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Abstract: This study illustrates how Cognitive Diagnostic Modeling (CDM) can be used to
assess fine-grained levels of computational thinking (CT). We analyzed scored responses to the
Computational and Spatial Thinking assessment (CaST) from 271 children. We identified four
key attributes required to solve tasks: sequencing of codes, fixing a program, spatial orientation
of an agent, and rotation on a point. Results indicated that younger children did not master all
the attributes, particularly spatial orientation of an agent and rotation on a point. We identified
four common mastery profiles of children that were associated with age. Our findings illustrate
that mastering spatial orientation is critical to CT ability. Finally, the nuanced information
about children’s mastery levels has potential to provide teachers with useful information about
what concepts and skills their students are struggling with so that they can adjust instruction to
emphasize those concepts.

Introduction

Providing children opportunities to engage in computational thinking (CT) in early elementary school is becoming

increasingly important. CT is “the thought processes involved in formulating a problem and expressing its solution”
(Wing, 2014) and is often operationalized in the context of coding. Accordingly, there is a need for a better

understanding of the instructional approaches, practices, and assessments that support children’s development of

CT in early elementary classrooms (Luo et al., 2022).

While instructional resources and assessments of CT for early elementary exist (e.g., Relkin et al., 2020),
most assessments report a single total score of overall CT ability. Although these assessments are valuable, they
provide an audit of CT learning as opposed to granular evidence of children’s CT understanding that can be
directly linked to classroom instruction. In order to better support the development of CT in elementary classrooms,
we propose using cognitive diagnostic models (CDMs), an approach to assessment that provides fine-grained
information about what skills or attributes a child has or has not yet mastered. In CDMs, multiple latent concepts
and skills, referred to as attributes, are identified and linked to assessment tasks indicating which attributes are
required to solve each individual task. The scored responses of the tasks are used to provide a categorical
classification (i.e., mastery vs. non-mastery) of the attributes. For example, if a child correctly responds to all the
tasks that are linked to the attribute identify bugs in buggy programs, we infer they have mastery of the attribute.
But what if they only answer half of those items correctly? Or what if a task is associated with more than one
attribute? Knowing which attributes students have and have not mastered allows teachers to adjust classroom
instruction based on their students’ needs. The purpose of this paper is to explore how we can use CDMs by
conducting an analysis on existing assessment data from a study where 271 children between the ages of 4 and 8
participated in a performance assessment, Computational and Spatial Thinking (CaST) assessment, designed to
assess CT. Given the large range in ages, we are interested in whether performance is related to age. Our analysis
was guided by the following questions: (1) How does the CDM fit the performance assessment data? (2a) What
mastery profiles of CT do children exhibit? (2b) Are these profiles associated with children’s age?

Assessment of computational thinking for emerging readers

As part of a larger project, we operationalized CT for early elementary classrooms and developed curricular
resources and an assessment (CaST) around coding toys and coding environments that involve programming with
directional codes forward, backwards, rotate right, and rotate left (see Clarke-Midura et al., 2021). Figure la
shows children working on curricular tasks (on the left) and 1b shows a child taking the assessment and the
materials associated with it (on the right). The development of the assessment was connected to and dependent
on the development of the CT model and curricular tasks. We engaged in iterative cycles of design-based-research
(DBR) where we refined each element (CT model, curriculum, assessment) based on new information learned in
the process. We identified algorithmic thinking (AT), decomposition (modularity), debugging, abstraction, and
spatial thinking (ST) as developmentally appropriate components of CT. We also identified mathematical
knowledge (MK) that was required to solve CT tasks such as rotation on a point, linear units, and counting on.
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The Evidence Centered Design (ECD) framework (Mislevy & Haertel, 2006) guided the design of our
CaST assessment tasks. The systematic process helped us articulate: the skills we wanted to assess, what
inferences we wanted to support, what evidence we would need to support our inferences, the situations that would
elicit the behaviors and observations of the skills and provide evidence, and how we would measure the skills.
We used design patterns to document variable features of the tasks and the knowledge we thought each task was
assessing. We specifically designed tasks to measure some of the skills we noted were necessary for CT tasks but
were not part of most published CT models (e.g., rotation on a point and orientation of agent).

The CaST assessment is designed around a series of performance tasks (n = 19) that involve children
either writing sequences of codes to navigate an agent from one location to another on a 6 x 6 2D grid, enacting
programs by physically moving the agent on the grid, or debugging and fixing given programs using the four
directional codes presented in Figure 1b (forward, backward, rotate left, rotate right). Given that the children we
are assessing are emerging readers, the assessment is standardized and administered via a one-on-one format. The
tasks are unplugged so the assessment can be used with a variety of coding toys and contexts that rely on
navigational codes, which are common for pre-literate children. Some tasks have multiple correct answers, and
all tasks were scored as incorrect or correct resulting in a total possible score of 19 points.

The assessment was validated in a prior study in which the items fit well to a two-parameter
unidimensional Item Response Theory model (2PL IRT, see Na et al., 2023). The results of item analyses showed
a high item discrimination (M = 2.26) and a moderate item difficulty (M =-.21), on average, with a high marginal
reliability (7« = .87). IRT can estimate individuals’ true ability score (8) on a continuous scale, whereas CDMs
classify examinees by whether or not they mastered each of the attributes that are required to successfully respond
to the assessment tasks. Examinees are then classified into profiles based on the similarity of their responses. A
benefit of CDM is that teachers can be provided with information on attribute mastery at both student and class
levels.

Figures 1a and b
On the Left, Classroom Implementations and On the Right, Assessment Administration
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Methods

Sample, procedures, and data source

Our sample included 271 children (girls = 142; aged 4-8; Mag. = 6.54) from five elementary schools in the Western
United States. For the analysis, age was categorized into three groups: young (< 72 months; » = 83), middle (72
< months < 84; n = 104), and old (> 84 months; n = 84). The assessment was administered in a one-to-one
interview format, by trained researchers in a quiet area in the schools. The administration took an average of 16.4
minutes per child. All assessments were video recorded and later scored by two independent researchers. Each
task was scored as correct or incorrect. The two raters had high agreement (k = .91). Tasks where there was no
agreement were reviewed by the research team.

Data analysis

Statistical analysis was a multi-step process. The first step was to map the assessment tasks to a task-by-attribute
table, which is called a Q-matrix. Identifying attributes entails hypothesizing what skills are needed to answer
each task. We then validated and refined the Q-matrix. Our next step was to fit the Q-Matrix to the data by using
a CDM model. We fit and compared three CDMs — DINA, DINO, and G-DINA - all of which have been widely
adopted in empirical studies using CDMs. As a non-compensatory model, DINA (Deterministic Input, Noisy
“AND” gate model) assumes that to answer a given task, children must possess all required attributes. For example,
in the case of task 18 which is linked to two attributes, fixing a program (A2) and spatial orientation of an agent
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(A3), the assumption under the DINA model is that a child must possess mastery of both attributes to successfully
solve it. DINO (Deterministic Input, Noisy “OR” gate model) is a compensatory model, which assumes that if
children have at least one attribute, they are likely to correctly respond to a task. In the case of task 18, if a child
has mastered either fixing a program (A2) or spatial orientation of an agent (A3), they can correctly answer this
task. Lastly, as a saturated model, G-DINA (Generalized Deterministic Inputs, Noisy “AND” gate model) assumes
both compensatory and non-compensatory features within the test and therefore models the main effects of each
attribute in conjunction with all possible interaction effects among attributes. Hence, in the example of task 18,
children could have different levels of mastery probabilities depending on which attributes they have mastered or
not. Both DINA and DINO are nested to G-DINA, which allows for log-likelihood test in model comparison.
From the selected model, we conducted mastery profiles of each attribute, their classification accuracies, and
identified mastery profiles to address our research questions. All statistical analyses were conducted in R (version
4.2.2) with GDINA package (Ma & de la Torre, 2020). Details of each step are described below.

Constructing, validating, and refining the Q-matrix

To construct a Q-matrix, we reviewed the assessment tasks and existing test specifications. The ECD process we
used to design the assessment required that we document details of the tasks, such as variable features and
knowledge being assessed, that we were able to use and share for identifying the attributes. We identified four
attributes that were required to solve the tasks: sequencing codes, fixing a program, spatial orientation of an agent,
and rotation on a point (see Table 1) and then mapped them onto the items into a Q-matrix.

Table 1
Four Attributes of the CT Assessment Tasks
Attribute Concept Description
Al Sequencing codes AT Represents the skill of ordering and arranging codes based on

knowledge of syntax and semantics

A2 Fixingaprogram  Debugging Represents the skill of implementing a successful strategy to fix

bugs
Spatial orientation Represents the skill of knowing that the codes always produce the
A3 ST L. .
of an agent same movements but depend on the agent’s orientation

Represents the skill of knowing that a rotation occurs by rotating
on a fixed point at a set angle, not translating to an adjacent point
Note. AT refers to algorithm thinking; ST refers to spatial thinking; MK refers to math knowledge.

A4  Rotation on a point MK

Table 2
Refined Q-matrix for Four Attributes of CT and their PVAF values
Attributes Attributes
Item Al A A3 Al PVAF Item Al A A3 AL PVAF

1 1 0 0 1 941 10 0 1 0 1 .988
2 1 0 0 0 .949 11 0 1 0 1 .990
3 1 0 1 0 .994 12 0 1 1 1 .999
4 0 1 0 0 .862 13 0 1 1 1 991
5 0 0 0 1 .966 14 1 0 1 0 933
6 0 1 0 1 .999 15 1 0 1 0 .898
7 1 0 1 1 984 16 1 0 1 0 981
8 0 1 1 1 .994 17 1 0 1 0 974
9 0 1 0 1 997 18 0 1 1 0 993

Note. “1” refers to required attributes to solve given items, whereas “0” indicates non-required in the attribute of
each item. A1 refers to sequencing of codes, A2 refers to fixing a program, A3 refers to spatial orientation of an
agent, and A4 refers to rotation on a point. PVAF refers to the proportion of variance accounted by q-vectors.

The Q-matrix was qualitatively validated by expert review of two raters (k = .82). In order to validate
the Q-matrix quantitatively, the proportion of variance of accounted (PVAF, de la Torre & Chiu, 2016) by each
item-attribute specification (i.e., q-vector) was calculated and the acceptable PVAF values set to .90. We also
used a mesa plot (see Figure 2), which visualized the relationship between possible q-vectors in the x-axis, and
PVAF values in the y-axis to visually investigate possibilities to refine the Q-matrix. Fitting the initial Q-matrix
to the assessment response data (19 tasks) did not yield acceptable model fits, so we eliminated one task and
modified g-vectors of five tasks. After iterative modifications of the Q-matrix, we refitted the refined Q-matrix to
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the response data (18 tasks), resulting in acceptable model fits. While most tasks showed acceptable PVAF values,
amesa plot suggests that task 4 (PVAF = .862) and task 15 (PVAF = .898) need further modifications of q-vectors
(see Figure 2). However, we did not modify g-vectors of these two tasks because these changes led to only
minuscule increases in PVAF (less than .10 of changed PVAF) and were not aligned with what these tasks
intended to measure from expert reviews. As a result, we used data from 18 of the 19 tasks with the refined Q-
matrix (see Table 2) in which three tasks were assigned to one CT attribute, eleven tasks were assigned to two CT
attributes, and four tasks were assigned to CT three attributes.

Figure 2
Mesa Plots of Unfitted Items (Item 4 and 15)
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Note. X-axis refers to item-attribute specifications (q-vectors) and Y-axis refers to PVAF refers to proportion of
the variance accounted for the g-vectors. A filled dot in the mesa plot means the q-vector denoted in the Q-matrix,
and black dots mean possible g-vectors in the Q-matrix. Eps (epsilon) refers to a designated threshold value of
PVAF.

Selecting the appropriate CDMs

In order to select the most appropriate model, we evaluated the model fits of the three models (see Table 3). We
specifically looked at the Akaike Information Criterion (AIC) and the likelihood ratio test (LRT). As shown in
Table 3, G-DINA showed the lowest AIC and the LRT was significant when comparing the general model (G-
DINA) to the reduced models DINA (LR: 205.11, df = 46, p <.001) and DINO (LR: 232.80, df = 46, p <.001).
Thus, G-DINA was selected for the CDM model for subsequent analyses.

Table 3
Model Fit Indices for G-DINA, DINA and DINO
. Likelihood Ratio Test
Model AIC nPars Loglik IR daf pvalue
G-DINA 4635.68 97 -2220.84
DINA 4748.79 51 -2323.40° 205.11 46 <.001
DINO 4674.47 51 -2337.24b 232.80 46 <.001

Note. AIC refers to Akaike information criterion; nPars refers to number of model parameters; Loglik refers to
log likelihood; LR refers to likelihood ratio; *G-DINA versus DINA; °G-DINA versus DINO.

To address RQ 1, using the G-DINA model, we estimated mastery probabilities and classification
accuracies for each attribute. Using expected a posteriori (EAP, Huebner & Wang, 2011), children were classified
as mastery of attributes (“1”’) when their mastery probabilities of each CT attribute were above .50; otherwise,
they were classified as non-mastery (“0”’). For example, if a child has .373 for sequencing of codes (A1), .829 for
fixing a program (A2), .992 for spatial orientation of an agent (A3), and .171 for rotation on a point (A4), their
mastery status of each attribute is “0” for sequencing of codes (A1), “1” for fixing a program (A2), “1” for spatial
orientation of an agent (A3), and “0” for rotation on a point (A4), resulting in a mastery profile of “0110”. Mastery
proportions of each attribute — the ratio of the number of children who have mastered a given attribute to the total
number of the sample - represent their relative difficulty, and their classification accuracies indicate the reliability
of classifying children’s mastery status as either mastery or non-mastery.

To address RQ 2, we estimated individuals’ mastery profiles of the four CT attributes from the CDM
results. For example, a mastery profile of 0100 refers to a set of children who have mastered Fixing a program
(A2) but have not yet mastered the other three CT attributes. We evaluated which mastery profiles were common
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or rare among our sample. We further conducted a chi-squared test of independence to examine the associations
between identified mastery profiles and age groups. Results of this analysis are presented below.

Results

The viability of classifying children’s mastery status of CT attributes

As we see in Table 4, approximately 48% of children mastered sequencing of codes (A1) and fix a program (A2),
respectively. Fewer children mastered spatial orientation of agent (A3; 37.3%) and rotation on a point (A4;
40.6%). While mastery proportions of four attributes were higher for the older children (see Figure 3), we note
that mastery proportions of spatial orientation of an agent (A3) were substantially lower (59.5%) than the other
three attributes in older children. Likewise, in middle age children, spatial orientation of an agent (A3, 27.9%)
and rotation on a point (A4, 26.0%) showed lower mastery proportions than the other two attributes. The
estimated classification accuracies at the attribute level were high; they ranged from .90 to 97 and were .85 at the
test-level. These values the G-DINA model reliably classifies children into attribute mastery. Figure 3 presents
the mastery proportions of each attribute within the total sample and by each age group.

Table 4
The Proportion of Mastery of Four CT Attributes and their Classification Accuracies
Al. Sequencing of A2.Fix a A3. Spatial orientation =~ A4. Rotation on a

codes program of an agent point
Mastery proportion (%) 48.0% 47.2% 37.3% 40.6%
Classification accuracy .96 .96 .90 .97
Figure 3
Mastery Proportions of Each Attribute in the Total Sample and Age Groups
100.0% Total  MmYounger ¥ Middle old
90.0% 78.6% 81.0%
80.0% 72.6%
70.0% 59.5%
60.0%
50.0% 180% 4409 47.2% 41.3%

B B

Sequencing of codes (A1)  Fixing a program (A2) Spatial orientation of an  Rotation on a point (A4)
agent (A3)

Detecting CT mastery profiles and the profiles association with children’s age

CDM results yielded 11 mastery profiles out of a possible 16. Figure 4 shows the distribution of the profiles by
age group where 0000 means that none of the four attributes were mastered and 1111 means that all of the four
attributes were mastered. A chi-squared test of independence confirmed that the mastery profiles are statistically
associated with the age groups, ¥%(20) = 123.83, n =271, p <.001, Cramer’s V = .478.

Figure 4
Identified 11 Mastery Profiles of CT Components by Age Groups
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We focus on the four most common profiles (those with proportions > 10%):

15.9% 16.6%

Proportion

e  Non-mastery profile (0000, n = 79). This profile represents children who have not mastered any of the
CT attributes. It is the most common profile (29.2% of children). It is comprised of mostly young (n =
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45) and middle (n = 29) children, compared to a small number of the older children (n = 5). This profile
had the lowest total scores on CaST assessment among all 11 mastery profiles, M = 3.09, SD = 1.53.

e  Full-mastery profile (1111, n = 45). This represents children who have mastered all four CT attributes.
It is the second most common profile (16.6%). The group is comprised primarily of older children (rn =
35) and some middle (n = 7) and younger (rn = 3) children. This profile scored the highest CaST total
score, M =16.80, SD = 1.10.

®  Mastery without spatial orientation profile (1101, n = 43). This profile represents children who mastered
all of the CT attributes except spatial orientation of an agent (A3). It includes 15.8% of the sample and
was comprised mostly of older children (z = 19) and middle children (n = 15) compared to younger
children (n =9). This profile had relatively high total scores on CaST assessment, M = 13.14, SD = 1.74.

e  Spatial orientation mastery profile (0010, n = 34). This group only mastered spatial orientation of an
agent (A3). It includes 12.5% of the sample. This profile was comprised of middle (» = 19), young (n =
9) and older (n = 6) children. This profile had relatively low total scores on CaST assessment, M = 5.18,
SD =1.29.

Importance of spatial orientation of an agent

Based on the attribute mastery results, we decided to conduct an ancillary analysis to explore the role of mastering
spatial orientation of an agent (A3) on overall CT abilities. Using the total assessment score as a proxy of overall
CT abilities, we conducted independent #-tests between the full-mastery profile (1111) and mastery without spatial
orientation profile (1101); and between the non-mastery profile (0000) and spatial orientation mastery profile
(0010) to check the role of spatial orientation in the overall CT ability. The result of the independent ¢-tests showed
that the fill-mastery profile (M = 16.80; SD = 1.10) significantly outperformed the mastery without spatial
orientation profile (M = 13.14, SD = 1.74) on the CaST assessment, based on the CaST total score, #(86) = 11.85,
p <.001, d =2.53 (see Figure 5). The spatial orientation mastery profile (M = 5.18, SD = 1.29) had significantly
higher CaST total scores than the non-mastery profile (M = 3.09, SD = 1.53), #(111) = 6.93, p < .001, d = 1.42
(see Figure 5). The results suggest that mastering spatial orientation on an agent (A3) played a significant role in
children’s overall CT abilities.

Figure S
Mean Differences in the CaST Total Scores by whether Children Mastered Spatial Orientation
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Discussion

This study explored the viability of using CDMs to diagnose mastery levels of children’s CT abilities on a finer
grain size by looking at four attributes: sequencing of codes, fixing a program, spatial orientation of the agent,
and rotation on a point. We were able to fit a CDM model, G-DINA, to the CaST assessment response data and
yielded information about the mastery proportions of the four attributes as well as profiles of attribute mastery in
the sample, by participant’s age. We conducted an additional analysis based on our results to explore the role of
spatial orientation on overall CT ability using the CaST assessment total score as a proxy.

We hypothesized that knowledge of sequencing of codes, fixing a program, spatial orientation of the
agent, and rotation on a point were required for children to answer the tasks on the CT assessment. Looking at
just the mastery of attributes, our results indicate that higher proportions of older children mastered the four CT
attributes and that the proportion of older children who mastered spatial orientation of an agent was lower than
for the other three CT attributes (Figure 3). Overall, much smaller proportions of middle and younger children
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mastered all four attributes. Smaller proportions of middle children mastered spatial orientation of an agent and
rotation on point. Yet for the younger children greater proportions showed mastery of spatial orientation of the
agent and rotation on a point than the sequencing of codes and fixing a program attribute. Overall, the older
children had higher proportions of mastery in the CT-related concepts than the spatial and mathematical concepts
whereas the younger children had higher proportions of mastery in the spatial and mathematical related concepts.
These findings align with the results of RQ 2a that show the most common mastery profile was the Non-mastery
profile. The mastery profiles show how children’s responses and attribute mastery cluster into patterns. Focusing
on the four most common mastery profiles, we see that the old and middle age children were likely to be assigned
to the full-mastery and mastery without spatial orientation profile, whereas the young age group were more likely
to be assigned to the non-mastery profile. Put differently, the young children in our sample (< 72 months) have
not yet mastered most of the attributes of CT, while some of the children in the middle and older age groups (>
72 months) either mastered all the CT attributes or needed only more experiences with spatial orientation of the
agent. These findings align with Relkin et al. (2020) who in a sample of a similar age range of children found that
older children performed better on measures of CT. These findings suggest that children’s understanding and
proficiency in CT may be associated with their age, which supports the need not only for developmentally
appropriate curriculum, resources, and assessments for fostering and measuring CT in early childhood but a need
to provide younger children with opportunities to engage with CT through playing with coding toys.

Perhaps the most interesting mastery profile is the spatial orientation mastery profile (0010, n = 34).
This group only mastered one attribute: spatial orientation of an agent (A3). While it only included 12.5% of the
sample, it was mostly comprised of middle age children (n = 19), with some young (rn = 9) and older (n = 6)
children. This profile had relatively low total scores on the CaST assessment (M = 5.18, SD = 1.29). We conducted
additional analyses to explore the role of the spatial orientation of an agent attribute on CT knowledge, using the
total CT assessment score as a proxy. The results suggest that mastering spatial orientation on an agent (A3)
played a significant role in the overall CT abilities, as measured by the overall score on the CT assessment. Spatial
thinking (ST) entails understandings of space and objects’ positions in space, reasoning with objects or
representations in space, and operations on spatial relationships (NRC, 2006). A component of ST, spatial
orientation is the understanding of different positions in space, and children first develop spatial orientation
concepts in relation to their own position in space and later develop external-based reference systems using
landmarks outside themselves (Sarama & Clements, 2009). Researchers have identified a number of factors
constituting spatial thinking skills; however, there is no consensus in its exact structure or consistency in
measurement (Atit et al., 2020). Existing research on the relationship between CT and ST has looked at children’s
relation of CT skills with non-verbal visuospatial reasoning (Tsavara et al., 2022), mental rotation skills (Citta et
al., 2019), and spatial ability (Roman-Gonzalez et al., 2017) and found significant correlations between concepts
of ST and CT in early childhood. Our findings further support the importance of the relationship of ST and CT
and the need to better understand this relationship in early childhood.

The older and middle age group of children in our sample had higher mastery probabilities of sequencing
codes and debugging programs, than spatial orientation of the agent (see Figure 3). It could be that the kinds of
exposure to CT that the older children have through coding provide more experience with practices like
sequencing and debugging and less with spatial orientation of agents. In the US, kindergarten standards mostly
focus on applying spatial knowledge as relational from their own perspective and not from different perspectives,
which means children do not get a lot of exposure to this in kindergarten. Previous research on young children
playing with tangible coding toys observed children shifting back and forth between egocentric and allocentric
perspectives, or reference frames, while programming robots to navigate paths on the floor. Children’s inability
to take on an allocentric perspective, the robot’s perspective when the robot was facing a different orientation
often resulted in coding errors such as selecting the wrong code (Clarke-Midura et al., 2021; Wang et al., 2021).
Our findings support these findings and suggest the importance of playing with tangible coding toys at a young
age to aid in the development of both ST and CT skills. Finally, research has shown that ST is a critical component
of STEM learning and practices and is domain dependent (Atit et al., 2020). While ST skills are malleable and
can be improved through training and instruction (Uttal et al., 2013), instead of fostering ST independently, it is
more critical to situate ST into overall CT learning activities. As mentioned above, more research is needed that
explores the relationship of ST and CT skills in early childhood.

Limitations and conclusion

Despite the multi-faceted nature of CT, we only selected four CT attributes due to our limited sample size. There
is a need for future studies that include larger samples and more attributes, especially those related to ST and MK.
Nevertheless, identifying which CT attributes children have not mastered as well as what attributes are
foundational to CT learning is an important step toward designing and implementing tailored learning experiences,
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and minimizing potential gaps in CT and STEM learning from an early age. Furthermore, there is a need for
developmentally appropriate curricular resources and assessments of CT for early childhood. CDMs offer a
potential way to provide teachers with informative information about their students’ CT understanding that they
can directly link to their instruction. As a field, learning scientists tend to talk about the design of assessments and
learning environments separately. The present study shows the affordance of thinking about instruction,
assessment, and theories of learning as an integrated system.
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