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Abstract—Cell-free massive MIMO is a promising technology
for beyond-5G networks. Through the deployment of many
cooperating access points (AP), the technology can significantly
enhance user coverage and spectral efficiency compared to
traditional cellular systems. Since the APs are distributed over a
large area, the level of favorable propagation in cell-free massive
MIMO is less than the one in colocated massive MIMO. As a
result, the current linear processing schemes are not close to
the optimal ones when the number of AP antennas is not very
large. The aim of this paper is to develop nonlinear variational
Bayes (VB) methods for data detection in cell-free massive MIMO
systems. Contrary to existing work in the literature, which
only attained point estimates of the transmit data symbols, the
proposed methods aim to obtain the posterior distribution and
the Bayes estimate of the data symbols. We develop the VB
methods accordingly to the levels of cooperation among the APs.
Simulation results show significant performance advantages of
the developed VB methods over the linear processing techniques.

Index Terms—Cell-free, inference, massive MIMO, variational
Bayes.

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (MIMO) is
considered as a promising technology for powering beyond-5G
networks. The key idea of a cell-free massive MIMO system
is to distributively deploy a large number of access points
(APs) coherently serving all users in the system. As illustrated
in Fig. 1, the APs in a cell-free system can be randomly
located all over the coverage area and are connected to one or
several central processing units (CPUs). Due to this distributed
deployment, any user is highly likely to be close to at least one
AP. A cell-free system can effectively resolve the poor cover-
age issue in cell-edge areas of conventional cellular systems
[1]-[3]. In addition, a cell-free system enables different levels
of cooperation among the APs with certain levels of joint
signal processing at the CPU, ranging from fully centralized
processing (Level 4), to partially distributed processing (Levels
3 and 2), and to a fully distributed processing (Level 1)
[4]. Joint signal processing at the system’s CPU allows a
cell-free system to better address the inter-cell interference,
which becomes more severe in cellular systems with small cell
deployments. Therefore, cell-free massive MIMO systems can
offer significant enhancements in user coverage and energy
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Fig. 1: Diagram of a cell-free massive MIMO system with multiple distributed
APs connected to a CPU.

efficiency compared to traditional cellular systems [1], [4],
[5].

The majority of existing research on uplink cell-free massive
MIMO has focused on spectral and energy efficiency analysis
with linear signal processing methods, such as maximum-
ratio combining (MRC) [1], zero-forcing (ZF) [1], and linear
minimum mean-squared error (LMMSE) [4]. While such
approaches have relatively low complexity, linear methods
do not perform well in systems with low level of favorable
propagation (e.g. when the number of AP antennas is small or
is not much larger than the number of UEs, or the channels
are highly correlated). Nonlinear signal processing is thus a
promising alternative approach that can offer higher spectral
efficiency [4] or lower bit error rate (BER) [6]. The recent
work in [6] proposed a nonlinear optimization-based algorithm
for joint channel estimation and data detection in cell-free
massive MIMO. However, the approach in [6] can only provide
point estimates of the data symbols of interest. Different from
these papers, the focus of this paper is on devising efficient
algorithms to obtain Bayesian estimates of the data symbols.
Unfortunately, realizing the exact posterior distributions of
the data symbols is intractable, even in a conventional sin-
gle cell MIMO system. We, therefore, develop variational
Bayes (VB) inference methods for approximating intractable
posterior distributions of data symbols, which are then used
to detect the symbols. We investigate the VB methods for
joint data detection with fully centralized processing at the
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CPU, as well as for distributed data detection at the APs. For
fully centralized processing, we assume that full knowledge of
the channel state information (CSI) is available at the CPU.
Likewise, for distributed processing at each AP, we assume
that CSI knowledge for the channel from the users to that
AP is locally available. Simulation results show significant
performance advantages of the developed VB methods over
the LMMSE processing techniques in [4].

Notation: Upper-case and lower-case boldface letters denote
matrices and column vectors, respectively. The transpose and
conjugate transpose are denoted by [-]7 and []¥, respectively.
CN(p,X) represents a complex Gaussian random vector
with mean p and covariance matrix 3; CN(x;p,X) =
(1/(7513))exp( — (x — )X (x — p)) denotes the
probability distribution function (PDF) of a length-K random
vector x ~ CN (p, X). Ep,[x] and Var,[x] are the mean
and the variance of = with respect to its distribution p(x); (z)
and 02 denote the mean and variance of x with respect to a
variational distribution ¢(x).

II. SYSTEM MODEL

We consider an uplink cell-free massive MIMO system with
L distributed APs, each equipped with N antennas, serving
K randomly located single-antenna users. It is assumed that
N < K < NL. Denote h;y € CV as the uplink channel
from the i-th user and the ¢-th AP and H, = [hy,, ..., hxy].
We assume a block Rayleigh fading scenario in which the
channel h;, remains constant for 7" time slots and is normally
distributed as CN(0, 8;¢R¢). Here, B; is the large-scale
fading coefficient and R, is the normalized spatial correlation
matrix whose diagonal elements equal to one. Due to the
random user deployment, the large-scale fading coefficient (;,
is different from one user to another user, resulting in a non-
1.i.d. channel matrix H,. We assume that the channel vectors
{h;¢} are independent of each other for each user-AP pair.

Letx; = [T14,...,7x]7 be the transmitted symbol vector
at time slot ¢, in which the transmitted symbol x; ; from the -
th user is drawn from a complex-valued discrete constellation
S such that E[z;;] = 0 and E[|z;(|?] = pi. The prior
distribution of x; ; is thus given by

p(xis) =Y pad(zis — a), (1)

a€S

where p, corresponds to the known prior probability of the
constellation point a € S. The received signal vector y,: €
CN at the /-th AP can be modeled as

K

Yo = Z hijz; +1npp = Hexy + 1y, 2
1=1

where ny ; is the noise vector whose elements are independent
and identically distributed (i.i.d.) as CN(0, Ny). The interest
of this paper is to obtain an estimated X; of x; from multiple
observed signal vectors y,;’s across the L distributed APs
with minimum mean squared detection error E[[|x; — %x¢[|?].

III. FOUR LEVELS OF CELL-FREE MASSIVE MIMO
SIGNAL PROCESSING USING LMMSE FILTERING

To frame the discussion on the developed VB methods, we
revisit the 4 levels of signal processing in cell-free systems
using LMMSE filtering as studied in [4]. Since the processing
is based on a per time slot basis, without loss of generality,
we drop the time index t.

A. Level 4: Fully Centralized Processing

At this level, the APs do not process their received signals.
Instead, the received signals are forwarded to the CPU for
fully centralized processing, including the data detection task.
The signals forwarded from the L APs can be stacked into

y = Hx + n, €)]

where y = [y?,...,y117, H = [HY,... HL]?, and n =
mT,... nT]T. The processing for cell-free massive MIMO
in this level is similar to the processing at a conventional co-
located MIMO receiver. The CPU detects x = [z1,...,zx]7
using the received signal vector y and the channel matrix
H. Among the linear detectors, the LMMSE detector max-
imizes the signal-to-interference-and-noise ratio (SINR) and
also achieves the best detection performance [4]. With the full
knowledge of H, the LMMSE estimate X is formed as

% = (H"H + Nol) 'H'y, “)

which is then element-wise projected onto S. We note that the
LMMSE filter in the presented form requires the inverse of a
K x K-dimensional matrix.

B. Level 3: Local Processing & Large-Scale Fading Decoding

At this level, each AP pre-processes its received signal by
computing a local estimate of x that are forwarded to the CPU
for final decoding [4]. Assuming full knowledge of channel
matrix H, at the ¢-th AP, the local LMMSE estimate X, =
[#i0, ..., Zxe]T of x can be found as

. -1
%, = Hy' (HH] + Noly)  ye. )

We note that the LMMSE filter in this presented form requires
the inverse of a NV x N-dimensional matrix. The CPU then can
linearly combine the local estimates {d@; : £ =1,...,L} to
obtain the estimate

L
B =) auti, 6)
/=1

which is eventually used to decode x;. Here, the weighting
coefficient vector a; = [a;1, ..., q; L}T relies only on channel
statistics and can be optimized by the CPU. This combining
method is also known as the large-scale fading decoding
(LSFB) strategy in the context of cellular massive MIMO.
We note that no instantaneous CSI of any channel is required
at the CPU.
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C. Level 2: Local Processing & Simple Centralized Decoding

At this level, the CPU forms an estimate of x; by simply
taking the average of the local estimates [4]. This yield an
estimate I; as

1 L
b= ;m. (7)

We note that no statistical parameters of CSI are needed at the
CPU at this level of centralized signal processing.

D. Level 1: Small-Cell Network

At this level, each user signal is decoded by only one AP
that gives the highest spectral efficiency to the user, i.e., the
highest SINR [4]. LMMSE filtering can be applied to obtain
the local estimate of the user signal. Since only one estimate
per user is forwarded to the CPU, no centralizing decoding is
required.

IV. VARIATIONAL BAYES FOR CELL-FREE DETECTION

In this paper, we focus on developing VB-based methods for
data detection in cell-free massive MIMO systems that require
certain levels of centralized processing, i.e., Levels 4, 3, and
2. For Level 4 processing, we assume that the symbol vectors
are estimated independently at each time slot. However, for
Levels 3 and 2 processing, we assume that the symbol vectors
are first estimated locally over the whole fading block. As
explained later in the section, this method of processing helps
reduce the amount of signaling to the CPU, where the local
estimates are aggregated to obtain the final estimate.

A. Background on VB

We first present the background on VB for approximate
inference that will be exploited for solving the data detection
in cell-free systems. VB inference is a powerful framework
from machine learning that approximates intractable posterior
distributions of latent variables with a known family of simpler
distributions through optimization. The goal of VB inference
is to find an approximation for a computationally intractable
posterior distribution p(x|y) given a probabilistic model that
specifies the joint distribution p(x,y), where y represents the
set of all observed variables and x is a set of m latent variables
and parameters. The VB inference method aims at finding
a density function ¢(x) with its own setting of variational
parameters within a family Q of density functions that makes
g(x) close to the posterior distribution of interest p(x|y).
VB inference amounts to solving the following optimization
problem:

x) = arg min KL(g(x X
o) = arg_min KL(460)[p(x1y))
= arg min Eq(x)[lnq(x)] qu(x)[lnp(x|y)] , 8
a(x)eQ
where KL(q(x)||p(x|y) is the Kullback-Leibler (KL) di-
vergence from ¢(x) to p(x|y). Minimizing the KL diver-

gence is equivalent to maximizing the evidence lower bound
(ELBO) [7], which is defined as

ELBO(q) = Eqx) [ Inp(x,y)] = Egx) [Ing(x)] . (9)

The maximum of ELBO(g) occurs when ¢(x) = p(x]y).
Since working with the true posterior distribution is often
intractable, it is more convenient to consider a restricted family
of distributions ¢(x). Among VB inference methods, the
mean-field approximation enables efficient optimization of the
variational distribution over a partition of the latent variables,
while keeping the variational distributions over other partitions
fixed [7]. The mean-field variational family is constructed such
that

q(x) = [ ] ai(x), (10)
i=1

where the latent variables are mutually independent and each is

governed by a distinct factor in the variational density. Among

all mean-field distributions ¢(x), the general expression for

the optimal solution of the variational density g;(z;) that

maximizes the ELBO can be obtained as [7]

(1)

where (-) denotes the expectation with respect to all latent
variables except x; using the currently fixed variational density
q-i(x—i) = [I;4; ¢j(x;). By iterating the update of g;(z;)
sequentially over all j, the ELBO(q) objective function can be
monotonically improved. This is the basis behind the coordi-
nate ascent variational inference algorithm, which guarantees
convergence to at least a local optimum of ELBO(q) [7], [8].
To this send, we examine how the mean-field VB framework
can be exploited for data detection at different levels of
cooperation in a cell-free system.

qi(i) o exp {(Inp(ylx) +Inp(x))}

B. Level 4: Fully Centralized Processing

At this level, the signals forwarded from the APs can
be stacked into a single large-scale MIMO system as being
shown in (3). In a recent work [9], we developed several
VB-based methods for MIMO data detection. Among them,
the LMMSE-VB algorithm showed superior performance in
MIMO systems with non-i.i.d. channels. Certainly, the algo-
rithm can be adopted for data detection in cell-free systems
with fully centralized processing. In the following, we present
key operations in the algorithm. For details of the algorithm,
we refer the readers to [9].

The LMMSE-VB algorithm floats the background noise
covariance matrix as an unknown random variable, instead
of treating the noise’s variance Ny as known. The postulated
noise covariance matrix CP°" is estimated by the algorithm
itself. For ease of computation, we use W = (CPst)~1 (o
denote the precision matrix and assume a conjugate prior com-
plex Wishart distribution CW(Wj, n) for W, where W = 0
is the scale matrix and n > NL indicates the degrees of
freedom. The PDF of W ~ CW(W, n) satisfies

p(W) o< [W|" Mexp( — tr{W'W}). (12)
The joint distribution p(y,x, W; H) can be factored as
p(y,x, W; H) = p(y|x, W; H)p(x)p(W), (13)
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where p(y|x, W;H) = CN(y;Hx, W™!). Given the ob-
servation y, we aim at obtaining the mean-field variational
distribution ¢(x, W) such that
p(x, Wly; H) = q(x, W) qu zi)q (14)
The optimization of ¢(x, W) is executed by iteratively updat-
ing {z;} and W as follows.
a) Updating x;. The variational distribution ¢;(x;) is ob-
tained by expanding the conditional in (13) and taking the

expectation with respect to all latent variables except x; using
the variational distribution [}, ¢;(z;)q(W):

qi(zi) o< p(x;) CN (2525, 1/ (b (W)h,)), (15)
where z; is a linear estimate of x; that is defined as
h{’ (W)
i = (x4 — - (y—H . 16

It is observed in (15) that CN(z;;2;,67) with 62 =
1/(h# (W)h;) can be interpreted as the likelihood function
p(zl|xl, ) In other words, the mean-field VB approximation
decouples the linear MIMO system into K parallel AWGN
channels z; = x; + CN(0,67).

The variational distribution g;(z;) is realized by normalizing

(xZ)CN(Zz,l'“ 62). The variational mean (z;) = E[z;|z]
and variance aﬁi are then computed accordingly.

b) Updating W. The variational distribution ¢(W) is ob-
tained by taking the expectation of the conditional in (13) with
respect to g(x):

q(W) exp{<lnp(y|x,W;H) +1np(W)>}. a7

The variational distribution ¢(W) is also complex Wishart
with n+ 1 degrees of freedom [9]. The variational mean (W)
can be computed accordingly. In [9], we also proposed to use
the estimator

w) - (Lo

where X, = diag(o $17...,02 ).

By iteratively optimizing {qz z;)} and q(W) via the up-
dates of {(x;)} and (W), we obtain the CAVI algorithm for
estimating x and the precision matrix W. We refer to this
scheme as the LMMSE-VB algorithm since z; resembles an
LMMSE estimate of x; due to the cancellation of the inter-
user interference and the whitening with the postulated noise
covariance matrix CPOst,

-1
Ing + HExH> ; (18)

C. Level 3: Local Processing & Nonlinear Decoding

At this level, our proposed VB-based method involves two
operations: 1) Executing the LMMSE-VB algorithm indepen-
dently at each AP to compute local estimates of x; and 2)
Aggregating the local estimates at the CPU for joint nonlinear
decoding of x;. However, we make a minor modification to
the LMMSE-VB algorithm which allow it to operate over the
whole block of T' time slots.

1) AP Processing: The signal processing at an AP, say the
£-th AP, is to generate a coarse estimate X; of x;, from the ob-
servation y;. We treat the background noise covariance matrix
at the ¢-th AP as an unknown random variable. The postulated
noise matrix C5**" has to be estimated as well. We denote the
precision matrix W, = (CY**")~1, Y, = [ys1,...,ye 7], and
X = [x1,...,%x7]. The joint distribution p(Y,, X, Wy; Hy)
can be factorized as

p(Ye, X, Wy Hy) = p(Yo| X, We; He)p(X)p(We), (19)

where p(Y|X, Wy Hy) = HtT 1 p(ye, t|XtaW£7Hl) with
(ye t|Xt,Wg,Hz) = CN(yg t,H[Xt,W ) Given the ob-
servation Y,, we aim at obtaining the mean-field variational
distribution ¢,(X, W) such that

p(X, WY Hy) = qo(X, Wy)

= [T 1T aeeelwio)a(Wo).

i=1t=1

(20)

The optimization of ¢,(X, W) is executed by iteratively
updating {z; .} and W, as follows.

a) Update z;,: The variational distribution g;¢¢(x;;) is
obtained by expanding the conditional in (19) and taking the
expectation with respect to all latent variables except x; ; using
the variational distribution [, ). (; ;) @je.r(2,-)a(We):

(M,t(ﬂﬁi,t)

o< exp {(Inp(ye,e|x:, We; He) + Inp(x,)) }

X p(Iz t) exp {< YI t— H/Xt) WZ(Y@,t - Héxt)>}

o< p(wiy) exp {— —h (W hy|a;  —
)C

o p(xi) CN (2ie,e; @i, 1/ (Wi (We)hye)), (21)
where
hz€< vV 2
Ft T WH(Wo)h Zj — Bje(jes))
hf] < W) (ye — He(xe))
= (z; i : . 22

It is observed in (21) that CN (245 @4, 67) with &2 =
1/(hf(W)h;) can be interpreted as the likelihood function
p(ziee|xie; o M) In this case, the mean-field VB approxima-
tion decouples the uplink MIMO channel to the /-th AP into
K parallel AWGN channels z;; = x;; + CN (0,612@). It is
also observed that z;¢; is the local LMMSE estimate of x; ;,
while the variance &2 indicates the reliability of this estimate.

The variational distribution g;¢ +(; ;) is realized by normal-
izing p(z;, t)CJ\/'(zlg %54, 0 Vu,). The variational mean (x; ;) =

E[z; +|2i0+] and variance o2 ... can be computed accordingly.
Hereafter, we use Zo instead of (i) or E[z;]zie] to
indicate the nonlinear MMSE estimate of x; ; at the /-th AP.

b) Update W: The variational distribution q(W/,) is ob-
tained by taking the expectation of the conditional in (19) with

respect to [T, TTi— qie.e(is):
q(Wy) exp{< Inp(Y,|X, Wy Hy) + lnp(Wg)>}. (23)
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T -1
(We) = (n+1) (Wo + (Y- BX)(Y, - HX)T 4+ HgEx,tHg> .

(24)

t=1

Assuming a conjugate prior complex Wishart distributed
CW(Wy,e,n) for Wy, the variational distribution ¢(W) is
also complex Wishart with n + 7' degrees of freedom. The
variational mean (W,) is given in (24), where 3x,; =
diag (Uglyt, o 0a, )

The LMMSE-VB algorithm is executed at the /-th AP by
iteratively optimizing {q¢,(z;:)} and ¢(W) via the updates
of {(z;,)} and (Wy). The ¢-th AP then sends the LMMSE
estimate z;¢; and the variance &% to the CPU for centralized
decoding. By pre-processing the whole block of 7' time slots,
6% is sent only once for each channel realization. In contrast,
if the LMMSE-VB algorithm is executed on a per time slot
basis, the variance of the LMMSE estimate z;; has to be
computed and sent for each time slot.

2) CPU Processing: After collecting the local estimates
zi+ and the variance 61% from the L APs, the CPU can
proceed to decode each of the K symbols independently. Since
zie,e = @i +CN(0,5%), an approximate posterior distribution
p(zi+|{ziet}; {5%}) can be easily derived. The MAP estimate
2, of x;; is obtained as

Lo
Z;+ = arg max <lnp(xi) — Z W) . (25
Tie

T, +€S
Ti,t =1

We note that the above nonlinear combination of local
estimates and reliability information is significantly different
from the linear combination of local estimates in (6).

D. Level 2: Local Processing & Simple Linear Combining

At this level, only local estimates are fed back to the CPU.
The LMMSE-VB mentioned in Level 3 signal processing can
be used to generate the coarse local estimates. However, the
local nonlinear MMSE estimates & is sent, instead of the
LMMSE estimate z;,; and the variance &%,. We note that #;
can be computed using z;¢; and 612[, but not the reverse.

A simple estimate of x; ; can be obtained by simply taking
the average of all the estimates Z;¢; as

| X
Tip = 7 E Tig,t-
=1

The final detected symbol of x; ; is the constellation point that
is closest to Z; ;.

(26)

V. NUMERICAL RESULTS

This section presents the numerical results comparing the
developed VB-based methods for data detection in cell-free
systems with the LMMSE filtering methods in [4]. We use a
simulation setting and a channel model in urban environments
similar to the work in [4]. In particular, a network area of
1x1 km is considered where the APs are deployed on a square

grid and users are randomly distributed. The large-scale fading
coefficient of the channel between user-i and AP-¢ (in dB) is
given as

Bie = —30.5 — 36.7log10(di4) + Fjp, 27

where d;y (in m) is the distance between user-; and AP-¢ and
F;¢ ~ N(0,16) is the shadow fading. The correlation between
the shadowing terms from an AP to different users is modeled
as

16 x 27%/9 4=/

0, (40 %)

E[FiFye] = {
where §;; (in m) is the distance between user-i and user-7’.
Receive antennas at each AP are arranged in a uniform linear
array with half-wavelength spacing. For spatial correlation, we
use the Gaussian local scattering model with a 15° angular
standard deviation [10]. We set the noise as CA/(0,1) and
vary the transmit power of users.

In this work, we compare different data detection methods
assuming perfect CSI and QPSK signalling. We assume that
each AP is equipped with 4 antennas, i.e., N = 4. Fig. 2
presents the symbol error rate (SER) performance of the two
types of methods in a relatively small setting of cell-free
systems with K = 16 and L = 16. As the user transmit power
is increased, the VB-based methods attain much lower SER
than the MMSE filtering methods. Up to 2-dB gain is observed
at Level 4 and 4-dB gain is observed at Level 3 and 2.

Fig. 3 presents the SER performance a cell-free system with
K =40 and L = 64. The figure clearly indicates the superior
performance of the proposed VB-based methods over the
MMSE filtering methods. It is also observed from both figures
that the more centralized signal processing is carried at the
CPU, the better SER performance can be achieved, especially
in systems with a large number of users, e.g., K = 40.

VI. CONCLUSION

In this paper, we have proposed the VB-based methods for
data detection in cell-free systems at three different levels
of AP cooperation. The proposed methods can achieve much
lower SER than the linear MMSE signal processing methods.
We note that the presented study only considers the case of
perfect CSI available at the CPU (for Level 4) and at the APs
(for Levels 3 and 2). As an extension of this paper, we are
developing novel VB-based methods for data detection with
imperfect CSI and joint channel estimation and data detection
in cell-free systems.
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Fig. 2: SER performance of the VB-based methods (in solid lines) and

—A—Level 4
—¥—Level 3
—©—Level 2

0 2 4 6 8 10 12 14 16 18 20
User transmit power in dBm

LMMSE methods (in dashed lines) versus the user transmit power, with

K=

16, L = 16, and N = 4.

—A—Level 4
—¥—Level 3
—©—Level 2

User transmit power in dBm

Fig. 3: SER performance of the VB-based methods (in solid lines) and
LMMSE methods (in dashed lines) versus the user transmit power, with

K=

[1]

[2]

[3]

[4]

[5]

40, L = 64, and N = 4.

REFERENCES

H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
“Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1834-1850, Mar. 2017.

G. Interdonato, E. Bjornson, H. Quoc Ngo, P. Frenger, and E. G.
Larsson, EURASIP J. Wireless Commun. and Networking, 2019.
[Online]. Available: https://doi.org/10.1186/s13638-019-1507-0

E. Bjornson and L. Sanguinetti, “Scalable cell-free massive MIMO
systems,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4247-4261, July
2020.

——, “Making cell-free massive MIMO competitive with MMSE pro-
cessing and centralized implementation,” IEEE Trans. Wireless Com-
mun., vol. 19, no. 1, pp. 77-90, Jan. 2020.

E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, and B. D. Rao, “Pre-
coding and power optimization in cell-free massive MIMO systems,”
IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4445-4459, July
2017.

H. Song, T. Goldstein, X. You, C. Zhang, O. Tirkkonen, and C. Studer,
“Joint channel estimation and data detection in cell-free massive MU-
MIMO systems,” IEEE Trans. Wireless Commun. (Early Access), 2021.

[71 C. M. Bishop, Pattern Recognition and Machine Learning.
2006.

[8] M. J. Wainwright and M. 1. Jordan, Graphical models, exponential
families, and variational inference. Now Publishers Inc, 2008.

[91 D. H. N. Nguyen, I. Atzeni, A. Tolli, and A. L. Swindlehurst, “A
variational Bayesian perspective on massive MIMO detection,” 2022.
[Online]. Available: http://engineering.sdsu.edu/~nguyen/downloads/
VB_for_MIMO_detection.pdf

[10] E. Bjornson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks:
Spectral, energy, and hardware efficiency,” Foundations and Trends in
Signal Processing, vol. 11, no. 3-4, pp. 154-655, 2017.

Springer,

732

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 04,2023 at 02:54:38 UTC from IEEE Xplore. Restrictions apply.



