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We show that the principal p-block of a finite group of order 
divisible by p has at least 2

√
p − 1 height-zero characters. 

Along the way, we describe the p-local structure of finite 
groups whose principal p-blocks have at most five height-zero 
ordinary irreducible characters.
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1. Introduction

In order to better understand the relationship between complex and modular rep-
resentations of a finite group G, Brauer partitioned the set of ordinary and p-Brauer 
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irreducible characters of G into naturally defined subsets called p-blocks of G, where 
p is a prime. Brauer’s idea has developed into what is now known as block theory, a 
fundamental tool in the study of finite group representation theory. In a p-block B of a 
finite group, height-zero characters, which are irreducible ordinary characters in B whose 
degrees have minimal p-part, play an important role because of their direct involvement 
in several central problems in the area, notably Brauer’s height zero conjecture [6, Prob-
lem 23] and the Alperin-McKay conjecture [1]. (We remark that the Brauer’s height 
zero conjecture was announced complete [36] while the current paper was under review, 
as was the Alperin–McKay conjecture for the prime 2 [54].) In the following, we write 
k(B) to denote the number of ordinary irreducible characters in a block B and k0(B) to 
denote the number of height-zero characters in B.

The principal p-block of a finite group G, which we will denote by B0(G), or sometimes 
just by B0, is the one containing the trivial character 1G of G. Therefore, the height-
zero characters in B0 are simply those characters with degree prime to p. The numbers 
k0(B0) � k(B0) are conjecturally bounded from above by the order of a Sylow p-subgroup 
of G [6, Problem 20]. In our first main result we provide a lower bound for k0(B0) in 
terms of the prime p.

Theorem 1.1. Let G be a finite group of order divisible by a prime p and B0 denote the 
principal p-block of G. Then

k0(B0) � 2
√

p − 1 .

We remark that Theorem 1.1 improves the main result of [34] from a modular per-
spective. In [34], Malle and Maróti show that every finite group of order divisible by 
p has at least 2

√
p − 1 irreducible characters of degree prime to p. At the same time, 

Theorem 1.1 generalizes [22, Theorem 1.1] from the perspective of height-zero charac-
ters, where the first and second-named authors prove that k(B0) � 2

√
p − 1, confirming 

Héthelyi-Külshammer’s conjecture [20] for principal blocks.
Notice that another way of reading the statement of Theorem 1.1 is as follows: if G is a 

finite group of order divisible by p and B0 is its principal p-block, then p � k0(B0)2/4 +1. 
In particular, in order to prove Theorem 1.1 we need to show that the above bound on p
holds for small values of k0(B0). We derive this bound as a consequence of a more general 
result of independent interest. Indeed, we are able to completely determine the local 
structure of finite groups whose principal blocks have up to five height-zero characters. 
This is our second main result.

Theorem 1.2. Let G a finite group and p a prime. Let P be a Sylow p-subgroup and B0
denote the principal p-block of G. We have:

(A) For k ∈ {2, 3}, k0(B0) = k if, and only if, P has order k.
(B) k0(B0) = 4 if, and only if, exactly one of the following happens:
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(i) [P : P ′] = 4,
(ii) |P | = 5 and [NG(P ) : CG(P )] = 2.

(C) k0(B0) = 5 if, and only if, exactly one of the following happens:
(i) |P | = 5 and [NG(P ) : CG(P )] ∈ {1, 4},

(ii) |P | = 7 and [NG(P ) : CG(P )] ∈ {2, 3}.

Studying the local structure of finite groups whose principal blocks have a given 
number of irreducible characters is the modular analogue of a classical subject in finite 
group theory: classifying the finite groups with a given number of conjugacy classes (see 
[10], [58] and [57], for instance). This problem has recently attracted the interest of the 
community, and the structure of the Sylow p-subgroups of finite groups whose principal 
p-block has up to five irreducible characters has been determined in [26] and [53].

We care to mention that Theorem 1.2 generalizes the main results of [26] and [53]
and, at the same time, significantly extends [45, Theorems A and C], which study the 
cases where k0(B0) = 3 for p = 3 and k0(B0) = 4 for p = 2.

Brauer’s Problem 21 [6] predicts that, for every positive integer k, there are finitely 
many isomorphism classes of groups which can occur as defect groups of blocks with k
ordinary irreducible characters. This was shown by to be a consequence of the Alperin-
McKay conjecture and Zelmanov’s solution of the restricted Burnside problem in [29]. 
In view of Theorems 1.1 and 1.2, we propose the following variation of Brauer’s problem 
21 for height zero characters.

Conjecture 1.3. For every positive integer k0, there are finitely many isomorphism classes 
of (abelian) groups (of prime power order) which can occur as abelianizations of defect 
groups of blocks (of finite groups) with precisely k0 height-zero irreducible characters.

In Lemma 6.1, we show that Conjecture 1.3 is another consequence of the Alperin-
McKay conjecture and the (known) positive answer of Brauer’s problem 21 for p-solvable 
groups.

For principal blocks, Conjecture 1.3 is equivalent to the statement that the index [P :
P ′] is bounded from above in terms of the number k0 := k0(B0(G)), where P ∈ Sylp(G). 
By Theorem 1.1, this is reduced to showing that rk(P/P ′) and logp(exp(P/P ′)) are 
both bounded in terms of k0, where rk(P/P ′) and exp(P/P ′) are respectively the rank 
and the exponent of the abelian group P/P ′. The problem of bounding logp(exp(P/P ′))
turns out to be related to recent advances on the study of fields of character values and 
Galois actions on characters, in the context of the Alperin-McKay-Navarro conjecture [44, 
Conjecture B]. We will exploit this relationship in Section 6. In particular, in Theorem 6.2
we prove that exp(P/P ′) is bounded in terms of k0 when p = 2.

The structure of this paper is as follows. In Section 2, we collect some previous results 
on blocks and normal subgroups as well as some proven consequences of the Alperin-
McKay conjecture. In Section 3, we obtain a lower bound for the number of irreducible 
height-zero characters in principal blocks of almost simple groups. The proof of Theo-
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rem 1.2 is contained in Section 4. In Section 5, and relying on all the previous sections, 
we present a proof of Theorem 1.1. We finish our work by discussing Conjecture 1.3 and 
proving Theorem 6.2 in Section 6.

2. Preliminaries

We start by collecting some results on the interplay between block theory and the 
normal structure of a group. We refer the reader to [42, Chapter 9] for first definitions 
and basic properties. Let G be a finite group and p a prime. Recall that if N is a normal 
subgroup of G and B and b are p-blocks of G and N respectively, then B covers b if 
there are χ ∈ Irr(B) and θ ∈ Irr(b) such that θ is an irreducible constituent of the 
restriction χN . For θ ∈ Irr(N), we write Irr(G|θ), respectively Irr(B|θ), for the set of 
those irreducible characters of G, respectively B, containing θ as a constituent when 
restricted to N .

We denote by B0(G) the principal p-block of G whenever p is clear from, or irrelevant 
in, the context. It is clear that B0(G) covers B0(N). Recall that χ ∈ Irr(G) belongs to 
B0(G) if, and only if,

∑

x ∈ G0

χ(x) �= 0 ,

where G0 is the set of p-regular elements in G. In particular, Aut(G) and Gal(Qab/Q) act 
on Irr(B0(G)), and also on the subset Irrp′(B0(G)) of height-zero characters in B0(G). 
Here Qab is the smallest extension of Q containing all roots of unity.

Lemma 2.1. Let G be a finite group and N � G.

(i) Irr(B0(G/N)) ⊆ Irr(B0(G)).
(ii) For every θ ∈ Irr(B0(N)), there exists χ ∈ Irr(B0(G)|θ).
(iii) Suppose that B ∈ Bl(G) is the only block covering b ∈ Bl(N). Then for every 

θ ∈ Irr(b), we have Irr(G|θ) ⊆ Irr(B).

Proof. Part (i) follows as B0(G) dominates B0(G/N) in the sense of [42, p. 199]. Part 
(ii) is [42, Theorem 9.4]. Part (iii) follows from the definition of covering blocks since the 
block containing χ ∈ Irr(G|θ) covers the block b. �

Note that if N � G and χ ∈ Irr(B0(G)) satisfies that N ⊆ Ker(χ), then it is not true 
in general that χ ∈ Irr(B0(G/N)).

Lemma 2.2. Let N � G and P ∈ Sylp(G).

(i) If θ ∈ Irrp′(B0(N)) extends to PN , then there is some χ ∈ Irr(B0(G)|θ) of degree 
not divisible by p.



N.N. Hung et al. / Journal of Algebra 622 (2023) 197–219 201
(ii) If θ ∈ Irrp′(B0(N)) extends to some character in B0(G) and B0(G) is the only block 
of G covering B0(N), then

|Irrp′(B0(G)|θ)| = |Irrp′(G/N)| ,

where Irrp′(B0(G)|θ) := Irr(B0(G)) ∩ Irrp′(G|θ).

Proof. Part (i) is due to Murai [41, Lemma 4.3]. We now prove part (ii). Let θ̂ ∈
Irr(B0(G)) be an extension of θ. By Gallagher’s theorem [23, Corollary 6.17],

Irrp′(G|θ) = {βθ̂ | β ∈ Irrp′(G/N)} .

By hypothesis and Lemma 2.1(iii), Irrp′(G|θ) ⊆ Irr(B0(G)). Putting these facts together, 
we see that |Irrp′(G|θ) ∩ Irr(B0(G))| = |Irrp′(G|θ)| = |Irrp′(G/N)|. �
Lemma 2.3. Let M � G and P ∈ Sylp(G). If PCG(P ) ⊆ M , then B0(G) is the only 
block covering B0(M). In particular, k(G/M) < k0(B0(G)) as long as P > 1.

Proof. The first statement is [53, Lemma 1.3]. Let χ ∈ Irr(G/M). Viewing χ as a char-
acter of G, we see that χ lies over the trivial character of M , and therefore χ ∈ B0(G). 
Since G/M has order coprime to p, we further have χ ∈ Irrp′(B0(G)). We have seen that 
k(G/M) � k0(B0(G)), and so it remains to argue that, when P > 1, there is a member 
in Irrp′(B0(G)) lying over a nontrivial character in B0(M). Recall that, when P > 1, 
there does exists some nontrivial θ ∈ Irrp′(B0(M)) by [42, Problem 3.11]. The second 
statement now follows from Lemma 2.2(i). �

We will also make use of Alperin-Dade’s theory of isomorphic principal blocks.

Theorem 2.4. Suppose that N is a normal subgroup of G, with G/N a p′-group. Let 
P ∈ Sylp(G) and assume that G = NCG(P ). Then restriction of characters defines a 
natural bijection between the irreducible characters of the principal blocks of G and N . 
In particular, k0(B0(G)) = k0(B0(N)).

Proof. The case where G/N is solvable was proved in [2] and the general case in [15]. �
We end this section with some proven consequences of the Alperin-McKay conjecture, 

which posits that k0(B) = k0(b), where for B a block of G, b is the Brauer first main 
correspondent of B [42, Theorems 4.12 and 4.17]. Note that if B has defect group D, 
then b is a block of NG(D) with defect group D. By Brauer’s third main theorem [42, 
Theorem 6.7], the Brauer first main correspondent of B0(G) is B0(NG(P )).

Theorem 2.5. If G is p-solvable and P ∈ Sylp(G), then

k0(B0(G)) = k0(B0(NG(P ))) = k(NG(P )/Op′(NG(P ))P ′) .
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Proof. The first equality is the principal bock case of results by Dade [16] and Okuyama-
Wajima [48] (see also [3]). The second equality follows from Fong’s theorem [42, Theorem 
10.20] and Itô’s argument [23, Theorem 6.15]. �

In this paper, we write Cn to denote the cyclic group of order n.

Lemma 2.6. If the principal p-block B0(G) of a finite group G satisfies the Alperin-McKay 
conjecture, then k0(B0(G)) � 2

√
p − 1 with equality if, and only if, 

√
p − 1 ∈ N and 

NG(P )/Op′(NG(P )) is isomorphic to the Frobenius group Cp � C√
p−1.

In particular, if G is p-solvable or all the non-abelian composition factors of G have 
cyclic Sylow p-subgroups, then k0(B0(G)) � 2

√
p − 1.

Proof. The first part follows from [22, §2.1]. (Note that the ‘if’ part of the equality 
claim is clear. For the ‘only if’ part, assume that k0(B0(G)) = 2

√
p − 1. Then, from [22], 

we have k((NG(P )/P ′)/Op′(NG(P )/P ′)) = 2
√

p − 1. Arguing similarly as in the first 
paragraph of [22, p. 5], we have that NG(P )/Op′(NG(P )) is isomorphic to the Frobenius 
group Cp � C√

p−1.)
The Alperin-McKay conjecture is known to be true for p-solvable groups by Theo-

rem 2.5. The so-called inductive Alperin-McKay conditions are satisfied for all blocks 
with cyclic defect groups by Koshitani and Späth [56,27], and thus the Alperin-McKay 
conjecture also holds true for finite groups in which all the non-abelian composition fac-
tors have cyclic Sylow p-subgroups. (Indeed, note that a simple group is involved in G if, 
and only if, it is involved in some composition factor of G, and hence any simple group 
involved in G has cyclic Sylow p-subgroups.) �
Theorem 2.7. Let G be a finite group with an abelian Sylow p-subgroup. Let B0(G) denote 
the principal p-block of G. Then k0(B0(G)) � 2

√
p − 1 with equality if, and only if, √

p − 1 ∈ N and NG(P )/Op′(NG(P )) is isomorphic to the Frobenius group Cp �C√
p−1.

Proof. Note that, when P is abelian, k0(B0(G)) = k(B0(G)), by the work of Kessar and 
Malle [25, Theorem 1.1] on the ‘if part’ of Brauer’s height zero conjecture. The statement 
then follows by [22, Theorems 1.1 and 1.3]. �
3. Bounding height-zero characters in (almost) simple groups

To prove Theorems 1.1 and 1.2, we need to bound from below the number of height-
zero characters in (almost) simple groups. That is the purpose of this section. We begin 
with the case of alternating An and symmetric Sn groups.

Proposition 3.1. Let p � 3 be a prime and n be a positive integer. Then

(i) If n � p + 2 then |Irrp′(An)| � p and |Irrp′(Sn)| � 2p.
(ii) If n = p or p + 1 then |Irrp′(An)| = (p + 3)/2 and |Irrp′(Sn)| = p
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(iii) If n � p2 then |Irrp′(B0(Sn))| � p2, and thus, there are at least p2/2 orbits of 
characters in Irrp′(B0(An)) under the action of Sn.

Proof. Basics on the representation theory of symmetric and alternating groups can 
be found in [24,52]. Let P(n) denote the set of all partitions of n. Irreducible ordinary 
characters of Sn are naturally labeled by partitions in P(n), and so for each such partition 
λ, we let χλ ∈ Irr(Sn) denote the corresponding character. For q ∈ Z+, the q-core of λ
is the partition obtained from λ by successive removals of rim q-hooks until no q-hook 
is left.

A well-known result of Macdonald (see [50, §2]) asserts that, if λ ∈ P(n) and the 
p-adic expansion of n is

a0 + a1p + · · · + atp
t,

then the character χλ has p′-degree if, and only if, λ has precisely at hooks of length 
divisible by pt and the character labeled by the pt-core of λ has p′-degree. Moreover,

|Irrp′(Sn)| = k(1, a0)k(p, a1) · · · k(pt, at),

where, for m, a ∈ N, k(m, a) is the number of m-tuples of partitions of a.
When n � p + 2 we have |Irrp′(Sn)| � 2k(p, 1) = 2p, and therefore |Irrp′(An)| � p, 

proving part (i). For part (ii) we note that the p′-degree irreducible characters of Sp are 
labeled by hook-shape partitions of the form (x, 1p−x) with 0 � x � p, and exactly one of 
them, namely the one with x = (p +1)/2, is self-conjugate; also, the p′-degree irreducible 
characters of Sp+1 are labeled by (p + 1), (1p+1), and (x, 2, 1p−x−1) with 2 � x � p − 1, 
and again exactly one of them is self-conjugate.

For part (iii), the assumptions on p and n imply that n � 9, and so Sn = Aut(An). 
Let n = mp + r for some integers m � 1 and 0 � r < p. Then [40, Theorem 1.10] implies 
that the number of height-zero characters in the principal block of Sn is the same as 
k0(B0(Smp)). By [51, p. 44], this number is 

∏
i�0 k(pi+1, bi), where m =

∑
bip

i is the 
p-adic decomposition of m. Since n � p2, we have m � p, and it follows that this number ∏

i�0 k(pi+1, bi) is at least p2, as desired. �
We next prove the key statement for (almost) simple groups needed for our main 

results.

Proposition 3.2. Let S be a non-abelian finite simple group and p � 5 a prime di-
viding |S|. Assume that P ∈ Sylp(S) is non-abelian. Then there are at least 6 charac-
ters in Irrp′(B0(S)). Further, there are more than 2

√
p − 1 different Aut(S)-orbits in 

Irrp′(B0(S)).

Proof. (I) First we note that the conclusion follows from Proposition 3.1(iii) for the 
alternating groups, since P is abelian for n < p2 and p2/2 > max{6, 2

√
p − 1} for p � 5. 
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For sporadic groups and the Tits group, the assumptions on p and P imply that either 
p ∈ {5, 7} or (S, p) = (J4, 11) or (M, 13). The GAP character table library [17] contains 
the character table and block distributions for S for the prime p in these cases. From 
this information, we can see that the statement holds.

(II) We now assume that S is a simple group of Lie type defined over Fq, where q
is a power of some prime q0. First assume that q0 = p. Let G be a simple algebraic 
group of adjoint type and F a Steinberg endomorphism on G such that S ∼= [G, G]
where G := GF . By [9, Lemma 5], the p′-degree irreducible characters of G are the 
same as semisimple characters, one for each conjugacy class of semisimple elements of 
G∗F ∗

, where (G∗, F ∗) is the dual pair of (G, F ). As the number of semisimple classes 
of G∗F ∗

is at least qr, where r is the rank of G, by [13, Theorem 3.7.6], it follows 
that |Irrp′(G)| � qr. Therefore, |Irrp′(S)| � qr/d where d := |G/S| is the order of 
the group of diagonal automorphisms of S. By a result of Dagger and Humphreys (see 
[11, Theorem 3.3]), S has precisely two p-blocks: the principal block and the defect-
zero block containing only the Steinberg character (of degree |S|p). Therefore, we have 
k0(B0(S)) � qr/d. It is now easy to check that qr/d > 2

√
p − 1|Out(S)| for all S of Lie 

type in characteristic p � 11, using available information of Out(S), in [14, p. xvi] for 
instance. Hence we are done unless p ∈ {5, 7}.

Now suppose p ∈ {5, 7}. In this case, we have qr/d � 6 except if S = PSL2(p), and we 
have qr/d � 5|Out(S)| unless S = PSL2(p); PSL2(p2); PSL±

3 (p); or PSL±
4 (5). However, 

if S = PSL2(q), then P ∈ Sylp(S) is abelian, and we are done in that case. So, assume 
S = PSL±

n (p) with (n, p) ∈ {(3, 5), (3, 7), (4, 5)}. In these cases, we can see from the 
character table available in GAP that there are at least 5 distinct character values in 
Irrp′(S), so that there are at least 5 Aut(S)-orbits in Irrp′(B0(S)), and we are again 
done.

(III) So, we may now assume that p � q. Let d := ep(q) be the multiplicative order of 
q modulo p. If S is of exceptional type (including Suzuki and Ree groups and 3 D4(q)), 
then the fact that P is non-abelian implies that d is a regular number.

So, we assume that S is not of Suzuki or Ree type and that d is a regular number. In 
[53, Lemma 3.7], it is shown in this case that there are at least 6 distinct Aut(S)-orbits 
on Irr(B0(S)). In the proof of [53], it is in fact shown that there are at least 6 distinct 
p′-degree characters in Irr(B0(S)) lying in at least 5 Aut(S)-orbits. (In fact, in most 
cases, there are at least 6 distinct such orbits.) Hence we are done in this case, since the 
assumption P is non-abelian also implies that p < 11.

(IV) We therefore assume for the remainder of the proof that S is of classical type. 
That is, S is of type An, 2 An, Bn, Cn, Dn, or 2 Dn. We may write S = [G, G], where 
G = PGLn(q), PGUn(q), SO2n+1(q), PCSp2n(q), or P(CO±

2n(q))0, respectively.
Define e to be the smallest positive integer such that p | (qe − 1) when G is of type A, 

p | (qe − (−1)e) when G is of type 2 A, or p | (qe ± 1) when G is of type B, C, D or 2 D. 
Let n = we + m where 0 � m < e. The fact that P is non-abelian implies that p � w

(see for instance the proof of [34, Prop. 5.5]).
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Let W denote the relative Weyl group of a Sylow d-torus of G. When G = PGLn(q) or 
PGUn(q), the group W is the wreath product Ce � Sw and otherwise, it is a subgroup of 
index 1 or 2 of C2e �Sw, see [8, §3A]. In all cases, W has a factor group isomorphic to Sw. 
Note that p is good for G. By generalized d-Harish-Chandra theory [8, Theorems 3.2 and 
5.24], there is a natural bijection between unipotent characters in the principal p-block of 
G and the irreducible characters of W. Furthermore, by [31, Corollary 6.6], the number 
of unipotent characters in Irrp′(B0(G)) is at least the number of p′-degree irreducible 
characters of W. Note that each unipotent character in Irr(B0(G)) restricts irreducibly 
to one in Irr(B0(S)). Indeed, this follows by identifying S with GF

sc/Z(Gsc)F under the 
simply connected covering π : Gsc → G (see [37, Proposition 24.21]) and the bijection 
between unipotent characters induced by π (see [18, Proposition 2.3.15]), along with the 
fact that B0(G) covers a unique block of S.

Recall that w � p � 5, and thus n � 5. Assume for a moment that G is not 
P(CO+

2n(q))0 with n even. Then, by a result of Lusztig [32, Theorem 2.5], every unipo-
tent character of S is invariant under Aut(S). Therefore, the number of Aut(S)-orbits 
on Irrp′(B0(S)) is at least the number of p′-degree irreducible characters of W, which in 
turn is at least |Irrp′(Sw)|. Since w � p, and p > 2

√
p − 1 for all p � 5, we are done by 

using Proposition 3.1(i) and (ii), except possibly if w ∈ {5, 6} and p = 5.

(V) Now suppose w ∈ {5, 6} and p = 5, and continue to assume G is not P(CO+
2n(q))0

with n even. Then part (IV) implies we have at least 5 Aut(S)-orbits on Irrp′(B0(S))
by considering unipotent characters. We claim that Irrp′(B0(S)) must contain at least 6 
characters.

In the cases of type A, 2A, and B, we may naturally view G as a central quotient of 
H := GLn(q), GUn(q), and SO2n+1(q). In the case of type C, S is a central quotient of 
H := Sp2n(q). Therefore, in these cases by [42, Theorem 9.9], Irrp′(B0(G)) (respectively 
Irrp′(B0(S))) can be identified with the members of Irrp′(B0(H)) that are trivial on 
Z(H). Further, the two sets Irrp′(B0(G)) (respectively Irrp′(B0(S))) and Irrp′(B0(H))
can be identified except in the case 5 | |Z(H)| (i.e., when 5 | (q − 1) and H = GLn(q) or 
5 | (q + 1) and H = GUn(q)). In the case of Dn(q), and 2 Dn(q), let H̄ := GOε

2n(q). In 
this case, S is a central quotient of the commutator subgroup Ω of H := SOε

2n(q) � H̄

and Irrp′(B0(S)) may be identified with Irrp′(B0(Ω)).
In the cases of type A, 2A, B, and C, write H̄ := H. Now, by [40, Theorem (1.9)] and 

[33, Theorem 5.17], there is a bijection between Irrp′(B0(H̄)) and Irrp′(B0(Hwe)), where 
Hwe = GLwe(q), GUwe(q), SO2we+1(q), Sp2we(q), or GOε

2we(q). We further see from the 
formulas for |Irrp′(B0(Hwe))| in [33, Theorem 5.17] and [40, Proposition (2.13)] that this 
number is at least 10 in the type A, 2 A cases and at least 20 in the other cases. Hence 
we are done in case B and C. Further, in the case H̄ = GOε

2n(q), this yields at least 10 
characters in Irrp′(B0(H)) by restricting from H̄.

Now consider the case H = GLn(q), GUn(q), or SOε
2n(q). Write H ′ := SLn(q), SUn(q), 

respectively Ω, so that S = H ′/Z(H ′). Characters of H are partitioned into so-called 
Lusztig series E(H, s), indexed by semisimple elements s ∈ H∗, where in this case the 
dual group H∗ is isomorphic to H. In particular, Irr(B0(H)) lies in the union of E(H, s)



206 N.N. Hung et al. / Journal of Algebra 622 (2023) 197–219
where s has order a power of p, by [12, Theorem 9.12]. Recall from our discussion in 
(IV) that B0(S) contains at least 5 unipotent characters of p′-degree. First, suppose that 
5 � |Z(H)|. Then 5 � |Z(H ′)| as well, and we have |Irrp′(B0(H))| � 10 from the discussion 
above and |Irrp′(B0(S))| = |Irrp′(B0(H ′))| by [42, Theorem 9.9]. Since restriction gives 
an injection from unipotent characters in Irrp′(B0(H)) to Irrp′(B0(H ′)) (see, e.g. [18, 
Lemma 2.3.14]), we may assume that Irrp′(B0(H)) contains at least one non-unipotent 
character. We claim that this character does not have the same restriction to H ′ as 
a unipotent character of H, forcing |Irrp′(B0(S))| � 6 since B0(S) contains at least 5 
unipotent characters of p′-degree. Indeed, if χ ∈ Irr(B0(H)) is not unipotent but restricts 
the same as a unipotent character, then χ is the tensor product of a unipotent character 
with a linear character of H. But linear characters of H are in natural bijection with 
characters of Z(H∗), and it follows that χ ∈ E(H, z), where z ∈ Z(H∗) ∼= Z(H) is 
nontrival with order a power of 5 (see, for example, [12, Proposition 8.26]), contradicting 
that 5 � |Z(H)|.

We may now assume 5 | |Z(H)|. (Note, in particular, that then H = GLn(q) or 
GUn(q).) In this case, e = 1 and w = n ∈ {5, 6}. Here the principal block of H is 
the unique block containing unipotent characters. Then Irr(B0(H)) consists of all series 
E(H, s) where s ∈ H∗ ∼= H has order a power of 5 by [12, Theorem 9.12]. First suppose 
that n = 6. Then there is a semisimple element s of H ∼= H∗ that lies in H ′, has 
order a power of 5, and has CH∗(s) ∼= GL5(q) × Cq−1, respectively GU5(q) × Cq+1. 
Then the members of E(H, s) are trivial on Z(H) (see, for example, [55, Proposition 
2.6]) and restrict to non-unipotent characters of H ′, and hence S. Since CH∗(s) is of 
index prime to 5 in H∗, there is a so-called semisimple character in this series of degree 
[H : CH∗(s)]q′

0
, and hence height-zero, and we are done. Now, consider the case n = 5. 

Then |Z(H ′)| = 5. In this case, every member of Irr5′(B0(H)) restricts to one of the 
five unipotent characters in Irr5′(B0(H ′)). However, consider the element s ∈ H ′ of 
order 5 whose eigenvalues are {ζ, ζ2, ζ3, ζ4, 1}, where ζ ∈ F×

q2 has order 5. We have 
CH∗(s) ∼= C5

q−1, respectively C5
q+1, so that [H∗ : CH∗(s)] = 5. Let χ ∈ E(H, s) be the 

semisimple character, so that χ(1)5 = 5. Since s ∈ H ′, we have χ is trivial on the center. 
Further, sz is H = H∗-conjugate to s, where z = ζ · I5 ∈ Z(H ′). It follows that the 
restriction of χ to H ′ is not irreducible, and hence splits into 5 non-unipotent characters 
in Irr5′(B0(H ′)). Then |Irr5′(B0(S))| � 6, as claimed.

(VI) So lastly, suppose G = P(CO+
2n(q))0 with n � 6 even. (Recall that n � p � 5.) 

Then every unipotent character of S is still invariant under the field automorphisms. The 
graph automorphism of order 2 fixes all unipotent characters labeled by non-degenerate 
symbols, but interchanges the two unipotent characters in all pairs labeled by the same 
degenerate symbol of defect 0 and rank n (see [32, Theorem 2.5] and also [13, p. 471] for 
the parametrization of unipotent characters of type D groups). Recall from our discus-
sion in (IV) that the number of unipotent characters in Irrp′(B0(G)) (and therefore the 
number of such characters in Irrp′(B0(S))) is at least |Irrp′(W)|. Hence, since Aut(S)
at worst permutes pairs of these characters, in this case it is sufficient to show that 
|Irrp′(W)| > max{12, 4

√
p − 1}.
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Recall that W is a subgroup of index 1 or 2 in X := C2e � Sw. Fix θ ∈ Irr(C2e). The 
character ψ := θ × · · · × θ ∈ Irr(B) of the base subgroup B of X is X-invariant and 
hence extendible to X, by [39, Lemma 1.3]. It follows that the irreducible characters 
of X that lie over ψ are in bijective correspondence with irreducible characters of Sw

by Gallagher’s theorem (see [23, Corollary 6.17]), and therefore the number of those 
characters of p′-degree is exactly equal to |Irrp′(Sw)|. According to [8, p. 51], irreducible 
characters of X are labeled by 2e-tuples of partitions (ai 
 wi) with 

∑
wi = w. When 

W is a subgroup of index 2 in X, those characters of X that split when restricted to W
are described in [8]. In particular, the p′-degree characters of X lying over ψ discussed 
above all restrict irreducibly to W. Letting θ be arbitrary in Irr(C2e), we deduce that 
the number of irreducible p′-degree characters of W is at least 2e|Irrp′(Sw)|, which in 
turn is at least 2p by Proposition 3.1. Note again that p > 2

√
p − 1 for all p � 5. We see 

then that we are done unless p = 5, w ∈ {5, 6}, and e = 1.
In the latter case, we have shown that Irrp′(B0(S)) contains at least 5 Aut(S)-orbits, so 

it again suffices to show that Irrp′(B0(S)) contains 6 elements. The exact same argument 
in (V) in the case H̄ = GOε

2n(q) applies here, and we are done. �
4. Principal blocks with at most 5 height-zero characters

The aim of this section is to prove Theorem 1.2. We begin by recording some divisi-
bility results on k0(B) for small primes.

Lemma 4.1. Let p be a prime and G a finite group. Let B be a p-block of positive defect 
of G.

(i) If p = 2 then 2 | k0(B).
(ii) If p = 3 then 3 | k0(B).

(iii) If p = 2 and the defect d of B is at least 2, then 4 | k0(B). Furthermore, if B has 
no characters of height one, then k0(B) ≡ 2d( mod 8).

Proof. This follows from [30, Corollaries 1.3 and 1.6] (see also [45, Lemma 2.2] and [53, 
Theorems 1.6 and 1.7]). �
Theorem 4.2. Let p be a prime and G a finite group. Let P be a Sylow p-subgroup of G. 
Then the following are equivalent:

(i) k0(B0(G)) = 2,
(ii) k(B0(G)) = 2,

(iii) P is cyclic of order 2.

Proof. The fact that k(B0(G)) = 2 is equivalent to |P | = 2 is [5, Theorem A]. Assume 
that k0(B0(G)) = 2. If p = 2 then |P | = 2 by Lemma 4.1(iii), as wanted, and p = 3 cannot 
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happen by Lemma 4.1(ii). Now, if p � 5, [19, Theorem A] implies that G is p-solvable. 
Therefore, by Lemma 2.6, we have k0(B0(G)) � 2

√
p − 1 � 4, a contradiction. �

Notice that a finite group G satisfying the equivalent conditions in Theorem 4.2 is 
always solvable. (Consider the homomorphism T : G → {±1} sending g ∈ G to the sign 
of the permutation G � x 
→ gx on G. If t is an involution of G, then T (t) is a product 
of |G|/2 transpositions, and hence is an odd permutation, proving that T is surjective. 
Therefore G has a (normal and odd-order) subgroup, namely Ker(T ), of index two. By 
Feit-Thompson’s odd-order theorem, it follows that G is solvable.) While Theorem 4.2
on principal blocks with two height-zero characters easily follows from results already 
appearing in the literature, the following result on blocks with three height-zero char-
acters is much more difficult to prove; in fact, the proof is already nontrivial when one 
considers just 3-blocks, see the remark before [45, Theorem C].

Theorem 4.3. Let p be a prime and G a finite group. Let P be a Sylow p-subgroup of G. 
Then the following are equivalent:

(i) k0(B0(G)) = 3,
(ii) k(B0(G)) = 3,

(iii) P is cyclic of order 3.

Proof. The fact that k(B0(G)) = 3 implies |P | = 3 follows from the main result of [4] (we 
refer the reader to [26, Theorem 3.1] for an independent proof of this result). Moreover, 
if |P | = 3 then [42, Theorem 11.1] implies that k0(B0(G)) = k(B0(G)) = 3. Therefore, 
it remains to prove that (i) implies (iii). So assume that k0(B0(G)) = 3.

By Lemma 4.1(i), we may assume that p � 3, and as the statement we need to prove 
is precisely [45, Theorem C] when p = 3, we may assume furthermore that p � 5. Our 
aim is now to show that if P > 1 then k0(B0) � 4.

Notice that if G is p-solvable, then k0(B0(NG(P ))) = k(NG(P )/Op′(NG(P ))P ′) by 
Theorem 2.5. That number can be seen to be greater than or equal to 4 by looking at 
[58, Table 1]. We may thus assume that G is not p-solvable.

We consider a chief series 1 = G0 < G1 < · · · < Gn = G of G with Gj � G for 
every 0 � j � n. Let k be maximal such that p divides [Gk+1 : Gk]. Since k0(B0) �
k0(B0(G/Gk)), in order to show that k0(B0) � 4 we may assume that Gk = 1, and thus 
N := Gk+1 is a minimal normal subgroup of G of order divisible by p with [G : N ] not 
divisible by p. If N is abelian, then G is p-solvable. Hence N is semisimple with, say t, 
simple chief factors isomorphic to the simple non-abelian group S (of order divisible by 
p).

Write M = NCG(P ). Since P ∈ Sylp(N), by the Frattini argument, G = NNG(P )
so that M � G. By Lemma 2.3 we have that k(G/M) < k0(B0). If k(G/M) � 3, 
then we are done. Hence we may assume that [G : M ] � 2. Again by Lemma 2.3, for 
every η ∈ Irrp′(B0(M)) we have that Irr(G|η) = Irrp′(G|η) ⊆ Irrp′(B0). Note that if 
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k0(B0(M)) � 4 and [G : M ] = 2 then there would be at least two G-orbits of nontrivial 
members of Irrp′(B0(M)), and so k0(B0(G)) � 2 + k(G/M) = 4. In particular, we would 
be done if k0(B0(M)) � 4, and thus we may assume G = M .

By Theorem 2.4 we have that k0(B0) = k0(B0(N)) = k0(B0(S))t. By [42, Problem 
3.11] a block of positive defect contains at least two height-zero characters. Therefore, 
if t > 1 then k0(B0) � 4. We may assume that t = 1 and that G = S is a simple 
non-abelian group of order divisible by p � 5.

By Proposition 3.2, we may assume that P is abelian. Then k0(B0) = k(B0) by the 
main result of [25], and k(B0) � 2

√
p − 1 � 4 by [22, Theorem 1.1]. �

We remark that Theorems 4.2 and 4.3 prove Theorem 1.2(A). In order to prove parts 
(B) and (C) of Theorem 1.2, we make use of the classification of Sylow p-subgroups of 
finite groups with precisely four or five ordinary irreducible characters in the principal 
p-block worked out in [26,53]. We record this classification in the following two results. 
In this note D2n is the dihedral group of order 2n and Q8 is the quaternion group.

Theorem 4.4. Let G be a finite group and p a prime. Let B0 denote the principal p-block 
of G. Then k(B0) = 4 if, and only if, exactly one of the following happens:

(i) |P | = 4,
(ii) |P | = 5 and [NG(P ) : CG(P )] = 2.

Proof. The ‘if’ implication is clear by Lemma 4.1 when p = 2 and [42, Theorem 11.1]
when p = 5. Assume that k(B0(G)) = 4. By [26], then P ∈ {C2 × C2, C4, C5}. Moreover, 
if |P | = 5, then k(B0(G)) = 4 forces [NG(P ) : CG(P )] = 2 by [42, Theorem 11.1]. �
Theorem 4.5. Let G be a finite group and p a prime. Let B0 denote the principal p-block 
of G. Then k(B0) = 5 if, and only if, precisely one of the following happens:

(i) P = D8,
(ii) P = Q8 and NG(P ) = PCG(P ),

(iii) |P | = 5 and [NG(P ) : CG(P )] ∈ {1, 4},
(iv) |P | = 7 and [NG(P ) : CG(P )] ∈ {2, 3}.

Proof. The ‘if’ implication follows from results of Brauer [42, Theorem 11.1] when |P | = p

and of Brauer [7, Theorem 7B] and Olsson [49, Theorem 3.13] when P ∈ {D8, Q8}. For 
the reverse implication, notice that, by the discussion above, it suffices to show that 
P ∈ {C5, C7, D8, Q8}. That is the main result of [53]. �

Next we prove part (B) of Theorem 1.2. Recall that if χ ∈ Irr(G), then det(χ) is a 
linear character of G uniquely determined by χ (see [23, Problem 2.3]). The determinantal 
order o(χ) = |G/Ker(det(χ))| of χ is related to character extension properties.
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Theorem 4.6. Let p be a prime and G a finite group. Let P be a Sylow p-subgroup of G. 
Then k0(B0(G)) = 4 if, and only if, exactly one of the following happens:

(i) [P : P ′] = 4,
(ii) |P | = 5 and [NG(P ) : CG(P )] = 2.

Proof. By [45] the statement holds if p = 2, so we may assume p is odd.
If |P | = 5 and [NG(P ) : CG(P )] = 2 then k0(B0) = 4 by [42, Theorem 11.1], and the 

‘if’ implication holds.
Suppose that k0(B0) = 4. We want to prove the ‘only if’ implication. We may further 

assume that p � 5 by Lemma 4.1(ii). By [42, Theorem 11.1] it is enough to show that 
if k0(B0) = 4 and p � 5, then |P | = 5. Let G be a counterexample of minimal order to 
such a statement.

Step 1. G is not p-solvable.

Write K := Op′(NG(P )). Assume, to the contrary, that G is p-solvable. Then by 
Theorem 2.5, we have that k(NG(P )/KP ′) = 4. Inspecting [58, Table 1], we see that 
NG(P )/KP ′ ∼= D10. In particular, [P : P ′] = 5, implying |P | = 5 and thus contradicting 
the choice of G as a counterexample.

Step 2. Op′(G) = 1.

Notice that k0(B0(G/Op′(G))) = 4 by [42, Theorem 9.9(c)], so Op′(G) = 1 by the 
minimality of G as a counterexample.

Step 3. Let 1 �= N be a minimal normal subgroup of G. Then p does not divide [G : N ].

Assume otherwise, so that 1 < k0(B0(G/N)) � 4. The fact that p � 5 implies 
k0(B0(G/N)) = 4, by Theorems 4.2 and 4.3. By the minimality of G as a counterexample, 
p = 5 and [PN : N ] = 5.

The fact that k0(B0(G/N)) = k0(B0) in particular means that every χ ∈ Irrp′(B0)
lies over 1N . By Lemma 2.2(i) we conclude that no 1N �= θ ∈ Irrp′(B0(N)) extends to 
PN . By Step 2, the group N has order divisible by p and there are 2 cases.

Case (a). Suppose that N is an elementary abelian p-group, so N ⊆ P . Then P

acts on N necessarily fixing some non-trivial element of N . Hence, there exists some 
1N �= θ ∈ Irrp′(B0(N)) that is P -invariant. By [23, Theorem 11.22], θ extends to P , and 
we get a contradiction.

Case (b). Suppose that N is semisimple with t chief factors isomorphic to S. By [19, 
Proposition 2.1] there is some 1S �= θ ∈ Irrp′(B0(S)) invariant under the action of a 
Sylow p-subgroup of Aut(S). Let 1N �= ψ be equal to the direct product of t copies of 
θ in N . Then ψ ∈ Irrp′(B0(N)) is P -invariant and ψ extends to PN by [23, Theorem 
11.22], again yielding a contradiction. (Note that in this case o(ψ) = 1 because N is 
perfect, so another way of arguing that ψ extends to PN is by using [23, Corollary 
8.16].)
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Step 4. By Steps 1 and 3, we have that N is semisimple with t chief factors isomorphic 
to S, a simple non-abelian group of order divisible by p. Let M = NCG(P ). Then M = G.

By the Frattini argument, G = NNG(P ), and hence M � G. Notice that the elements 
in Irrp′(B0(M)) are the irreducible constituents of χM for every χ ∈ Irrp′(B0).

Suppose that M < G. Then by Lemma 2.3 we have that 1 < k(G/M) < 4. This leaves 
two possibilities.

First assume k(G/M) = 2, and so [G : M ] = 2. Write Irrp′(B0) = {1G, α, β, γ} where 
M ⊆ Ker(α). If βM = γM , then k0(B0(M)) = 2, which is absurd as p � 5. Otherwise 
k0(B0(M)) = 5. By Theorem 2.4, we have that 5 = k(B0(S))t. This forces t = 1, P ⊆ S

and k0(B0(S)) = 5. By [19, Proposition 2.1] some 1S �= θ ∈ Irrp′(B0(S)) is Aut(S)-
invariant. By Theorem 2.4, let ϕ ∈ Irrp′(B0(M)) be such that ϕS = θ. For every g ∈ G, 
ϕg ∈ Irrp′(B0(M)) extends θg = θ. By Theorem 2.4, ϕ is G-invariant. Consequently, ϕ
has 2 extensions in Irrp′(B0), those must be β and γ by Lemma 2.1. Then βM = γM , a 
contradiction.

Secondly assume that k(G/M) = 3. Then every nontrivial θ ∈ Irrp′(B0(M)) lies 
under the same member of Irrp′(B0). Hence |{ψ(1) | ψ ∈ Irrp′(B0(M))}| � 2. By the 
main result of [19] we get that M is p-solvable, and hence so is G, contradicting Step 1.

Final step. We have G = NCG(P ), where N is semisimple with t chief factors iso-
morphic to S. By Theorem 2.4, 4 = k0(B0) = k0(B0(N)) = k0(B0(S))t. As p � 5, 
this forces t = 1, P ⊆ S, and k0(B0(S)) = 4. By Proposition 3.2, P is abelian. Then 
k0(B0) = k(B0) = 4 by [25]. Then Theorem 4.4 implies that |P | = 5, the final contra-
diction. �

Finally, we classify groups with 5 height-zero characters in the principal block, thus 
completing the proof of Theorem 1.2.

Theorem 4.7. Let G be a finite group and p a prime. Let P ∈ Sylp(G) and let B0 denote 
the principal p-block of G. Then k0(B0) = 5 if, and only if, precisely one of the following 
happens:

(i) |P | = 5 and [NG(P ) : CG(P )] ∈ {1, 4}.
(ii) |P | = 7 and [NG(P ) : CG(P )] ∈ {2, 3}.

Proof. First we remark that the ‘if part’ follows by [42, Theorem 11.1].
Assume that k0(B0) = 5. By Lemma 4.1, p cannot be 2 or 3, and hence p � 5. By 

[42, Theorem 11.1], it suffices to show that if k0(B0) = 5 and p � 5, then |P | ∈ {5, 7}. 
Assume that G is a counterexample of minimal order to such a statement. By the main 
result of [25] and Theorem 4.5, we have that P is not abelian. Also we can see that G is 
not p-solvable and Op′(G) = 1, proceeding as in the proof of the case k0(B0) = 4. (Some 
arguments will be similar to ones used in the proof of Theorem 4.6 so here we will just 
sketch those.)
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Let N be a minimal normal subgroup of G, with N �= 1. We first show that p does 
not divide the index [G : N ].

Assume otherwise, so that 1 < k0(B0(G/N)) � 5. As p � 5, then 4 � k0(B0(G/N)) �
5. In the case where k0(B0(G/N)) = 5, we obtain a contradiction from Lemma 2.2(i) as 
we can always find some θ ∈ Irrp′(B0(N)) that extends to PN (note that by minimality 
of G as a counterexample PN/N is cyclic and we can proceed as in the proof of the case 
k0(B0) = 4).

Hence k0(B0(G/N)) = 4. By Theorem 4.6, we have that [PN : N ] = 5. Notice that 
in this case Irrp′(B0) = {1G, α, β, γ, χ}, where χ is the only member of Irrp′(B0) not be-
longing to Irrp′(B0(G/N)). We distinguish the cases where N is abelian and semisimple.

Case (a). Suppose that N is abelian, then N is an elementary abelian p-group and 
N � P . Since P is not abelian, and as P/N is cyclic of order 5, then P ∩ CG(N) = N . 
Hence N ∈ Sylp(CG(N)). Since Op′(G) = 1, that implies CG(N) = N .

Let 1N �= θ ∈ Irr(N) be P -invariant. Since P/N is cyclic, θ extends to P by [23, 
Theorem 11.22]. Take Q/N ∈ Sylq(Gθ/N) with q �= p. Then θ extends to Q by [23, 
Corollary 8.16] as (|Q/N |, o(θ)θ(1)) = 1. By [23, Corollary 11.31] θ extends to Gθ. By 
the Fong-Reynolds correspondence [42, Theorem 9.14],

|Irrp′(B0|θ)| = |Irrp′(B0(Gθ)|θ)| .

By Lemma 2.2(i) some Irrp′(B0) lies over θ. Under our assumptions, χ is the only member 
of Irrp′(B0) possibly lying over a nontrivial character of N . Then

|Irrp′(B0|θ)| = 1.

Let b0 = B0(N). By [42, Corollary 9.21], we have that bGθ
0 = B0(Gθ) is the only block 

of Gθ covering b0. Let η ∈ Irr(Gθ) be an extension of θ. In particular, η lies in B0(Gθ). 
By Lemma 2.2(ii)

|Irrp′(B0(Gθ)|θ)| = |Irrp′(Gθ/CG(N)))| � 2 ,

a contradiction.

Case (b). Suppose that N is semisimple with t chief factors isomorphic to S. By [19, 
Proposition 2.1] there are 1S �= α, β ∈ Irrp′(B0(S)) invariant under the action of a Sylow 
p-subgroup of Aut(S) with α(1) �= β(1). Let 1N �= ψ be equal to the direct product of t
copies of α in N and 1N �= ϕ be equal to the direct product of t copies of β in N . Then 
ψ, ϕ ∈ Irrp′(B0(N)) are P -invariant. Alos o(ψ) = 1 = o(ϕ) because N is perfect. By [23, 
Corollary 8.16] both ψ and ϕ extend to PN , yielding a contradiction by Lemma 2.2(i).

We have shown that p does not divide [G : N ]. In particular, N is semisimple with, 
say t, chief factors isomorphic to the non-abelian simple group S (of order divisible 
by p). Take M = NCG(P ) � G. Then 1 � k(G/M) < 5 by Lemma 2.3. We show 
that G = M by analyzing the different values 1 < k(G/M) < 5. Before proceeding 



N.N. Hung et al. / Journal of Algebra 622 (2023) 197–219 213
with the analysis, we make the following observation. By [19, Proposition 2.1] some 
1S �= ϕ ∈ Irrp′(B0(S)) is Aut(S)-invariant. In particular, if θ is the direct product of t
copies of ϕ, then θ ∈ Irrp′(B0(N)) is G-invariant. By Theorem 2.4, let ψ ∈ Irrp′(B0(M))
be such that ψS = θ. Then 1M �= ψ is a G-invariant member of Irrp′(B0(M)).

If k(G/M) = 2, then [G : M ] = 2. Write Irrp′(B0) = {1G, α, β, γ, χ} where M ⊆
Ker(α). Since ψ extends to G, we may assume that β and γ are the two extensions of ψ. 
In particular, χM must decompose as the sum of two distinct members of Irrp′(B0(M)). 
In particular, |Irrp′(B0(M))| = k0(B0(M)) = 4 and by Theorem 4.6 we obtain |P | = 5, 
a contradiction.

If k(G/M) = 3, then G/M is isomorphic to C3 or S3. Write Irrp′(B0) =
{1G, α, β, γ, χ}, where α and β contain M in their respective kernels. Recall that 
1M �= ψ ∈ Irrp′(B0(M)) is G-invariant. Notice that |Irrp′(B0|ψ)| = |Irr(G|ψ)| � 3, 
which is impossible.

If k(G/M) = 4, then every nontrivial η ∈ Irrp′(B0(M)) lies under the same member of 
Irrp′(B0). Hence |{η(1) | η ∈ Irrp′(B0(M))}| � 2. By the main result of [19] we conclude 
that M is p-solvable, then so is G, a contradiction.

Finally, if G = M , then by Theorem 2.4 we have that k0(B0(S))t = 5. Hence t = 1
and k0(B0) = 5. By Proposition 3.2, P must be abelian, a contradiction. �
5. Bounding height-zero characters in principal blocks

In this section we prove Theorem 1.1. We begin with a technical result due to G. 
Navarro.

Lemma 5.1 (Navarro). Let S1 × · · · × St = N � G, where {S1, ..., St} are transitively 
permuted by conjugation of G; Si = Sxi

1 for some xi ∈ G, and have order divisible 
by a prime p. Let θ := θ1 ∈ Irr(S1) such that Z(S1) ⊆ Ker(θ) and that there exists 
α ∈ Irrp′(B0(NG(S1)/CG(S1))) with αS1 = eθ for some e ∈ N. Set ψ := θ1 × · · · × θt

where θi := θxi
1 . Then there exists χ ∈ Irrp′(B0(G)) such that χN = aψ for some 

et � a ∈ N.

Proof. This is the content of [38, Lemma 4.4]. �
Lemma 5.1 is useful when one wants to produce characters in Irrp′(B0(G)) that lie 

above certain characters of a non-abelian minimal normal subgroup of G. In such a 
situation, the existence of θ and α satisfying the hypothesis of Lemma 5.1 is presented 
in the following, which is [19, Proposition 2.1].

Lemma 5.2. Let S be a non-abelian simple group of order divisible by a prime p � 5. 
Then there exist 1S �= θ ∈ Irrp′(S) and α ∈ Irrp′(B0(Aut(S))) such that αS ∈ {θ, 2θ}. 
Further, when S is not PΩ+

8 (q), one may choose α so that it extends θ.

We can now prove Theorem 1.1 in the case of non-abelian Sylow subgroups.
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Theorem 5.3. Let G be a finite group and p a prime. Assume that the Sylow p-subgroups 
of G are non-abelian. Then k0(B0(G)) > 2

√
p − 1.

Proof. First, if p � 7 then it is sufficient to assume that k0(B0(G)) � 4. However, by 
Theorem 1.2, in such case, P is abelian or k0(B0(G)) = 4 and p = 2, and thus we are 
done by Theorem 2.7. Therefore, we may and will assume from now on that p � 11.

We adapt some arguments in the proof of [22, Theorem 1.1]. Let G be a counterex-
ample with minimal order. In particular, Op′(G) is trivial, P ∈ Sylp(G) is non-abelian, 
and k0(B0(G)) � 2

√
p − 1. Let 1 �= N be a minimal normal subgroup of G. We claim 

that p does not divide [G : N ].
Assume, to the contrary, that p | [G : N ]. Then PN/N ∈ Sylp(G/N) must be abelian, 

by the fact k0(B0(G)) � k0(B0(G/N)) and the minimality of G. It then follows from 
Theorem 2.7 that k0(B0(G/N)) � 2

√
p − 1. Altogether, we deduce that

k0(B0(G)) = k0(B0(G/N)) = 2
√

p − 1.

Assume that N is abelian, which means that N is actually an elementary abelian p-
group, because Op′(G) = 1. Let 1N �= θ ∈ Irr(N) be P -invariant. Theorem 2.7 implies 
that P/N ∈ Sylp(G/N) is of order p, and it follows that θ extends to P . By Lemma 2.2(i), 
we deduce that there exists some χ ∈ Irrp′(B0(G)) that lies over θ. We now have 
k0(B0(G)) > k0(B0(G/N)), violating the conclusion of the previous paragraph.

We may assume that N is non-abelian. Suppose that S is a simple direct factor of N , 
and notice that p divides the order of S, because Op′(G) = 1. By Lemma 5.2, there exist 
θ ∈ Irrp′(S) and α ∈ Irrp′(B0(Aut(S))) such that αS ∈ {θ, 2θ}. Lemma 5.1 then implies 
that there exists χ ∈ Irrp′(B0(G)) such that N � Ker(χ), again violating the equality 
k0(B0(G)) = k0(B0(G/N)). The claim p � [G : N ] is now fully proved.

Recall that p | |N |. By Lemma 2.6, we are done if N is abelian, so let us assume that 
N is not, and furthermore, as above let S be a (non-abelian) simple factor of N . By 
Proposition 3.2, there are more than 2

√
p − 1 different NG(S)-orbits on Irrp′(B0(S)). 

If two characters η, θ ∈ Irrp′(B0(S)) are not conjugate under the action of NG(S) then 
the characters η × · · · × η and θ × · · · × θ of N are not conjugate under the action of 
G. We deduce that there are more than 2

√
p − 1 different G-orbits on Irrp′(B0(N)). It 

immediately follows that k0(B0(G)) > 2
√

p − 1 since there is a character in Irrp′(B0(G))
lying over characters in each such G-orbit, by Lemma 2.2(i). �

The following result covers Theorem 1.1 in the introduction, where we also analyze
the local structure of a group with k0(B0(G)) = 2

√
p − 1. The equivalence of (i) and (iv) 

was already shown in [22, Theorem 1.3].

Theorem 5.4. Let G be a finite group and p a prime such that p | |G|. Then k0(B0(G)) �
2
√

p − 1. Moreover, for P ∈ Sylp(G), the following are equivalent:

(i) k(B0(G)) = 2
√

p − 1.
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(ii) k0(B0(G)) = 2
√

p − 1.
(iii) k0(B0(NG(P ))) = 2

√
p − 1.

(iv)
√

p − 1 ∈ N and NG(P )/Op′(NG(P )) is isomorphic to the Frobenius group Cp �
C√

p−1.

Proof. The first statement follows from Theorem 2.7 (which is a consequence of [22, 
Theorem 1.1] and [25, Theorem 1.1]) and Theorem 5.3. In fact, these results also imply 
the equivalence of (i) and (ii). The fact that (i) is equivalent to (iv) is precisely [22, 
Theorem 1.3], and the equivalence of (iii) and (iv) follows by Lemma 2.6. �

We remark that the second statement of Theorem 5.4 is consistent with both Brauer’s 
height zero conjecture and the Alperin-McKay conjecture for principal blocks. We have 
learned that the unproven half of Brauer’s height zero conjecture for principal blocks has 
been confirmed very recently by Malle and Navarro [35]. However, note that our proofs 
are independent of this result.

6. On Conjecture 1.3

We end the paper with some discussion on Conjecture 1.3. It asserts that, if one 
fixes the number of height-zero characters in a p-block of a finite group, then [D : D′]
is bounded, where D is a defect group of the block. The conjecture therefore may be 
viewed as the analogue of Brauer’s Problem 21 [6] for height-zero characters.

Lemma 6.1. Conjecture 1.3 follows from the Alperin-McKay conjecture.

Proof. Fix a positive integer k0 and let B be a p-block of a finite group G with precisely 
k0 height-zero characters. Let D be a defect group of B. Assume that the Alperin-
McKay conjecture holds. Then k0(B) = k0(b) where b, a block of NG(D), is the Brauer 
correspondent of B. By a result of Reynolds (see [28, p. 399]), there is a finite group 
K with D as a normal Sylow p-subgroup and a block β of K such that k0(b) = k0(β). 
Now β contains a block β of K/D′ with defect group D/D′ and k0(β) = k(β) (see [28, 
Theorem 6]). All together, we have

k(β) = k0.

As Brauer’s Problem 21 has been known to have a positive answer for p-solvable groups 
by Külshammer and Robinson [29], it follows that |D/D′| is bounded, as desired. �

We now turn to the principal block case of Conjecture 1.3. Recall that p � k2
0/4 + 1

by Theorem 1.1, where k0 := k0(B0(G)). Moreover,

[P : P ′] � plogp(exp(P/P ′))·rk(P/P ′).
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Conjecture 1.3 is therefore reduced to showing that logp(exp(P/P ′)) and rk(P/P ′) are 
both bounded in terms of k0.

Note that rk(P/P ′) = logp([P : Φ(P )]), where Φ(P ) is the Frattini subgroup of P . 
The problem of bounding rk(P/P ′) in terms of k0 seems highly nontrivial to us at the 
moment. On the other hand, the problem of determining logp(exp(P/P ′)) appears to be 
related to the Alperin-McKay-Navarro conjecture. We take advantage of recent advances 
[46,47] on the study of fields of values of characters of degree not divisible by p to prove 
that exp(P/P ′) is bounded in terms of k0 when p = 2 in Theorem 6.2 below.

We first need to introduce some notation. The field of values of χ ∈ Irr(G) is Q(χ) :=
Q(χ(g) | g ∈ G). Notice that Q(χ) ⊆ Qexp(G), where for an integer m, we write Qm :=
Q(e2πi/m). We define c(χ) as the smallest positive integer c such that Q(χ) ⊆ Qc. The 
number c(χ) has been referred to as the Feit number of χ in connection with a conjecture 
by W. Feit [43, §3.3] and as the conductor of χ [47]. We recall that χ is said to be p-
rational if p does not divide c(χ). Moreover, in [21, §2], cp(χ) the p-rationality level of χ
is defined as the nonnegative integer logp(c(χ)p), where np is the p-part of the integer n. 
The p-rationality level of χ measures how p-rational χ is. Indeed, χ is p-rational if, and 
only if, cp(χ) = 0.

The Galois group Gal(Qab/Q) acts on the set of irreducible characters of any finite 
group G preserving character degrees. It also acts on the set of height-zero characters of 
principal blocks of finite groups as discussed in Section 2. For a positive integer e, let σe

denote the automorphism in Gal(Qab/Q) that fixes roots of unity of order not divisible 
by p and sends p-power roots of unity ξ to ξ1+pe . By [46, Theorem B], we know that if e
is any positive integer such that all of the height-zero characters in the principal p-block 
of G are fixed by σe, then logp(exp(P/P ′)) is at most e.

Theorem 6.2. Let p = 2 and P ∈ Sylp(G). Then exp(P/P ′) is bounded in terms of 
k0 := k0(B0(G)). In fact,

exp(P/P ′) � 2(k0 − 1)

whenever P is nontrivial.

Proof. Let B0 = B0(G) denote the principal p-block of G and set

e(G) := max
χ∈Irrp′ (B0)

{logp(c(χ)p)}.

So this e(G) is the largest p-rationality level of a character in Irrp′(B0). First suppose that 
e(G) = 0. Then all the characters in Irrp′(B0) are p-rational and therefore σ1-invariant. 
It follows from [46, Theorem B] that exp(P/P ′) � p = 2, and the theorem in turn follows 
since k0 � 2 when P > 1 by Theorem 1.1.

So let e(G) � 1. Then all the characters in Irrp′(B0) are σe(G)-invariant, and therefore 
by [46, Theorem B] we have
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logp(exp(P/P ′)) � e(G).

Let ψ ∈ Irrp′(B0) be such that c(ψ)p = pe(G); that is, choose ψ ∈ Irrp′(B0) with maximal 
p-rationality level. By [47, Theorem A1], we have Qpe(G) ⊆ Q(ψ) and it follows that

[Q(ψ) : Q] � [Qpe(G) : Q] = (p − 1)pe(G)−1 = pe(G)−1.

On the other hand, any Galois conjugate of ψ belongs to Irrp′(B0(G)). As the number 
of those conjugates is exactly [Q(ψ) : Q], we deduce that

k0 − 1 � [Q(ψ) : Q].

(Note that the ‘minus 1’ comes from the fact that the trivial character is not among the 
conjugates of ψ.) The last three displayed inequalities imply that

exp(P/P ′) � 2(k0 − 1),

and this concludes the proof. �
The proof of Theorem 6.2 in fact shows that exp(P/P ′)/2 + 1 is bounded above by 

the number of characters in Irrp′(B0) with maximal p-rationality level.
One might naturally ask what happens when p is odd. The p-odd analogue of [47, 

Theorem A1] is not true in general. Navarro and Tiep proposed in [47, Conjecture B3 
and Theorem B1] that, if χ ∈ Irrp′(G) with c(χ)p = pa, then [Qpa : (Q(χ) ∩Qpa)] is not 
divisible by p. If that turns out to be true, one may follow the same arguments as in the 
proof of Theorem 6.2 to show that

[Q(ψ) : Q] � pe(G)−1,

whenever ψ is a character in Irrp′(B0(G)) with maximal p-rationality level. It would 
follow then that e(G), and hence exp(P/P ′), is bounded in terms of the number k0 of 
height-zero irreducible characters in B0(G). Note that the bound [Q(ψ) : Q] � pe(G)−1

does not directly imply that p is bounded in terms of k0 since e(G) could be 1. Therefore 
we do need Theorem 1.1 for this argument to work.
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