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Leveraging Deep Neural Networks for Massive
MIMO Data Detection

Ly V. Nguyen∗, Nhan T. Nguyen∗, Nghi H. Tran, Markku Juntti, A. Lee Swindlehurst, and Duy H. N. Nguyen

Abstract—Massive multiple-input multiple-output (MIMO) is
a key technology for emerging next-generation wireless systems.
Utilizing large antenna arrays at base-stations, massive MIMO
enables substantial spatial multiplexing gains by simultaneously
serving a large number of users. However, the complexity
in massive MIMO signal processing (e.g., data detection) in-
creases rapidly with the number of users, making conventional
hand-engineered algorithms less computationally efficient. Low-
complexity massive MIMO detection algorithms, especially those
inspired or aided by deep learning, have emerged as a promising
solution. While there exist many MIMO detection algorithms,
the aim of this magazine paper is to provide insight into how
to leverage deep neural networks (DNN) for massive MIMO
detection. We review recent developments in DNN-based MIMO
detection that incorporate the domain knowledge of established
MIMO detection algorithms with the learning capability of
DNNs. We then present a comparison of the key numerical
performance metrics of these works. We conclude by describing
future research areas and applications of DNNs in massive MIMO
receivers.

Index Terms—Data detection, deep learning, deep neural
network, massive MIMO.

I. INTRODUCTION

As an integrated part of modern 5G and emerging 6G
systems, massive MIMO offers several orders of magnitude
enhancements in throughput and energy efficiency over con-
ventional MIMO in existing 4G systems [1], [2]. Through the
use of large antenna arrays with tens to thousands of elements,
massive MIMO enables the design of extremely narrow spatial
beams that boost the desired signal power, resulting in consid-
erable performance gains in terms of user coverage and system
throughput. However, the increase in the dimension of massive
MIMO and the corresponding increase in the number of served
users adversely impact the complexity in its signal processing
pipeline. For example, optimal maximum likelihood (ML)
detection comes with a complexity that is exponential in the
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number of users. Low-complexity and near-optimal detection
is thus crucial to fully realize the potential of massive MIMO
system performance targets.

For massive MIMO systems in which a base station
equipped with a large array of antennas serving a large number
of users simultaneously, low-complexity detectors such as
zero-forcing (ZF) and linear minimum mean-squared error
(LMMSE) may incur large performance gaps compared with
the optimal ML detector. In contrast, near-optimal detection
schemes, such as sphere decoding (SD), K–best SD (KSD),
and fixed-complexity SD (FSD), may come at the cost of
excessively high complexity [3]. The algorithm deficits of
these conventional approaches prompt the interesting prospect
of applying deep learning (DL) for massive MIMO detection
[4], in which the computational complexity is shifted to an
offline training phase, enabling faster run time in the online
detection phase.

The application of DL in communications has recently
gained much attention. Several model-based deep neural net-
work (DNN) architectures have been proposed for massive
MIMO detection. The pioneering detection network (DetNet),
introduced by Samuel et al. [5], has showcased the power
of DL for MIMO data detection. A fast-convergence sparsely-
connected neural network (FS-Net) has been recently proposed
in [6] as a simplified but optimized variant of DetNet. DetNet
and FS-Net were both developed to mimic and optimize
the iterative gradient descent algorithm. Another notable ap-
proach in DNN-based detection is based on the orthogonal
approximate message passing (OAMP) algorithm [7], offering
better performance as well as lower computational complexity
compared to gradient descent-based algorithms. In particular,
He et al. introduced OAMP-Net2 [8] for data detection in
both independent and identically distributed (i.i.d.) Gaussian
and small-size correlated channels. Khani et al. [9] proposed
MMNet targeting data detection in correlated MIMO channels,
and showed that it significantly outperforms OAMP-Net2. We
note that all these detection networks are based on the deep
unfolding technique [10] and designed to optimize the free
parameters of the underlying detection algorithms.

In this paper, we present a holistic framework for lever-
aging DNNs in massive MIMO data detection. We review
the conventional MIMO detection algorithms and show how
to incorporate the domain knowledge of these established
algorithms into the development of DNN detectors, including
DetNet, FSNet, OAMP-Net2, and MMNet. We then present
numerical results comparing key performance metrics of these
works, including symbol error rate (SER) and run time. We
conclude by describing future research areas and applications
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of DNNs in massive MIMO communications.

II. BACKGROUND

A. Signal Model and MIMO Detection Problem

We consider an uplink massive MIMO system, where the
base station (BS) equipped with N antennas serves K single-
antenna users. Note that the detectors presented in this article
are also applicable to multi-antenna users. The propagation
channel from the users to the BS is modeled by a matrix H in
which each entry represents the channel between a user and a
receive antenna. We denote by x the vector of K transmitted
symbols associated with K users, and we assume that these
symbols are drawn from a discrete alphabet A. The input-
output relationship of the considered system is modeled as

y = Hx + n, (1)

where y is a vector of the received signals at the N antennas
of the BS, and n is a noise vector. Since the use of complex-
valued parameters is uncommon in machine learning, we
assume that all quantities in (1) are real-valued. This is also
a matter of notational convenience, since a length-n complex-
valued vector is isomorphic to a length-2n real-valued vector.
In addition, a square complex-valued constellation of size n2

(i.e., quadrature phase-shift keying (QPSK) and 16-quadrature
amplitude modulation (16-QAM)) can be effectively repre-
sented by two independent real-valued alphabets of size n.
The above model assumes a flat-fading or narrowband channel
and the channel matrix is assumed to be known at the receiver.
Our discussion can easily be extended to wideband channels
using orthogonal frequency division multiplexing (OFDM).

The task of MIMO detection is to determine the transmitted
symbol vector x based on the received vector y. The detection
error is minimized by classifying the most likely x with the
ML criterion when no a priori information is available. That is
equivalent to finding the solution to the optimization problem
minx∈AK ‖y −Hx‖2. MIMO ML data detection is a com-
binatorial problem, and its complexity grows exponentially
with the number of users K. Performing joint detection of the
entire symbol vector x is computationally expensive even for
a small-scale MIMO system, and even more so for massive
MIMO systems. For example, the search space AK grows
to a set of 232 candidates for a relatively modest large-scale
MIMO system supporting 8 users with 16-QAM. Thus, there is
a need for near-optimal and reduced-complexity data detection
algorithms that scale well to massive MIMO systems. To this
end, we first review two typical classes of massive MIMO data
detection schemes, namely, linear and nonlinear detectors with
a comprehensive review in [11].

B. Conventional MIMO/Massive MIMO Data Detectors

1) Linear Data Detectors: Linear data detectors with low
complexity are practical candidates for massive MIMO sys-
tems [2]. These detection schemes detect one symbol at a
time while treating all the other symbols transmitted from the
other users as interference. The estimated symbol is obtained
from a linear combination of the received signals, which is
then projected into the nearest symbol in the alphabet A. The

simplest of these is the matched-filter (MF) detector which
aims at maximizing the energy of the signal of interest. A
ZF detector targets elimination of the inter-user interference.
Both schemes require relatively few computations, but they
suffer from significant performance degradation due to the
interference and/or noise enhancement. Unlike these two, an
LMMSE detector tries to balance the enhancements in the
signal of interest and the interference/noise. The LMMSE
detector achieves the best performance among the three de-
tectors, but it requires a matrix inversion, which can quickly
result in excessive complexity for large-scale MIMO systems.

While relatively simple to implement except the possible
need for a matrix inversion, linear detectors can achieve good
performance when the number of receive antennas is large
enough compared to the number of users and the channel
vectors from different users are independent [1], [2]. However,
their performance deteriorates quickly when the number of
users approaches the number of receive antennas or when the
channel is ill-conditioned [11], prompting the need for more
sophisticated nonlinear detectors.

2) Nonlinear Detectors: SD is one of the most well-
known nonlinear algorithms for MIMO detection. Similar to
ML detection, SD attempts to find the optimal lattice point
closest to y. However, its search is limited to the points
inside a hypersphere which is a subset of the feasible set
AK and determined by a given radius. Each time a point
lying inside the hypersphere is found, the search is further
restricted by shrinking the sphere. When there is only one
point in the sphere, the point becomes the final solution. The
better optimized the sphere radius is, the better performance
and/or complexity reduction can be achieved by SD [3].

Approximate message passing (AMP) is a relatively low-
complexity iterative signal recovery algorithm for large-scale
linear systems. A variant of AMP, referred to as OAMP [7],
has been exploited for MIMO data detection in recent papers.
In OAMP, the recovered signal is updated via a nonlinear
transformation of the previous iterate, which includes a linear
estimator and a nonlinear denoiser. OAMP can attain near-
optimal performance in few iterations. Except for a highly
complicated matrix inversion in the linear estimator, OAMP
can be a promising technique for massive MIMO detection.

The conventional MIMO detectors discussed above, espe-
cially those originally proposed for conventional small-sized
MIMO systems, lead to a challenging performance-complexity
tradeoff. Specifically, nonlinear detectors with near-optimal
performance but high complexity may not be feasible for
deployment in large-scale systems. On the other hand, the
linear detectors with low complexity perform relatively poorly
in large-scale systems where the numbers of users and receive
antennas are comparable. This concern motivates recent re-
search on DL for massive MIMO detection.

III. DNN DETECTOR FOR LINEAR MIMO SYSTEMS

In this section, we provide an overview of the design of
DNN detectors in MIMO and massive MIMO systems. We
first focus on the fundamentals of a DNN detector. We then
review and analyze recent developments of DNN detectors in
the literature.
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A. Fundamentals of DNN-based Data Detection

A DNN model can be trained efficiently to provide reliable
prediction/approximation of the transmitted signal vectors. It
accepts the received signals y and channel information H as
inputs and outputs an estimate x̂ of the transmitted signal
vector x. In this respect, x̂ can be modeled as the target of a
nonlinear mapping f(H,y;θ), where θ consists of parameters
pertaining to the neural network. The fidelity of the mapping
f(·), also known as the inference rule, is measured by a cost
function, which is defined as the mean squared error (MSE)
between the estimate x̂ and the true transmitted signal x. The
goal of a DNN detector is to design f(·) via the optimization
of the parameters θ to minimize this cost function. The data
for training a DNN detector can be generated from the system
model (1) with known prior distributions on the channel, the
transmitted symbols, and the noise.

Most of the computational complexity of a DNN detector
lies in the offline training phase. On the other hand, a DNN
detector enables data detection with a much lower compu-
tational complexity at run time. This can be accomplished
by performing the task in batch, offering polynomial time
complexity in data detection based on simple matrix addi-
tions and multiplications. These operations are far simpler
than the computationally expensive matrix inversions/pseudo-
inversions or searching mechanisms that are performed in
conventional linear or nonlinear detection algorithms. Fur-
thermore, the DNN architectures and their batch operations
are more natural for hardware implementation than hand-
engineered algorithms, which is a critical distinction between
the two.

An efficient DNN detector requires good designs across
various aspects, including but not limited to the network
architecture, input structure, and training strategy. In [5], it
was shown that a generic fully-connected DNN with only the
received signals and channel coefficients as inputs leads to
poor detection performance. In contrast, DetNet [5], FS-Net
[6], OAMP-Net2 and its predecessor OAMP-Net [8], and MM-
Net [9] can achieve excellent performance in MIMO detection
by exploiting not only the learning ability of DL but also
the domain knowledge from hand-engineered data detection
algorithms. All of these detectors follow an unfolding network
architecture [10], allowing data detection to be performed in a
layer-by-layer manner. The ingenuity of these architectures lies
in the design of each layer, derived from well-developed data
detection algorithms, leading to their differing performance
and complexity.

B. Gradient Descent-Based DNN Detectors

A gradient descent-based DNN detector incorporates the
projected gradient descent (PGD) algorithm into the unfold-
ing network architecture in an ingenious way. The network
mimics the update process of the PGD algorithm and gen-
erates an estimated symbol vector at each layer. The op-
eration at layer-` is modeled by a nonlinear transformation
x̂` = fgd

(
x̂`−1 − δ`HTy + δ`H

THx̂`−1
)
, which accepts the

output of the previous layer and information from the channels
and the received signals as inputs. The network is trained to

optimize the nonlinear transformation fgd(·) and the step sizes
δ`, motivating the developments of DetNet and FS-Net.

1) DetNet: To learn the nonlinear projection fgd(·) of the
original PGD method, DetNet employs a trainable parameter
set including the weights, biases, and step sizes. We illustrate
the operation of the `th layer of DetNet in Fig. 1. In the DetNet
architecture, a soft quantizer ψ is introduced at the end of
the layer to perform a soft element-wise quantization of the
output x̂`+1. This ensures that the elements of x̂`+1 are in
an appropriate range specified by the modulation scheme. In
DetNet, the initial solution x̂0 is set to all-zero vector, which
is then updated over L layers of the DNN to approach the
true transmit signal vector by minimizing the loss function∑L

`=1 log(`) ‖x− x̂`‖2. The final solution of DetNet is ob-
tained by a hard quantization of the last layer’s outputs (i.e.,
x̂L) to the nearest symbols in the alphabet A.

The network architecture and operations of DetNet exhibit
the following potential issues:
• The value of the loss function of one layer in DetNet is

added to the total loss of the network with a discounted
weight, while the solution predicted in one layer is
obtained using only the connections in that layer and
the input passed from the previous layer. Sophisticated
features cannot be extracted within one layer, implying
that the loss function of DetNet limits the learning ability
of multiple hidden layers in a general DNN. Furthermore,
it is evident that this loss function only minimizes the
total loss of all the layers. However, it does not minimize
the number of required layers to accelerate the training
and prediction [6].

• As seen in Fig. 1, an intermediate signal vector v` is
concatenated with x̂`−δ`+1H

Ty+δ`+1H
THx̂` to form

the inputs that are processed by the network connections.
Although v` helps to overcome the limitations of the loss
function [5], it obviously enlarges the size of the input
vector and additionally requires a sub-network associated
with the trainable parameter set {W3`,b3`}. This makes
DetNet computationally expensive. Moreover, the use of
different step sizes (i.e., θ1`, θ2`) in DetNet is not clearly
motivated or suggested by the PGD procedure in fgd.
We note that both v` and θ2` can be removed in refined
versions of DetNet.

Despite the above limitations, DetNet offers several perfor-
mance advantages. In simulations for a massive MIMO system
with 60 receive and 30 transmit antennas and binary phase-
shift keying (BPSK), DetNet exhibits a 2-dB performance
gain over the ZF detector and performs very close to the
SD scheme with much lower complexity. This justifies the
potential of DNNs in estimating the symbols transmitted via
fading channels and observed by a noisy receiver.

2) FS-Net: FS-Net is proposed in [6] to overcome the
limitations of DetNet. It achieves not only a considerable com-
plexity reduction thanks to a simple network architecture (as
seen in Fig. 2) but also significant performance improvement
compared to DetNet [6]. These gains are obtained thanks to
the following improvements:
• FS-Net does not require the intermediate vector v` and

only uses one trainable step size. Clearly, this simplifies
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Fig. 1: The `th layer of DetNet with trainable parameters θ` =
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Fig. 2: The `th layer of FS-Net with trainable parameters θ` ={
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}L
`=1

with diagonal W1` and W2` and a soft
quantizer ψ.

the network structure and reduces the number of trainable
parameters approximately by half, facilitating a better
training while also being more computationally efficient
than the original DetNet.

• In FS-Net, pair-wise connections between the input and
output nodes are deployed instead of full connections as
in DetNet. This is motivated by the fact that in fgd,
an element of the output x̂`+1 only depends on the
corresponding element of x̂`. The pair-wise connections
significantly reduce the number of trainable parameters.

• Finally, FS-Net employs an optimized loss function to
accelerate the convergence in the training phase. The new
loss function takes into account the correlation between
the output of each layer and the label (i.e., the true
transmitted signal vectors), thus ensuring that x̂` can
reach x with fewer layers, compared to DetNet.

C. Approximate Message Passing-based DNN Detectors

In this section, we review another prominent group of DNN
detectors, consisting of OAMP-Net2 [8] and MMNet [9].
Similar to their PGD-based counterparts, OAMP-Net2 and
MMNet follow the unfolding technique [10]. However, the
major distinction between these two groups is the domain
knowledge leveraged for constructing the layered architecture.
The DNN detectors in this group are based on the iterative
OAMP signal recovery algorithm.

The OAMP framework sequentially invokes a linear esti-
mator and a nonlinear denoiser to refine the recovered signal.
At iteration `, it computes a linear estimate r` = x̂` +

x̂`

−H × +

y

γ`W` τ2` (θ`)

v2`

+
r`

η`(·;φ`, ξ`) x̂`+1

OAMP-Net2 with trainable parameters
θ =

{
γ`, θ`, φ`, ξ`

}L

`=1
and an element-wise denoiser η`(·)

x̂`

−H × +

y

×

Θ1`

+
r`

η`(·;θ2`) x̂`+1

MMNet with trainable parameters
θ =

{
Θ1`,θ2`

}L

`=1
and an element-wise denoiser η`(·)

Fig. 3: The `th layer of OAMP-Net2 and MMNet with
trainable parameters θ.

W`(y −Hx̂`), using the estimated signal from the previous
iteration and a linear estimator W`. The linear estimate is then
passed through a nonlinear denoiser η

(
x|r`, τ`

)
that provides

a divergence-free estimate x̂`+1. This nonlinear denoiser is an
affine function of the posterior mean η̃

(
x|r`, τ`

)
= E[x|r` =

x+ τ`z], where τ2` is treated as the error variance and z is an
i.i.d. standard Gaussian distributed error vector after the linear
estimation. To improve the performance of OAMP as a data
detection algorithm, OAMP-Net2 and MMNet were proposed
to leverage the learning ability of DNNs for optimizing the free
parameters in the linear estimator and the nonlinear denoiser.

1) OAMP-Net2: OAMP-Net2, as illustrated in Fig. 3,
and its predecessor OAMP-Net strictly follows the OAMP
framework. Specifically, He et al. [8] proposed the train-
ing of four variables {γ`, θ`, φ`, ξ`} at each layer to form
the linear estimate x̂` + γ`W`(y − Hx̂`) and the denoiser
η
(
·;φ`, ξ`, τ`

)
= φ`η̃

(
x|r`, τ`

)
− ξ`r`(γ`). The trained param-

eters can significantly improve the accuracy and convergence
of the nonlinear estimator. Specifically, {γ`, θ`} can improve
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the accuracy in estimating the prior mean r` and variance
τ2` (θ`) in the nonlinear estimator. At the same time, φ` and
ξ` are trained to achieve a better divergence-free nonlinear
estimator x̂`+1 than the analytical solution in [7].

OAMP-Net2 achieves an impressive performance improve-
ment compared to the conventional linear/nonlinear detectors.
Specifically, a numerical example for an 8 × 8 MIMO sys-
tem with i.i.d. Rayleigh fading channels shows that it can
perform 5-dB and 10-dB better than the classical OAMP
and LMMSE schemes [8]. However, like OAMP, OAMP-
Net2 is strictly based on the assumption of unitarily-invariant
channels. Therefore, it has a significant performance loss for
realistic correlated channel models [9]. Furthermore, OAMP-
Net2 imposes high complexity (even higher than the classical
OAMP) due to the additional trainable parameters.

2) MMNet: Khani et al. proposed MMNet [9] to overcome
the limitations of OAMP-Net. Similar to OAMP-Net and
OAMP-Net2, MMNet unfolds the iterative update of the linear
and nonlinear estimators. However, a significant improvement
is made to overcome the poor performance of the OAMP
algorithm for correlated channels. As illustrated in Fig. 3,
MMNet can be summarized as follows:
• Matrix W`, which represents the linear transformation

in the linear estimator of OAMP and OAMP-Net2, is
cast as a trainable matrix variable Θ1` in MMNet. This
allows the linear estimator r` to include more trainable
parameters that can be optimized for each channel re-
alizationMoreover, it also avoids the matrix inversion in
W`, required by OAMP and OAMP-Net2.

• To handle the cases in which different transmitted sym-
bols have different noise levels, the error variance τ2` is
parameterized by a length-K vector θ2`, corresponding
to the estimated error variances for the K users at the
denoiser input.

MMNet offers more flexibility in designing the linear esti-
mator and the denoiser, compared to the OAMP algorithm.
Simulation results in [9] showed that MMNet outperforms
OAMP-Net by 3-dB and reduces the computational complexity
by a factor of 10–15 for practical 3GPP channels. It is, how-
ever, noted that MMNet requires retraining for each channel
realization. A simplified version of MMNet, called MMNet-
iid, was also proposed in [9] for detection with i.i.d. Gaussian
channels. In MMNet-iid, the trainable matrix/vector Θ1` and
θ2` are replaced by θ1`H

T and θ2`, respectively, where θ1`
and θ2` are trainable scalars.

IV. NUMERICAL EXAMPLES AND DISCUSSION

A. Numerical Examples

Figs. 4 and 5 provide performance comparisons between
the discussed detection networks (i.e., DetNet, MMNet, FS-
Net, and OAMPNet2) and the conventional LMMSE and SD
detectors. We consider (K,N) = (16, 32) and set L = 10
for QPSK and L = 15 for 16-QAM. In the training phase,
we set the learning rate to 10−3 and the batch training size
to 1000. Simulations were implemented on a standard Intel
Xeon CPU E3-1270 v5, 3.60 GHz with 16-GB RAM, using the
Tensorflow library. It should be noted that except for MMNet,
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Fig. 4: Performance comparison between LMMSE, SD, and
different detection networks with i.i.d. and correlated channels.
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Fig. 5: Performance comparison between LMMSE, SD, and
different detection networks with realistic 3GPP channels.

all the other detection networks are trained offline. MMNet
was designed to be trained online (i.e., it has to be retrained
whenever the channel matrix H changes).

The performance comparison in the upper part of Fig. 4 is
for the case of i.i.d. Rayleigh fading channels. It shows that
the DNN-based detectors outperform the LMMSE scheme.
Among the considered DNN-based detectors, DetNet provides
the worst performance. Compared to LMMSE, the gain of
DetNet is only about 1-dB and 0.5-dB for QPSK and 16-
QAM, respectively. The OAMP-Net2 detector provides the
best performance (quite close to that of the SD method) with
a 2-dB gain compared to LMMSE in both the cases of QPSK
and 16-QAM. FS-Net performs as well as OAMP-Net2 for the
case of QPSK, but worse for 16-QAM. The performance of
MMNet-iid is between DetNet and OAMP-Net2.

The lower part of Fig. 4 presents a performance comparison
for the case of spatially correlated channels. We assume that
the channels from different users to the BS are uncorrelated
but the channels from a given user to the receive antennas
are spatially correlated and follow a typical urban channel
model as described in [12]. It is also observed that the DNN-
based detectors outperform the LMMSE scheme. Among the



6

TABLE I: Computational complexity comparison in terms of average run time (seconds).

LMMSE FS-Net MMNet-iid OAMP-Net2 DetNet SD
MMNet (include training time)

10 epochs 100 epochs 500 epochs

QPSK 0.4× 10−6 2× 10−6 11× 10−6 13× 10−6 15× 10−6 > 5× 10−4 1.4 12 60

16-QAM 0.4× 10−6 3× 10−6 23× 10−6 25× 10−6 50× 10−6 > 6× 10−4 2.2 19 94

considered DNN-based detectors, DetNet also provides the
least performance gain at about 1-dB and 0.5-dB over LMMSE
for the case of QPSK and 16-QAM, respectively. MMNet
achieves the lowest SER (also quite close to that of the
SD method) in this correlated channel scenario thanks to
its online training strategy, but with the cost of excessively
high computational complexity. In contrast, the other DNN-
based detectors are trained offline before the online detec-
tion (re-training is not required) and, thus they have lower
computational complexities compared to MMNet. Note that
the complexity of offline training is generally ignored in the
literature [3], [6]. The gain of MMNet compared to LMMSE is
significant (more than 2-dB). While FS-Net and OAMP-Net2
give similar performance for QPSK, FS-Net performs worse
than OAMP-Net2 for 16-QAM, similar to what was observed
in i.i.d. channels.

Realistic 3GPP channels are considered in Fig. 5, where the
QuaDRiGa 3GPP model [15] is adopted. We observed that the
training process of DetNet and FS-Net did not converge with
this channel model (a similar observation was reported in [9]).
Therefore, we compare the two detection networks OAMP-
Net2 and MMNet with LMMSE and SD. MMNet performs
closest to SD and much better than OAMP-Net2 and LMMSE.
As explained earlier, this is due to the online training strategy
of MMNet.

Table I compares the computational complexity of the de-
tection methods in terms of average run time. It is obvious that
LMMSE has the lowest complexity since it is a linear detector.
The complexity of FS-Net is the lowest among the network
detectors. The run times of MMNet-iid and OAMP-Net2 are
longer than that of FS-Net, since they use more complex
denoisers and OAMP-Net2 requires a matrix inversion in each
layer. Among the DNN detectors that use offline training,
DetNet has the longest run time because its layered structure
is more sophisticated with many parameters and the input of
each layer is also lifted to a much higher dimension. All the
offline-training DNN detectors run faster than the SD detector.
The computational complexity of MMNet is much higher than
that of the other detectors, since it must be trained online.

B. Discussion

DNN-based detection requires an offline training phase. The
resulting trained DNN model is saved at the base station for
online application. Once the DNN is deployed, the base-station
does not require further training data, except for MMNet
which uses online retraining. The following is a summary of
the advantages and disadvantages of the presented detection
networks:
• DetNet is better than LMMSE but computationally ex-

pensive due to its sophisticated structure.

• FS-Net has lower complexity than DetNet, but its per-
formance is degraded with large constellations. Both FS-
Net and DetNet may not converge for certain practical
channels.

• OAMP-Net2 performs well with i.i.d. and correlated
channels, but not as well with realistic channels and
is computationally expensive due to the use of matrix
inversions.

• MMNet, while working well with any channel model, is
very computationally expensive due to the need for online
retraining. The simplified version MMNet-iid with offline
training performs well for its targeted i.i.d. channels.

Given the above discussion, it is clear that the development
of more efficient, low-complexity, and universally-applicable
DNN-based detectors is of significant interest.

V. OPEN RESEARCH PROBLEMS

A. Learning to Learn the MIMO Detector

The aforementioned DNN detectors tune their inference
rules based on the training data. If there is a change in the
data distribution (e.g., spatially correlated channel or sparse
channel, a new mapping for the transmitted symbols, or a
spatially correlated noise model), the trained DNN detector
may become obsolete. Retraining the DNN detector from
scratch for each new data distribution may not be feasible.
This issue prompts the consideration of meta-learning in the
DNN detector design.

Meta-learning, also known as “learning to learn,” aims to
design a model that learns from the output of other learning
models using previously observed tasks. A notable meta-
learning approach is to train the meta-learner’s initial param-
eters such that the model has maximal performance on new
tasks with just a few gradient update steps [13]. In the context
of DNN-based detection, it would be interesting to investigate
how to apply meta-learning to pre-train the weights of the
DNN detector to a good initialization point that generalizes
well to new underlying data distributions.

B. Channel Estimation and Channel Decoding

A DNN detector requires knowledge of the channel, which
must be estimated before the data detection phase. It would be
interesting to investigate the performance of the DNN detec-
tors with potential channel estimation mismatch. In addition,
the novel model-based DNN architectures can be designed to
carry out both channel estimation and data detection tasks.

Channel encoding/decoding is another integral part of com-
munications systems. A well performing code typically re-
quires soft inputs from the demodulator. Thus, it is important
for a DNN detector to provide soft detection outputs to the
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channel decoder. In addition, the DNN detector should be
able to accept soft outputs from the channel decoder as prior
information for the data symbol vector. This implementation
would allow turbo-like joint MIMO detection and channel
decoding with DNNs.

C. DNN-based Detection for Nonlinear MIMO Channels

The majority of the proposed DNN-based detectors in the
literature tackle the detection problem in linear MIMO chan-
nels. However, a cost-efficient and energy-efficient massive
MIMO system may use non-ideal hardware that is prone to
impairments and nonlinear distortions. A DNN detector for
massive MIMO systems with one-bit ADCs, proposed in a
recent work [14], has shown significant performance gain over
algorithm-based approaches. For massive MIMO systems that
exhibit nonlinear power amplifiers and phase noise, developing
novel DNN detectors is an open research direction.

VI. CONCLUSION

We have reviewed several recent developments in DNN-
based massive MIMO detection. By imitating the iterations in
established MIMO detection algorithms with a predetermined
number of layers, a DNN detector with learned and fine-
tuned parameters can offer fewer detection errors with lower
computational complexity at run time. We believe that DNN-
based detection can contribute to the development of low-
complexity technologies for modern and emerging wireless
networks.
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