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Abstract—This paper proposes data detection methods for
massive multiple-input multiple-output (MIMOQO) systems with
low-resolution analog-to-digital converters (ADCs) based on the
variational Bayes (VB) inference framework. We derive matched-
filter quantized VB (MF-QVB) and linear minimum mean-
squared error quantized VB (LMMSE-QVB) detection methods
assuming the channel state information (CSI) is available. Unlike
conventional VB-based detection methods that assume knowledge
of the second-order statistics of the additive noise, we propose to
float the noise variance/covariance matrix as an unknown random
variable that is used to account for both the noise and the residual
inter-user interference. Finally, we show via numerical results
that the proposed VB-based methods provide robust performance
and also significantly outperform existing methods.

I. INTRODUCTION

Implementing massive antenna arrays, or massive multiple-
input multiple-output (MIMO), for 5G-and-beyond wireless
systems has been adopted and considered as one of the
core technologies for providing high spectral and energy
efficiency, especially in high-frequency bands like mmWave
and THz where the radio path loss is severe. However, scaling
up existing radio frequency (RF) technologies to very large
arrays becomes complex, expensive, and demands high power
consumption. A practical and promising solution is to use
low-resolution analog-to-digital converters (ADCs). This is
because the low-resolution ADCs have very simple structures
and low power consumption. Unfortunately, the use of low-
resolution quantization makes the system severely non-linear
and significantly distorts the received signals, and thus requires
special signal processing methods for data detection.

There has been a plethora of data detection studies for mas-
sive MIMO systems with low-resolution ADCs. For example,
one-bit ML and near-ML methods were proposed in [1]. The
Bussgang decomposition was used to derive different linear
data detectors in [2]-[4]. While the ML and near-ML methods
are either too complicated for practical implementation or
non-robust at high signal-to-noise ratios (SNRs), the linear
Bussgang-based receivers have lower complexity and are more
robust, but they have limited performance.

Recently, machine learning for low-resolution MIMO data
detection has gained interest and there has also been numerous
results reported in the literature. In particular, the work in [5]
shows how support vector machine (SVM) models can be
applied to one-bit massive MIMO channel estimation and
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data detection. The authors of [3], [6] exploit a deep neural
network (DNN) framework to develop a special model-driven
detection approach that outperforms the SVM-based methods
in [5]. The work in [7] proposed another DNN-based detector
but its computational complexity is high since the detection
network must be retrained for each new channel realization.
Several learning-based blind detection methods were proposed
in [8]-[10] but they are restricted to small-scale systems. The
authors in [11] developed a bilinear generalized approximate
message passing (BiGAMP) algorithm [12] to solve the joint
channel estimation and data detection (JED) problem for few-
bit MIMO systems. Another JED method was proposed in [13]
based on the variational Bayesian (VB) inference framework,
and it was shown to outperforms the BiIGAMP-based method
in [11] for soft symbol decoding. In a recent work [14], VB
inference was also shown to be very efficient in MIMO data
detection with infinite-resolution (perfect) ADCs.

In this paper, we develop a VB framework for data detection
for massive MIMO systems with low-resolution ADCs. While
conventional machine learning models such as SVM and DNN
only provide a point estimate of the signal of interest, e.g.,
the data symbols, the VB approach can provide the posterior
distribution of the estimate, which is important in subsequent
signal processing steps such as channel decoding. Another ad-
vantage of VB is that it does not require a training process like
DNNs which often suffer from performance degradation due
to mismatch between the actual model and that used during
training. The contributions of this paper are summarized as
follows:

o We first devise a matched-filter quantized VB (MF-QVB)
detection method for few-bit MIMO systems. Unlike the
VB-based detection method in [13] that assumes a known
noise variance, the proposed MF-QVB method floats the
noise variance as a latent variable and uses it to also
account for residual inter-user interference. This latent
variable is jointly estimated with the transmitted data
symbol vector.

o We then develop a linear minimum mean-squared error
quantized VB (LMMSE-QVB) detector that treats the
noise covariance matrix as a latent variable, rather than
simply assuming the noise covariance is a scaled identity
matrix. The LMMSE-QVB detector offers performance
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similar to MF-QVB for independent and identically dis-
tributed (i.i.d.) channels, but significantly outperforms
MF-QVB for spatially correlated channels. We show
via numerical results that the proposed VB detection
algorithms provide much lower symbol error rates (SERs)
compared to the conventional VB-based methods in [13].

II. SYSTEM MODEL

We consider an uplink massive MIMO system with K
single-antenna users and an M -antenna base station (BS). Let
x € CK*1 and H € CM*X denote the transmitted signal vec-
tor and the channel matrix, respectively, then the linear uplink
MIMO system can be modeled as r = Hx +n, where r is the
unquantized received signal vector and n ~ CA (0, NoI,/)
models the i.i.d. additive white Gaussian noise. The channel
vector h; from user-i to the BS is assumed to be distributed
as p(h;) = CN(h;;0,C;) where C; £ E[h;hf] is the
covariance matrix. Finally, we assume E[h;hf] = 0 if i # j.

Each received analog signal is then quantized by a pair
of b-bit ADCs to produce the quantized received signals
Riy} = Qo (R{r}) and I{y} = Qu(SI{r}), where Qy()
denotes the b-bit ADC operation which is applied separately
to every element of its matrix or vector argument. It is assumed
that Qy(-) performs b-bit uniform scalar quantization, which
is characterized by a set of 2 — 1 thresholds denoted as
{di,...,do_1}. For a quantization step size A, the quan-
tization thresholds are given by dj, = (—2°~! +k)A, fork €
K =1{1,...,2°—~1}. The quantized output q is then defined as

q=Q(r) {

We also define qlow = di—1 and ¢"P = dj, as lower and upper
thresholds of the quantization bin to which g belongs.

dr — 5, if r € (dj_1,dx] with k € K
(2b — 1)%7 ifr e (dgb,l,de].

III. VB FOR APPROXIMATE INFERENCE

This section presents a brief background on the VB method
for approximate inference that will be developed for solving
the problems of interest in this paper. We are interested in
finding a posterior distribution p(x|y), where x is comprised
of the latent variables and parameters, and y is the observed
variables. Since obtaining a closed-form expression of p(x|y)
is often intractable due to numerous reasons, e.g., high di-
mensionality or model sophistication, it is crucial to develop
numerical methods that can efficiently approximate p(x|y).
The VB inference method amounts to finding a density func-
tion ¢(x) that is as close as possible to p(x|y) by minimizing
their Kullback-Leibler (KL) divergence as follows [15]:

q(x) = arg min KL(q(x)||p(x[y))
q(x)€Q

= ar(g)mign Eq(x)[In q(x)] = Eqx)[Inp(x,y)] + Inp(y),
q(x)e

where Q is the mean-field variational family of ¢(x) satisfying

q(x) = H1K:1 gr(x;). A general expression for the optimal
solution for ¢;(z;) can be obtained as [15]
qi(;) o< exp{(Inp(y[x) + Inp(x)) s, } (D
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Here, (-)_,, denotes the expectation with respect to all latent
variables except x;. In the following, if (-) is used, it means
the variational expectation is taken w.r.t. all the latent vari-
ables in the argument. By sequentially updating ¢;(x;) until
convergence, an estimate of p(x|y) can be obtained as g(x).

In the following, we present a theorem on the variational
posterior mean of multiple random variables that will be
applied repeatedly later in the paper.

Theorem 1. Let A, y, and x of size m X n, m X 1, and
n X 1 be three independent random matrices (vectors) w.rt. a
variational distribution qa y x(A,y,x) = q(A)q(y)g(x). It
is assumed that A is column-wise independent and let (a;)
and X5, be the variational mean and covariance matrix of
the ith column of A. Let (x) and X (and (y) and ) be
the variational mean and covariance matrix of x (and y),
respectively. For an arbitrary Hermitian matrix B, let <(y -
Ax)"B(y—Ax)) be the expectation of (y—Ax)"B(y—Ax)
wrt. ga,yx(A,y,x). We have

((y - Ax)"B(y — Ax))

= ({y) — (A)(x)) "B({y) - (A)(x)) + Tr{BZ,}
+ (x)"D(x) + Tr{E=,D} + Tr{E=(AT)B(A)}, (2)

where D = diag(Tr{BX,, },..., Tr{B%, }).

Proof: The proof of this theorem is similar to the proof
of Theorem 1 in [14], except that y is now a random vector.
Details of the proof are given in Appendix A. [ ]

We note that if any of A, y, and x is deterministic, the
corresponding covariance matrices {X,,}, Xy, and Xy will
be set to 0 and the expectation of (y — Ax)?B(y — Ax)
given in (2) can be simplified accordingly.

IV. PROPOSED VB FOR DATA DETECTION IN
LOow-RESOLUTION MIMO SYSTEMS

In this section, we develop new VB-based algorithms for
solving the data detection problem in low-resolution MIMO
systems with known channel H.

A. Proposed MF-QVB

The VB-based methods proposed in [13] assume prior
information about the noise variance Ny. However, in practice,
Ny is not known a priori and may need to be estimated.
Furthermore, using the known noise variance, the conventional
VB methods in [13] do not take into account the residual inter-
user interference. Here, we consider the residual interference-
plus-noise as an unknown parameter NY°**, which is postu-
lated by the estimation in the VB framework [14]. For ease
of computation, we use v = 1/NP°*" to denote the precision
to be estimated.

The joint distribution p(y,r,x;~, H) of the observed vari-
able y and the latent variables r and x can be factored as

p(y,r,x;7v, H) = p(y|r)p(r|x; v, H)p(x)

M K
= [H p(ymlfm)] plrlx; v, H) [ [ o),
m=1 i=1
3
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[ low

where p(Ym|rm) = 1(rm € [y, ypP]) and p(rlx;v, H) =
CN (r; Hx,v~'1,/). Here, 1(-) denotes the indicator function
which equals one if the argument holds true, or zero otherwise.
We note that the random vector r is comprised of conditional
independent elements due to the same noise variance being
imposed on the M receive antennas.

In the E-step, for a currently fixed estimate 4 of v, we aim
to derive the mean field variational distribution ¢(r,x) of r
and x given y such that

p(r,xly; ¥, H) =~ q(r,x)

[qu} “)

1) Updating r. The variational distribution ¢(r) is obtained
by taking the expectation of the conditional in (3) w.r.t. ¢(x):

a(r) o exp{ (Inp(ylr) + mp(rlx; 3, H))_, |

x exp{< ln]l(r € [ylow,y“p]) —H||r — Hx||2>_r}
o« I(r € [y, y"]) x CN (r; H(x),5 'Tar).  (5)

We note that variational distribution ¢(r) is inherently sepa-
rable as H%zl q(rm) without enforcing the mean field ap-
proximation on ¢(r). Thus, the variational mean and variance
can be obtained concurrently for all the elements of r. We
see in (5) that ¢(r,,) is the truncated complex normal distri-
bution obtained from bounding r,,, ~ CN (sy,,971), where
Sm = Hy, . (), to the interval (y!o%, yuP).

2) Updating x;. The variational distribution ¢(z;) is ob-
tained by taking the expectation of the conditional in (3) w.r.t.

q(r) [Tz a(z;):
q(a;) oc exp{(Inp(r|x; 4, H) + Inp(z;)) }
o< p(x) exp{ —A(|lr — Hx|*)__ }
p(ai) exp { =l (|lzi* — 2R{z}2}) }
(i) exp { =F|hil s — 2]}
(i) CN (25523, 1/(3]0][%)), (6)
where we define

hi K

4= T () = D hyas) ) = () +

J#i

R )

(7

with (x;) being the currently fixed nonlinear estimate of
xi,Vi. We can see in (6) that the mean field VB approxi-
mation decouples the few-bit MIMO system into an AWGN
channel z; = x; + CN'(0,1/(4|/h[[?)) for user-i. The vari-
ational distribution ¢(x;) can be realized by normalizing
plas) CN (221, 1/ (311 ]2)).

In the M-step, the estimate of ~y is updated to maximize
lnp(y,r,x;v,H) wrt. ¢(r,x), i.e.,

4 = argmax (Inp(r|x;v;H))
vy
= argmax M Invy — y{|r — Hx|?). (8)
y
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Applying Theorem 1 to evaluate the expectation (||r—Hx]|?),
the new estimate of v is given by

M
5= )
1) = HEO2 + Sy o + iy a2

By iteratively optimizing ¢(r), {¢(z;)}, and updating 4,
we obtain the variational Bayes expectation-maximization
(VBEM) algorithm for estimating r, x, and . Similar to our
previous work [14], we refer this scheme to as the MF-QVB
algorithm due to the use of the matched-filter h /|h;||? to
obtain the linear estimate z; of x; in (7). If v is fixed to N L
the MF-QVB algorithm will be referred to as the conv-QVB
algorithm, that was investigated as the QVB-CSIR algorithm
in [13].

B. Proposed LMMSE-QVB

We now develop the LMMSE-QVB method for low-
resolution MIMO detection that uses a postulated noise co-
variance matrix CP°®! instead of the postulated noise variance
NP in the MF-QVB method. The idea of using a postulated
noise covariance matrix CP°® was proposed in [14] but for
infinite-resolution ADCs. For ease of computation, we use
I = (CP°*)~! as the precision matrix to be estimated.

The joint distribution p(y,r,x; T, H) of the observed vari-
able y and the latent variables r and x at time slot £ can be
factored as

p(y,r,x; I H) = p(y[r)p(r|x; T, H)p(x)

lnpymvm] rfx; D H) [ o),

(10)

where p(r[x,T;H) = CN(r;Hx,T™'). We note that the
random vector r is no longer comprised of conditional in-
dependent elements, since the noise covariance matrix I 'is
in general non-diagonal.

In the E-step, for a currently fixed estimate I of T, we aim
to derive the mean field variational distribution ¢(r,x) of r
and x given y such that

K
p(r,x|y; T, H) ~ ¢(r,x) [H q(rm ] [H q(xl)] (11)

1) Updating r,,. The variational distribution ¢(r,,) is ob-
tained by taking the expectation of the conditional in (10) w.r.t.

q(%) [Lm a(rn):

q(rm) x exp{< I (Yo |7 ) + In p(r|%; T, H)>_Tm}
o exp{ ln]l(rm [y»lrngym ])
_ < r— Hx)Hf‘(r — HX)>_7_m}

[ low

O(]l( Ym aym])xexp{_ﬁ/mme_
low ~—1

X ]1( [ym 7ym ]) X CN(T’NH Sm77mm)

sm\Q}

12)
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where s,,, is now defined as

—Hm, %_Jn Z 'Ymn rn - n7:< >)
n#m
~H
= (rm) = 22 ({r) — H(x)), (13)

(rm) is the currently fixed nonlinear estimate of r,, and T,
is the mth column of the Hermitian matrix I'. We can see
in (12) that the variational distribution ¢(r,,) is the truncated
complex normal distribution obtained from bounding r,, ~
CN (8, Aml) to the interval (ylo%, yuP).

2) Updating x;. The variational distribution ¢(x;) is ob-

tained by taking the expectation of the conditional in (3) w.r.t.

q(r) Hj;éi q(z;):
)

) exp{<lnp r|x; T, H) +Inp(z;))_

x p(z;) ex { <(r—Hx)Hf‘(r—Hx)>_mi}
p(x;) Xp{ h Th; lzs — 2 }
(xz) N (zi324,1/ (b Th)), (14)

where z; is a linear estimate of x; that is now defined as

hAT u
S GRIIE)
hiT
= (z:) + hF T, ({r) — H(x)), (15)

and (x;) is the current nonlinear estimate of z;. Here, z;
is the LMMSE estimate of z; using the LMMSE filter
h/T'/(hFTh;). The variational distribution ¢(z;) can be
realized by normalizing p(x;) CA (2324, 1/(hf Thy)).

In the M-step, the estimate of I' is updated to maximize
lnp(y,r,x;T,H) wrt. ¢(r,x), i.e.,

I = 1 T, H
arg max < np(r|x; T, )>

= argmax In|T| - {(r - Hx)”T'(r — Hx)).  (16)

By applying Theorem 1, we have

{(r— Hx)“T(r — Hx))
- Tr{ {((r) —H(x)) ((r) — H(x)) "+ 3, + HzXHH}r},
where X, = diag(Try, ..., Try ) Dx = dlag(Tuyy -y Tag)-

Note that 7,., and 7, are the variational variance of r; and x;,
respectively. Thus, a new estimate of I' is given by

P = ()~ H0) () ~ Hp) 4 3, + HEHT)
(17)

We note that the matrix inversion in (17) often results in nu-
merical errors due to the rank deficiency of ((r)—H(x)) ({(r)—
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Fig. 1: SER comparison for i.i.d. channels with b = 3 bits, K = 16, M = 32
and M = 64 for QPSK and 16QAM, respectively.

H(x))H + 3, + HX,H” . Similar to the approach in [14],
we propose to use the following estimator

. —H(x)|2 -1

r= (WIM +3 4 HEXHH) . (18)
for the precision matrix I'.

By iteratively optimizing {q(r)}, {q(x;)}, and T, we

obtain the VBEM algorithm for estimating r, x, and I'. We
refer to this scheme as the LMMSE-QVB algorithm due to

the use of the LMMSE filter h”T'/(h/’T'h;) to obtain the
linear estimate z; of x; in (15).

V. NUMERICAL RESULTS

This section presents numerical results comparing the per-
formance of the proposed VB-based methods with the con-
ventional quantized VB-based method, denoted as conv-QVB,
n [13] and FBM-DetNet in [6], which are the most recent
and related methods to the work in this paper. The maximum
number of iterations is set to 50 for all the iterative algorithms.
The covariance matrices C; are normalized such that their
diagonal elements are 1, which implies E[||h;||?] = M, Vi.
The noise variance Ny is set according to the operating SNR,
which is defined as SNR = E[||Hx||?]/E[||n||?] = K/Ny. For
ii.d. channels, we set C; = I, Vi. For spatially correlated
channels, we use the typical urban channel model in [16]
where the power angle spectrum of the channel model follows
a Laplacian distribution with an angle spread of 10°. The
covariance matrix C; is obtained according to [17, Eq. (2)].

Results for i.i.d. and spatially correlated channels are shown
in Fig. 1 and Fig. 2, respectively. It can be seen that, for both
i.i.d. and correlated channels, the conv-QVB method in [13]
is outperformed by all other methods and its performance is
severely degraded at high SNRs. This is because conv-QVB
does not take into account the residual inter-user interference
and often encounters the catastrophic cancellation issue at
high SNR. For i.i.d. channels, FBM-DetNet, MF-QVB, and
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Fig. 2: SER comparison for spatially correlated channels with b = 3 bits,
K =16, M = 32 and M = 64 for QPSK and 16QAM, respectively.

LMMSE-QVB all yield the same performance for QPSK sig-
nals, while for 16QAM FBM-DetNet and LMMSE-QVB are
similar and both outperform MF-QVB. For spatially correlated
channels, LMMSE-QVB provides a significantly lower SER
than FBM-DetNet and MF-QVB due to its estimation of the
precision matrix I" which can better represent the effect of the
residual inter-user interference.

VI. CONCLUSION

We have proposed MF-QVB and LMMSE-QVB data detec-
tion methods for MIMO detection with low-resolution ADCs.
The proposed methods exploit the VB framework to efficiently
estimate the posterior distribution of the transmitted signal
given the channel and the received signal. The proposed
methods do not require prior information about the noise
power and properly compensates for the residual inter-user
interference plus noise, and therefore significantly outperforms
other existing methods.

APPENDIX A
PROOF OF THEOREM 1

Expanding (|ly — Ax||?) and taking into account the inde-
pendence between A, y, and x, we have

((y — Ax)"B(y — Ax))
(y"By) —2R{(y"BAx)} + (x" A"BAx)
({y) — (A) ()" B((y) — (A)(x)) + (y"By)
— (y")Bly) + (x" A"BAx) — (x")(A")B(A)(x).

(19)

Note that (xx) = (x)x)? + ¥, and (y"By) =

Tr{B(yy")} = (y")B(y) + Tr{BX, }. In addition, we have
[<AHBA>]U = <a Ba;)

_ [ (af)B(a;) + Tr{BX,,}, ifi=j

1 (@™ B(ay), otherwise.

It thus follows that (A¥BA) = (A#)B(A) + D, and
(xTATBAx) = Tr{(AT)B(A)(x)(x")} + (x)"D(x)
+ Tr{ZxD} + Tr{Zx (A")B(A)}.

The statement (2) thus follows by removing the duplicated
terms in (19). Note that (x)7D(x) + Tr{ExD} can also be
written as (x) 7D (x) + Tr{EZxD} = 3" | (|z;]*) Tr{BX,, }.
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