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On Héthelyi—Kiilshammer's conjecture
for principal blocks

Nguyen Ngoc Hung and A. A. Schaeffer Fry

We prove that the number of irreducible ordinary characters in the principal p-block of a finite group
G of order divisible by p is always at least 2,/p — 1. This confirms a conjecture of Héthelyi and
Kiilshammer (2000) for principal blocks and provides an affirmative answer to Brauer’s problem 21 (1963)
for principal blocks of bounded defect. Our proof relies on recent works of Mar6ti (2016) and Malle and
Mardti (2016) on bounding the conjugacy class number and the number of p’-degree irreducible characters
of finite groups, earlier works of Broué, Malle and Michel (1993) and Cabanes and Enguehard (2004) on
the distribution of characters into unipotent blocks and e-Harish-Chandra series of finite reductive groups,
and known cases of the Alperin-McKay conjecture.

1. Introduction

Bounding the number k(G) of conjugacy classes of a finite group G in terms of a certain invariant
associated to G is a fundamental problem in group representation theory. An equally important problem
in modular representation theory is to bound the number k(B) of ordinary irreducible characters in a
block B of G. It is not surprising that these two problems are closely related to each other. For instance,
the p-solvable case of the Brauer’s celebrated k(B)-conjecture [Brauer 1963, Problem 20], which asserts
that k(B) is bounded above by the order of a defect group for B, was known to be equivalent to the
coprime k(G V)-problem (by [Nagao 1962]), which in turn was eventually solved in [Gluck et al. 2004];
see also [Schmid 2007]. While there have been a number of results on upper bounds for k(B) [Brauer
and Feit 1959; Robinson 2004; Sambale 2017; Malle 2018], not much has been done on lower bounds.

Let p be a prime dividing the order of G. A result of Brauer [1942] on characters and blocks of groups
G of order divisible by p but not by p? implies that k(G) > 2./p — 1 for those groups, and the bound was
later conjectured to be true for all finite groups. After several partial results [Héthelyi and Kiilshammer
2000; 2003; Malle 2006; Keller 2009; Héthelyi et al. 2011], the conjecture was finally proved by Maréti
[2016]. In the proof of the conjecture for solvable groups, Héthelyi and Kiilshammer [2000] speculated
that “perhaps it is even true that k(B) > 2./p — 1 for every p-block B of positive defect, where k(B)
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denotes the number of irreducible ordinary characters in B”. Of course, they were aware of blocks of
defect zero, which have a unique irreducible ordinary character (whose degree has the same p-part as the
order of the group) and a unique irreducible Brauer character as well; see [Navarro 1998, Theorem 3.18].

The main aim of this paper is to confirm Héthelyi and Kiilshammer’s conjecture for principal blocks.
Throughout, we use By(G) to denote the principal p-block of G.

Theorem 1.1. Let G be a finite group and p a prime such that p | |G|. Then k(By(G)) > 2+/p — 1.

Problem 21 in Brauer’s famous list [1963] asks whether there exists a function f(g) on prime powers
g such that f(g) — oo for ¢ — oo and that k(B) > f(p?®) for every p-block B of defect d(B) > 0.
Our Theorem 1.1 provides an affirmative answer to this question for principal blocks of bounded defect.
See [Kiillshammer 1990] for more discussion on this problem.

One may expect to improve the bound in Theorem 1.1 when the power of p in |G| is large. Kovacs
and Leedham-Green [1986] constructed, for each odd prime p, a p-group P of order p? with k(P) =
(p3 - p2 + p + 1)/2. Therefore, the bound k(By(G)) > 24/p — 1 cannot be replaced by k(By(G)) > p3,
for example, even when any given large power of p divided the group order.

Building upon the ideas of Maréti [2016] and the subsequent paper by Malle and Maréti [2016] on
bounding the number of p’-degree irreducible characters in a finite group, we observe that Héthelyi and
Kiilshammer’s conjecture for principal blocks essentially reduces to bounding the number of irreducible
ordinary characters in principal blocks of almost simple groups, as well as bounding the number of orbits
of irreducible characters in principal blocks of simple groups under the action of their automorphism

groups.

Theorem 1.2. Let S be a finite nonabelian simple group and p a prime such that p ||S|. Let G be an
almost simple group with socle S such that p{|G/S|. Then:

(i) k(Bo(G)) = 24/p — 1. Moreover, k(By(G)) > 2/p — 1 if S does not have cyclic Sylow p-subgroups.

(i1) Assume further that p > 11 and S does not have cyclic Sylow p-subgroups. Then the number of
Aut(S)-orbits on Trr(By(S)) is at least 2(p — 1)1/4.

As we will explain in the next section, Theorem 1.1 is a consequence of [Maré6ti 2016] and the well-
known Alperin—-McKay conjecture, which asserts that the number of irreducible characters of height 0 in
a block B of a finite group G coincides with the number of irreducible characters of height O in the Brauer
correspondent of B of the normalizer of a defect subgroup for B in G. We take advantage of the recent
advances on the conjecture in the proof of our results, particularly the fact that Spéth’s inductive Alperin—
McKay conditions hold for all p-blocks with cyclic defect groups [Spith 2013; Koshitani and Spith
2016]. This explains why simple groups with cyclic Sylow p-subgroups are excluded in Theorem 1.2(ii).
Additionally, we take advantage of recent results on the possible structure of defect groups of principal
blocks with few ordinary characters [Koshitani and Sakurai 2021; Rizo et al. 2021], and this explains
why the smaller values of p are excluded in Theorem 1.2(ii).



On Héthelyi—Kiilshammer's conjecture for principal blocks 1129

Theorem 1.2 turns out to be straightforward for alternating groups or groups of Lie type in charac-
teristic p, but highly nontrivial for groups of Lie type in characteristic not equal to p. We make use of
Cabanes and Enguehard’s results [1994; 2004] on the distribution of characters into unipotent blocks
and Broué, Malle and Michel’s results [Broué et al. 1993] on the compatibility between the distributions
of unipotent characters into unipotent blocks and e-Harish-Chandra series to obtain a general bound for
the number of Aut(S)-orbits of characters in Irr(By(S)) in terms of certain data associated to S, for S a
simple group of Lie type, see Theorem 5.4. We hope this result will be useful in other purposes.

The next result classifies groups for which k(By(G)) is minimal in the sense of Theorem 1.1.

Theorem 1.3. Let G be a finite group and p a prime. Let P be a Sylow p-subgroup of G. Then
k(Bo(G)) =2/p—1lifandonly if /p—1e€Nand NG(P)/ O, (Ng(P)) is isomorphic to the Frobenius
group Cp X C /7.

We remark that, in the situation of Theorem 1.3, the number of p’-degree irreducible characters in
Bo(G) is also equal to 24/p — 1. In general, if a p-block B of a finite group has an abelian defect group,
then every ordinary irreducible character of B has height zero. This is the “if direction” of Brauer’s
height-zero conjecture, which is now known to be true, thanks to the work of Kessar and Malle [2013].
Theorem 1.1 therefore implies that if P € Syl p(G) is abelian and nontrivial then ko(By(G)) > 2/p — 1,
where ko(B) denotes the number of height zero ordinary irreducible characters of a block B.

Theorems 1.1 and 1.3 are useful in the study of principal blocks with few height zero ordinary irreducible
characters. In fact, using them, we are able to show in [Hung et al. 2023] that ko(Bo(G)) = 3 if and
only if P = C3, and that ko(Bo(G)) =4 if and only if |P/P’| =4 or P = Cs and Ng(P)/0, (NG (P))
is isomorphic to the dihedral group Dig. These results have been known only in the case p < 3; see
[Navarro et al. 2018, Theorems A and C]J.

The paper is organized as follows. In Section 2, we recall some known results on the Alperin—-McKay
conjecture and prove that our results follow when all the nonabelian composition factors of G have cyclic
Sylow p-subgroups. We also prove Theorem 1.2 for the sporadic simple groups and groups of Lie type
defined in characteristic p in Section 2. The alternating groups are treated in Section 3. Section 4 takes
care of the case when the Sylow p-subgroups of S are nonabelian. Sections 6, 7, and 8 are devoted to
proving Theorem 1.2 for simple groups of Lie type defined in characteristics different from p. To do so,
in Section 5, we prove a bound for the number of Aut(S)-orbits of characters in Irr(By(S)). Finally, we
finish the proofs of Theorems 1.1 and 1.3 in Section 9.

2. Some first observations

In this section we make some observations toward the proofs of the main results.

2A. The Alperin-McKay conjecture. The well-known Alperin—-McKay (AM) conjecture predicts that
the number of irreducible characters of height zero in a block B of a finite group G coincides with the
number of irreducible characters of height zero in the Brauer correspondent of B of the normalizer of a
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defect subgroup of B in G. For the principal blocks, the conjecture is equivalent to

kp (Bo(G)) = kp (Bo(Ng (P))),

where P is a Sylow p-subgroup of G and k(B (G)) denotes the number of p’-degree irreducible ordinary
characters in By(G).
On the other hand, if p | |G|, we have

kp (Bo(NG(P))) = ky (Bo(NG(P)/P"))
=k(Byo(Ng(P)/P"))
=k(Bo((Ng(P)/P")/ 0y (Ng(P)/P")))
=k((Ng(P)/P")/0y(NG(P)/P")

szp_lv

where the first inequality follows from [Navarro 1998, page 137], the first equality follows from the
fact that every irreducible ordinary character of Ng(P)/P’ has p’-degree, the last two equalities follow
from [loc. cit., Theorem 9.9] and Fong’s theorem (see [loc. cit., Theorem 10.20]), and the last inequality
follows from [Maréti 2016]. Therefore, if the AM conjecture holds for G and p, then the number of
p’-degree irreducible ordinary characters in By(G) is bounded below by 2/p — 1.

From this, we see that Theorems 1.1 and 1.2(i) hold if the AM conjecture holds for (G, p). We now
prove that the same is true for Theorem 1.3. Note that the “if” implication of this theorem is clear.
Assume that the AM conjecture holds for By(G) and k(By(G)) = 2+/p — 1 for some prime p such that
/P —1€N. Then, as seen above, we have

2P — 1 =k(By(G)) = k((NG(P)/P")/0(NG(P)/P") > 2/p—1,
implying
k((NG(P)/P")/0,(NG(P)/P"))=2{p—1,

and thus (Ng(P)/P’)/ 0, (Ng(P)/P') is isomorphic to the Frobenius group C,, x C /=t by [Maréti
2016, Theorem 1]. In particular, P/P" = C,, implying that P = C),, and hence it follows that
NG (P)/ 0, (Ng(P)) is isomorphic to the Frobenius group C, x Cp=1,as wanted.

The AM conjecture is known to be true when G has a cyclic Sylow p-subgroup by Dade’s theory
[1966]. In fact, by [Spdth 2013; Koshitani and Spiath 2016], the so-called inductive Alperin—McKay
conditions are satisfied for all blocks with cyclic defect groups. Therefore, we have:

Lemma 2.1 (Koshitani—Spéth). Let p be a prime. Assume that all the composition factors of a finite
group G have cyclic Sylow p-subgroups. Then the Alperin—McKay conjecture holds for G and p, and
thus Theorems 1.1, 1.2(i), and 1.3 hold for G and p.

Note that the linear groups PSL,(q), the Suzuki groups 2B,(22/*1) and the Ree groups 2G,(3%/*1)
all have cyclic Sylow p-subgroups for odd p different from the defining characteristic of the group. So
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Theorem 1.2 automatically follows from Lemma 2.1 for these groups in characteristic not equal to p,
when p is odd.

2B. Small blocks. Blocks with a small number of ordinary characters have been studied significantly
in the literature. In particular, the possible structure of defect groups of principal blocks with at most 5
ordinary irreducible characters are now known; see [Brandt 1982; Belonogov 1990; Koshitani and Sakurai
2021; Rizo et al. 2021]. (B. Sambale informed us that he and S. Koshitani think that Belonogov’s work
[1990] for the case k(Bg) = 3 is not conclusive. However, this case has been recently reproved in [Koshitani
and Sakurai 2021, Section 3].) Using these results, we can easily confirm our results for p < 7. For
instance, to prove Theorems 1.1 and 1.2 for p =7 it is enough to assume that k(By(G)) < 4, but by going
through the list of possible defect groups of By(G), we then have Sylp(G) e{l, Cp, C3, Cy x Cy, Cy, Cs},
which cannot happen. To prove Theorem 1.3 for p < 7 we note that if p =5 and k(Bo(G)) = 4 then
P =Cs;and if p =2 and k(Bo(G)) =2 then P = C,, in both of which cases P is cyclic, and thus the
result of Section 2A applies.
Therefore we will assume from now on that p > 11, unless stated otherwise.

2C. Sporadic groups and the Tits group. We remark that Theorem 1.2 can be confirmed directly using
[Conway et al. 1985; Jansen et al. 1995] or [GAP 2020] for sporadic simple groups and the Tits group.
Therefore, we are left with the alternating groups and groups of Lie type, which will be treated in the
subsequent sections.

2D. Groups of Lie type in characteristic p. Let S be a simple group of Lie type defined over the field
of ¢ = p/ elements, where p is a prime and f a positive integer. According to results of Dagger and
Humphreys on defect groups of finite reductive groups in defining characteristic; see [Cabanes 2018,
Proposition 1.18 and Theorem 3.3] for instance, S has only two p-blocks. The only nonprincipal block is
a defect-zero block containing only the Steinberg character of S. Therefore,

k(Bo(S)) =k(S)—1.

Let G be a simple algebraic group of simply connected type and let F be a Steinberg endomorphism
on G such that S = X/Z(X), where X = G*. Assume that the rank of G is r. By a result of Steinberg
(see [Fulman and Guralnick 2012, Theorem 3.1]), X has at least g” semisimple conjugacy classes, and
thus k(X) > ¢". It follows that

r

q

k(Bo(S)) > Z00]

9

which yields k(Bo(S)) > |¢"/|Z(X)|]. Using the values of |Z(X)| and |Out(S)| available in [Conway
et al. 1985, page xvi], it is straightforward to check that |¢"/|Z(X)|] > 24/p — 1]0ut(S)|, proving
Theorem 1.2 for the relevant S and p.
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3. Alternating groups

In this section we prove Theorem 1.2 for the alternating groups. The background on block theory of
symmetric and alternating groups can be found in [Olsson 1993] for instance.

The ordinary irreducible characters of S, are naturally labeled by partitions of n. Two characters are in
the same p-block if and only if their corresponding partitions have the same p-cores, which are obtained
from the partitions by successive removals of rim p-hooks until no p-hook is left. Therefore, p-blocks of
S, are in one-to-one correspondence with p-cores of partitions of 7.

Let B be a p-block of S,,. The number k(B) of ordinary irreducible characters in B turns out to depend
only on p and the so-called weight of B, which is defined to be w(B) := (n — |u|)/p, where u is the
p-core corresponding to B under the aforementioned correspondence. In fact,

k(B) =k(p, w(B)) := Zwg.wi....w, )T (W) (Ww1) -+ - T (Wp—_1),

p=1
i=0 Wi

where (wo, wy, ..., w,_1) runs through all p-tuples of nonnegative integers such that w(B) = X
and 7 (x) is the number of partitions of x; see [Olsson 1993, Proposition 11.4]. Note that k(p, w(B)) is
precisely the number of p-tuples of partitions of w(B).

For the principal block By(S,) of S,;, we have w(By(S,)) = n/p], which is at least 1 by the assumption

p|1S]. It follows that
k(Bo(Sp) = k(p, ) =p=2/p—1.

Moreover, according to [Olsson 1992, Proposition 2.8], when p is odd and B is a block of A, covered by
B, then B and B have the same number of irreducible ordinary characters (and indeed the same number
of irreducible Brauer characters as well). In particular, when p is odd, we have k(By(A,)) = k(Bo(S,)) >
2./p — 1, which proves Theorem 1.2(i) for the alternating groups.
For part (ii) of Theorem 1.2, recall that p > 11, and thus n > 11 and Aut(S) = S,,. The number of
S,-orbits on Irr(By(A,)) is at least 1 + (k(Bo(A,)) — 1)/2, which in turn is at least
p—1_p+l1 NS

l+—=5_"">2
+2 2>(1D

and this proves Theorem 1.2(ii) for the alternating groups.

4. Groups of Lie type: the nonabelian Sylow case

In this section, we let G be a simple algebraic group of adjoint type and F a Steinberg endomorphism on
G such that S = [G, G] where G := G7. Let £ be a prime different from p and assume g = £/ is the
absolute value of all eigenvalues of F' on the character group of an F'-stable maximal torus of G. Recall
that we are assuming p > 11.

In this section we prove Theorem 1.2 for those S of Lie type in characteristic different from p such
that the Sylow p-subgroups of G are nonabelian.
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In that case, there are then more than one d € N such that p | ®,(g) with @, dividing the order
polynomial of (G, F). Here, as usual, ®, denotes the d-th cyclotomic polynomial. In fact, if there a
unique such d, then a Sylow p-subgroup of G is contained in a Sylow d-torus of s, and hence is abelian;
see [Malle and Testerman 2011, Theorem 25.14].

Let e, (q) denote the multiplicative order of ¢ modulo p. Note that, by [Malle and Testerman 2011,
Lemma 25.13], p | ®4(q) if and only if d = e, (¢) p' for some i > 0. Therefore, as there is more than one
d € N such that p | ®,(q), we must have p | d for some d € N such that @, divides the order polynomial
of (G, F). The fact that p > 11 then rules out the cases when G is of exceptional type and thus we are left
with only the classical types. That is, G = PGL, (¢), PGU,(q), SO2,+1(q), PCSp,, (¢), or P(CO;En (q))o.

For G =PGL,(q) or PGU, (g), we define e to be the smallest positive integer such that p | (g — (¢)¢)
(e =1 for linear groups and € = —1 for unitary groups), so that e = e,(¢) when G = PGL,(g) or
G =PGU,(q) and 4 |e,(q), e =e,(q)/2 when G=PGU,(g) and 2 | e,,(¢) but 4fe,(¢q), and e = 2e,(q)
when G = PGU,(¢g) and 2te,(g). For G = SO2,41(gq), PCSp,,(q), or P(CO;EH (9))°, we define e to be
the smallest positive integer such that p | (g° £ 1), so that e = e, (q) when e, (g) is odd and e = ¢,(q)/2
when e, (g) is even.

Let n = we +m where w and m are integers with 0 <m < e. We claim that p < w. To see this, first
assume that G = PGL,(¢). Then, as mentioned above, ep < n, which implies that ep < (w + 1)e, and
thus p < w. Next, assume that G = SO,,11(q), PCSp,, (¢), or P(COzztn (q))o. If e =¢,(q) is odd, then
since p | (¢°—1) and ged(g® —1,¢' + 1) <2 forevery i € N, we have p | (gq/ — 1) for some e < j <n,
and it follows that ep < n, implying p < w. On the other hand, if 2e = e, (g) is even then

2ep =e,(q)p <2n <2(w+ 1)e,

which also implies that p < w. Finally, assume G = PGU,(q). The case 4 | ¢,,(¢q) is argued as in the case
S =PGL,(q); the case 2 | e, (q) but 4{e,(q) is argued as in the case S = SO,,41(¢) and 2| e,(g). For
the last case 2{e,(q), we have ep/2 = e, (¢q) p, and in order for ®, ), to divide the generic order of
IPGU,,(g)l, e,(q) p < n/2, and hence it follows that ep < n, which also implies that p < w. The claim is
fully proved.

Since p is good for G, by [Broué et al. 1993, Theorem 3.2] and [Cabanes and Enguehard 1994,
main theorem], the number of unipotent characters of G in the principal block By(G) is equal to k(W,) —
the number of irreducible complex characters of the relative Weyl group W, of a Sylow e, (q)-torus of G.
This W, is the wreath product C,:S,, when G is of type A and is a subgroup of index 1 or 2 of C»,:S,,
when G is of type B, C, or D; see [Broué et al. 1993, Section 3A]. In any case, W, has a quotient S,,, so
we have that the number of unipotent characters in Irr(By(G)) is at least k(S,,) = 7 (w), which in turns is
at least w(p) as p < w. Since every unipotent character of G restricts irreducibly to S and By (G) covers
a unique block of S, it follows that the number of unipotent characters in Irr(By(S)) is at least & (p).

By a result of Lusztig (see [Malle 2008, Theorem 2.5]), every unipotent character of a simple group of
Lie type lies in a Aut(S)-orbit of length at most 3. (In fact, every Aut(S)-orbit on unipotent characters
of § has length 1 or 2, except when S = PQ;(q) whose graph automorphism of order 3 produces two
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orbits of length 3.) Therefore, together with the conclusion of the previous paragraph, we deduce that
the number of Aut(S)-orbits on Irr(By(S)) is at least 7w (p)/3. This bound is greater than 2./p — 1 when
p > 11, as required.

5. A general bound for the number of Aut(S)-orbits on Irr(By(S))

The aim of this section is to obtain a general bound for the number of Aut(S)-orbits on irreducible
ordinary characters in the principal block of S, for S a simple group of Lie type.

5A. Semisimple characters. Before continuing with our proof of Theorem 1.2 for groups of Lie type,
we recall some background on certain characters known as semisimple characters and the fact that they
fall into the principal block in a certain situation. Background on character theory of finite reductive
groups can be found in [Carter 1985; Cabanes and Enguehard 2004; Digne and Michel 1991]. Let G be a
connected reductive group defined over [, and F an associated Frobenius endomorphism on G. Let G*
be an algebraic group with a Frobenius endomorphism which, for simplicity, we denote by the same F,
such that (G, F) is in duality to (G*, F).

Let t be a semisimple element of (G*)F. The rational Lusztig series £(GF, (¢)) associated to the
(G*)F -conjugacy class (¢) of ¢ is defined to be the set of irreducible characters of G occurring in some
Deligne—Lusztig character R? 0, where T is an F-stable maximal torus of G and 0 € Irr(T ) such that
(T, 0) corresponds in duality to a pair (T*, s) with s € T* N (¢). Here we recall from [Digne and Michel
1991, Proposition 13.13] that there is a one-to-one duality correspondence between G -conjugacy classes
of pairs (T, #), where T is an F-stable maximal torus of G and 0 € Irr(T*), and the (G*)" -conjugacy
classes of pairs (T*, s), where T* is dual to T and s € (T*)F.

We continue to let ¢ be a semisimple element of (G*)¥ and assume furthermore that Cg«(t) is a
Levi subgroup of G*. Let G(¢) be an F-stable Levi subgroup of G in duality with Cg+(¢) and P be a
parabolic subgroup of G for which G(t) is the Levi complement. The twisted induction Rg(z)g p and
the multiplication by 7, a certain linear character of Irr(G (¢)¥') naturally defined by ¢ (see [Cabanes and
Enguehard 2004, (8.19)]), then induce a bijection between the Lusztig series £ (G()F, 1) and E(GF, (1));
see [Cabanes and Enguehard 2004, Proposition 8.26 and Theorem 8.27]. In fact, for each » € £(G(1)F', 1),
one has

£6eG1) R cp (L) € E(GF, (1),
where g := (—1)°©) with o (G) the [F,-rank of G. Taking A to be trivial, we have the character
X0 = €686 RG 1y p (Tlgyr) € E(GT, (1)),
which is often referred to as a semisimple character of G*, of degree
Xy () =G : Cgr @,

where £ is the defining characteristic of G; see [Digne and Michel 1991, Theorem 13.23].
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By [Cabanes and Enguehard 2004, Theorem 9.12], every element of Bo(GT) lies in a Lusztig series
E(GT, (1)) where t is a p-element of G*F'. Hence one might ask which such ¢ indeed produce semisimple
characters that contribute to the principal block. We will see in the following theorem that in a certain
nice situation which is indeed enough for our purpose, the centralizer Cg+ () is a Levi subgroup of G*,
and thus the semisimple character x ;) associated to (¢) is well-defined and belongs to Bo(GF).

Recall that a prime p is good for G if it does not divide the coefficients of the highest root of the root
system associated to G. The following result, mainly due to Hiss [1990, Corollary 3.4] and Cabanes and
Enguehard [2004, Theorem 21.13], will be very useful in later sections.

Theorem 5.1. Let (G, F) be a connected reductive group defined over [,. Let p be a prime not dividing q.
Let t be a p-element of G*'. If Cg+(t) is connected and p is good for G, then the semisimple character
X@) € Irr(GT) belongs to the principal p-block of G*. Also, if Z(G) is connected, then X@) belongs to
the principal block of G .

We note that Theorem 5.1 can also be deduced from [Cabanes and Enguehard 1994, main theorem],
but with more restricted conditions on p.

Building on Theorem 5.1, we observe that the principal block of S contains many irreducible semisimple
characters. By controlling the length of Aut(S)-orbits on these characters, we are able to bound below
the number of Aut(S)-orbits on Irr(By(S)). The bound turns out to be enough to prove Theorem 1.2, at
least in the case when the Sylow p-subgroups of the group of inner and diagonal automorphisms of S are
abelian but non-cyclic, which is precisely the case we need after Sections 2A and 4.

5B. Specific setup for our purpose. For the rest of this section, we will work with the following setup:
G is a simple algebraic group of adjoint type defined over [, and F a Steinberg endomorphism on G
such that § = [G, G] with G = GF'. Let (G*, F*) be the dual pair of (G, F) and for simplicity we will
use the same notation F' for F*, and thus G* is a simple algebraic group of simply connected type and
S = G*/Z(G*), where G* := (G*)F.

Theorem 5.1 has the following consequence.

Lemma 5.2. Assume the above notation. Let p be a prime not dividing q. For every p-element t of G*,
the semisimple character xy € £(G, (t)) belongs to the principal block of G.

Proof. Since G* has connected center, the lemma follows from Theorem 5.1; see also [Bessenrodt et al.
2007, Lemma 3.1]. |

SC. Orbits of semisimple characters. Knowing that the semisimple characters ;) € Irr(G) associated
to G*-conjugacy classes of p-elements all belong to By(G), we now wish to control the number of orbits
of the action of the automorphism group Aut(S) on these characters. By a result of Bonnafé [Navarro
et al. 2008, Section 2] (see also [Taylor 2018, Section 7]), this action turns out to be well-behaved.

Let @ € Aut(G), which in our situation will be a product of a field automorphism and a graph
automorphism. It is easy to see that o then can be extended to a bijective morphism & : G — G such that
a commutes with F. This & induces a bijective morphism &* : G* — G* which commutes with the dual
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of F. The restriction of &* to G*, which we denote by «*, is now an automorphism of G*. Recall that
o € Aut(G) induces a natural action on Irr(G) by x* := x oa~!. By [Navarro et al. 2008, Section 2], «
maps the Lusztig series £(G, (¢)) of G associated to (¢) to the series £(G, («*(¢))) associated to (a*(¢)).
Consequently,

X" = X)) (5.1

which means that an automorphism of G maps the semisimple character associated to a conjugacy class
(t) (of G*) to the semisimple character associated to («*(¢)). Here we note that if Cg+(¢) is connected,
then Cg+(a*(¢)) is also connected.

Due to Section 4 and Section 2A, we may assume that the Sylow p-subgroups of G are abelian. Assume
for a moment that G is not of type 2B,, 2G,, or 2F;. Then there is a unique positive integer e such that
p | ®.(g) and ®, divides the generic order of G. (Recall that @, denotes the e-th cyclotomic polynomial.)
This e then must be the multiplicative order of ¢ modulo p, which means that p | (g€ — 1) but p{(¢' — 1)
for every 0 < i < e. In the case where G is of type ’B,, 2G,, or 2Fy, what we just discussed still holds
with slight modification on e, ®,, and S,; see [Malle 2007, Section 8] for more details.

Let ®.(q) = p“m where gcd(p, m) =1 and CDIE" the precise power of @, dividing the generic order of
G. We will use k for k, for convenience if e is not specified. A Sylow e-torus of G* has order ®,(g)*
and contains a Sylow p-subgroup of G*. Sylow p-subgroups of G* (and G) are then isomorphic to

Cpa X Cpa X -+ X Cpa;

k times

see [Malle and Testerman 2011, Theorem 25.14].
Assume that £ is the defining characteristic of S.

Lemma 5.3. Assume the above notation. Let o be a field automorphism of G. Each a-orbit on semisimple
characters x) € Irr(G) associated to conjugacy classes of p-elements (p # £) of G* has length at most
pe— pa-l,

Proof. Let a* be an automorphism of G* constructed from « by the process described above. For
simplicity we use « for a*. By (5.1), it is enough to show that each «-orbit on G*-conjugacy classes of
(semisimple) p-elements of G* has length at most p¢ — p¢~!,

Let t € G* be a p-element. Note that each element in G* conjugate to ¢ under G* is automatically
conjugate to ¢ under G*, by [Digne and Michel 1991, (3.25)] and the fact that Cg+(¢) is connected. Let ¢
be conjugate to sy, (A1) - - - by, (An), Where the h,, are the coroots corresponding to a set of fundamental
roots with respect to a maximal torus T* of G* and n is the rank of G*. Since G* is simply connected,
note that (t1, ..., t,) /> hg, (t1) - - - hg, (2,) is an isomorphism from (F;)" to T*; see [Gorenstein et al.
1994, Theorem 1.12.5].

Now, if A = A; for some 1 < i < n, then APY =1, since [t]| p*. Recall that £ # p, and thus
¢7'=P""" = 1 (mod p®) by Euler’s totient theorem. It follows that A Z ) which yields that the

o-orbit on (¢) is contained in {(¢), (a(?)), ..., (a”a_”a_]_] (1))}, as desired. U
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5D. A bound for the number of Aut(S)-orbits on Irr(By(S)). Let S, be a Sylow e-torus of G* and let
P C S, be Sylow p-subgroup of G*. Such P exists by [Malle and Testerman 2011, Theorem 25.14].
Let W(L,) denote the relative Weyl group of the centralizer L, := Cg+(S,) of S, in G*. Here we note
that L, is a minimal e-split Levi subgroup of G* and W (L,.) = Ng+(S.)/Cs+(S.). By [Malle 2007,
Proposition 5.11], Ng=(S,) controls G*-fusion in Cg+(S,), and since P C §,, the number of conjugacy
classes of (nontrivial) p-elements of G* is at least

Pl—1  p%*—1
IW(L.)|  |W(Le)|’

Note that x(; belongs to the Lusztig series £(G, (t)) defined by the conjugacy class (¢) and the Lusztig
series are disjoint, and so two semisimple characters x() and x(,) are equal if and only if ¢ and #; are
conjugate in G*. Also, since G* has abelian Sylow p-subgroup, p is a good prime for G, by [Malle 2014,
Lemma 2.1]. Therefore, using Lemma 5.2, we deduce that

pak_l

[Irrys (Bo(G))| > m,

5.2)
where Irrgs (Bo(G)) denotes the set of (nontrivial) semisimple characters (associated to p-elements of G*)
in By(G). Let n(X, Y) denote the number of X-orbits on a set Y. Using Lemma 5.3, we then have

pak_l - pk—l
g(p* = pHIW(Le)| ~ glp—DIW(L,)|’

where g is the order of the group of graph automorphisms of S. Let d := |G/S| — the order of the group

n(Aut(S), Irrgs (Bo(6))) =

of diagonal automorphisms of S and viewing the irreducible constituents of the restrictions of semisimple
characters of G to S as semisimple characters of S, we now have

k
pF—1
n(Aut(S), Irrss (Bo(S))) > dg(p—1)|W(L,)| .

(5.3)

We note that values of d, f, and g for various families of simple groups are known; see [Conway et al.
1985, page xvi] for instance.

We now turn to unipotent characters in the principal block By (S). Broué, Malle and Michel [1993,
Theorem 3.2] partitioned the set £(G*, 1) of unipotent characters of G* into e-Harish-Chandra series
associated to e-cuspidal pairs of G*, and furthermore obtained one-to-one correspondences between
e-Harish-Chandra series and the irreducible characters of the relative Weyl groups of the e-cuspidal pairs
defining these series. Broué, Malle and Michel [1993, Theorem 5.24] then show that, when the Sylow
p-subgroups of G* is abelian, the partition of unipotent characters of G* by e-Harish-Chandra series is
compatible with the partition of unipotent characters by unipotent blocks; see [Cabanes and Enguehard
2004, Theorem 21.7] for a more general result. These results imply that the number of unipotent characters
in By(S) (and Bo(G*) as well) is the same as the number k(W (L,)) of conjugacy classes of the relative
Weyl group W(L,) with L, := Cg+(S.), where S, is a Sylow e-torus of G*, as mentioned above.



1138 Nguyen Ngoc Hung and A. A. Schaeffer Fry

By the aforementioned result of Lusztig (see [Malle 2008, Theorem 2.5] and also [Malle 2007,
Theorem 3.9] for the corrected version), every unipotent character of a simple group of Lie type lies in an
Aut(S)-orbit of length at most 3. In fact, every unipotent character of S is Aut(S)-invariant, except in the
following cases:

(H S= PQ;“n (g) (n even), the graph automorphism of order 2 has 0,(S) orbits of length 2, where 0, (S)
is the number of degenerate symbols of defect 0 and rank n parametrizing unipotent characters of S;
see [Carter 1985, page 471].

2) S= PQ;(Q), the graph automorphism of order 3 has 03(S) = 2 orbits of length 3, each of which
contains one pair of characters parametrized by one degenerate symbol of defect 0 and rank 2 in (1).

(3) S =Sp,(2/), the graph automorphism of order 2 has 02(S) = 1 orbit of length 2.

4) S = G»(37), the graph automorphism of order 2 has 0,(S) = 1 orbit of length 2 on unipotent
characters.

(5) S = F4(27), the graph automorphism of order 2 has 0,(S) = 8 orbits of length 2 on unipotent
characters.

Combining this with the bound (5.3), we obtain:

Theorem 5.4. Let S be a simple group of Lie type (including Suzuki and Ree groups). Let p be a prime
different from the defining characteristic of S. Assume that Sylow p-subgroups of the group of inner and
diagonal automorphisms of S are abelian. Let k,d, f, g, and L, be as above and let n(S) denote the
number of Aut(S)-orbits on irreducible ordinary characters in By(S). Then

pr—1
dg(p—D|W(L,)|’

except possibly the above cases (1), (3), (4), and (5) in which the bound is lower by the number 0,(S) of

n(S) = k(W(L.)) +

orbits of length 2 on unipotent characters and case (2) in which the bound is lower by 4.

We remark that when the Sylow p-subgroups of the group of inner and diagonal automorphisms of §
are furthermore noncyclic, then k > 2, and, away from those exceptions, we have a rougher bound

p+1

n(8) = k(W(L,)) + m,

(5.4)

but this turns out to be sufficient for our purpose in most cases.

6. Linear and unitary Groups

In this section, we let § = PSL; (¢), where p{q and € € {1}. Here PSL;(¢) := PSL,(g) in the case
e = 1 and PSU, (¢) in the case € = —1, and analogous for SL{ (¢), GL;,(¢), and PGLS (¢). We further
let G :=gq if e = 1 and § := ¢? if e = —1. Note that with our notation, SL{ (¢) and GL{ (¢) are naturally
subgroups of SL, (¢) and GL,(g), respectively.
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We are now ready to prove Theorem 1.2 in the case of linear and unitary groups. Since k(By(A)) is
bounded below by the number of A-orbits on Irr(By(S)) for any § < A < Aut(S), our strategy in most
cases will be to prove that there are more than 2,/p — 1 orbits under Aut(S) in Irr(By(S)), thus proving
parts (i) and (ii) of Theorem 1.2 simultaneously.

Proposition 6.1. Ler S = PSL{,(q) and let ptq be a prime. Then Theorem 1.2 holds for any almost simple
group A with socle S and pt|A/S]|.

Proof. With the results of the previous sections, we may assume n > 3 and p > 11.

Write S = PSLf(¢), G = PGL{(¢), G = GL{(¢), and G = SL¢(¢g). Then we have G = [G, G,
S=G/Z(G), and G = G/Z(G). From Section 4, we may assume that Sylow p-subgroups of G are
abelian, which implies that there is a unique e such that p | ®.(¢) and ®, divides the generic order
polynomial of G. Here e must be e, (¢), the multiplicative order of ¢ modulo p. Note that this also forces
p1in by again appealing to [Malle and Testerman 2011, Lemma 25.13].

We will further define e := e, (g) and ¢’ as follows:

o {é ife=1orife= -1 and p|_qé— (—1)¢,
2¢ ife=—1and p|qg°+ (—1)°.

To prove Theorem 1.2, our aim is to show that when a Sylow p-subgroup of S is not cyclic, then the
number of Aut(S)-orbits on Irr(By(S)) is larger than 2/p — 1.

Note that since ptf ged(n, ¢ — €) = |Z(G)|, the irreducible characters in the principal block of S are
the same as those of G, under inflation; see [Navarro 1998, Theorem 9.9]. Similarly, if ¢’ > 1, then
pilg—e)= |Z(5)| and an analogous statement holds for G and G. Hence, we begin by studying Bo(a),
which will be sufficient for our purposes in the case ¢’ > 1.

Letn=we'+m with0 <m <e¢'. Set p? :=(g°—1), > p. The case p < w was treated in Section 4, so
we assume that p > w. Note that by [Michler and Olsson 1983, Theorem 1.9], BO(CN?) and Bo(GLS, (¢))
have the same number of ordinary irreducible characters, so we may assume that n = we’. (Note that the
action of Aut(S) is analogous as well.)

Let F(p, a) denote the set of monic polynomials over [; in the set .%# defined in [Fong and Srinivasan
1982] whose roots have p-power order in F; at most p?. Note that | F(p,a)| =1+ (p? —1)/¢; see
[Michler and Olsson 1983, page 211].

The conjugacy classes (¢) := tG of p-elements in G are parametrized by p-weight vectors of w, which
are functions w := w, : F(p, a) = Z>¢ such that w =) 2eF(p.a) w(g). The characteristic polynomial
of elements in (z) is

(x — e w&=D 1—[ gv®,

x—1#geF(p,a)
and the centralizer of ¢ is

Ca(t)=GLYy, @ x ]  GLi, @)
x—1£gEeF(p.a)

where n = € unless € = —1 and ¢’ = 2¢, in which case n = 1.
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Each character in the Lusztig series £ (5, t) is labeled by x; y where v is a unipotent character of
Csz(). So ¢ = ngf(p,a) V¢ where ¥/, is a unipotent character of GL"w(g)(qe/) if g 2x —1 and of
GLow(x—1)(g) if g =x — 1. Note that there is a canonical correspondence between unipotent characters of
GL)jCE (¢) and partitions of x, so we may view v, as a partition of w(g) when g # x — 1 and of ¢'w(x — 1)
when g = x — 1. Further, by [Fong and Srinivasan 1982, Theorem (7A)], the characters of Bo(é) are
exactly those yx; y satisfying 7 is a p-element and the partition ¥,_; has trivial ¢’-core.

)
’w’

where k(x, y) is as defined in Section 3 above. This number is at least

By [Olsson 1984, Proposition 6], since w < p, we have

pll

k(Bo(G)) = k(e’ +

@1
b " >2/pt—1>2/p—1. (6.1)

e+

But, recall that we wish to show that there are at least 2,/p — 1 orbits on Irr(By(S)) under Aut(S).

Now, by taking ¢ = 1, the number of unipotent characters in Bo(é) is precisely k(e’, w). Note that
ke, w) > k(e’, 1) = ¢, and that further k(e’, w) > 2¢’ if w > 2 with strict inequality for (¢, w) # (1, 2),
and each unipotent character is Aut(S)-invariant. So we have at least ¢/ Aut(S)-orbits of unipotent
characters in By((G), and hence of By(S), since restriction yields a bijection between unipotent characters
of § and G.

Let G := GL, ([l_:q) so that G = GF . Since Z((~;) is connected, [Cabanes and Spéth 2013, Theorem 3.1]
yields that the “Jordan decomposition” ¥ y, <> (¢, ) can be chosen to be Aut(S)-equivariant. Since ¥ is a
unipotent character of a product of groups of the form GL)ﬂCE (g?), which are invariant under automorphisms
as discussed above, it follows that the orbit of x;  is completely determined by the action of Aut(S) on
the class (7).

Now, recall that the G-class of 7 is completely determined by its eigenvalues. Let |¢| = p© and note
that ¢ <a. By viewing 7 as an element 1 X [, ;o 7(p.0) S Of

ZCztN=Coex [ €y
x—ls#geF(p,a)
we see that for o € Aut(S), the eigenvalues of t* are those of ¢ raised to some power ngg for some
n € {1} and some gq such that g is a power of gg. This implies that the Aut(S)-orbit of (¢) has size at
most (p¢ —1)/e' < (p* —1)/e'.

Now, a Sylow p-subgroup P of G is of the form Cp < (I]:;E)w. Then if w =1, P is cyclic, and
hence we may assume that w > 2. In this case, we have at least %((p“ — 1)/6/)2 choices for (1) # (1),
and hence at least %(( p—1) /e’)2 nonunipotent characters in BO(CN;) by taking v, to be trivial. This
gives at least (p® — 1)/2¢’ distinct orbits of nonunipotent characters, and hence more than 2./p — 1 orbits
of characters in By(G) under Aut(S) when ¢’ > 1, by (6.1) with 2¢’ rather than ¢’. This completes the
proof of Theorem 1.2 for S in the case ¢’ > 1 by the discussion at the beginning of the section.
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Finally suppose ¢’ = 1, so w = n > 3 and we may continue to assume p > w. Consider the elements 7
of G whose eigenvalues are of the form {z, &, (¢&€)~!,1,..., 1} with ¢ and £ p-elements of Cy—c = [F;.
Note that each member of £(G, t) lies in the principal block of G, using [Cabanes and Enguehard
2004, Theorem 9.12] and that every unipotent character lies in B()(é) since ¢’ = 1. Further, ¢ lies in
G = [5, 5] and [Cg+(¢)/C2.(t)| = 1 since this number must divide both the order of ¢ and |Z(G)|,
contradicting p > n. Hence each character in such a £ (5, t) is irreducible on restriction to G, yielding at
least (p* — 1)?2 /2 nonunipotent members of By(G). Since the Aut(S)-orbits of such characters are again
of size at most p® — 1, this yields at least 2 + (p® — 1) /2 distinct orbits, which is larger than 2/p — 1.
This completes the proof of Theorem 1.2 in the case that S = PSL{,(g). ]

7. Symplectic and orthogonal Groups

In this section, we consider the simple groups coming from orthogonal and symplectic groups. That is,
simple groups of Lie type By, Cy,, Dy, and 2D,,. We let € € {£}, and let PQ5, (g) denote the simple group
of Lie type D, (g) for € = + and of type 2D, (gq) for ¢ = —.

Proposition 7.1. Let g be a power of a prime different from p and let S =PSp,, (q) withn > 2, PQ,11(q)
with n > 3, or PQS, (q) with n > 4. Then Theorem 1.2 holds for any almost simple group A with socle S
and pt|A/S).

Proof. With the results of the previous sections, we may again assume that p > 11 and that a Sylow
p-subgroup of S is abelian, but not cyclic.

Let H be the corresponding symplectic or special orthogonal group Sp,,, (¢), SO2,+1(g), or SO, (¢)
and let (H, F) be the corresponding simple algebraic group and Frobenius endomorphism so that H = H'.
Let G = G be the corresponding group of simply connected type, so that G = H in the symplectic case
or G is the appropriate spin group in the orthogonal cases. Further, let (H*, F') and (G*, F) be dual to
(H, F) and (G, F), respectively, and H* = H*F and G* = G*F.

Define H to be the group GO5,,(¢) in the case S =PQS, (¢), and H := H otherwise. We also let Q be
the unique subgroup of index 2 in H for the orthogonal cases when ¢ is odd, and let 2 = H otherwise,
sothat 2/Z(2)=S=G/Z(G) and Q2 H. Note that since p £ 2, Bp(S) can be identified with By(£2)
or with By(G), by [Navarro 1998, Theorem 9.9].

Now, lete:=¢,(q)/ gcd(e,(q), 2) and write n = we+m with 0 <m < e. From Section 4, we may again
assume w < p. To obtain our result, we will rely on the case of linear groups and use some of the ideas of the
arguments used in [Malle 2018, Propositions 5.4 and 5.5], which provides an analogue in this situation to
the results of Michler and Olsson discussed above. Namely, [Malle 2018, Propositions 5.4 and 5.5] tells us

k(By(H)) = k(Ze + E, w)
2e

where p? = (g% — 1) p- Note that again, this number is at least 2/p — 1 (with strict inequality when
w > 2), but that we wish to show the inequality for k(By(A)). In most cases, we will again show that the
number of Aut(S)-orbits of characters in By(S) is at least 2,/p — 1.
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If w =1, a Sylow p-subgroup of , G, H, or H (recall p > 11) is cyclic, so we may assume by
Lemma 2.1 that w > 2. Note that the unipotent characters of H are irreducible on restriction to 2. Assume
first that S # D4(q) nor Sp4(2f ). By [Malle 2018, Discussion before Propositions 5.4 and 5.5], the
number of unipotent characters in Bo(ﬁ ) is k(2e, w). If further S # P25, (g), then since all unipotent
characters are Aut(S)-invariant, this yields k(2e, w) Aut(S)-orbits of unipotent characters in By(H), and
hence By(S). Note that k(2e, w) > 4e since w > 2. If § = PQ;n (q), then note that n > 4 forces ¢ > 2
if w = 2. Now, in this case, the proof of [Malle 2018, Lemma 5.6 and Corollary 5.7] yields that the
number of H-orbits of unipotent characters in By(H) is at least k(2e, w)/2, and that this number is
(k(2e, w) +k(e, w/2))/2 if w is even. Now, if w > 3, we have k(2e, w)/2 > 4e. [f w =2 and e > 2, we

have

k(2e,2)+k(e, 1
(2¢ );— (e )=e2—|—2ez4e.

Hence in all cases, the number of Aut(S)-orbits of unipotent characters in By(S) is at least 4e, and is
strictly greater unless e =2 = w in the case S = PQ5, (¢).

The characters in Bo(H) and By(G) lie in Lusztig series indexed by p-elements ¢ of H*, respectively G*;
by [Cabanes and Enguehard 2004, Theorem 9.12]. Note that centralizers of odd-order elements of H*
and of G* are always connected (see, e.g., [Malle and Testerman 2011, Exercise (20.16)]) and that every
odd p is good for H and G, so that x( lies in Bo(H ), respectively By(G), for every p-element ¢ of H*,
respectively G*, by Theorem 5.1. Further, note that the action on x(;, under a graph-field automorphism
of H is determined by the action of a corresponding graph-field automorphism on (¢), by [Navarro et al.
2008, Corollary 2.8]; see also (5.1) above.

Now let G <> G be a regular embedding as in [Cabanes and Enguehard 2004, 15.1] and let G :=GF
Then the action of G on G induces all diagonal automorphisms of §. Now, since Cg+(t) is connected
for any p-element t € G*, we have every character in £(G, (t)) extends to a character in G. (Indeed,
since G /G is abelian and restrictions from G to G are multiplicity-free, the number of characters lying
below a given X € Irr(G) is the number of B e Irr(a/G) such that ¥ 8 = ¥, as noted in [Rizo et al. 2021,
Lemma 1.4]. Hence [Bonnafé 2005, Corollary 2.8] and [Schaeffer Fry and Taylor 2023, Proposition 2.6]
yields the claim.) Therefore, each member of By(S) is invariant under diagonal automorphisms.

First consider the case H = SO»,+1(q) or Sp,,,(¢), so H* = Sp,, (¢) or SO2,11(q), respectively. Note
that Aut(S)/S in this case is generated by field automorphisms, which also act on H, along with a diagonal
or graph automorphism of order at most 2.

If H=S0,,+1(g), then GL, (¢) may be embedded into H* = Sp,,,(¢) in a natural way (namely, block
diagonally as the set of matrices of the form (A, A=T) for A € GL,(q)), and the conjugacy class of ¢
is again determined by its eigenvalues. Arguing as in the case of SL,(g) above and noting that every
eigenvalue of r must have the same multiplicity as its inverse, we then have at least (p® — 1) /4e distinct
orbits of nonunipotent characters in Bo(H ) under the field automorphisms, and hence at least (p* —1)/4e
orbits in By(S) under Aut(S). This gives more than 4e + (p? — 1) /4e orbits in Irr(By(S)) under Aut(S),
which proves Theorem 1.2 in this case using (6.1).
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If H = Sp,,(g), by [Geck and Hiss 1991, Theorem 4.2], there is a bijection between classes of
p-elements of H and H*, and we note that field automorphisms act analogously on the p-elements of H
and H*. Then the above again yields the result in this case as long as S # Sp,(2/).

If $=Sp, (27), then we must have e = 1 and w = 2. Here [Malle 2008, Theorem 2.5] tells us that there
is a pair of unipotent characters permuted by the exceptional graph automorphism, leaving k(2,2) —1 =4
orbits of unipotent characters in By(S) under Aut(S). In this case, arguing as before and considering
the action of the graph automorphism gives at least 4 + (p® — 1) /8 orbits in By(S) under Aut(S), which
is at least 2(p — 1)!/4. Hence part (ii) of Theorem 1.2 holds. So let § < A < Aut(S), and we wish to
show that By(A) contains more than 2./p — 1 characters. Note that in this case, Aut(S)/S is cyclic. Let
X :=S8Ca(P) for P €Syl (S). Then A/ X is cyclic, say of size b, and By(A) is the unique block covering
Bo(X) by [Navarro 1998, (9.19) and (9.20)]. Note that since at least 3 of the unipotent characters of S
are A-invariant, we have at least 36 characters in By(A) lying above unipotent characters. Further, since
the automorphisms corresponding to those in X stabilize p-classes in G*, the arguments above give at
least % -((p*=1)/ 2)? members of By(X) lying above semisimple characters of S, and hence there are at
least (p¢ — 1)?/8b members of By(A) lying above semisimple characters of S. Note then that the size of
Bo(A) is at least 3b + (p® — 1)?/8b, which is larger than 2./p — 1, completing the proof in this case.

Now, suppose we are in the case that H = GO5,,(q). Note that the action of H/H induces a graph
automorphism of order 2 in the case € = 1, and that Aut(S)/S is generated by a group of diagonal
automorphisms of size at most 4, along with graph and field automorphisms. Further, note that the action
of H on € induces a diagonal automorphism of order 2 on S. We may embed H in SO»,41(g), and by
[Malle 2018, proof of Proposition 5.5], the classes of p-elements ¢ with Lusztig series contributing to
Bo(H) are parametrized exactly as in the case of SO»,41(g) above.

Assume that (n, €) # (4, 1). By again considering semisimple characters x) of H for p-elements
t € H*, we may conclude that the number of orbits of nonunipotent characters in By(S) under Aut(S) is
at least (p® — 1)/(4e). This yields at least 4e + (p® — 1)/(4e) orbits in Irr(By(S)) under Aut(S), with
strict inequality unless e = 2. Hence we have the number of Aut(S) orbits in By(S) is strictly larger than
4e 4+ (p* — 1)/(4e), completing Theorem 1.2 again in this case using (6.1), unless possibly if e = 2. But
in the latter situation, we have 8 + (p% — 1)/8 > 2,/p* — 1 unless 8 = p* — 1, contradicting p > 11 and
we are again done.

Finally, suppose S = D4(q) = PQ;(q) so H = GO;(q). In this case, the graph automorphisms
generate a group of size 6, and a triality graph automorphism of order 3 permutes two triples of unipotent
characters; see [Malle 2008, Theorem 2.5]. Since w > 2, we have (e, w) € {(1, 4), (2, 2)}. The arguments
above give at least ((k(2e, w) +k(e, w/2))/2) — 4+ (p* — 1)/12e distinct Aut(S)-orbits in Irr(By(S)).
Since k(2,4) =20, k(1,2) =2 =k(2, 1), and k(4, 2) = 14, we have

a

kQ2e, w)+k(e, %) _ag pt—1

2 _11/4
3 e (p—1"",

so Theorem 1.2(ii) is proved in this case.
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Now, let § < A < Aut(S), let I" be the subgroup of Aut(S) generated by inner, diagonal, and graph
automorphisms, and let X := (I' N A)C4(P). Then A/ X is cyclic, and by [Navarro 1998, (9.19) and
(9.20)], Bo(A) is the unique block covering Bo(X). Let b := |A/X|. Now, the arguments above give
at least % . % -((p—=1) /4)2 members of By(X) lying above semisimple characters of S, since members
of C4(P) correspond to automorphisms stabilizing classes of p-elements of G* and hence there are
at least (p — 1)?/(96b) members of By(A) lying above semisimple characters of S. Further, there are
at least 10 characters in By(X) lying above unipotent characters in By(S). Since unipotent characters
extend to their inertia groups and are invariant under field automorphisms (see [Malle 2008, Theorems 2.4
and 2.5]), this gives at least 4b elements of By(A) lying above unipotent characters of S. Together, this
gives k(Bo(A)) = 4b+ (p — 1)2/(96b) > 2/p — 1 since p > 11, proving part (i) of Theorem 1.2. [

8. Groups of exceptional types

In this section we prove Theorem 1.2 for S being of exceptional type. This is achieved by considering
each type case by case, with the help of Theorem 5.4.

We keep all the notation in Section 5. In particular, the underlying field of S has order ¢ = ¢/. By
Section 2A, we may assume that £ = p > 11. This assumption on p guarantees that Sylow p-subgroups
of G are abelian. Recall also that e is the multiplicative order of ¢ modulo p (when § is not of Suzuki or
Ree type), p = ®.(gq),, and CI>’; = d>]§" is the precise power of ®, dividing the generic order of G. By
Section 2A, we may assume that the Sylow p-subgroups of § are not cyclic, and thus k, > 2. Also, S, is
a Sylow e-torus of a simple algebraic group G* of simply connected type associated with a Steinberg
endomorphism F such that S = G*/Z(G*) and G* := G*F' and L, := Cg+(S,) is a minimal e-split Levi
subgroup of G* Note that L, is then a maximal torus of G* (in other words, e is regular for G*), except
the single case of type E7 and e = 4. The relative Weyl groups W (L,) are always finite complex reflection
groups, and we will follow the notation for these groups in [Benard 1976]. Relative Weyl groups for
various L, are available in [Broué et al. 1993, Tables 1 and 3]. The structure of Out(S) is available in
[Gorenstein et al. 1994, Theorem 2.5.12]. We will use these data freely without further notice.

It turns out that Theorem 5.4 is sufficient to prove Theorem 1.2 whenever k, > 3. In fact, even when
k. = 2, Theorem 5.4 is also sufficient for Theorem 1.2(ii). We have to work harder, though, to achieve
Theorem 1.2(i) in the case k, = 2 for some types.

Proposition 8.1. Theorem 1.2 holds for simple groups of exceptional types.

Proof. (1) S = G,(gq) and S = Fy4(q): First we consider S = G;(g) (so S =G) with g > 2. Then e € {1, 2}
and k; = ko = 2. Also, the Sylow e-tori are maximal tori, and their relative Weyl groups are the dihedral
group Diy. The bound (5.4) implies that n(S) > 54 (p+1)/12 for g = 3/ with odd f,and n(S) >
6+(p+1)/12 otherwise. In any case it follows that n(S) > 2(p—1)/4, proving Theorem 1.2(ii) for G»(g).

Note that Aut(S) is a cyclic extension of S. First assume that ¢ # 3/ or G does not contain the graph

automorphism of S. In particular, every unipotent character of S is extendible to G. Let H := (S, Cz(P)),
where P is a Sylow p-subgroup of G (and S as well by the assumption p{|G/S|). Since PCq(P)
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is contained in H, Bo(H) is covered by a unique block of G, which is By(G). It follows that, each
unipotent character in By(S) extends to an irreducible character in By(H ), which in turn lies under |G/ H |
irreducible characters in By(G). Therefore, the number of irreducible characters in By(G) lying over
unipotent characters of S is at least k(D2)|G/H| = 6|G/H|. When g = 3/ and G does contain the
nontrivial graph automorphism, similar arguments yield that the number of irreducible characters in
Bo(G) lying over unipotent characters of § is at least 5|G/H|.

On the other hand, each G-orbit on semisimple characters (associated to p-elements) of S now has
length at most |G/ H | by (5.1) and the fact that H = (S, C (P)) fixes every conjugacy class of p-elements
of S. Therefore, the bound (5.2) yields

]72

-1
n(G, Irrgs (Bo(S))) > W/HI

This and the conclusion of the last paragraph imply that

2 2
p~—1 [5(p*—1)
k(BO(G))zslG/H|+mZ2 T’

which in turn implies the desired bound k(B (G)) > 2+/p — 1 for all p > 11.

For § = F4(q), we have e € {1, 2} for which k, = 4, or e € {3, 4, 6} for which k, = 2. Therefore
all the Sylow e-tori are maximal tori, and their relative Weyl groups are G,3 = GOI(3) fore=1,2;
G5 =SL,(3) x C3 for e =3, 6; and Gg = C4.S4 for e = 4. Now we just follow along similar arguments
as above to prove the theorem for this type.

(2) S = %F4(q) with ¢ =221 > 8 and S = 3D4(g): These two types are treated in a fairly similar way
as for G,. Note that Out(S) here is always cyclic. First let S = 2F4(q). Thene e {1,2,4", 4"} and k, =2
for all e. All the Sylow e-tori are maximal. The relative Weyl groups of these tori are D¢, G12 = GL,(3),

Gg = C4.54 and Gg for e = 1,2,47, and 4™, respectively. One can now easily check the inequality
n(S) > 2(p — 1)/4, using (5.4). The bound k(By(G)) > 24/p — 1 is proved similarly as in type G».

Now let § = 3D4(q). Then e € {1, 2, 3, 6} and k., = 2 for all e. For e € {3, 6}, a Sylow e-torus is
maximal with the relative Weyl group G4 = SL,(3). For e =1 or 2, Sylow e-tori of § are not maximal
anymore but are contained in maximal tori of orders <I>%(q)d>3(q) and <D§(q)d>6(q), respectively. The
relative Weyl groups of these tori are both isomorphic to Dj>. Now the routine estimates are applied to
achieve the required bounds.

(3) S = E¢(q) and S = 2Eg(q): These two types are approached similarly and we will provide details

only for E¢. Then e = 1 for which k., = 6, or e = 2 for which k, = 4, or ¢ = 3 for which k, = 3, or
e € {4, 6} for which k, = 2.
Assume e = 1. Then §; is a maximal torus and its Weyl group is G3s = SOs(3). Theorem 5.4 then
implies that
p°—1 p°—1

19 2 kBN + G 0531 = 2 T 3110400 1)

2V p—1,
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proving both parts of Theorem 1.2 in this case. The case e € {2, 3} is similar. We note that S3 is a maximal
torus with the relative Weyl group G»s = 3!72.SL,(3), and a maximal torus containing a Sylow 2-torus
has relative Weyl group Gs.

Assume e = 4. Then a maximal torus containing a Sylow 4-torus of E¢(q)sc has order <I>42L (q)dD%(q)
and its relative Weyl group is Gg = C4.S4, whose order is 96 and class number is 16. Now the bound
(5.4) yields n(S) > 2(p — D4 proving part (ii) of the theorem.

We need to do more to obtain part (i) in this case. In fact, when 2,/p — I < 16, which means that
p < 65, we have n(S) > 16 > 2/p — 1, which proves part (i) as well. So let us assume that p > 65.

Note that Out(S) is a semidirect product C(3 4,—1) X (Cs x C3), which may not be abelian but every
unipotent character of § is still fully extendible to Aut(S) by [Malle 2008, Theorems 2.4 and 2.5]. As
before, let G be the extension of S by diagonal automorphisms. Similar to the proof for type G», let H :=
(GNG, Cs(P)), where P is a Sylow p-subgroup of S. Each unipotent character in By(S) then lies under
at least |Irr(G/H)| = |G/ H| irreducible characters in By(G). (Here we note that G/ H 1is abelian.) Thus,
the number of irreducible characters in Bo(G) lying over unipotent characters of S is at least 16|G/H|.

As in Section 5D, here we have

pP—1 _p’-l
|W (L) 96

Let Irrg, (Bo(S)) be the set of restrictions of characters in Irry,(Bo(G)) to S. These restrictions are

|Irrs.v (BO (G)) | =

irreducible as the semisimple elements of G* associated to these semisimple characters are p-elements
whose orders are coprime to |Z(G*)| = ged(3, ¢ — 1). Moreover, if the restrictions of x() and x(,) to
S are the same, then (¢) = (¢1z) for some z € Z(G*) (see [Tiep 2015, Proposition 5.1]), which happens
only when z is trivial since ¢ and #; are p-elements. It follows that
P’ -

96
Note that GNG = G or S and each G-orbit of relevant semisimple characters in Bo(G N G), and hence in

[Irrys (Bo(S5))| = [Irtss (Bo(G))| =

By(S), has length at most |G/ H |. It follows that the number of irreducible characters in By(G) lying over
semisimple characters in By(S) is at least ( p>—1)/(96|G/H)). Together with the bound of 16|G/H |
for the number of irreducible characters in Bo(G) lying over unipotent characters of S, we deduce that

2 / 2

p-—1 16(p~—1)
k(Bo(G)) = 16|G/H|+ ———F— =2, ———,
(Bo(G)) = 16]G/H] 9|G/H| — 96

and thus, when p > 65, the desired bound k(By(G)) > 2./p — 1 follows.

The last case e = 6 can be argued in a similar way, with notice that a maximal torus containing a Sylow
6-torus of E¢(q)s. has order <I>%(q)<l>3 (¢) and its relative Weyl group is Gs = SL,(3) x C3, whose order
is 72 and class number is 21.

(4) S = E7(g): Then e €{1, 2} for which k, =7, or e € {3, 6} for which k, = 3, or e =4 for which k, = 2.
When k., > 2, the bound (5.4) again is sufficient to achieve the desired bound n(S) > 24/p — 1. In fact,
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even for the case k., = 2, we have n(S) > 2(p — 1)/*

. So it remains to prove Theorem 1.2(i) for e =4, in
which case e is not regular and the relative Weyl group of the minimal e-split Levi subgroup L, = Se.A?

is Gg. The estimates are now similar to those in the case e = 4 of the type Eg.

(5) S = Es(q): Then e € {1, 2} for which k, =8, or e € {3, 4, 6} for which k, =4, or e € {5, 8, 10, 12}
for which k, = 2. The standard approach as above works for all e with k, > 2.

Assume that e € {5,10}. Then a Sylow e-torus of S is maximal and its relative Weyl group is
G16 = SL,(5) x Cs. A similar proof to the case of type G yields k(By(G)) > 21/45(p% — 1) /600, which
is certainly greater than 2./p — 1 for p > 13. On the other hand, we always have k(By(G)) >45>2/p—1
for smaller p, and thus the desired bound holds for all p. Finally, the case e € {8, 12} is entirely similar,
with notice that the relative Weyl groups of Sylow e-tori are Gg = Cs.S4 and G 19 = C2.S4 for e = 8
and 12, respectively. U

Theorem 1.2 is now completely proved.

9. Proof of Theorems 1.1 and 1.3
We are now ready to prove the main results.

Proof of Theorems 1.1 and 1.3. First we remark that the “if”” implication of Theorem 1.3 is clear, and
moreover, we are done if the Sylow p-subgroups of G are cyclic, thanks to Section 2A.

Let (G, p) be a counterexample to either Theorem 1.1 or the “only if”” implication of Theorem 1.3
with |G| minimal. In particular, Sylow p-subgroups of G are not cyclic and k(By(G)) <2./p — 1. Let
N be a minimal normal subgroup of G. Note that N = G if G turns out to be simple.

Assume first that p | |G/N|. Then, since Irr(Bo(G/N)) € Irr(Bo(G)) and by the minimality of |G|,
we have

2y p—1=k(Bo(G)) = k(Bo(G/N)) =2/p—1,
and thus
k(Bo(G)) =k(Bo(G/N))=2/p— 1.

The minimality of G again then implies that G/N is isomorphic to the Frobenius group Cj, x C /;—7. It
follows that p | |N|, and thus there exists a nontrivial irreducible character 6 € Irr(By(N)). As Bo(G)
covers Bo(N), there is some x € Irr(Bo(G)) lying over 6, implying that k(Bo(G)) > k(Bo(G/N)), a
contradiction.

So we must have pf|G/N|, and it follows that p | [N|. This in fact also yields that N is the unique
minimal normal subgroup of G. Assume first that N is abelian. We then have that G is p-solvable, and
hence Fong’s theorem (see [Navarro 1998, Theorem 10.20]) implies that

k(Bo(G)) = k(Bo(G/0y(G))) =k(G/0y(G)),

which is greater than 2/ p — 1 by the main result of [Maréti 2016].
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We now may assume that N = §; x Sy x - -+ x S, a direct product of k € N copies of a nonabelian
simple group S. If S has cyclic Sylow p-subgroups, then G is not a counterexample for Theorem 1.1 by
Lemma 2.1. Furthermore,

k(Bo(G)) = k(NG(P)/Op(NG(P))) > 2/ p—1

by the analysis in Section 2A, and thus G is not a counterexample for Theorem 1.3 either.

So the Sylow p-subgroups of S are not cyclic. Let n be the number of Ng(S1)/N-orbits on Irr(By(Sy)).
By Theorem 1.2(ii), we have n > 2(p — 1)!/4. Therefore, if k > 2, the number of G-orbits on Irr(By(N)) =
[T, Irr(Bo (S;)) is at least n(n 4 1)/2 = 2(p — 1)/42(p — )4 +1)/2 > 2/p — 1, and it follows that
k(By(G)) > 24/p — 1, a contradiction. Hence, N = S and G is then an almost simple group with socle S.
Furthermore, p{|G/S|. But such a group G cannot be a counterexample by Theorem 1.2(i). The proof is
complete. ([l

In regard to Theorem 1.1, we remark that Kovécs and Leedham-Green constructed, for any odd prime p,
a family of p-groups P of order p? with k(P) = (p> — p> + p + 1)/2; see [Pyber 1992]. Therefore
the bound k(By(G)) > 2+/p — 1 cannot be replaced by k(By(G)) > p3, even if one assumes |G| to be
divisible by a certain fixed power of p.

With Theorem 1.1 in mind, it follows that for any p-block B for a finite group such that k(B) =k(By(H))
for some finite group H of order divisible by p, we have k(B) > 2./p — 1. In particular, we may record
the following:

Corollary 9.1. Let G be one of the classical groups GL,,(q), GU,(q), Sp,,,(q), SO2,+1(q), or GO;EH ().
Let p be a prime dividing |G| and not dividing q. Then for any p-block B of G with positive defect, we

have k(B) = 2/p — 1.

Proof. If p = 2, then the statement is clear, so we assume p is odd. First, if G = GL, (¢) or GU,(¢q),
the statement follows immediately from Theorem 1.1 and [Michler and Olsson 1983, Theorem (1.9)],
which states that B has the same number of irreducible characters as the principal block of a product of
lower-rank general linear and unitary groups of order also divisible by p.

Now suppose that G is Sp,,,(¢), SO2,+1(g), or GO;EH (¢). If B is a unipotent block, then by [Malle 2018,
Proposition 5.4 and 5.5], B has the same number of irreducible characters as a block of an appropriate
general linear group of order also divisible by p. (In the case GOécn (g), we define a unipotent block to be
one lying above a unipotent block of SO; (g).) Hence the statement holds if B is a unipotent block.

Now, the block B determines a class of semisimple p’-elements (s) of the dual group G* (see [Cabanes
and Enguehard 2004, Theorem 9.12]) such that B contains some member of £(G, (s)). By [Enguehard
2008, Théoreme 1.6], there exists a group G (s) dual to Cg+(s) such that k(B) = k(b) for some unipotent
block b of G (s). Now, in the cases under consideration, C+(s) and G (s) are direct products of lower-rank
classical groups of the types being considered here, completing the proof. U
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