Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Using a Balanced Scorecard to Identify Opportunities
to Improve Code Review Effectiveness: An Industrial
Experience Report

Masum Hasan - Anindya Igbal - Mohammad
Rafid Ul Islam - A.J.M. Imtiajur Rahman -
Amiangshu Bosu

Received: January 16, 2021 / August 12, 2021

Abstract Peer code review is a widely adopted software engineering practice to
ensure code quality and ensure software reliability in both the commercial and
open-source software projects. Due to the large effort overhead associated with
practicing code reviews, project managers often wonder, if their code reviews are
effective and if there are improvement opportunities in that respect. Since project
managers at Samsung Research Bangladesh (SRBD) were also intrigued by these
questions, this research developed, deployed, and evaluated a production-ready
solution using the Balanced SCorecard (BSC) strategy that SRBD managers can
use in their day-to-day management to monitor individual developer’s, a particular
project’s or the entire organization’s code review effectiveness. Following the four-
step framework of the BSC strategy, we— 1) defined the operation goals of this
research, 2) defined a set of metrics to measure the effectiveness of code reviews,
3) developed an automated mechanism to measure those metrics, and 4) developed
and evaluated a monitoring application to inform the key stakeholders.

Our automated model to identify useful code reviews achieves 7.88% and
14.39% improvement in terms of accuracy and minority class Fy score, respectively,
over the models proposed in prior studies. It also outperforms human evaluators
from SRBD, which the model replaces, by a margin of 25.32% and 23.84%, respec-
tively, in terms of accuracy and minority class F} score. In our post-deployment
survey, SRBD developers and managers indicated that they found our solution
as useful, and it provided them with important insights to help their decision
makings.

M. Hasan, M. Islam, and A. Igbal

Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka Bangladesh

E-mail: masum@ra.cse.buet.ac.bd, rafid@openrefactory.com, anindya@cse.buet.ac.bd

A.J.M. Rahman
Samsung R&D Institute Bangladesh, Dhaka, Bangladesh
E-mail: m.imtiaz@samsung.com

Amiangshu Bosu

Department of Computer Science,

Wayne State University, Detroit, Michigan, USA
E-mail: amiangshu.bosu@wayne.edu

2 Masum Hasan et al.

Keywords code review - software development - usefulness - productivity - tool
development

1 Introduction

Peer Code Review is a software development practice that enables developers to
systematically inspect peers’ code changes to identify potential defects as well as
quality improvement opportunities [6]. Software development projects, both Open
Source Software (OSS) and commercial, are spending a significant amount of re-
sources in code reviews, as developers spend 10-15% of their time preparing code
for reviews or reviewing others code [12]|. Besides finding defects, known bene-
fits of code reviews include: improving project maintainability [12], maintaining
code integrity |21], improving the relationships between the participants [12], and
spreading knowledge, expertise, and development techniques among the review
participants |6}/54]. Despite its widespread usage and numerous benefits, a study
at Microsoft found that nearly one-third of the code reviews were considered as
‘not useful’ by the code authors [13]. Due to the large effort overhead associated
with practicing code reviews, project managers often wonder, if their code reviews
are effective and if there are improvement opportunities in that respect [13}[22].

These very questions also intrigued the managers at Samsung Research and
Development Institute Bangladesh (also known as Samsung Research Bangladesh
or SRBD). To motivate useful code reviews, SRBD introduced a bimonthly Best
Reviewer Award. To identify the best reviewer(s), multiple members from the Code
Quality Assessment (CQA) team spent a significant amount of time manually eval-
uating the usefulness of all review comments authored during the last two months.
However, this process was not only time consuming but also was inconsistent due
to the lack of a formal evaluation guideline. Therefore, SRBD managers preferred:
1) an automated and reliable process to identify the best reviewer(s) as well as
useful code reviews, 2) an automated framework to measure the code review ef-
fectiveness of a developer, a project, or the entire organization, 3) a mechanism to
identify opportunities to improve code review effectiveness. To fulfill these three
objectives, we proposed and evaluated a solution based on the Balanced SCorecard
(BSC) strategy, which was conceived by Kaplan and Norton [38] and has been
adopted by more than half of the large firms in the US [44]. Prior studies have
also reported successful deployments of BSC based solutions among software de-
velopment organisations [32}/42,/51].

This experience report details the development, and evaluation of our solution
named Code Review Analytics (CRA), an internal web application, that SRBD
managers use regularly to monitor code review effectiveness and to identify poten-
tial improvement opportunities. Although the ultimate objective of CRA is con-
tinuous improvement of code review effectiveness, it does not address that directly.
CRA aims to provide an automated mechanism to access measures and reports to
identify improvement opportunities to help adoption of new initiatives. Whether a
new initiative can address a problem area and improve code review effectiveness,
depends on multiple factors including, the characteristics of the problem identified
and the effectiveness of proposed initiatives.

Our post-deployment evaluation suggests that in addition to fulfilling the three
primary objectives of this research, the CRA tool is helping SRBD developers : to

Improving Effectiveness of Code Reviews 3

improve as reviewers, in measuring the progress of the organization in terms of achiev-
ing more effective reviews, and in improving the organization culture on code reviews.
While CRA has helped SRBD managers in identifying multiple improvement op-
portunities and motivated multiple initiatives, we are unable to report those due
to our non-disclosure agreement (NDA) with SRBD.

Contributions: The primary contributions of this research include:

— An empirical study to identify SRBD developers’ perceptions of useful code
reviews.

— A set of metrics to measure a reviewer’s code review performance.

— An automated model to identify the usefulness of a code review comment.

— A replication of a prior software engineering study [13| in a different context.

— A successful deployment of the BSC framework in a software development
organization for the purpose of improving code review effectiveness.

— Code review analytics, a dashboard to monitor the effectiveness of code reviews
at SRBD.

— We have made the Jupyter notebook to train and evaluate our automated
model to identify useful code reviews publicly available on Githu at: https:
//github.com/WSU-SEAL/CRA-usefulness-model

Organization: The Remainder of this paper is organized as follows. Section
provides a brief background on peer code review, and an overview of related prior
works. Section [3| provides an overview of our four step research methodology.
Section {4 defines the goal of this study based on the BSC framework. Section
identifies a set of metrics to measure the progress to achieve our defined goals.
Section [6] describes the development of tools to measure the identified metrics.
Section [7| describes the development and evaluation of a BSC dashboard to enable
progress monitoring. Section [§] discusses the implications of this study. Section [9]
addresses the threats to validity for this research. Finally, Section concludes
this paper.

2 Background

This section provides a brief overview of contemporary tool-based peer code re-
views, code review process at SRBD, code review usefulness, and related prior
works.

2.1 Tool-based Peer Code Review

Code review is a software development practice to identify defects as well as provide
improved suggestions to code written by peers in a team-based software develop-
ment project. Modern code reviews are more lightweight and informal than tradi-
tional Fagan-inspections [25] and are widely adopted among both commercial and
open source software projects [6,(13,/40,/56]. There are many popular lightweight
applications that facilitate tool-based code reviews, such as, Gerrit, Fabricator,

1 We are unable to make the dataset publicly available due to the restrictions imposed by
our NDA with SRBD.

https://github.com/WSU-SEAL/CRA-usefulness-model
https://github.com/WSU-SEAL/CRA-usefulness-model

4 Masum Hasan et al.

GitHub pull requests, Git Lab pull requests, CodeFlow, ReviewBoard and Cru-
cible. However, the primary workflow of code reviews across all platforms is very
similar. When a code author submits a new patch, a reviewer is assigned either
manually or using an automated recommendation system. All code review tools
provide some interfaces to view source, and compare multiple patches of a file side
by side before submitting a comment. After evaluation, a reviewer may provide
suggestions in the form of review comments. The code author submits subsequent
patches addressing the issues raised in those comments. The code is merged into
the main repository when all major issues are resolved and reviewer(s) approve
the change.

2.2 Code Review Usefulness

Useful code reviews are the ones that help the code authors either explicitly by
identifying defects or shortcomings in a code, or implicitly by disseminating knowl-
edge or provoking a discussion. The usefulness of code reviews in a project can be
an indicator of the effectiveness of the code review process in that project [13]. A
useful code review helps the code under discussion, or helps the team in the long
term. ‘Not useful’ code reviews, on the contrary, fails to achieve any of these goals.
Although in some occasions the usefulness of a code review can be subjective, for
example a review that is useful to a beginner programmer may not be useful to
a senior programmer, previous studies suggest that most ‘useful’ and ‘not useful’
reviews follow some patterns which can be identified automatically [12,/13}}40,53].

2.3 Related Work

In recent years, there has been an influx of studies investigating various aspects of
tool-based modern code reviews. In the following, we briefly discuss some of those
studies that aimed at improving the effectiveness of the code review process.

In one of the earlier studies on code review, Rigby and German [55] proposed
a set of code-review metrics (i.e. acceptance rate, reviewer characteristics, top
reviewer vs. top committer, review frequency, number of reviewers per patch, and
patch size) to characterize code review practices.

In an empirical study, Kononenko et al. [41] quantitatively investigated the
relationships between the reviewers’ code inspections and a set of personal and
social factors that might affect the review quality. They found that the quality
of the code review process is associated with personal metrics, such as, reviewer
workload and experience, and participation metrics, such as, number of developers
involved in the project. Same group of authors later conducted an empirical study
at Mozilla and analyzed developer’s perception of good reviews. They found that
a code review is perceived useful based on thoroughness of the feedback, the re-
viewer’s familiarity with the code, and the perceived quality of the code itself [40].
In a study involving OSS and Microsoft developers, Bosu et al. [12] characterized
the human factors in code review (i.e. author’s reputation, relationship between
an author and a reviewer, etc.) to guide project managers’ decisions about the
usefulness of code review and help improve code review effectiveness.

Improving Effectiveness of Code Reviews 5

Some other studies have focused on characterizing the reviewers in terms of
the quality of their code reviews. Hatton [29] found that defect identification ca-
pabilities vary significantly between reviewers and the best reviewer is up to 10
times more effective at finding defects than the worst reviewer. He also found
that a two person team identified 76% of the defects on average, where individ-
uals on average identified 53% defects. Bosu et al. [13] showed that reviewer’s
prior experience in changing or reviewing the artifact and the reviewer’s project
experience increases the likelihood that s/he will provide useful feedback. Ebert
et al. [23] found that missing rationale, discussion of non-functional requirements
of the solution, and lack of familiarity with existing code are some reasons for
decrease in review quality.Other factors that impact code review quality include
co-working frequency of a reviewer with the patch author [61], description length
of a patch [62], and the level of agreement among the reviewers [30]. Chouchen
et al. |19] cataloged common poor code review practices and explore and charac-
terize their symptoms, causes, and impacts. Thongtanunam et al. |[63], Rahman
et al. [52], Fracz et al. [28] and Barnett et al. |7], Chouchen et al. [20] worked on
automatic reviewer recommendation based on code review so that the code review
practice is more effective.

While many previous studies have analyzed characteristics of code reviews
and reviewers, automatic classification of code review effectiveness has received
relatively less attention from researchers. The first study related to code review
usefulness classification was performed by Bosu et al. |13] in a study involving
Microsoft developers. They found that 34.5% code reviews at Microsoft were per-
ceived as not useful by the code authors. The authors also identified a number
of quantitative features (i.e. change trigger, number of participants in a comment
thread, reply from the author, number of patches etc.) that contributes to code
review quality. Rahman et al. [53] created an automatic tool for code review clas-
sification using textual features, (i.e. reading ease, stop word ratio, question ratio,
code element ratio, conceptual similarity between code and comment, etc.) and
developer experience (i.e. code authorship, code reviewership etc.).

While most of these studies discuss the qualitative and quantitative analysis
of modern code review practices at OSS and commercial projects, to the best of
our knowledge, ours is the first study on industrial application of an automatic
code review usefulness analysis tool, challenges regarding building such a tool, its
effectiveness and impact.

3 Research Method

Since our research framework follows the Balanced SCorecard (BSC) strategy,
this section provides a brief overview of the BSC steps. BSC suggests achieving
objectives based on the following four steps [38]:

Define operational goals to fulfill a vision.

Define metrics to measure progress.

Take initiatives and measure progress towards achieving defined goals.
Inform key individuals automatically about scorecard status, and determine
why problems occur to revise strategies.

L

6 Masum Hasan et al.

Based on the four suggested steps of the BSC framework, we developed a four-step
research method to achieve this study’s objectives. The research tasks carried out
during the four steps of this study are:

143

— Step 1: Defining operational goals. We defined the goal of this research as:
Automated monitoring of code review effectiveness in SRBD to help identify
improvement opportunities in that respect.”

— Step 2: Defining metrics to measure code review effectiveness. In this step, we
defined a set of metrics to measure the effectiveness of code reviews in SRBD
during a period.

— Step 3: Building a framework to measure the code review effectiveness metrics. We
developed a Machine Learning model to automatically evaluate the usefulness
of each code review comment. Leveraging this model, we automatically com-
pute the set metrics defined in Step 2 to evaluate the performance of reviewers
and projects for any particular time period.

— Step 4: Build a monitoring mechanism to inform the stakeholders. We created
Code Review Analytics (CRA), an internal web app, that SRBD managers
are able to use regularly to monitor the performance of individual developers
or a particular project. CRA is being used by SRBD managers to identify
best reviewers during a particular period as well as monitor the organization’s
progress towards achieving defined goals. CRA also helps SRBD managers to
identify improvement opportunities and adopt targeted initiatives to mitigate
performance barriers.

Each of the following four sections focuses on one of the steps of this research
in chronological order. We describe the study methods and findings separately for
each.

4 Step 1: Defining Operational Goals

According to the step 1 of BSC framework, this step defines the operational goals
of this research. At the initiation of this research, we held several meetings with
SRBD managers to understand their code review process, their target objectives,
and their current problem areas. Following subsections detail SRBD’s code review
process and current problem areas.

4.1 Code Reviews at SRBD

Based on our interviews with SRBD managers and an introductory survey sent to
the developers, we identified the following five aspects of code reviews at SRBD.

— Process: SRBD has integrated code reviews in its software development pipeline
in 2012. As of 2021, Code review is mandatory at SRBD. Each and every change
needs at least two approvals before its merging into the main codebase. One
of those approvals must come from a senior level developer (i.e., someone with
at least two years of experience in that specific domain). Confusions arising
during code reviews are often resolved based on offline discussions between the
reviewer and the author.

Improving Effectiveness of Code Reviews 7

— Tool: While most of the projects used Gerrit, some of the projects use GitHub
pull requests, GitLab pull requests, and Swarm.

— Efforts: SRBD developers spend on average six and half hours per week in code
reviews by either reviewing other developers’ code or responding to reviews for
their own code.

— Reviewer selection: Usually, the author of a change invites the reviewers. Ac-
cepting a review request is voluntary. Junior members are encouraged to invite
a senior member (e.g. the project lead), or a domain expert. While reviewers
are more likely to be selected from the same team, cross-team reviewers are
not uncommon.

— Rewards: Reviewing changes submitted by other developers is one of the cri-
teria to evaluate an employee’s performance at SRBD.

4.2 Problem Areas

To promote a better code review culture, SRBD managers had introduced a bi-
monthly Best Reviewer Award. Every two months a review assessment period of
one week is scheduled. During this period multiple members from the Code Qual-
ity Assessment (CQA) team spent significant amount of time to manually evalu-
ate the usefulness of all review comments authored during the last two months.
This process not only allowed the managers to identify the best reviewer(s) but
also measure the overall effectiveness of code reviews in the company during that
period. Based on our conversations with the SRBD managers, we identified the
following four challenges with their manual process.

1. Time-consuming and prone to inconsistencies Since manual assessments
of code reviews require significant efforts from multiple CQA team members,
this process is time-consuming and inefficient. For a large organization such as
SRBD, manual review assessment process is not scalable. Moreover, there was
no prescribed guidelines for the CQA members on how to assess the usefulness
of a review comment. Therefore, such manual assessments are prone to biases
and inconsistencies.

2. Ignoring code contexts lead to inaccuracies According to Bosu et al., [13],
to evaluate the usefulness of a code review comment, an independent rater
needs to comprehend the code context, read the discussions between the code
author and the reviewer(s), and check whether the suggestions were incorpo-
rated by the author in a subsequent patchset. However, as the CQA members
had to manually assess a large number of code reviews within a short period
of time, they rarely investigated associated code contexts and relied primar-
ily on the comment thread. As a result, those evaluations were also prone to
inaccuracies.

3. Delayed assessment of code review quality SRBD managers usually sched-
uled a manual assessment period of code reviews once every two months. A
project’s status may change within these two months and the insights gained
from these manual assessment may be already obsolete. Moreover, SRBD man-
agers may need to wait more than two months to understand the impacts of
their new initiatives. They wanted to access status update more frequently.
Having CQA members working daily on the manual assessments could have

8 Masum Hasan et al.

been a solution. However, that would be costly and therefore was not feasible.
An automated framework, may solve this problem by providing faster access
to status updates.

4. Difficult to identify areas that need attention The manual assessment re-
ports of code reviews were created using spreadsheets and were primarily used
to identify the quality of reviews and the best reviewers. However, it is very
time-consuming to dig through these reports to identify areas of concerns. An
in-depth analysis to understand the contemporary review culture in the com-
pany, such as effectiveness of cross-project reviews, optimal time to spend in
reviews, and the best reviewers for a particular area, is very difficult to compile
from those spreadsheets.

To encounter the four above mentioned challenges, the operational goals of this
study is to develop an automated review quality assessment system that:

—_

aims to eliminate the requirements of manual assessment efforts.

is consistent, highly accurate, and reliable in identifying effective code reviews.

3. can assess a large number of review comments within a short period and provide
regular and timely status updates to SRBD managers.

4. enable a developer monitor his/her code review performance.

5. enable identifying areas where management intervention may be helpful and
facilitate follow-up monitoring.

6. facilitates in-depth analysis to identify improvement opportunities.

7. motivates reviewers to write better code reviews by making them aware that

their reviews are further analyzed and their effort would be acknowledged

(Hawthorne Effect [45]).

N

5 Step 2: Defining metrics to measure code review effectiveness

Following step 2 of the BSC framework, this section defines a set of metrics to
measure progress towards achieving our goals. To identify the best reviewer(s)
for a period SRBD used two metrics. The first metric, which is called Comment
Count (NC), is the total number of review comments made by a developer during
a period. The second metric, which is called Comment Usefulness Density (CUD),
was proposed by Bosu et al [13], and is measured using the proportion of review
comments that are useful. Therefore,

Uc
CUD = 5 (1)

Where UC' = Number of useful comments, NC' = Number of comment made by a
developer, and NC # 0

To select the best reviewer, two reviewer rankings were generated, one based
on the NC and the other based on the CUD. Using a developer’s position in these
two rankings, two scores were computed for him/her, which are:

— A reviewer’s NCscore = (N +1 - Position in the NC ranking); if a developer is
among the top N in the NC ranking, else it would be 0.

— Similarly, a reviewer’s CU Dscore = N + 1 - Position in the CUD ranking; if a
developer is among the the top N in the CUD ranking, else it would be 0.

Improving Effectiveness of Code Reviews 9

Here, N is a hyperparameter that can be selected based on the size and pri-
orities of an organization. N = 30 was being used at SRBD. Finally, a reviewer’s
aggregated review score was computed based on the following formula:

Reviewscore = NCscore + CU Dgcore (2)

Reviewer(s) with the highest Reviewscore would receive the best reviewer award(s)
for a period. While this scoring system takes into account both the number of re-
view comments as well as the usefulness of those comments, we noticed two primary
deficiencies in this measure. First, more than one third of code changes in SRBD
do not receive any comment during reviews as code changes were ‘acceptable as it
is’ to the reviewer(s). The Reviewscore measure fails to account for review efforts
spent on such acceptable code changes. Second, since a developer’s Reviewscore 18
based on his/her positions in two rankings, even if a he/she achieves higher NC
and CUD during a period than the last period, his/her Reviewscore still may be
lower, if his/her positions in the rankings degrade and vice versa. As a result, a
lower /higher Reviewscore does not necessarily indicate degradation/improvement
of a developer’s review effectiveness. For the same reason, it is not meaningful to
run cross-period comparison using the Reviewscore measure.

In this step, our goal was to define a set of metrics that: 1) would allow us
to measure the code review impact of a developer both in terms of review qual-
ity and review quantity, 2) would facilitate cross-period, cross-project, and cross-
organization comparisons, and 3) could be used to track degradation/improvement
of review effectiveness. Based on these requirements, we defined an additional set
of metrics. We measure the code review quantity using the number of code re-
views a developer has participated in during a period (NR). To estimate code
review quality, we define a new metric named, Issue Density (ID), which aims to
identify reviewers who actively participate in reviews by suggesting improvements
or identifying issues. Therefore,

ucC
Where UC' = Number of useful comments, NR = Number of code reviews, and

NR#0

To build a ranking of the reviewers based on both review quantity and review
quality, we propose two metrics. The first metric, which we call ‘Review efficiency
(RE)’, aims to identify the most effective reviewers combining review quantity and
quality measures according to the following equation.

RE =log2(NR+1) x (CUD + ID)

vc uUcC

We use binary logarithmic value of NR+1 to reduce the impact of the number
of reviews a developer has participated on the RE measure. Equation [4| rewards a
developer for authoring useful comments by increasing both the first and second
terms but penalizes him /her for useless comments by decreasing the first term. A
developer’s participation in additional reviews without making any comments will
have mixed effects by increasing the first term but decreasing the second term.

10 Masum Hasan et al.

Developer | NR | NC | UC | CUD ID RE RI

A 26 30 20 0.66 | 0.77 6.79 540
B 25 40 22 0.55 | 0.88 6.72 | 544
C 10 18 16 0.89 1.6 8.61 336
D 12 25 21 0.84 | 1.75 | 9.58 | 427
E 1 5 5 1.0 5.0 6.0 85
F 30 5 4 0.9 | 0.13 5.1 373

Table 1 Review profiles of six hypothetical developers to illustrate our metrics. The highest
value for each metric is highlighted using a bold text.

We include log2 (N R + 1) multiplier to account for reviewers who conducted only
one or two reviews but authored several useful comments in those reviews (e.g.,
Developer E in Table , as we want to recognize reviewers who authors useful
comments consistently rather than someone who participate rarely.

The second metric, which we call ‘Review Impact (RI), aims to identify the
most impactful reviewer(s) during a period. This measure, which is motivated
based on StackOverflow’s reputation scoring syste [59], awards (+10) point for
each review a developer participates, (4+15) points for each useful comment, and
(-2) points for each useless comment. Although the RI metric penalizes reviewers’
for useless comments, these penalties are 7.5 times lower than the rewards from a
useful comment and therefore may not dissuade a reviewer from authoring his/her
concerns.

RI=NRx104+UC %154 (NC - UC) x (=2)

=10« NR+17+xUC — 2+ NC (5)

Table |1] illustrates the metrics defined for this study based on review profiles
of six hypothetical developers. In this example, Developer B is the most impactful
reviewer with 25 review participation and 22 useful comments. Although, devel-
oper A participated in more code reviews, had both higher CUD and RE scores
than B, his/her RI score is lower than B due to lower number of useful comments.
Although developer F had the highest review participation, his/her RI score is
lower than both A and B due to his/her lowest number of useful comments. De-
veloper D is the most effective reviewer with 12 review participation and 21 useful
comments. Although E had the highest ID and the highest CUD scores, his/her
lack of participation in multiple reviews lowered his/her RE scores.

These illustrative examples as well as our discussions with SRBD managers
suggest that this set of metrics adequately measures SRBD’s progress towards
achieving more review participation from developers, promoting more useful code
reviews, and encouraging developers to be more careful during reviews. Moreover,
these metrics also satisfy our three requirements for the code review effectiveness
metrics.

Improving Effectiveness of Code Reviews 11

& Labeling

@_) |
web-app
; ; Data Raw Labeled Feature
Semi-supervised > —> >
InterSiew 7] Labeling Data ”| Calculation
—
Data Mining
Database
Y
Recursive
Deployment [¢—{ Model g Feature |«—{ Binarization [«—,Correlated
Training L feature removal
Elimination

Fig. 1 Research method to build an automated model to identify the usefulness of a review
comment

6 Step 3: Building a framework to measure the code review effectiveness
metrics

Following step 3 of the BSC framework, this step develops a framework to mea-
sure the metrics defined in the Section |5} Those metrics require classification of
each code review comment as either ‘useful’ or ‘not useful’. Since manual clas-
sifications are time-consuming, we developed an automated classifier to identify
the usefulness of a review comment. Figure |1| shows an overview of the research
methodology to build and evaluate our classifier. One of the researchers of this
study had participated in a prior study, where he and his colleagues developed a
classifier to identify useful code reviews at Microsoft |13]. We replicated their re-
search methodology to build a classifier for SRBD. In the following subsections, we
describe our replication protocol, research method, and evaluation of the classifier
models

6.1 Replication Protocol

Replications are crucial in the software engineering domain to build knowledge
through a family of experiments [8]. Shull et al. [58] classified SE replications
into two categories: 1) exact replications, in which study procedures are closely
followed; 2) conceptual replications, in which different research methodologies are
used to study the same set of questions. Exact replications can be further divided
into two subcategories: i) dependent and ii) independent. In a dependent replication,
all the variables and conditions are kept as close to the original studies as pos-
sible. However, some of the aspects of the original study can be modified in an
independent replication to fit a new context.

2 On StackOverflow, each accepted answer gets 15 points, upvote gets 10 points, and down-
vote gets -2 points

12 Masum Hasan et al.

Since the code review tool used by SRBD is different from the one used by Mi-
crosoft as reported in Bosu et al.’s study (referred as Microsoft study hereinafter),
some of the variables can’t be computed in this study. Therefore, We decided to
conduct an exact independent replication [58|. The Microsoft study was conducted
using the following three stages.

— Stage 1: What makes a comment useful? In the first stage, they conducted semi-
structured interviews of seven Microsoft developers. During those interviews
each developer answered questions regarding his/her perceptions of useful code
reviews and labeled 20-25 code review feedback given by others to his/her code.

— Stage 2: Automated classification of comment usefulness. In the second stage, the
authors of the Microsoft study manually classified 844 code review comments
based on the insights gained from the first stage. Using a combined dataset of
989 code review comments (i.e., 145 classified by developers and 844 classified
by the researchers), they developed a supervised learning based classifier using
the Decision tree algorithm to predict the usefulness of a code review comment.
Their classifier model, which was evaluated using 10-Fold cross validations
repeated 100 times, achieved a mean precision of 89.1%, mean recall of 85.1%,
and mean accuracy of 83.4%.

— Stage 3: Empirical study of factors influencing comment usefulness. Using the clas-
sifier developed in stage 2, Bosu et al. classified approximately 1.5 million code
review comments from five Microsoft projects. Using this large scale dataset,
they conducted an empirical study to understand the influences of various
human and contextual factors on the usefulness of code reviews.

Rahman et al. also conducted a conceptual replication of the Microsoft study
in a different commercial organization [53], where they used both textual features
and developer experiences to predict useful comments. While the Microsoft study
focused on predicting usefulness of a comment post-completion of a review, Rah-
man et al. focused on identifying potentially useful comments as soon as one is
made using only pre-completion attributes of a review. Since our goal in this step
is to develop an automated classifier to identify useful code review comments,
post-completion, a replication of the first two stages of the Microsoft study is ap-
propriate for our purpose. Following subsections detail our replication of the first
two stages of the Microsoft study.

6.2 Stage 1: Understanding what makes a comment useful to SRBD developers

Following subsections detail our data collection methodology, interview protocol,
and insights obtained from the interviews.

6.2.1 Data collection

We developed a Java application to mine the code reviews managed by a Gerrit [1],
the code review management system of SRBD. Our miner takes a start date, an
end date, and a login credential of a user as inputs. Connecting to the REST API of
SRBD’s Gerrit installation, our Gerritminer mines all the code reviews within the
given date range that the login credential holder has access to. For this study, we
were given access to seven projects that are currently under active development

Improving Effectiveness of Code Reviews 13

Projects | Changes | Inline Comments | Comment Labeled | Usefulness %
A 1666 2930 650 81.01
B 174 2010 639 81.71
C 48 1871 607 73.20
D 4937 1759 30 93.10
E 1898 1247 211 95.67
F 446 393 54 98.18
G 308 183 13 53.85
Total 9477 10393 2204 81.04

Table 2 Project-wise Distribution of our mined dataset. Project names are anonymized due
to SRBD policies. Usefulness % indicates the ratio of useful code review comments from that
project based on manual labeling.

Demographics Category description Number of developers
Less than one year 3
Software development Between one to three years 5
experience Between four to six years 3
More than six years 3
Tool-based code review Less than one year 4
experience Between one to three years 5
More than three years 5
Less than five hours 6
Average hours per week spent Between six to ten hours 5
in code reviews More than ten hours 3

Table 3 Demographics of the interviewees

at SRBD. We mined a total of 9,477 code reviews, spanning four months from
those seven projects. A total of 301 distinct developers participated in those code
reviews. Table [2[shows project-wise distributions of the mined code reviews.

6.2.2 Developer interviews

We conducted semi-structured interviews of 14 SRBD developers from the seven
selected projects to understand their perceptions of useful code reviews. We care-
fully selected the interviewees to represent various levels of tenure years at SRBD
from a pool of developers who have received at least 50 code reviews in the pre-
vious 6 months. We tried to make sure our interview responses represent different
levels of experience in development and code review practice. Table [3| provides an
overview of the interviewees’ demographics in terms of: i) software development
experience, ii) code review experience, and iii) average hours per week spent in
code reviews. The duration of each interview was approximately 50 minutes, which
is longer than the interview duration in the Microsoft study (i.e., 30 minutes). Dur-
ing our preparation for each interview, we randomly selected 50 review comments
given to the code changes authored by the interviewee.

Similar to the Microsoft study, our interviews were conducted in three phases.
In the first phase, (about 5 minutes), we asked the interviewees demographic ques-
tions such as: job role, education, and software development experience, as well
as questions to understand their perceptions of useful code reviews. In the second
phase (approximately 40 minutes), we showed each interviewee our pre-selected
50 review comments for code changes that he/she has authored recently. For each
of these comments, we ask an interviewee to perform the following four tasks.

14 Masum Hasan et al.

Rate whether he/she found a comment as ‘Useful” or ‘Not Useful’.

Briefly explain the rationale behind his/her classification.

Mention if he/she made code changes to address that comment.

Classify that comment into one of our 18 predefined categories (Figure .
This categorization scheme is based on the scheme developed by Mantyla et
el. [48] and later enhanced by Bosu et al. [13| in the Microsoft study. Similar
to the Microsoft study, we also provided each interviewee with a printed copy
of the comment classification scheme that includes a brief description of each
category to assist the interviewee’s classification.

L

In the final phase of the interviews (approximately 5 minutes), we asked the
interviewees to rank the comment categories based on how useful they perceive
each category as. The interviewer took notes during the interview as well as wrote
down selected ratings, categories, and explanations for each review comment on a
printed interview form. We also recorded audios of the interviews with the inter-
viewees’ consent. Immediately after each interview, we completed our notes with
further details based on our discussions. We also listened to the audio record-
ings to verify the answers and notes. We stopped conducting further interviews,
when we reached an information saturation (i.e., we were no longer obtaining any
new insights from interviews), after 14 interviews. During those interviews, our
interviewees labeled a total 410 review comments as useful or not useful and also
classified those comments into one of the 18 comment categories.

6.2.3 Insights Gained from the Interviews:

The distribution of the ratings in various review comments categorized by the
authors during the interview and the labeling process (Section is shown in
Figure [2| We see that a much smaller number of review comments in our findings
fall in the ‘Other’ category than the previous study [13]. This reduction is indicative
that the new categories included in this labeling step (i.e., Alternate Output,
Design Discussion, Praise, and Question) cover all code review comments more
adequately than the 9 and 13 categories defined in previous studies respectively
[1348]. Although, expectations from code reviews are identifying functional defects
(i.e., validation, logical, defect, resource, Interface, and support) [6], only 13%
code review comments belonged to those categories according to our interviewees.
This result is consistent with prior studies that found less than 15% code review
comments identifying functional defects |9}[13}[22].

According to SRBD Developers, a code review comment is Useful if it does at
least one of the following:

(i) Identifies a defect in code.
(ii) Points out missing input validations.
iii) Helps to make code efficient and optimized.

)
)
iv) Suggests code readability improvements.
(v) Identifies logical mistakes.
(vi) Identifies redundant code.
(vil) Points out corner cases.
(viii) Helps with code integration.
(ix) Helps to detect the use of deprecated functions that will be harmful in the

future merging.

Improving Effectiveness of Code Reviews 15

B Useful @ Not Useful

30%

20%

10%

Fig. 2 Distribution of various categories of code review comments as classified by SRBD
developers

Suggests design improvements.
Helps maintain coding standards.

On the other hand a Not useful comment belongs to one of the following:

(i) Visual representation issues that can be also identified using static analysis
tools.
) False positive.
iii) Code misinterpretation.
) Discussion on an already resolved issue.
) Solution approach that the author does not agree with.

For the following categories of comments, SRBD developers had mixed opinions
as some of our interviewees considered those as Useful while the others had a
reverse opinion.

(i) Praise (Useful: 1, Not Useful: 4

(ii) Questions asking clarifications (Useful: 1, Not Useful: 2)
(iii) Suggestions to improve documentation (Useful: 3, Not Useful: 2)

3 The numbers represent the number of interviewees that consider this type of comment as
Useful or Not Useful

16 Masum Hasan et al.

6.3 Stage 2: Building a classifier to automatically identify useful comments

Following subsections describe our approach to create a ground truth dataset, and
training and evaluation of an automated classifier to predict the usefulness of code
review comments using that dataset.

6.3.1 Development of a ground truth dataset

To develop a reliable supervised learning based classifier, we need a labeled training
dataset (aka oracle). Although we got 410 comments classified by authors during
the interviews, this dataset may not be adequate to build a reliable classifier. In
the Microsoft study [13] as well as in its replication by Rahman et al. [53], the
researchers labeled additional code review comments themselves based on insights
obtained from the interviews. However, code review comments labeled by the tar-
get author would be more accurate, since an author has the best knowledge of
whether a comment was useful to him/her [13]. Therefore, we decided to get all
the comments for our oracle labeled by target code authors.

As manual data collection from the code authors is tedious, and time-consuming,
we developed a web application using Python and Django framework to facilitate
asynchronous labeling of code review comments. Figure |3| shows the primary web
form of our labeling application. Once authenticated, this application shows a de-
veloper one review comment at a time, that was given to his/her code. This form
also includes a link to view the comment in Gerrit, in case the author wants to
examine more context. We designed this web application to replicate our 3 phase
face-to-face interview process discussed in Section A developer could login
to this labeling app with his/her SRBD credentials.

We invited only those developers who had received at least 50 code review
comments during the past four months. Participation in this labeling task was
voluntary and a total 40 developers signed up for this task. We organized a tuto-
rial, where we demonstrated the labeling app and described labeling instructions
to the participants. During our demonstration, we also received feedback from the
participants to improve the labeling app and several of those changes were incor-
porated before the initiation of the labeling process. In total, 35 out of the 40
developers who signed up for this task completed the labeling process.

For each comment, an author was asked not only to rate its usefulness but also
to categorize it based on the classification scheme used in our developer interviews
(Section . With the help of this web application, the raters labeled a total of
1594 comments. By merging this dataset of 1594 comments with the dataset of 410
comments, labeled during face-to-face interviews, we prepared a labeled dataset
of 2,004 comments. In our dataset, 81.04% of the data was labeled as ‘useful’ by
the code authors. Table [2| demonstrates project-wise usefulness distribution.

6.3.2 Feature Selection

Our goal is to build a post-review completion classifier, as we do not need to build a
classifier to predict comment usefulness at the time a comment is written. We con-
sidered all the features used in the Microsoft study |13]| except the ‘thread status’
attribute. Since SRBD’s Gerrit installation did not have any feature to indicate
the status of a review comment, we were forced to exclude the this attribute.

Improving Effectiveness of Code Reviews 17

Author: Instructions
Comments done: . Comments left:

Usefulness of Code Review

Project Name:
Reviwer's Name:

Review Comment: lease checkifindex less than count, otherwise
indexOutOfBound exception might arise

File Url:
Usefulness Rating Why did you select that rating?
Useful Insert Tags:
Not Useful

How did you address this comment?

Change Triggered
No Change Triggered

Which of the categories do you think this comment fits in?

Alternate Output
Design Discussion
Documentation
False Positive
Interface

Larger Defect
Logical

Naming Convention
Organization of Code
Praise

Question

Resource

Solution Approach
Support

Timing

Validation

Visval Representation
Others

Fig. 3 Screenshot of the web application to label the usefulness of a code review comment

We also included the majority of the features used in the Rahman et al.’s
study . For each of the 26 features selected for this study, Table 4| provides
a brief description, a brief rational indicating why that feature may be useful
in predicting useful comments, and whether that feature was used either in the
Microsoft study or in the Rahman et al.’s study. We group those features into
three categories:

— Textual features are computed from the code review comment text.
— Review context features are based on the code review process where a comment
occurred.

— Ezxperience features are based on the experience of the reviewer, who wrote the
review.

sseunyesn sy 101paId 0} JUSUIMIOD MITIASI SPOD [es I0j payndurod sernjes,] ¥ o[qel,

“A[JUDIaIp ssounjasn oA10d19d JYSIu [9A9] 90USLIIAXD JUSIDHIP
woyy s1ado[aad(] "9seqapod s309foad oYy yimm doustadxe s 1odopasp oy sojedrpuy

p0afoxd juormd
J0J P9YJIUIMIOD SBY I0YJNe 9P0d 9y} S9SURYD 9POd JO IDQUINU JY],

sousrradxe-1odojaaap

‘sonsst SuIAJIuopr e 191394 198 Aew 19doaaop ® ‘00uslIadXe MOIADI IOW YA\

*p0afoxd
JUOLIND I0J POMIIADI SBY J9MIIAJI 9} S9SURYD 9POD JO IDqUINU oY T,

9ousLIadxo~SUIMTADL

‘o[JULIIND B} YIM AJLIRI[IUUR] S IOMIIADI BY} S9JRIIPU]

*o[JuaLIMD
oY} 10J PAJIUWIWIOD SBY IOMOIADL 9} S9SURYD 9POD JO IoqUINU O,

diysioumo-apod

>SS S

"9l JUDIIND YY) JO AJLIRI[IUIR] S IOMIIADI SOIRIIPUT

*9I10Jo(PIMIIAII SRy
19MOIARI 9]} O] JULLIND B} Jo seSuryd 9pod toud Jo J_pquinu oYy,

diysiomoraa1-opoo

soanjeay dduslIdXy

“j0U 10 [njesn oq Aewr (9InqLryye yoyed-1se[si 09s)mataal e jo yojed jse[oyy

Masum Hasan et al.

18

2 SuLIp BpeW JUSWIUIOD ISYIOYM AJIyuept 03 juejroduil ST oSURYD dY) JO SNJR)S [RUL] * peuopueqe, 10 paSIoul, sem 9SURYD 9pP0d O] IAYIPYA\ STJRIS MITADI
rsuosiad opdiynut woy
2 Jndur Speat Jey) UISOUOD B 9JEDIPUI ABU PELIY) JUSUIMIOD & Ul sSuosiod 0m) Uey) aI0[\ ‘peaI) Juawmod o) ur sywedonred jo equumy juedonred wnu
‘ngosn aq 03 A[YI] dI0UW dI0J
2 -9I91[} PUE UOISSNOSIP B 9BIIPUI AR PEAIY) MAIADI ® Ul SJUSUIIOD JO IDQUINU I9YSIE] “PEAI} JUSTWIOD A} UI SFUSIUIOD JO ISUINU [B0], q)Sus| peaIy)
-o8ueyd
9p0D 9} UOpURQE 0} IOYINE ST} PAOIOJ JUSUIUIOD Jer[} SSI[UN [NJAsn 8] 03 A[aYI[SSa] *MOIADI BT}
2 oIe 010jo101) pue sefueyd 108811y jou op A[ensn soydjed jse[oY) je dpeW sjuowwo) | 10§ josydjed Jse[dY) SI JUSUIWOD oY) YIIM pajerdosse ydyed ayy JT oyed-yserst
RSIOA 9OIA PUE (JUSUIUIOD [NJOSTL UB '9'T) I9MIIA
-01 97})M juowooiSe ue djedipul Aewr puodsal s I0YNE) Ul JUIWIPUIS dATISO] *3x03 A[dod oy} 10§ 91008 juowIjuLs [¢f YD1ueg JuowjuasA[dox
*IOMATADI BY[} WIOTJ
20UR)SISSR JO JUOWISPO[MOUNOR JIOI[dXD JO SUOIJRIIPUI U9YJO dIR SJUSWIIOD IPNJIJRI) 030, Syuvyf, ‘,nof yuoy, Yym spuodsol 1oyjne apod oyy I opnjrjeIs
“JUUWIUIOD [NJOSN UR SI0JOIOY} PUR 019
‘SONSSI PAYIIULPI JO JuotaSpamouspe J1dxo djeorpur uajjo sesuodsolr Liojeuniyuo) | ‘, paaowady, ‘,porld, ‘U0, Yym spuodsol Ioyjne apod oyl JI asuodsor £10)eUIUOd
-a8uerd
2 o) paIa8S8LI) Juomuod re(norgred oy Jr oyedIpurl S 1SSy d8URYD O] JO 9dURISI(] POLINDO0 J1 J1 SULRYD DPOD OI[) JO AOUBISIP dUI[O], o8uerp-our|
g1 yuowrmion rsoyoyed juanbas
2 91} SSOIPPE 0} DPOd YY) dFuRYD 0} A[AYI[SIOW SI IOYJNE I} ‘[NJOSN SI JUOWWOD © J] | -qns 9y} JO U0 Ul SFUBYD © PoIdSFLI) JUSUIUIOD MOIADI dPOD BY) JT 10881108 ueyD
* "SIOMATARI WOIJ SUOrsaSSns uo paseq afueyd *MAIADI
2 oty Suraoxdurt APAIjRILI IoyINe oY) ‘ojedrpul Aew spsypjed Jo Idqunu 108Ie] Y | 9pod sIY) 10j (UOIRINI MOTADI “0T) sjasyojed Jo Idquunu €10} oY], soypyed-wnu
*SONSSI IOUTW opn[our 0y A[yI[o10w are sayoyed Ia9e[o[Iym “poyjI
2 ‘Su1901U00 Io[etr AJryuspt 0y AaNI[a10w oxe saydyed [RIHIUT oY) SULINP SPLUI SJUSWIWIO)) | -ns ST JUSUINIOD J[) dIAYM 9POD 90INO0S A} Jo Ioquinu ypyed oy T, prpjed
uors
“[9¥| 1x07100 9p0d oYy Surpuejsiopun Apodoid oYM SpeUT 0 ABUT MAIADI A)sey Y | -SIWIQNS JUSWIUIOD pue peo[dn 9pod oY) UddMID] [BAIDIUT SUITY YT, TRATOYUT MOTADY]
e1] ruowa8pamouspoe
qror[d it s9jedIpur Usjjo esuodsal ou, € ‘puey ISYJ0) U() "ANSSI PAYIJUSPT Y JO JUSUL
-o8pajmous(or JI01[dXo 10 UOIYedYLIR]D IDY}1d dyedIpul ARl I0yjne) wolj asuodsal y *JUSTITIOD MITADI 93} 03 popuodsal Ioyjne ayy J| papuodsaa-ioyjne
1X9jU0) MOIADY
*OIjuRIAS
ou 10 9[9[YHM SIUSIWIOD SATJRULIOJUL SSO[ajedrpul Aewr sprom-dojs oryer 1oySIff “[gg| yuowrmioo oy ur spiom dojs jo oryes oy, oryerprom-dojs
‘puaypaduiod JMoyyip 9q LeW JI0US 00 ST JRY) JUIUWWOD Y *JUSTIUIOD & UL SPIOM JO IdquInN JUNOD™pPIOM
2 ‘[vz) mo1401 © SuLmp suorsnjuood osned Aew puLYPIdUIOd 0] JNOLJIP dIE JBY) SJUSWWO)) ‘[9g] 21008 Ay1IqepEaI preoury-yosay g Ayrqiqepeax
Teel aar-ar Swsn
*9pO0D 91} 0} IR[IWIS SIB PUE SPOD B} WOIJ SUSO) UTEIUOD USYO SMOIADI [NJAS[) | JUSUWIUIOD MIIADI PUR SPOD 9IINOS I} USOMII] AJLIRIUIIS SUISO)) Ayureqruats
*JUSWITIOD A} Ul SJUIWA[A dPOD JO 2ouedYIUSIS dAIYR[DI AY) Juosaidor 0y St SIyJ, *JUSWITIOD A} UI SUSYO) OPOD 9IINOS JO OIFRl O T, O17RI JUOUID[9~dPOD
‘u01)sa88ns Juawesodur ogwads 10 9pPOd JO UOIPLS
2 oyroads & SuipreSal suIedU0d I9Y}Id 9JRIIPUI UIYJO SUSYO) OPOD 9DINOS JO UOISN[OU] *JUSTITIOD & U SUSYO) OPOD OINOS JO IQUINN I9qUINU-JUIWA[O~IPOD
[ngesn aq 03 suorsenb
19pisuoo jou op s1odoadp S oY} Jo ysout ‘[| s1odo[oAdp JOSOIDI O3 0} Je[IuIlg *JUOUIUIOD ® UL SOOUDIUDS dAIFRSOIIUIL JO O1yeY orjer-uorjsonb
2 9IN7L9J [NJOSN UE S8 JUSUIWIOD JO JUaWuas punoj [¢1] Apnis 1JosoIdrN ‘[¢] yonueg Sursn pejyemores ST JULUIIOD OY) JO JUSUINIULS YT, JUSUIT)ULS JUSUITIOD
gl aarar
2 *)X0) 9} WO SIINJLd] USPPIY AJIJUSPI 0} ISYISSL[D oY} SMO[[Y | SUISN 10109A [RUOISUSWIP POXY © OJUI PAUIN] ST X9} 9FLSSOUr oY J, 1x0) 98essaI\
soanjeaq [enyxoL,
Apnjs
130SOIIN oreuoryey uorjdriose(q sangjesq

Improving Effectiveness of Code Reviews 19

6.3.3 Feature Computation

While the majority of the attributes selected for classifier can be directly mined
from Gerrit, some of the attributes required additional computation. Using Gerrit’s
REST API and the Java diff utils library [49], we implemented a Java application
to automatically identify whether a review comment triggered a change within
its close proximity (within 5 lines above or below). To estimate the sentiment ex-
pressed in a comment, the Microsoft study used the MSR-Splat tool. However, we
replaced it with SentiCR [5], an SE domain specific sentiment analysis tool, since
recent research found SE domain specific tools outperforming off-the-shelf senti-
ment analysis tools [50]. We chose SentiCR over other tools (e.g., Senti4SD [15]
and SentiStrength-SE [36]), since it is customized specifically for code review texts.
We used the TextStat [|4] library for calculating the Flesch-Kincaid readability
score [26]. We curated a list of commonly occurring programming keywords (e.g.
“if 7, “class”, “switch”, “void”, and “null”), programming word patterns (e.g.
camelCase, snake_case, abc123 etc.), and reserved words in pupular programming
languages (e.g. “abstract”, “assert”, “boolean”, “break”, etc.), to identify pro-
gramming words in a review comment. To measure the similarity between a re-
view comment and its code context, we remove coding syntaxes, stop-words from
the code and comment, lemmatize using the NLTK [2] library, vectorize both us-
ing TF-IDF [57] and finally, calculate the cosine similarity between the code and
comment vectors.

6.3.4 Redundant Feature Elimination

If two features are highly correlated, they are linearly dependent and have al-
most the same effect on the dependent variable. Therefore, dropping one of two
highly correlated features reduces correlation biases [64]. We computed a Pear-
son correlation matrix for our feature set and from each highly correlated (<
0.9) feature clusters, we eliminated features having lower correlation with the
ground truth usefulness score. For example, we found that “change_trigger” and
“line_change” are highly correlated with each other. Since the usefulness label’s
(‘is_useful’) correlatio with “change_trigger” is lower than its correlation with
“line_change”, we eliminate the“change_trigger” feature here. Similarly, from the
“num_comments_in_thread”, “author_responded” pair, we eliminated the first fea-
ture.

Since some of the features are on ratio scales (e.g., review interval, experience
measures, similarity scores) , we discretized such features using qcut, the Quantile-
based discretization function from the Pandas libarary [3| to reduce potential
overfitting. To identify the optimum number of features to maximize the Fscore,
we use the Recursive Feature Elimination with Cross Validation (RFECV) function
from the Scikit-Learn library [14]. RFECV eliminates the features that do not
contribute significantly to a model’s performance. In this stage, “reply_sentiment”
feature is eliminated. Details about our feature selection as well as model training
steps are publicly available in Jupyter Notebook format at: https://github.com/
WSU-SEAL/CRA-usefulness-model.

4 Point biserial correlation

https://github.com/WSU-SEAL/CRA-usefulness-model
https://github.com/WSU-SEAL/CRA-usefulness-model

20 Masum Hasan et al.

Classifier A - Us;ful - - Not gseful -

DT 81.06 91.02 85.03 87.89 49.82 63.91 55.70
RF 87.32 90.92 93.74 92.28 69.08 59.87 63.70
SVM 63.94 85.70 67.90 72.30 30.02 47.93 30.81
MLPC 78.45 89.54 83.39 85.93 48.34 57.00 49.77
XGBoost | 85.44 90.89 91.20 91.01 61.86 60.99 60.90
LR 73.77 87.03 79.49 83.05 35.87 49.27 41.25

Table 5 Accuracy, Precision, Recall, and Fy scores for ‘Useful’ and ‘Not Useful’ classes
for the six models

6.3.5 Model Training and FEvaluation

We evaluated the performances of the trained models based on three steps. In
the first step of our evaluation, we compared the performances of six classification
algorithms to train our model. In the second step, we compared the performances
of our best performing model with human labelers from the CQA team. Finally,
we compared the performance of our models against usefulness classifiers trained
in prior studies [13}|53].

Models and hyperparameters: We trained classifier models with six supervised
learning based algorithms: Decision Tree (DT) [37], Random Forest (RF) [31],
SVM [60], Multi Layer Perceptron (MLPC) [33], XGBoost [18], and Logistic Re-
gression (LR) [34]. To find the suitable hyperparameter set for each classifier, we
perform a grid search for each hyperparameter. For both RF and XGBoost, we
varied with the number of estimators (n) between 25 to 400 with an increment of
25, and found n = 225 yielding the best results. For the MLPC model, we varied
both the number of hidden layers and learning rates. The number of hidden layers
was chosen from the set: { 64, 128, 256, 512}, and the learning rate was selected
from the set: { le — 5, le — 4, le — 3, le — 2, le — 1}. We found that the num-
ber of hidden layers = 256 and learning rate = le — 4 combination boosting the
best performance. For DT, we varied max_depth between from 2 to 20 and found
max_depth=16 boosting the best performance. For LR, we tested with different
solvers and found the ‘lbfgs’ solver boosting the best performance. We accepted
the default parameters for the SVM as implemented in the LinearSVC class of
the scikit-learn library [14]. We used data augmentation method SMOTE [17] to
account for imbalance in our training set.

Selection of the best model: Table [5| shows the average performances of the
six selected algorithms based on 20 times 10-Fold cross-validations. A, P, R, F1,
indicate the average Accuracy, average Precision, average Recall, and average F}
score of the models respectively. We report the later 3 scores for both Useful and
Not Useful classes separately.

Our results (Table [5) suggest that a model trained using the RF algorithm
achieves the best performances in five out of the seven measures . Therefore, we
also compared the performances of the RF model against the models based on the
other five algorithms. For this evaluation, we obtained 200 test results for each
measure (e.g., 200 precision scores for the DT models and so on) from our 20
times 10-Fold cross validations. We created the initial partition using the same

Improving Effectiveness of Code Reviews 21

Useful Not Useful
Models A B " Ty B " '
DT 6.11 -0.28 8.72 4.31 18.71 -5.06 7.30
SVM 26.14 4.97 | 30.45 24.11 40.90 8.54 32.49
MLPC 8.76 1.28 10.28 6.30 19.80 1.94 13.08
XGBoost 1.96 0.002 2.70 1.33 7.69 | -1.17 2.86
LR 13.42 3.65 14.35 9.18 32.71 9.45 21.70

Table 6 Performance advantages from the best performing model (i.e., Random Forest) over
the other five models. Negative values indicate performance degradations. Statistically signif-
icant differences (p < 0.05) are shown in bold.

random,stateﬁ value to make sure that each algorithm gets the same sequence
of train/test datasets. Since the performance measures of both SVM and MLPC
significantly differs from a normal distribution (Shapiro-Wilk, p < 0.05), we used
non-parametric paired sample Wilcoxon Signed-rank tests to check if the perfor-
mances of the RF model significantly differ from the other five models. The results
suggest (Table @ that the RF model has significantly higher accuracy, higher re-
call for the ‘Useful’ class, higher precision for the ‘Not Useful’ class, and higher
F-scores for the both classes than all the other five models. Both DT and XGBoost
have significantly higher recall for the ‘Not useful’ class, while DT also has signifi-
cantly higher precision for the ‘Useful’ class. These results further validate that the
RF model boosts the most balanced performances and outperforms the other five
models. Therefore, we decided to use RF-based models for practical applications
as well as for performance comparisons against human experts and similar prior
models.

Comparison against human labelers: As we have discussed in Section 4} two
or more experienced members from the Code Quality Assessment (CQA) team
used to manually evaluate the usefulness of all code reviews to identify the best
reviewer. Since our model aims to replace this manual labeling step, we compared
the performances of our best performing model against the human labelers from
the CQA team.

With this goal, we created a test dataset by randomly selecting 10% comments
from our labeled dataset and the remaining 90% comments were assigned to the
training data. We used the best performing algorithm , i.e., the RF model, to train
a model based on the training dataset and evaluated its performance on the test
data. We also asked an expert evaluator from the CQA team to independently
rate the usefulness of each comment from the test data. We compute the perfor-
mances of the human labeler and our classifier against the ground truth (i.e., label
received from code author). The top two rows of the Table [7| show a performance
comparison of our automated model against human raters. The results indicate
that our automated model not only saves manual labeling efforts but also outper-
forms the human experts by aligning more frequently (i.e., higher accuracy and
F-score) with the perceptions of the target code authors.

Comparison against similar models: We compare our best performing model
against similar models developed in two prior studies. While we considered all the
features used by both Bosu et al. [13] and Rahman et al. [53], we were unable to

5 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
KFold.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

22 Masum Hasan et al.

Classifier A - [Us;ful [- - 1\{01: gseﬁ[ll =
Human Expert 61.88 86.81 61.72 72.15 28.99 62.50 39.60
Our Classifier 87.20 90.87 93.63 92.20 68.69 59.74 63.44
Bosu et al. [13] 75.27 88.76 79.59 83.87 39.39 56.78 46.17
Rahman et al. [53] | 79.32 88.67 85.42 86.97 46.08 53.37 49.05

Table 7 Comparison of our automated model’s performances against a human rater from the
CQA team, and similar models from two prior studies. Statistically significant improvements
based on one-sample Wilcoxon Signed rank test (p < 0.05) are shown in bold

compute two attributes. First, the ‘Thread Status’ attribute used in Bosu et al. is
not available in SRBD’s Gerrit. Second, the ‘External Library Experience’ feature
used in Rahman et al. could not be computed as we were not given full access to
SRBD’s code repositories. Excluding those two attributes, we used the exact same
algorithms and attributes to train and evaluate similar models using our dataset.
The bottom two rows of Table|7|show the average performances of the two models
based on 20 times 10-Fold crosss-validations. The results indicate that our model
outperforms both Bosu et al.’s [13] and Rahman et al.’s [53] models on our dataset.

Feature Importance Analysis: We conducted a feature importance analysis for
the best performing classifier (i.e.,RF) by calculating the Gini importance value
for each feature used in classification. According to the results (Figure [4)), review
context such as number of comments, total number of patches and current patchset
number, reviewer’s experience with file under review, and textual features of the
review comment had the highest influences on the fitted model.

7 Step 4: Build a monitoring mechanism to inform the stakeholders

This section implements step 4 of the BSC framework by developing Code Review
Analytics (CRA), an web application that integrates the best performing model
trained in the Step 3 (Section@. This tool enables SRBD managers and developers
to continuously monitor code review effectiveness of different projects using the
set of metrics defined in the Step 2 (Section as well as individual developers.
This tool allows SRBD managers to identify best reviewers during a period as well
as create new initiatives to improve different projects’ code reviews. Following
subsections describe the development and evaluation of this CRA platform.

7.1 Development of the Code Review Analytics (CRA) tool

The CRA web app is built using four primary modules as illustrated in Figure
and described in the following.

1. Data Miner: The Data Miner is developed using an automated script. Upon
invocation, the miner connects to a Gerrit server’s REST API and downloads
the code review comments created / modified since its most recent invocation.
For each of the review comments, the miner computes the 16 features used in
our classifier, predicts its usefulness, and stores the prediction in a database.
From a configuration page, an admin user can configure the mining interval as
well as manually initiate a run.

Improving Effectiveness of Code Reviews 23

0.12 A
0.10 4
0.08 1
0.06 1
0.04 1
0.02 4
0.00 -
2 0w 0 ¥ T 0 0 VW U > T > 0 9 £ o ou v o0 o o <
c d g5 2 o528 82222 L5 L 38T 20§
< | e B c = ¢ T ® E S £ B - ® 3z %
£ [¥] o o o © = o o o © “ £ 9] © Q £ oD ©
s O = c 3 2 ® £ = ' E 5 © E W G o L=
€ © g ' & G T I @ § € € T E=E] = S © 1
5§ & 5 o 8 98 4 3§ ¥ E E T g € 5] £ 2 § C 4
o w5 v 2 € = g ;I a 9 Y 0 % N T O o ©O o
P E g c gl € S22 3 BI >0 g > o £ u 2
5 25 = o) S o 5 9 o ¢ EI ‘5l g L]
- [° o =
S £ 6 © ® < 2 ° 5 £ 9
EI £ O 5 E é BI c 5
& o =
g © & ¢ E £
> N o >
c S ©
o I
o 2
i
€
=}
c

Fig. 4 Relative importance of the features for the best performing model (i.e., Random Forest

No
« ' —
-

Classifier

Database

Query/ T
Query Save classlfled
Results Classify

Initiate Miner mined data

Dashboard

Fig. 5 Workflow of the Code Review Analytics Web Application

2. Dashboard: After logging in to the CRA app, a user is greeted with a Dash-
board page that displays a summary of code review performance in the pre-
ceding period (Fig @ The best reviewer and the best project of the previous
period are displayed on the top of the dashboard, along with some additional
details about the overall performance of the company (e.g., the percent of
Useful and Not Useful comments, the top 5 reviewers / and projects) .

3. Reviewer & Project Ranking Page: Reviewer & Project Ranking Page page
allows a user to view comparison between reviewers and projects for an arbi-

24 Masum Hasan et al.

APR =

Dashboard
& Deshber Dashboard / Overview

Best Project of Last Month @ Overall Usefulness

Useful Comments: 38 Inline Comments: 40 Total Comments: 53

Best Reviewer of Last Month

Useful Comments: 13 Inline Comments: 13 Total Comments: 14

@ Change Trigger @ Merged/Abandoned @ Comment Length

MERGED, 96.4
ABANDONED, 3.6%

@ Change Triggered @ Change Not Triggered @ VERGED @ ABANDONED

Comment Length

14t Top Reviewers 1l Top Projects

Top 5 Reviewers Top 5 Projects

Fig. 6 Screenshot of a dashboard page of the Code Review Analytics (CRA) tool

trary date range. For reviewers and projects, the user can see their ranking
based on the ranking mechanism described in Section |5} A snapshot of the
reviewer’s Detailed Analysis table at SRBD is shown in Fig.

4. Reviewer or Project Details page: Whenever the name of a reviewer or
project name is clicked either from Dashboard page or Reviewer & Project
Ranking page, the user is directed to the Reviewer or Project details page,
where he/she can view the performance of the reviewer or the project for each
month based on the set of metrics defined in Section [l

7.2 Tool Evaluation

After development and testing of the CRA web app, we deployed it at SRBD’s
internal network and ran the miner to populate the app’s database with all the code
review comments authored during the last four months. We sent out invitations
to a selected group of SRBD developers and managers to independently use the
CRA tool for two weeks. After this initial evaluation period, we emailed a survey to
nine CRA users who have voluntarily participated in the evaluation, among whom

Improving Effectiveness of Code Reviews 25

Dashboard / Navigate

Start Date: End Date:

B8 Navigate

Showing results for Wed May 1 00:00:00 2019 to Sat Jun 1 00:00:00 2019

EB Reviewers

Show 10 + entries Search:

Reviewer Name NR NC uc CUD=UC/NC ID=UC/NR RE RI
139 65 63 097 045 1012 2331
108 36 36 10 033 90 1620
22 50 38 0.76 041 765 1466
67 9 0 0 0 00 652
23 o o o 0o 216
12 5 0 0 0 00 110
] 5 o o o 0o 80
3 5 0 0 0 00 20
3 - o o o 0o 20
2 2 0 0 0 00 16

Reviewer Name NR NC uc CUD=UC/NC ID=UC/NR RE Rl

Showing 1 to 10 of 93 entries Previous 203 4 s 10 Next

Fig. 7 Screenshot of the Reviewer ranking page of the CRA tool showing the six measures
computed for each developer

Question

Q1. | What are your roles in SRBD?

Q2. | Why do you think improving effectiveness of code reviews is important?
Q3. | How many days have you used the CRA tool during the last one week?
Q4. | On ascale 1 to 10, how useful do you find the CRA tool?

Q5. | What are the insights that you are getting from the tool?

Q6 Has the tool helped you in any way in your decision making?

Q7. | Do you have any suggestion to improve our tool?

Table 8 User evluation survey questions for the CRA application

there were three managers who are involved in SRBD best reviewer selection,
two members of the CQA team who have previously been involved in manual
code review analysis project at SRBD, three mid-level developers, and one entry-
level developer. Table |8|shows the seven questions included in this user evaluation
survey.

Majority of the invitees of our survey indicated that they had used the CRA
tool multiple days during the last week. All the nine respondents rated the use-
fulness of the CRA tool 7 or higher on the scale of 10, with the average score
being 7.44. According to the respondents, the insights they had obtained from the
CRA tool include: identifying the best reviewers (ﬂ, continuous monitoring of
code review performance (3), understand /improve organization’s code review cul-

6 Numbers in parentheses indicate how many CRA users of our evaluation survey mentioned
this particular insight. One user may have mentioned multiple insights.

26 Masum Hasan et al.

ture (3), identify code review effectiveness of a project or the entire organization
(2), incentives for doing better reviews (1), identifying review standards (1), self-
improvement as a reviewer (1). Three out of the nine respondents also indicated
that the CRA tool already helped their decision making during the evaluation
period. The results of our evaluation suggest that the CRA tool achieves the goal
of building an automated mechanism to inform key individuals current scoreboard
status and help their decision-making.

8 Discussion

Several studies related to code reviews [12|13/40,|53] foretold the promising appli-
cation of automatic code review analysis at large scale. Having deployed such a
tool at SRBD, in this section we discuss its implications.

Self-improvement: Continuous monitoring of reviewer performance in our
analysis tool helps reviewers identify their strengths and weaknesses and improve
their weaker areas. This quicker feedback speeds up the reviewer self-improvement.
Furthermore, previous studies suggest that the awareness of being observed makes
individuals modify their behavior to improve productivity [45]. This phenomenon
is known as the Hawthorne Effect. Knowing that the code reviews are going to be
evaluated, reviewers would be more careful about reviewing code.

Training: The CRA tool developed in this research allows the management to
observe continuous performance of individual projects and reviewers. Hence, the
management can identify weaker reviewers and projects and organize necessary
training sessions to the reviewers and projects in need. With the help of the anal-
ysis tool the managers can also observe the effect of their training, and update
their training methodology accordingly. Visualizing the time-series of code review
performance, the managers can also get an idea about how each of their deci-
sions are affecting the code review quality, and train themselves becoming better
decision-makers.

Determine initiatives: Our CRA tool allows the management to see the snap-
shot of project organization at any given time. This helps them identify weaker
areas, projects, and take necessary initiatives to improve them. Our analysis tool
brings the intricate organizational architecture in interpretable graphical interface,
and simplifies the decision making process.

Motivating reviewers: By recognizing the best reviewers and projects, an
organization can motivate all reviewers to improve their code review skill and
put more focus on becoming an effective reviewer. An automated model review
usefulness classification model can help identify the best reviewers with negligible
manual efforts.

Peer impression formation: Several studies [11}/12}/43] have shown that an
important factor of code review is peer impression formation, that is how develop-
ers form opinions of teammates. Obtaining an accurate perception of the expertise
of teammates is found to be the most important social factor of code reviews [12].
Our reviewer ranking tool relieves the team members from guessing each other’s
expertise by bringing them to broad daylight. Having each other’s expertise clearly
known, the team members can communicate among themselves accordingly and
help the team perform optimally.

Improving Effectiveness of Code Reviews 27

Usefulness model: Using our balanced scorecard strategy (BSC), it is possible to
build a reliable post-review usefulness classifier even under a different tool, orga-
nization. The feature-set used in our study can be directly or indirectly computed
from popular code review tools. Despite being conducted on different tools, dif-
ferent organizations, countries, and cultures, our findings are coherent with the
findings of Bosu et al. [13|, which supports the generalisability of our approach.

Automated program repair: Recent study [35] on 14 OSS projects has shown
that code reviews can be leveraged to repair defective programs using deep learn-
ing models. However, the existence of not useful reviews can degrade performances
of such models. Separation of useful reviews from non-useful reviews, using an au-
tomated model such as the one built in the research may improve the performance
of models that leverage code review information.

9 Threats to Validity

Following subsections discuss the four common categories of threats associated
with an empirical study.

9.1 Internal validity

Code review tools (e.g., ReviewBoard, Github pull-based reviews, and Phabrica-
tor) could behave differently for measuring the usefulness of review comments.
However, the features used in our methodology are available for all major code
review tools. We think this threat is minimal for three reasons: 1) all code re-
view tools support the same basic purpose, i.e. detecting defects and improving
the code, 2) the basic workflow (i.e., authors posting code, reviewers commenting
about code snippets, and code requiring approval from reviewer before integra-
tion) of most of the code review tools are similar, and 3) we did not use any
Gerrit-specific feature/attribute in this study.

The selection of participants is a source of possible bias and therefore a possible
threat to internal validity. The developers selected from SRBD participated in at
least 50 code reviews in the previous four months (either as an author or reviewer)
to ensure that they can reliably label the reviews as they are used to in both
reviewing and receiving reviews from peers. However, developers who participate
less frequently in code reviews may have different opinions regarding useful code
reviews. However, this threat may be minimal, since less than 10% of total code
reviews in SRBD during our study period belonged to such developers.

The training dataset of code review comments was curated from seven different
large projects at SRBD. These projects are considered representative by the rele-
vant teams due to their nature and size. Our training dataset is also representative
of different programming languages, i.e. Java, Kotlin, Swift, C, C++4-, and Python.
Although we adopted measures to minimize any biases due to programming lan-
guage, or project domain, some biases due to those factors may still exist in our
models.

The ground truth dataset to train our supervised model may become obsolete
over time, and therefore degrading performance of our model. To encounter this
issue, we have provided SRBD managers with the data mining and data labeling

28 Masum Hasan et al.

applications and detailed instructions on how to use those. SRBD developers can
log in to the web app and label new code reviews. Newly labeled data can be
augmented to the existing dataset to retrain the usefulness classifier.

9.2 Construct Validity

The primary source of construct validity is the variations among the criteria used
by different developers to consider a code review comment as ‘useful’. For example,
during our interviews, we found that some developers were more generous than
others, and have expansive definitions of what they consider as ‘useful’. While
we attempted to mitigate such biases by providing labelers with some guidelines
through a seminar, such biases still remain in our dataset. Regardless, this threat
may be minimal, since our best performing model still achieves an accuracy of ~
87% and an F-score of ~92%.

9.3 External Validity

Results based on a single project or even a handful of projects, or a single organi-
zation can be subject to lack of external validity. Therefore, one may claim that
empirical research within one organization or one project is inadequate, provides
little value for the academic community, and does not contribute to scientific de-
velopment. Moreover, historical evidence provides several examples of individual
cases that contributed to discovery in physics, economics, and social science (see
“Five misunderstandings about case-study research” by Flyvjerg [27]). Even in
the SE domain case studies of a single project [104{16,[39,47| as well as single or-
ganization [12}/13}/56] have provided important insights. Moreover, following the
study protocol of this study, one can develop similar models or tools for another
organization. To promote such replications, we have made our Jupyter notebooks
publicly available on Github.

9.4 Conclusion Validity

We adopted several measures to minimize biases during training and evaluation
of our models to predict the usefulness of a review comment. First, we got each
code review comment labeled by the target author, since he/she is the best per-
son to determine whether a comment helped him/her to improve a code change.
Second, we removed redundant features to reduce correlation biases. Finally, we
took several initiatives to reduce potential over-fitting by: 1) discretizing features
on ratio scales, 2) using recursive feature elimination with cross validation to elim-
inate unnecessary features, 3) evaluating models based on 20 times 10-fold cross
validations. Therefore, we do not envision any significant threats to conclusion
validity for our models.

Improving Effectiveness of Code Reviews 29

10 Conclusion

In this study, we developed and evaluated a solution based on the Balanced Score-
card strategy framework to monitor code review effectiveness at SRBD, a commer-
cial software development organization. Our solution also assists SRBD managers
to identify opportunities to improve the effectiveness of code reviews by providing
them continuous access to various measures and reports. Prior to the deployment
of our solution, SRBD used manual assessments by CQA members to track code
review effectiveness as well as to identify the best reviewer(s) for a particular pe-
riod. However, such manual assessments were: 1) prone to inconsistencies, 2) time
consuming and not scalable, 3) prone to delayed assessments, and 4) failing to
provide insights to pinpoint areas of concern. Our automated solution addresses
these four shortcomings of SRBD’s prior assessment mechanism.

Moreover, our automated model to identify useful code reviews not only outper-
forms the manual assessments from human labelers but also significantly reduces
such manual labeling efforts. Using our solution SRBD managers can identify areas
of concern quickly and take immediate necessary actions. Our solution’s transpar-
ent mechanism to identify and showcase the effective reviewers can motivate useful
code reviews and help improve the code review culture at SRBD. Our reviewer
ranking dashboard also helps management to assign better reviewers, transfer re-
viewers to right teams, or arrange training sessions for new or under-performing
reviewers. A developer can also receive training implicitly by observing his/ her
review that is identified as ‘useful’ /‘not useful’ with a particular context.

We are also encouraged by the positive evaluation from the users of our so-
lution. We believe that other organizations may be encouraged by the successful
deployment and observe positive benefits from our solution at SRBD and develop
similar solutions to monitor their code review effectiveness as well as identify po-
tential improvement opportunities.

Acknowledgment

Work conducted by Dr. Amiangshu Bosu for this research is partially supported
by the US National Science Foundation under Grant No. 1850475. Any opinions,
findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

Work conducted for this research is also partially supported by a research grant
provided by the Samsung Research Bangladesh.

References

1. Gerrit code review - rest api. https://gerrit-review.googlesource.com/Documentation/
rest-api.html, (Accessed on 09/27/2019)

2. Natural language toolkit — nltk 3.5 documentation. https://www.nltk.org/. (Accessed
on 12/06,/2020)

3. pandas.qcut — pandas 1.1.5 documentation. https://pandas.pydata.org/pandas-docs/
stable/reference/api/pandas.qcut.html. (Accessed on 12/24/2020)

4. textstat - pypi. https://pypi.org/project/textstat/. (Accessed on 12/06/2020)

https://gerrit-review.googlesource.com/Documentation/rest-api.html
https://gerrit-review.googlesource.com/Documentation/rest-api.html
https://www.nltk.org/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.qcut.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.qcut.html
https://pypi.org/project/textstat/

30

Masum Hasan et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Ahmed, T., Bosu, A., Igbal, A., Rahimi, S.: SentiCR: A Customized Sentiment Analysis
Tool for Code Review Interactions. In: 32nd IEEE/ACM International Conference on
Automated Software Engineering (NIER track), ASE 17 (2017)

. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code review.

In: Proceedings of the 2013 international conference on software engineering, pp. 712-721.
IEEE Press (2013)

Barnett, M., Bird, C., Brunet, J., Lahiri, S.K.: Helping developers help themselves: Auto-
matic decomposition of code review changesets. In: Proceedings of the 37th International
Conference on Software Engineering-Volume 1, pp. 134-144. IEEE Press (2015)

Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of experiments.
IEEE Transactions on Software Engineering 25(4), 456-473 (1999)

Beller, M., Bacchelli, A., Zaidman, A., Juergens, E.: Modern code reviews in open-source
projects: Which problems do they fix? In: Proceedings of the 11th working conference on
mining software repositories, pp. 202-211 (2014)

di Biase, M., Bruntink, M., Bacchelli, A.: A security perspective on code review: The
case of chromium. In: 2016 IEEE 16th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pp. 21-30. IEEE (2016)

Bosu, A., Carver, J.C.: Impact of peer code review on peer impression formation: A survey.
In: 2013 ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement, pp. 133-142 (2013). DOI 10.1109/ESEM.2013.23

Bosu, A., Carver, J.C., Bird, C., Orbeck, J., Chockley, C.: Process aspects and social
dynamics of contemporary code review: Insights from open source development and in-
dustrial practice at microsoft. IEEE Transactions on Software Engineering 43(1), 56-75
(2017). DOI 10.1109/TSE.2016.2576451

Bosu, A., Greiler, M., Bird, C.: Characteristics of Useful Code Reviews: An Empirical
Study at Microsoft. In: 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, pp. 146-156. IEEE, Florence, Italy (2015). DOI 10.1109/MSR.2015.21. URL
http://ieeexplore.ieee.org/document/7180075/

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V.,
Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B.,
Varoquaux, G.: API design for machine learning software: experiences from the scikit-learn
project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning,
pp. 108-122 (2013)

Calefato, F., Lanubile, F., Maiorano, F., Novielli, N.: Sentiment polarity detection for
software development. Empirical Software Engineering 23(3), 1352-1382 (2018)

Camilo, F., Meneely, A., Nagappan, M.: Do bugs foreshadow vulnerabilities?: a study of
the chromium project. In: Proceedings of the 12th Working Conference on Mining Software
Repositories, pp. 269-279. IEEE Press (2015)

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority
Over-sampling Technique. Journal of Artificial Intelligence Research 16, 321-357 (2002).
DOI 10.1613/jair.953. URL https://jair.org/index.php/jair/article/view/10302
Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp.
785-794. ACM (2016)

Chouchen, M., Ouni, A., Kula, R.G., Wang, D., Thongtanunam, P., Mkaouer, M.W.,
Matsumoto, K.: Anti-patterns in modern code review: Symptoms and prevalence. In:
2021 IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 531-535 (2021). DOI 10.1109/SANER50967.2021.00060

Chouchen, M., Ouni, A., Mkaouer, M.W., Kula, R.G., Inoue, K..: Whoreview: A
multi-objective search-based approach for code reviewers recommendation in modern
code review. Applied Soft Computing 100, 106908 (2021). DOI https://doi.org/10.
1016/j.as0¢.2020.106908. URL https://www.sciencedirect.com/science/article/pii/
S1568494620308462

Cohen, J., Brown, E., DuRette, B., Teleki, S.: Best kept secrets of peer code review. Smart
Bear Somerville (2006)

Czerwonka, J., Greiler, M., Tilford, J.: Code reviews do not find bugs: how the current code
review best practice slows us down. In: Proceedings of the 37th International Conference
on Software Engineering-Volume 2, pp. 27-28. IEEE Press (2015)

Ebert, F., Castor, F., Novielli, N., Serebrenik, A.: Confusion in code reviews: Reasons,
impacts, and coping strategies. In: 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 49-60 (2019). DOI 10.1109/SANER.
2019.8668024

http://ieeexplore.ieee.org/document/7180075/
https://jair.org/index.php/jair/article/view/10302
https://www.sciencedirect.com/science/article/pii/S1568494620308462
https://www.sciencedirect.com/science/article/pii/S1568494620308462

Improving Effectiveness of Code Reviews 31

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Ebert, F., Castor, F., Novielli, N., Serebrenik, A.: Confusion in code reviews: Reasons,
impacts, and coping strategies. In: 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 49-60. IEEE (2019)

Fagan, M.E.: Design and code inspections to reduce errors in program development. IBM
Syst. J. 15(3), 182-211 (1976). DOI 10.1147/sj.153.0182. URL http://dx.doi.org/10.
1147/sj.153.0182

Flesch, R.: Flesch—kincaid readability test. Retrieved October 26, 2007 (2007)
Flyvbjerg, B.: Five misunderstandings about case-study research. Qualitative inquiry
12(2), 219-245 (2006)

Fracz, W., Dajda, J.: Developers’ game: A preliminary study concerning a tool for auto-
mated developers assessment. In: 2018 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pp. 695-699 (2018). DOI 10.1109/ICSME.2018.00079
Hatton, L.: Testing the value of checklists in code inspections. IEEE software 25(4), 82-88
2008

%irao? T., Thara, A., Ueda, Y., Phannachitta, P., Matsumoto, K.i.: The impact of a low level
of agreement among reviewers in a code review process. In: IFIP International Conference
on Open Source Systems, pp. 97-110. Springer (2016)

Ho, T.K.: Random decision forests. In: Proceedings of 3rd international conference on
document analysis and recognition, vol. 1, pp. 278-282. IEEE (1995)

Hofner, G., Mani, V., Nambiar, R., Apte, M.: Fostering a high-performance culture in
offshore software engineering teams using balanced scorecards and project scorecards. In:
2011 IEEE Sixth International Conference on Global Software Engineering, pp. 35-39.
IEEE (2011)

Hopfield, J.J.: Artificial neural networks. IEEE Circuits and Devices Magazine 4(5), 3-10
(1988)

Hosmer Jr, D.W., Lemeshow, S., Sturdivant, R.X.: Applied logistic regression, vol. 398.
John Wiley & Sons (2013)

Hugq, F., Hasan, M., Pantho, M.A.H., Mahbub, S., Igbal, A., Ahmed, T.: Review4repair:
Code review aided automaticprogram repairing. arXiv preprint arXiv:2010.01544 (2020)
Islam, M.R., Zibran, M.F.: Leveraging automated sentiment analysis in software engineer-
ing. In: 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR), pp. 203-214. IEEE (2017)

Jin, C., De-Lin, L., Fen-Xiang, M.: An improved id3 decision tree algorithm. In: 2009 4th
International Conference on Computer Science & Education, pp. 127-130. IEEE (2009)
Kaplan, R.S., Norton, D.P., et al.: The balanced scorecard: measures that drive perfor-
mance (1992)

Khomh, F., Dhaliwal, T., Zou, Y., Adams, B.: Do faster releases improve software quality?:
an empirical case study of mozilla firefox. In: Proceedings of the 9th IEEE Working
Conference on Mining Software Repositories, pp. 179-188. IEEE Press (2012)
Kononenko, O., Baysal, O., Godfrey, M.W.: Code review quality: How developers see it.
In: Proceedings of the 38th International Conference on Software Engineering, ICSE ’16,
pp. 1028-1038. ACM, New York, NY, USA (2016). DOI 10.1145/2884781.2884840. URL
http://doi.acm.org/10.1145/2884781.2884840

Kononenko, O., Baysal, O., Guerrouj, L., Cao, Y., Godfrey, M.W.: Investigating code re-
view quality: Do people and participation matter? In: 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp. 111-120 (2015)

Mair, S.: A balanced scorecard for a small software group. IEEE software 19(6), 21-27
2002

I(\/Iaurlo)w7 J., Dabbish, L., Herbsleb, J.: Impression formation in online peer production:
activity traces and personal profiles in github. In: Proceedings of the 2013 conference on
Computer supported cooperative work, pp. 117-128 (2013)

Marr, B., Neely, A.: Automating the balanced scorecard—selection criteria to identify ap-
propriate software applications. Measuring Business Excellence (2003)

McCarney, R., Warner, J., lliffe, S., Van Haselen, R., Griffin, M., Fisher, P.: The hawthorne
effect: a randomised, controlled trial. BMC medical research methodology 7(1), 30 (2007)
Meclntosh, S., Kamei, Y., Adams, B., Hassan, A.E.: The impact of code review coverage
and code review participation on software quality: A case study of the qt, vtk, and itk
projects. In: Proceedings of the 11th Working Conference on Mining Software Repositories,
pp. 192-201 (2014)

Mockus, A., Fielding, R.T., Herbsleb, J.: A case study of open source software develop-
ment: the apache server. In: Proceedings of the 22nd international conference on Software
engineering, pp. 263-272. Acm (2000)

http://dx.doi.org/10.1147/sj.153.0182
http://dx.doi.org/10.1147/sj.153.0182
http://doi.acm.org/10.1145/2884781.2884840

32

Masum Hasan et al.

48.

49.
50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Mantyla, M.V., Lassenius, C.: What types of defects are really discovered in code reviews?
IEEE Transactions on Software Engineering 35(3), 430-448 (2009). DOI 10.1109/TSE.
2008.71

Naumenko, D.: Java diff utils. https://github.com/dnaumenko/java-diff-utils (2018)
Novielli, N., Girardi, D., Lanubile, F.: A benchmark study on sentiment analysis for soft-
ware engineering research. In: 2018 IEEE/ACM 15th International Conference on Mining
Software Repositories (MSR), pp. 364-375. IEEE (2018)

Papalexandris, A., Ioannou, G., Prastacos, G.P.: Implementing the balanced scorecard in
greece: a software firm’s experience. Long Range Planning 37(4), 351-366 (2004)
Rahman, M.M., Roy, C.K., Collins, J.A.: Correct: code reviewer recommendation in github
based on cross-project and technology experience. In: Proceedings of the 38th International
Conference on Software Engineering Companion, pp. 222-231 (2016)

Rahman, M.M., Roy, C.K., Kula, R.G.: Predicting usefulness of code review comments
using textual features and developer experience. In: Proceedings of the 14th International
Conference on Mining Software Repositories, MSR ’17, p. 215-226. IEEE Press (2017)
Rigby, P.C., Bird, C.: Convergent contemporary software peer review practices. In: Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, pp. 202—
212. ACM (2013)

Rigby, P.C., German, D.M.: A preliminary examination of code review processes in open
source projects. Tech. rep., Technical Report DCS-305-IR, University of Victoria (2006)
Sadowski, C., Soéderberg, E., Church, L., Sipko, M., Bacchelli, A.: Modern code review: a
case study at google. In: Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, pp. 181-190. ACM (2018)

Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf.
Process. Manage. 24(5), 513-523 (1988). DOI 10.1016/0306-4573(88)90021-0. URL
http://dx.doi.org/10.1016/0306-4573(88)90021-0

Shull, F.J., Carver, J.C., Vegas, S., Juristo, N.: The role of replications in empirical software
engineering. Empirical software engineering 13(2), 211-218 (2008)

StackOverflow: =~ What is reputation? how do i earn (and losek) it?
https://stackoverflow.com/help/whats-reputation

Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural
processing letters 9(3), 293-300 (1999)

Thongtanunam, P., Hassan, A.E.: Review dynamics and their impact on software quality.
IEEE Transactions on Software Engineering pp. 1-1 (2020). DOI 10.1109/TSE.2020.
2964660

Thongtanunam, P., McIntosh, S., Hassan, A.E., lida, H.: Review participation in modern
code review. Empirical Software Engineering 22(2), 768-817 (2017)

Thongtanunam, P., Tantithamthavorn, C., Kula, R.G., Yoshida, N., Iida, H., Matsumoto,
K.i.: Who should review my code? a file location-based code-reviewer recommendation ap-
proach for modern code review. In: 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), pp. 141-150. IEEE (2015)

Tolosi, L., Lengauer, T.: Classification with correlated features: unreliability of feature
ranking and solutions. Bioinformatics 27(14), 1986-1994 (2011)

https://github.com/dnaumenko/java-diff-utils
http://dx.doi.org/10.1016/0306-4573(88)90021-0

	Introduction
	Background
	Research Method
	Step 1: Defining Operational Goals
	Step 2: Defining metrics to measure code review effectiveness
	Step 3: Building a framework to measure the code review effectiveness metrics
	Step 4: Build a monitoring mechanism to inform the stakeholders
	Discussion
	Threats to Validity
	Conclusion

