 1, 2, . . . , 5, respectively. By applying Lemma 4.4, it can be proved that [36, Lemma 3.6]

I1,1 = �
"�1

4

⇥�
(�n+1)3 � (�n+1

h )3, �⌧ e
n+ 1

2
�

�
+
�
(�n+1)2�n � (�n+1

h )2�n
h , �⌧ e

n+ 1
2

�

�

+
�
�n+1(�n)2 � �n+1

h (�n
h )

2, �⌧ e
n+ 1

2
�

�
+
�
(�n)3 � (�n

h )
3, �⌧ e

n+ 1
2

�

�⇤

 Ckr(�n+1 � �n+1
h )k2

L2
+ Ckr(�n � �n

h )k
2

L2
+ ⇣k�⌧ e

n+ 1
2

� k2
�1,h

 C(h2r + kren+1
� k2

L2
+ kren�k2

L2
) + ⇣k�⌧ e

n+ 1
2

� k2
�1,h,

where we have used (42) in the last inequality and ⇣ is a generic small positive constant independent of n, h, ⌧ , and C0.

By using (51), the analysis of I1,2 is straightforward:

I1,2 = "�1
�
een+

1
2

� , �⌧ e
n+ 1

2
�

�
 Ckreen+

1
2

� k2

L2
+ ⇣k�⌧ e

n+ 1
2

� k2
�1,h.

To estimate I1,3, we define

e
n+ 1

2
w := |⌦|�1

�
e
n+ 1

2
w , 1

�
.

Since

ke
n+ 1

2
w � e

n+ 1
2

w kL2  Ckr(e
n+ 1

2
w � e

n+ 1
2

w )kL2 = Ckre
n+ 1

2
w kL2 ,

we arrive at

I1,3 =
�e�n+ 1

2 u
n+ 1

2 � Qh
e�n+ 1

2 u
n+ 1

2 , re
n+ 1

2
w

�
+
�
Qh
e�n+ 1

2 u
n+ 1

2 �e�n+ 1
2

h u
n+ 1

2 , re
n+ 1

2
w

�

+
�e�n+ 1

2
h u

n+ 1
2 �e�n+ 1

2
h Rhu

n+ 1
2 , re

n+ 1
2

w

�
+
�e�n+ 1

2
h Rhu

n+ 1
2 �e�n+ 1

2
h u

n+ 1
2

h , re
n+ 1

2
w

�

ke�n+ 1
2 � Qh

e�n+ 1
2 kL2ku

n+ 1
2 kL1kre

n+ 1
2

w kL2 +
�
een+

1
2

� u
n+ 1

2 , r(e
n+ 1

2
w � e

n+ 1
2

w )
�

+ ke�n+ 1
2

h kL1ku
n+ 1

2
h � Rhu

n+ 1
2

h kL2kre
n+ 1

2
w kL2 +

�e�n+ 1
2

h e
n+ 1

2
u , re

n+ 1
2

w

�

Chr+1kre
n+ 1

2
w kL2 + |

�
reen+

1
2

� u
n+ 1

2 , e
n+ 1

2
w � e

n+ 1
2

w

�
| +

�e�n+ 1
2

h e
n+ 1

2
u , re

n+ 1
2

w

�

Chr+1kre
n+ 1

2
w kL2 + kreen+

1
2

� kL2ku
n+ 1

2 kL1ke
n+ 1

2
w � e

n+ 1
2

w kL2 +
�e�n+ 1

2
h e

n+ 1
2

u , re
n+ 1

2
w

�

C(h2r+2 + kreen+
1
2

� k2

L2
) +

"

4
kre

n+ 1
2

w k2

L2
+
�e�n+ 1

2
h e

n+ 1
2

u , re
n+ 1

2
w

�
,

where we have used (42), (44), Lemma 4.4, and integration in parts in the second inequality. In view of the truncation

error terms and using the mass conservation of �, I1,4 can be bounded by

I1,4 =
�
�⌧Qh�

n+ 1
2 � �⌧�

n+ 1
2 , e

n+ 1
2

w � e
n+ 1

2
w

�
+
�
�⌧�

n+ 1
2 � �

n+ 1
2

t , e
n+ 1

2
w � e

n+ 1
2

w

�

+ "
�
r(wn+ 1

2 � wn+ 1
2 ), re

n+ 1
2

w

�
�
�e�n+ 1

2 u
n+ 1

2 � �n+ 1
2 u

n+ 1
2 , re

n+ 1
2

w

�

kQh�⌧�
n+ 1

2 � �⌧�
n+ 1

2 kL2ke
n+ 1

2
w � e

n+ 1
2

w kL2 + k�⌧�
n+ 1

2 � �
n+ 1

2
t kL2ke

n+ 1
2

w � e
n+ 1

2
w kL2

+ "kr(wn+ 1
2 � wn+ 1

2 )kL2kre
n+ 1

2
w kL2 + ke�n+ 1

2 u
n+ 1

2 � �n+ 1
2 u

n+ 1
2 kL2kre

n+ 1
2

w kL2

C(h2r + ⌧ 4) +
"

4
kre

n+ 1
2

w k2

L2
.

By using (51) again, it is clear to see that

I1,5  C(h2r + ⌧ 4) + ⇣k�⌧ e
n+ 1

2
� k2

�1,h.

9
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Combining the estimates of I1,i, 1  i  5, (63) becomes

"

2⌧
(kren+1

� k2

L2
� kren�k2

L2
) +

"

2
kre

n+ 1
2

w k2

L2
+

"

8⌧
(kr(en+1

� � en�)k
2

L2
� kr(en� � en�1

� )k2

L2
)

 C(h2r + ⌧ 4 + kren+1
� k2

L2
+ kren�k2

L2
) + ⇣k�⌧ e

n+ 1
2

� k2
�1,h +

�e�n+ 1
2

h e
n+ 1

2
u , re

n+ 1
2

w

�
. (64)

Step 2: By taking vh = e
n+ 1

2
u in (60) and qh = e

n+ 1
2

p in (62), we get

1

2⌧
(ken+1

u
k2

L2
� ken

u
k2

L2
) + ⌘kre

n+ 1
2

u k2

L2

= �
⇥
b
�
eun+ 1

2 , u
n+ 1

2 , e
n+ 1

2
u

�
� b

�
eun+ 1

2
h , u

n+ 1
2

h , e
n+ 1

2
u

�⇤
� �

�e�n+ 1
2 rwn+ 1

2 �e�n+ 1
2

h rw
n+ 1

2
h , e

n+ 1
2

u

�

+ µ
�
(r ⇥ B

n+ 1
2 ) ⇥eBn+ 1

2 � (r ⇥ B
n+ 1

2
h ) ⇥eBn+ 1

2
h , e

n+ 1
2

u

�
+ Tu(e

n+ 1
2

u )

:=

4X

i=1

I2,i. (65)

Now, we start to estimate the right-hand side of (65). By (21), we can rewrite I2,1 as follows:

|I2,1| =

���� b
�
eun+ 1

2 , u
n+ 1

2 � Rhu
n+ 1

2 , e
n+ 1

2
u

�
+ b

�
eun+ 1

2 � Rheun+ 1
2 , u

n+ 1
2 � Rhu

n+ 1
2 , e

n+ 1
2

u

�

� b
�
eun+ 1

2 � Rheun+ 1
2 , u

n+ 1
2 , e

n+ 1
2

u

�
+ b

�
een+

1
2

u , u
n+ 1

2 � Rhu
n+ 1

2 , e
n+ 1

2
u

�

� b
�
een+

1
2

u , u
n+ 1

2 , e
n+ 1

2
u

�
� b

�
eun+ 1

2
h , e

n+ 1
2

u , e
n+ 1

2
u

����

 Ckeun+ 1
2 kL3kr(u

n+ 1
2 � Rhu

n+ 1
2 )kL2kre

n+ 1
2

u kL2

+ Ckeun+ 1
2 � Rheun+ 1

2 kL3kr(u
n+ 1

2 � Rhu
n+ 1

2 )kL2kre
n+ 1

2
u kL2

+ Ckeun+ 1
2 � Rheun+ 1

2 kL2ku
n+ 1

2 kW1,4kre
n+ 1

2
u kL2

+ Ckeen+
1
2

u kL2ku
n+ 1

2 � Rhu
n+ 1

2 kW1,4kre
n+ 1

2
u kL2

+ Ckeen+
1
2

u kL2ku
n+ 1

2 kW1,4kre
n+ 1

2
u kL2

 C(h2r + keen+
1
2

u k2

L2
) +

⌘

8
kre

n+ 1
2

u k2

L2
,

where we have used (43)–(44) and the identity b
�
eun+ 1

2
h , e

n+ 1
2

u , e
n+ 1

2
u

�
= 0. To estimate I2,2, we define the spatial mass

average

een+
1
2

� = |⌦|�1(ee�
n+ 1

2 , 1) = |⌦|�1(Qh
e�n+ 1

2 �e�n+ 1
2

h , 1) = |⌦|�1(e�n+ 1
2 �e�n+ 1

2
h , 1)

= |⌦|�1(�0 � �0
h , 1),

which implies that

���een+
1
2

�

���  Chr+1.

Then, I2,2 can be bounded by

I2,2 = � �
⇥�
(e�n+ 1

2 � Qh
e�n+ 1

2 )rwn+ 1
2 , e

n+ 1
2

u

�
+
�
een+

1
2

� rwn+ 1
2 , e

n+ 1
2

u

�

+
�e�n+ 1

2
h r(wn+ 1

2 � Qhw
n+ 1

2 ), e
n+ 1

2
u

�
+
�e�n+ 1

2
h re

n+ 1
2

w , e
n+ 1

2
u

�⇤

C(ke�n+ 1
2 � Qh

e�n+ 1
2 kL2krwn+ 1

2 kL1ke
n+ 1

2
u kL2 + |

�
een+

1
2

� rwn+ 1
2 , e

n+ 1
2

u

�
|

+ ke�n+ 1
2

h kL1kr(wn+ 1
2 � Qhw

n+ 1
2 )kL2ke

n+ 1
2

u kL2 ) � �
�e�n+ 1

2
h re

n+ 1
2

w , e
n+ 1

2
u

�

C(h2r + ke
n+ 1

2
u k2

L2
+ kreen+

1
2

� k2

L2
) +

⌘

8
kre

n+ 1
2

u k2

L2
� �

�e�n+ 1
2

h re
n+ 1

2
w , e

n+ 1
2

u

�
,
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where we have used (42) and the following inequality:
���� (een+

1
2

� rwn+ 1
2 , e

n+ 1
2

u )

���

= |(reen+
1
2

� wn+ 1
2 , e

n+ 1
2

u ) + (een+
1
2

� wn+ 1
2 , r · e

n+ 1
2

u )|

 kreen+
1
2

� k
L2

kwn+ 1
2 kL2 kL1 ke

n+ 1
2

u kL2 + keen+
1
2

� �een+
1
2

� kL2kw
n+ 1

2 kL1kr · e
n+ 1

2
u kL2

+ keen+
1
2

� kL2kw
n+ 1

2 kL1kr · e
n+ 1

2
u kL2

 C(kreen+
1
2

� k2

L2
+ ke

n+ 1
2

u k2

L2
+ h2r+2) +

⌘

16
kre

n+ 1
2

u k2

L2
.

For I2,3, we see that

I2,3 =µ
⇥�
(r ⇥ B

n+ 1
2 ) ⇥eBn+ 1

2 � (r ⇥ B
n+ 1

2 ) ⇥ ⇧h
eBn+ 1

2 , e
n+ 1

2
u

�

+
�
(r ⇥ B

n+ 1
2 ) ⇥ ⇧h

eBn+ 1
2 � (r ⇥ B

n+ 1
2 ) ⇥eBn+ 1

2
h , e

n+ 1
2

u

�

+
�
(r ⇥ B

n+ 1
2 ) ⇥eBn+ 1

2
h � (r ⇥ ⇧hB

n+ 1
2 ) ⇥eBn+ 1

2
h , e

n+ 1
2

u

�

+
�
(r ⇥ ⇧hB

n+ 1
2 ) ⇥eBn+ 1

2
h � (r ⇥ B

n+ 1
2

h ) ⇥eBn+ 1
2

h , e
n+ 1

2
u

�⇤

µ(kr ⇥ B
n+ 1

2 kL1keBn+ 1
2 � ⇧h

eBn+ 1
2 kL2ke

n+ 1
2

u kL2 + kr ⇥ B
n+ 1

2 kL1keen+
1
2

B
kL2ke

n+ 1
2

u kL2 )

+ µ
�
(r ⇥ (B

n+ 1
2 � ⇧hB

n+ 1
2 )) ⇥eBn+ 1

2
h , e

n+ 1
2

u

�
+ µ

�
(r ⇥ e

n+ 1
2

B
) ⇥eBn+ 1

2
h , e

n+ 1
2

u

�

C(h2r + ke
n+ 1

2
u k2

L2
+ keen+

1
2

B
k2

L2
) +

⌘

8
ke

n+ 1
2

u k2

H1 + µ
�
(r ⇥ e

n+ 1
2

B
) ⇥eBn+ 1

2
h , e

n+ 1
2

u

�
,

where we have used the projection estimate (46) and the following inequality

µ
�
(r ⇥ (B

n+ 1
2 � ⇧hB

n+ 1
2 )) ⇥eBn+ 1

2
h , e

n+ 1
2

u

�

= �µ
�
(r ⇥ (B

n+ 1
2 � ⇧hB

n+ 1
2 )) ⇥een+

1
2

B
, e

n+ 1
2

u

�

+ µ
�
(r ⇥ (B

n+ 1
2 � ⇧hB

n+ 1
2 )) ⇥ ⇧h

eBn+ 1
2 , e

n+ 1
2

u

�

 kr ⇥ (B
n+ 1

2 � ⇧hB
n+ 1

2 )kL3kee
n+ 1

2
B

kL2ke
n+ 1

2
u kL6

+ kr ⇥ (B
n+ 1

2 � ⇧hB
n+ 1

2 )kL2k⇧h
eBn+ 1

2 kL3ke
n+ 1

2
u kL6

 C(keen+
1
2

B
k2

L2
+ Ch2r ) +

⌘

8
ke

n+ 1
2

u k2

H1 .

By using Taylor expansion and projection estimate (44), the truncation error term I2,4 can be bounded by

I2,4  C(h2r + ⌧ 4) +
⌘

8
kre

n+ 1
2

u k2

L2
.

Combining the estimates of I2,i, 1  i  4, (65) becomes

1

2⌧
(ken+1

u
k2

L2
� ken

u
k2

L2
) +

⌘

2
kre

n+ 1
2

u k2

L2

 C(h2r + ⌧ 4 + ke
n+ 1

2
u k2

L2
+ keen+

1
2

u k2

L2
+ kren+1

� k2

L2
+ kren�k2

L2
+ kren�1

� k2

L2
+ keen+

1
2

B
k2

L2
)

� �
�e�n+ 1

2
h re

n+ 1
2

w , e
n+ 1

2
u

�
+ µ

�
(r ⇥ e

n+ 1
2

B
) ⇥eBn+ 1

2
h , e

n+ 1
2

u

�
. (66)

Step 3: A substitution of lh = e
n+ 1

2
B

in (61) gives

µ

2⌧
(ken+1

B
kL2 � ken

B
k2

L2
) + ��1kr ⇥ e

n+ 1
2

B
k2

L2
+ ��1kr · e

n+ 1
2

B
k2

L2

= µ
�
u
n+ 1

2 ⇥eBn+ 1
2 � u

n+ 1
2

h ⇥eBn+ 1
2

h , r ⇥ e
n+ 1

2
B

�
+ TB(e

n+ 1
2

B
)

:=

2X

i=1

I3,i. (67)
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For the right-hand side of (67), I3,1 can be controlled by

I3,1 =µ
⇥�
u
n+ 1

2 ⇥ (eBn+ 1
2 � ⇧h

eBn+ 1
2 ), r ⇥ e

n+ 1
2

B

�
+
�
u
n+ 1

2 ⇥een+
1
2

B
, r ⇥ e

n+ 1
2

B

�

+
�
(u

n+ 1
2 � Rhu

n+ 1
2 ) ⇥eBn+ 1

2
h , r ⇥ e

n+ 1
2

B

�
+
�
e
n+ 1

2
u ⇥eBn+ 1

2
h , r ⇥ e

n+ 1
2

B

�⇤

µku
n+ 1

2 kL1keBn+ 1
2 � ⇧h

eBn+ 1
2 kL2kr ⇥ e

n+ 1
2

B
kL2 + ku

n+ 1
2 kL1keen+

1
2

B
kL2kr ⇥ e

n+ 1
2

B
kL2

+ C(keen+
1
2

B
k2

L2
+ h2r ) +

��1

12
kr ⇥ e

n+ 1
2

B
k2

L2
+ µ

�
e
n+ 1

2
u ⇥eBn+ 1

2
h , r ⇥ e

n+ 1
2

B

�

C(h2r + keen+
1
2

B
k2

L2
) +

��1

4
kr ⇥ e

n+ 1
2

B
k2

L2
+ µ

�
e
n+ 1

2
u ⇥eBn+ 1

2
h , r ⇥ e

n+ 1
2

B

�
,

where we have used (46) and the following inequality

µ((u
n+ 1

2 � Rhu
n+ 1

2 ) ⇥eBn+ 1
2

h , r ⇥ e
n+ 1

2
B

)

= �µ((u
n+ 1

2 � Rhu
n+ 1

2 ) ⇥een+
1
2

B
, r ⇥ e

n+ 1
2

B
) + µ((u

n+ 1
2 � Rhu

n+ 1
2 ) ⇥ ⇧h

eBn+ 1
2 , r ⇥ e

n+ 1
2

B
)

 µku
n+ 1

2 � Rhu
n+ 1

2 kL1keen+
1
2

B
kL2kr ⇥ e

n+ 1
2

B
kL2

+ µku
n+ 1

2 � Rhu
n+ 1

2 kL6k⇧h
eBn+ 1

2 kL3kr ⇥ e
n+ 1

2
B

kL2

 C(keen+
1
2

B
k2

L2
+ h2r ) +

��1

12
kr ⇥ e

n+ 1
2

B
k2

L2
(here use (43)–(44)).

By using Taylor expansions again, we further get

I3,2  C(h2r + ⌧ 4 + ke
n+ 1

2
B

k2

L2
) +

��1

4
kr ⇥ e

n+ 1
2

B
k2

L2
+

��1

4
kr · e

n+ 1
2

B
k2

L2
.

Combining the estimates of I3,1 and I3,2, (67) becomes

µ

2⌧
(ken+1

B
k2

L2
� ken

B
k2

L2
) +

��1

2
kr ⇥ e

n+ 1
2

B
k2

L2
+

3��1

4
kr · e

n+ 1
2

B
k2

L2

 C(h2r + ⌧ 4 + keen+
1
2

B
k2

L2
+ ke

n+ 1
2

B
k2

L2
) + µ

�
e
n+ 1

2
u ⇥eBn+ 1

2
h , r ⇥ e

n+ 1
2

B

�
. (68)

Step 4: Finally, a summation of (64), (66) and (68) gives

�"

2⌧
(kren+1

� k2

L2
� kren�k2

L2
) +

�"

8⌧
(kr(en+1

� � en�)k
2

L2
� kr(en� � en�1

� )k2

L2
)

+
1

2⌧
(ken+1

u
k2

L2
� ken

u
k2

L2
) +

µ

2⌧
(ken+1

B
k2

L2
� ken

B
k2

L2
) +

⌘

2
kre

n+ 1
2

u k2

L2

+
�"

2
kre

n+ 1
2

w k2

L2
+

��1

2
kr ⇥ e

n+ 1
2

B
k2

L2
+

3��1

4
kr · e

n+ 1
2

B
k2

L2

 C

⇣
h2r + ⌧ 4 + kren+1

� k2

L2
+ kren�k2

L2
+ kren�1

� k2

L2
+ ke

n+ 1
2

u k2

L2
+ keen+

1
2

u k2

L2

+ ke
n+ 1

2
B

k2

L2
+ keen+

1
2

B
k2

L2

⌘
+ ⇣k�⌧ e

n+ 1
2

� k2
�1,h, (69)

where ⇣ is an arbitrarily small positive constant. To complete the estimate of (69), it remains to analyze k�⌧ e
n+ 1

2
� k2

�1,h. To

this end, we choose ⇠h = Th�⌧ e
n+ 1

2
� in (58) and get

k�⌧ e
n+ 1

2
� k2

�1,h =
�
�⌧ e

n+ 1
2

� , Th�⌧ e
n+ 1

2
�

�

=
�e�n+ 1

2 u
n+ 1

2 � �
n+ 1

2
h u

n+ 1
2

h , rTh�⌧ e
n+ 1

2
�

�
� "

�
re

n+ 1
2

w , rTh�⌧ e
n+ 1

2
�

�
+ T�(Th�⌧ e

n+ 1
2

� )

:=

3X

i=1

I4,i. (70)

Similarly, we define

Th�⌧ e
n+ 1

2
� := |⌦|�1

�
Th�⌧ e

n+ 1
2

� , 1
�
,

12



C. Wang, J. Wang, S.M. Wise et al. Journal of Computational and Applied Mathematics 436 (2024) 115409

and get kTh�⌧ e
n+ 1

2
� � Th�⌧ e

n+ 1
2

� kL2  CkrTh�⌧ e
n+ 1

2
� kL2 . Then it is easy to derive

I4,1 =
�
(e�n+ 1

2 � Qh
e�n+ 1

2 )u
n+ 1

2 , rTh�⌧ e
n+ 1

2
�

�
+
�
een+

1
2

� u
n+ 1

2 , rTh�⌧ e
n+ 1

2
�

�

+
�e�n+ 1

2
h (u

n+ 1
2 � Rhu

n+ 1
2 ), rTh�⌧ e

n+ 1
2

�

�
+
�e�n+ 1

2
h e

n+ 1
2

u , rTh�⌧ e
n+ 1

2
�

�

ke�n+ 1
2 � Qh

e�n+ 1
2 kL2ku

n+ 1
2 kL1krTh�⌧ e

n+ 1
2

� kL2

+
���reen+

1
2

� · u
n+ 1

2 , Th�⌧ e
n+ 1

2
� � Th�⌧ e

n+ 1
2

�

���

+ ke�n+ 1
2

h kL1ku
n+ 1

2 � Rhu
n+ 1

2 kL2krTh�⌧ e
n+ 1

2
� kL2

+ ke�n+ 1
2

h kL1ke
n+ 1

2
u kL2krTh�⌧ e

n+ 1
2

� kL2

C(h2r+2 + kreen+
1
2

� k2

L2
+ ke

n+ 1
2

u k2

L2
) +

1

4
krTh�⌧ e

n+ 1
2

� k2

L2
,

where we have used integration by parts, r · u = 0, and

���een+
1
2

� u
n+ 1

2 , rTh�⌧ e
n+ 1

2
�

���

=
���een+

1
2

� u
n+ 1

2 , r(Th�⌧ e
n+ 1

2
� � Th�⌧ e

n+ 1
2

� )
���

=
���r · (een+

1
2

� u
n+ 1

2 ), Th�⌧ e
n+ 1

2
� � Th�⌧ e

n+ 1
2

�

���

=
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1
2

� · u
n+ 1

2 , Th�⌧ e
n+ 1

2
� � Th�⌧ e

n+ 1
2

�

�
+
�
een+

1
2

� r · u
n+ 1

2 , Th�⌧ e
n+ 1

2
� � Th�⌧ e

n+ 1
2

�

���

=
���reen+

1
2

� · u
n+ 1

2 , Th�⌧ e
n+ 1

2
� � Th�⌧ e

n+ 1
2

�

���.

Meanwhile, the estimate of I4,2 is straightforward:

I4,2  Ckre
n+ 1

2
w k2

L2
+

1

4
krTh�⌧ e

n+ 1
2

� k2

L2
.

In view of the truncation error term I4,3, we see that

I4,3 =
�
�⌧Qh�

n+ 1
2 � @t�

n+ 1
2 , Th�⌧ e

n+ 1
2

� � Th�⌧ e
n+ 1

2
�

�

+ "
�
r(wn+ 1

2 � wn+ 1
2 ), rTh�⌧ e

n+ 1
2

�

�
,

�
�e�n+ 1

2 u
n+ 1

2 � �n+ 1
2 u
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2 , rTh�⌧ e

n+ 1
2

�

�

C(h2r + ⌧ 4) +
1

4
krTh�⌧ e

n+ 1
2

� k2

L2
.

Combining the estimates of I4,i, 1  i  3, as well as the identity that krTh�⌧ e
n+ 1

2
� k2

L2
= k�⌧ e

n+ 1
2

� k2
�1,h, we obtain the

following result from (70):

k�⌧ e
n+ 1

2
� k2

�1,h  C(h2r + ⌧ 4 + kreen+
1
2

� k2

L2
+ ke

n+ 1
2

u k2

L2
+ kre

n+ 1
2

w k2

L2
). (71)

Substituting the above estimate into (69), we get
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+
�"

4
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+

��1
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n+ 1
2

B
k2

L2
+
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4
kr · e
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h2r + ⌧ 4 + kren+1
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+ kren�k2
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+ kren�1
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u k2
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+ ke
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1
2
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. (72)
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Table 1

Temporal convergence for " = 1 at T = 0.5.

⌧ E(r�) Order E(u) Order E(B) Order

1/18 1.109 ⇥ 10�3 6.625 ⇥ 10�4 6.169 ⇥ 10�4

1/36 3.110 ⇥ 10�4 1.83 1.683 ⇥ 10�4 1.98 1.561 ⇥ 10�4 1.98

1/54 1.435 ⇥ 10�4 1.91 7.504 ⇥ 10�5 1.99 6.951 ⇥ 10�5 2.00

1/72 8.232 ⇥ 10�5 1.93 4.226 ⇥ 10�5 2.00 3.913 ⇥ 10�5 2.00

⌧ E(rw) Order E(ru) Order E(r ⇥ B) Order

1/18 5.556 ⇥ 10�4 3.025 ⇥ 10�4 1.712 ⇥ 10�4

1/36 1.828 ⇥ 10�4 1.60 7.627 ⇥ 10�5 1.99 4.286 ⇥ 10�5 2.00

1/54 8.806 ⇥ 10�5 1.80 3.422 ⇥ 10�5 1.98 1.907 ⇥ 10�5 1.99

1/72 5.146 ⇥ 10�5 1.87 1.967 ⇥ 10�5 1.92 1.075 ⇥ 10�5 1.99

By using the discrete Gronwall inequality, there exists a positive constant ⌧0 such that when ⌧ < ⌧0,

kren+1
� k2

L2
+ ken+1

u
k2

L2
+ ken+1

B
k2

L2

+

nX

m=1

(kre
n+ 1

2
w k2

L2
+ kre

n+ 1
2

u k2

L2
+ kr ⇥ e

n+ 1
2

B
k2

L2
+ kr · e

n+ 1
2

B
k2

L2
)

 C(h2r + ⌧ 4). (73)

An application of the triangle inequality, combined with projection estimates (42), (44) and (46), finally leads to the error
estimates (29)–(30). This completes the proof of Theorem 3.1. ⇤

5. Numerical examples

5.1. Convergence test

In this subsection we test the convergence order of the proposed numerical scheme. For simplicity, a two-dimensional
domain ⌦ = (0, 2⇡ )2 is taken and all the physical parameters are set to be 1, i.e " = � = � = µ = 1. The final time
is given by T = 0.5. In addition, we adopt the linear element for p and the quadratic element for �, w, u,B. The exact
solution is formulated as

� = �t8 cos x cos y,

w = �t8 cos x cos y,

u =

 
t8 sin2 x sin(2y)

�t8 sin(2x) sin2 y

!
,

B =

 
�t8 sin y cos x

t8 sin x cos y

!
,

p = t8 sin x sin y.

(74)

We denote the numerical errors as

E(r�) = kr(�N � �N
h )kL2 , E(u) = kuN � u

N
h kL2 ,

E(B) = kBN � B
N
h kL2 , E(rw) =

PN�1
n=1 kr(wn+ 1

2 � w
n+ 1

2
h )kL2 ,

E(ru) =
PN�1

n=1 kr(u
n+ 1

2 � u
n+ 1

2
h )kL2 , E(r ⇥ B) =

PN�1
n=1 kr ⇥ (B

n+ 1
2 � B

n+ 1
2

h )kL2 .

To investigate the temporal convergence rate, we choose the spatial size h sufficiently small. For h = 2⇡/120 and
⌧ = 1/18, 1/36, 1/54, 1/72, the numerical errors between the exact solution and numerical solution generated by scheme
(24)–(28) are displayed in Table 1. The numerical results demonstrate that the temporal convergence rate of the proposed
scheme is of O(⌧ 2), which is consistent with the theoretical analysis.

For the spatial convergence, we still adopt the exact solutions (74) and take the time step size as ⌧ = 1/1200 so that
the temporal numerical error becomes negligible. The spatial mesh sizes are chosen as h = 2⇡/20, 2⇡/40, 2⇡/60, 2⇡/80
and the numerical results are displayed in Table 2. Clearly, the spatial convergence of � and w in H1 semi-norm is O(h2),
which is consistent with the theoretical results given in Theorem 3.1. From Table 2, the spatial convergence of u and
B in L2 norm is shown to be O(h3) (one order higher than the theoretical results given in Theorem 3.1), which is still
challenging to prove and its analysis will be considered in future works.

We also implement this numerical example by using the same time step sizes and spatial mesh sizes as above except
for the parameter ", for which we choose to be 0.1. Numerical results are shown in Tables 3 and 4, and the results indicate
the order of accuracy as well.
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Table 2

Spatial convergence for " = 1 at T = 0.5.

h E(r�) Order E(u) Order E(B) Order

2⇡/20 1.665 ⇥ 10�4 3.431 ⇥ 10�5 8.168 ⇥ 10�6

2⇡/40 4.201 ⇥ 10�5 1.99 4.560 ⇥ 10�6 2.91 1.059 ⇥ 10�6 2.95

2⇡/60 1.871 ⇥ 10�5 1.99 1.390 ⇥ 10�6 2.88 3.435 ⇥ 10�7 2.78

2⇡/80 1.054 ⇥ 10�5 1.99 6.062 ⇥ 10�7 2.93 1.936 ⇥ 10�7 1.99

h E(rw) Order E(ru) Order E(r ⇥ B) Order

2⇡/20 2.859 ⇥ 10�5 1.707 ⇥ 10�4 2.815 ⇥ 10�5

2⇡/40 7.209 ⇥ 10�6 1.99 4.350 ⇥ 10�5 1.97 7.009 ⇥ 10�6 2.01

2⇡/60 3.216 ⇥ 10�6 1.99 1.940 ⇥ 10�5 1.99 3.111 ⇥ 10�6 2.00

2⇡/80 1.818 ⇥ 10�6 1.98 1.093 ⇥ 10�5 1.99 1.749 ⇥ 10�6 2.00

Table 3

Temporal convergence for " = 0.1 at T = 0.5.

⌧ E(r�) Order E(u) Order E(B) Order

1/18 9.749 ⇥ 10�4 6.625 ⇥ 10�4 6.169 ⇥ 10�4

1/36 2.831 ⇥ 10�4 1.78 1.683 ⇥ 10�4 1.98 1.561 ⇥ 10�4 1.98

1/54 1.324 ⇥ 10�4 1.87 7.504 ⇥ 10�5 1.99 6.951 ⇥ 10�5 2.00

1/72 7.646 ⇥ 10�5 1.91 4.226 ⇥ 10�5 2.00 3.913 ⇥ 10�5 2.00

⌧ E(rw) Order E(ru) Order E(r ⇥ B) Order

1/18 6.431 ⇥ 10�3 3.025 ⇥ 10�4 1.712 ⇥ 10�4

1/36 2.145 ⇥ 10�3 1.58 7.627 ⇥ 10�5 1.99 4.288 ⇥ 10�5 2.00

1/54 1.040 ⇥ 10�3 1.79 3.422 ⇥ 10�5 1.98 1.907 ⇥ 10�5 2.00

1/72 6.101 ⇥ 10�4 1.85 1.967 ⇥ 10�5 1.92 1.075 ⇥ 10�5 1.99

Table 4

Spatial convergence for " = 0.1 at T = 0.5.

h E(r�) Order E(u) Order E(B) Order

2⇡/20 1.745 ⇥ 10�4 3.431 ⇥ 10�5 8.168 ⇥ 10�6

2⇡/40 4.216 ⇥ 10�5 2.05 4.596 ⇥ 10�6 2.90 1.059 ⇥ 10�6 2.95

2⇡/60 1.873 ⇥ 10�5 2.00 1.390 ⇥ 10�6 2.95 3.435 ⇥ 10�7 2.78

2⇡/80 1.054 ⇥ 10�5 2.00 6.062 ⇥ 10�7 2.88 1.936 ⇥ 10�7 1.99

h E(rw) Order E(ru) Order E(r ⇥ B) Order

2⇡/20 4.410 ⇥ 10�5 1.707 ⇥ 10�4 2.815 ⇥ 10�5

2⇡/40 7.967 ⇥ 10�6 2.47 4.350 ⇥ 10�5 1.97 7.009 ⇥ 10�6 2.01

2⇡/60 4.071 ⇥ 10�6 1.66 1.940 ⇥ 10�5 1.99 3.111 ⇥ 10�6 2.00

2⇡/80 3.054 ⇥ 10�6 1.00 1.093 ⇥ 10�5 1.99 1.749 ⇥ 10�6 2.00

5.2. Energy stability test

In this subsection we investigate the energy dissipation property of the numerical scheme (24)–(28). Similarly, the
quadratic element is adopted for �, w, u,B, and the linear element is used for p. The spatial resolution and the time step
size are taken as h = 2⇡/20 and ⌧ = 0.1, respectively. The initial data are set to be

�0 = � cos x cos y,

w0 = � cos x cos y,

u0 =

 
sin2 x sin(2y)

� sin(2x) sin2 y

!
,

B0 =

✓
� sin y cos x

sin x cos y

◆
,

p0 = sin x sin y.

(75)

Then we compute the discrete energy (33) up to final time T = 10, and the energy evolution curve is displayed in Fig. 1,
where the dissipation for the discrete energy (33) could be clearly observed.

6. Conclusion

In this paper, we propose and analyze a temporally second-order accurate, mixed finite element numerical method for
the Cahn–Hilliard-Magnetohydrodynamic system (6)–(10). The primary difficulties are associated with the coupled nature
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Fig. 1. Discrete energy evolution of numerical solutions for the CH-MHD system.

of the fluid motion, electric field, and phase evolution. The nonlinearity of the free energy in the phase field makes the
system even more challenging. In the proposed numerical scheme, a modified Crank–Nicolson approximation is applied
to the phase field and the free energy, combined with a second-order explicit extrapolation for the concave part. Such
a numerical approximation ensures energy stability and unique solvability for the phase field. In addition, second-order
semi-implicit treatments are used for other coupled parts in the system. As a result, the discrete mass conservation, unique
solvability, and energy stability have been theoretically established for the numerical scheme. The error estimates have
been also derived, in the L1

⌧ (0, T ;H1) norm for the phase variable, and L1
⌧ (0, T ; L2) norm for the velocity and magnetic

variables. Several numerical examples are presented to demonstrate the robustness and accuracy of the proposed scheme.
The numerical simulations and corresponding theoretical analyses of the Cahn–Hilliard-Magnetohydrodynamics model
with " ⌧ 1 and µ ⌧ 1 are challenging and interesting, and will be considered in future works.
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