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ABSTRACT
Modern code review (MCR) is a widely adopted software qual-
ity assurance practice in the contemporary software industry. As
software developers spend signi�cant amounts of time on MCR
activities, even a small improvement in MCR e�ectiveness will in-
cur signi�cant savings. As most of the MCR activities are heavily
dependent on manual work, there are signi�cant opportunities to
improve e�ectiveness through tool support. To address the chal-
lenges, the primary objective of my proposed dissertation is to
improve the e�ectiveness of modern code reviews with the automation
of reviewer selection and bug identi�cation. On this goal, I propose
three studies. The �rst study aims to investigate the notion of useful
MCRs and factors in�uencing MCR usefulness. The second study
aims to develop a reviewer recommendation system that leverages a
reviewer’s prior history of providing useful feedback under similar
contexts. Finally, the third study aims to improve the e�ectiveness
of static analysis tools by leveraging bugs identi�ed during prior
reviews.
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1 INTRODUCTION
Modern code review (MCR) is a software quality assurance measure
that has been adopted widely in commercial and Open Source Soft-
ware (OSS) projects. Besides early identi�cation of defects, MCR
provides other crucial bene�ts such as knowledge transfer and build-
ing team awareness [3]. Due to widespread adoption and growing
importance, recent studies have focused on understanding factors
in�uencingMCR outcomes [3–5, 25], automating reviewer selection
[28, 32, 38], and identifying locations of suspicious code segments
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to assist reviewers [17, 18, 36, 39]. However, practicing MCR man-
dates a signi�cant investment for an organization, since developers
spend on average 10-15% of their time on code review activities
[5]. Therefore, even a small improvement in MCR e�ectiveness
can incur signi�cant savings for an organization practicing MCR.
Therefore, the primary objective of my proposed dissertation is to
improve the e�ectiveness of modern code reviews with automation of
reviewer selection and bug identi�cation.

On this goal, my proposed dissertation aims to conduct the fol-
lowing three studies.
(Study 1) Identify the factors that make code review useful
to the OSS developers

Motivation:What is the perspective of OSS developers about the
usefulness of review comments and which factors in�uence a devel-
oper to provide useful review comments? This question has not been
investigated in an OSS environment. Developers might ask ques-
tions such as: (1) what is the frequency of di�erent categories of
review comments?, (2) What are the factors that lead a developer
to provide useful review comments?, and (3) which aspects a re-
viewer should consider while providing a review comment? Insight
gathered from the study may help OSS developers author useful
review comments and select appropriate reviewers to maximize the
likelihood of useful feedback.

Objective: To perceive the developer’s perspective about the useful-
ness of code review comments and identify factors that lead a review
comment to become useful.
(Study 2) Develop a usefulness-aware reviewer recommenda-
tion system

Motivation: Prior studies have proposed numerous approaches
for constructing reviewer recommendation systems that used ‘his-
tory’ for assessing the performance of those recommendation sys-
tems [28, 32, 38]. Those recommendation systems have overlooked
the fact of whether a reviewer has provided useful comments pre-
viously or not. Studies also suggest that ‘history’ can sometimes
be overly optimistic and sometimes be overly pessimistic [11]. In-
corporating the reviewer’s capability factor of providing useful
reviews while building a reviewer recommendation system is the
motivation behind this study.

Objective: To build a reviewer recommendation that considers a
reviewer’s history of useful reviews under similar contexts.
(Study 3) Automatic identi�cation of buggy code segments

Motivation: Although the primary objective of MCR is bug iden-
ti�cation, most of the reviews do not �nd any bug [3]. As reviewers
do not have adequate time to understand the whole code, they often
identify minor code issues (e.g. documentation, typos, and refac-
toring) [3]. Therefore, the identi�cation of bugs within a limited
time is a challenge for reviewers. To assist in bug identi�cation, if
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reviewers can be made aware of the problematic code segments
under review, they are more likely to investigate those problematic
code segments thoroughly and are more likely to identify potential
bugs. On this goal, many projects leverage static analysis tools to
automate reviews. However, static analysis tools are good at identi-
fying certain types of bugs and will miss other categories such as
misunderstood requirements or violations of design constraints. On
the other hand, expert human reviewers are better at identifying
these categories of defects.

Objective: To improve the e�ectiveness of static analysis tools by
leveraging bugs identi�ed during prior reviews.

The remainder of the paper is organized as the following. Sec-
tion 2 provides a brief overview of the research context and prior
related works. Finally, Section 3 and Section 4 describe the three
proposed studies and concludes the paper respectively.

2 BACKGROUND
Modern Code Review:Modern code review is a practice of review-
ing a code by peers before merging it to the main codebase. MCR
has been adopted by most commercial and OSS projects as a qual-
ity assurance gateway [6]. MCR is asynchronous, lightweight, and
tool-based [3]. In an MCR process, an author invites their peer(s)
for reviewing. If reviewer(s) �nd any concern with the change, they
inform the author with review comments. If all the concerns are
resolved and the code is of su�cient quality, reviewers approve the
change for merging to the main branch.
Related Works: While earlier related works [26, 27] primar-
ily focused on analyzing formal Fagan-style software inspection
process [9], recent studies have shifted focus on modern code re-
views [30] as those have been widely adopted [3, 5]. Bacchelli
and Bird conducted a study where they uncovered multiple bene-
�ts that code review provides, e.g. defect �nding, create bonding
among team members, knowledge transfer among team members
[3]. Mantyla et al. proposed a classi�cation of defects identi�ed in
code review process [19], which was later reused and updated by
Bosu et al. [6]. Rahman et al. [29] proposed a study for classifying
review comments based on their textual characteristics. Gousios
et al. conducted a study where they identi�ed getting timely and
constructive feedback is challenging for OSS contributors [12]. The
study which closely relates to Study 1 was proposed by Bosu et al.
[6], where they identi�ed characteristics of useful code review and
proposed a classi�er for categorizing review comments into useful
and non-useful categories. The study of Bosu et al. was conducted
for a commercial project, whereas I conducted Study 1 for an OSS
project and used di�erent research instruments.

Prior works have focused on automating reviewer selection task.
Thongtanunam et al. proposed a reviewer recommendation system
based on �le path characteristics [32]. Zanjani et al. proposed a
reviewer recommendation systemwhere they considered the contri-
bution of a reviewer in their prior review [38]. Ouni et al. proposed
a search-based reviewer recommendation system [24]. Rahman et
al. [28], Chouchen et al. [8] also proposed reviewer recommenda-
tion systems for assisting a developer by �nding suitable reviewers.
Prior proposed studies have considered history as a benchmark and
overlooked reviewer’s prior ability to provide useful feedback.

In the �eld of vulnerability detection, several research works
have been proposed. Li et al. proposed a Bidirectional LSTM model
for identifying software vulnerabilities using code segments [18].
Sysevr [17] used localized code segments and argued that spe-
ci�c code portions are important for identifying defects. Russel et
al. proposed a model which converts the source code into mini-
mum intermediate representation and used machine learning to
detect vulnerability [31]. Zhou et al. [39] and Yamaguchi et al. [36]
proposed graph-based machine learning model for detecting bugs
within code. Despite the e�ort of the researchers, Chakraborty et
al. argued that the reported performance of prior models drops by
50% when experimented with real-world vulnerability dataset [7].

3 PROPOSED RESEARCH
This section presents the approaches of my proposed studies. I am
expecting feedback from the respected symposium members on
improvement suggestions for the recommendation system in Study
2 and for the automation of bug localization task in Study 3.

3.1 Study 1: Identify the factors that make code
review useful to the OSS developers

For understanding the developer’s perspective on useful code re-
view and identifying what are the factors that in�uence usefulness,
this study is designed to focus on two research questions.
Research Questions: The code review process is a signi�cant
investment for a software company both from the economic per-
spective and from the developer’s time perspective. If the code
review process is not useful to the developers, then not only the
investment is unnecessary, but also there is the chance of potential
vulnerabilities within the software product. So, we need to under-
stand what is the developer’s perspective about useful code review.
Although Bosu et al. investigate the usefulness of code review at
Microsoft [6], I focused my e�ort on OSS developers and followed
di�erent research approaches. So, my �rst research question is:

RQ1: What makes a code review comment useful to the OSS devel-
opers?

Identifying defects is the primary expectation of performing
code reviews. But defect identi�cation requires a high codebase un-
derstanding and in reality, very few review comments are focused
to identify defects [3]. So, there is a mismatch between expectation
and reality. While selecting reviewers, a developer might wonder
what are the factors that help the reviewers provide useful feed-
back. If developers select reviewers considering those factors, they
can maximize their chance of getting useful feedback. To identify
the factors that dictate the usefulness of code review, my second
research question is:

RQ2: Which factors in�uence the usefulness of review comments?
Research Methodology: To answer the two research questions, I
conduct the study on the OpenStack Nova1 project. I along with
one of my peers collected 2500 code review comments randomly
and categorized the comments based on the categorization of code
review comments suggested by Beller et al. [4]. I designed a survey
of OpenStack developers where the objective was to capture devel-
oper’s perspectives about the usefulness of review comments. Then

1https://docs.openstack.org/nova/latest/



Towards Improving Code Review E�ectiveness Through Task Automation ASE ’22, October 10–14, 2022, Rochester, MI, USA

Helps community building

Appreciates good work

Facilitates better design

Facilitates knowledge sharing

Improves maintainability

Uses appropriate language

Improves code quality

Finds defect

0% 10% 20% 30% 40% 50%
Percentage of the respondents

Figure 1: What makes a code review useful to an author?

I conducted a qualitative analysis of the 237 responses gathered
from the survey.

I designed a quantitative study for identifying those factors that
have an in�uence on making review comments useful. For the anal-
ysis, 17 reviewer’s and code factors were calculated that might
have an in�uence on making review comments useful. To �nally
identify which among those 17 factors are really in�uential, I con-
structed a Generalized Linear Model (GLM). The dependent vari-
able is the usefulness rating obtained from the developer’s survey
for each category of review comments. The factors that obtain a
? � E0;D4 < 0.05, are actually in�uential in obtaining a higher use-
fulness rating (a higher usefulness rating makes a code review com-
ment more useful). I have also constructed a Multinomial Logistic
Regression (MLR) model where the dependent variable is the cate-
gory in which the comment belongs. The purpose of constructing
MLR is to identify the factors that separate a review comment cate-
gory from the others (e.g. separate review comments that identify
functional defects from those comments that identify documenta-
tion issues). For constructing the regression models, I followed the
approach proposed by Harrell Jr [13, 14]
Research Progress: From the survey, I collected the developer’s
rating for each category of review comment. I also analyzed the
developer’s perception about the usefulness of review comments
and Figure 1 presents the �ndings. From the survey analysis, my key
�nding is the usefulness of a code review comment not only depends
on the technical contribution (e.g. bug �nding, improve architecture)
but also depends on providing the review in a polite, constructive, and
understandable manner.

For identifying factors that have a signi�cant role in making
a review comment useful, I �t the data into a GLM. I found four
factors that have a signi�cant role in making review comments
useful. The factors are review interval, mutual review, reviewer
coding experience, and prior �le review count. For identifying fac-
tors that separate one category of review comment from another, I
constructed an MLR model. I measured the goodness of �t using
Nagelkerke %B4D3> '2 [23], where I achieved a %B4D3> '2 value of
0.429. The four factors that play important role in making review
comment useful, is also signi�cant in separating one category of
review comments from other. Moreover, comment volume is sig-
ni�cant in separating one category from another. Currently, this
paper is under submission for review.
Expected Contributions: The expected contributions of this
study include: i) a better understanding of OSS developers’ percep-
tion about the usefulness of a review comment; ii) identi�cation
factors in�uencing code review usefulness; and iii) a set of recom-
mendations for practitioners to improve code review e�ectiveness.

3.2 Study 2: Develop a usefulness-aware
reviewer recommendation system

In OSS and commercial projects, an author’s code needs to be veri-
�ed by a number of reviewers before merging the code into themain
repository. The newcomers �nd it challenging to receive timely and
useful feedback [16, 21]. The challenges can be solved by selecting
appropriate reviewers who can provide useful feedback. Not only
newcomers but also long-time contributors face the challenge of
selecting appropriate reviewers for reviewing a code [32, 38].
Research questions: To assist the code author in selecting ap-
propriate reviewers, researchers have proposed reviewer recom-
mendation systems such as RevFinder [32], cHRev [38], CORRECT
[28], RevRec [24], and WhoReview [8]. The main challenge these
reviewer recommendation systems face is that most reviewer rec-
ommendation systems focus only particular type of history (e.g.
RevFinder considers prior review history). Moreover, the existing
reviewer recommendation systems do not consider the reviewer’s
ability to provide useful feedback in prior reviews. Let’s consider a
scenario where Reviewer A provided useful feedback in a previous
review but Reviewer B raised an invalid concern in another review.
Existing recommendation systems assess Reviewer A and B both as
appropriate reviewers despite the fact that Reviewer B provided in-
valid feedback. To address the reviewer’s prior ability of providing
useful reviews, our �rst research question is:

RQ1: Can we incorporate reviewer’s prior ability of providing useful
review while building a reviewer recommendation system?

Gauthier et al. reported that historical data based on previous
reviews can be overly optimistic since there might be other ap-
propriate reviewers than only the selected set or historical data
can be overly pessimistic since prior incorrect recommendations
are considered equivalent to correct recommendations [11]. They
also announced that history-based recommendation systems act
far more pessimistically than optimistically. In the proposed recom-
mendation system in RQ1, I assessed the reviewer’s prior ability to
provide useful reviews. So, we are attempting to correct the history
by only selecting those reviewers who provided useful comments
in prior reviews, which raises the question of how accurately such
a recommendation system can perform. To address the issue, my
second research question is:

RQ2: How accurately can the reviewer recommendation system
recommend reviewer on real OSS projects?
Research Methodology: To build a reviewer recommendation
system considering the reviewer’s prior ability to provide useful
reviews, I collected 2,500 code review comments from the oVirt2
project. oVirt uses Gerrit as their primary code review tool. In the
manual labeling step, each review comment was categorized into
‘useful’ or ‘not useful’ category. I calculated 12 historical attributes
based on reviewer and �le characteristics. The 12 factors were iden-
ti�ed either from the understanding of Study 1 or came from prior
literature. I am planning to collect code context vectors extracted
from code using the approach proposed by Alon et al. [1].

Usefulness Density (*⇡) is the ratio of code review comments
that are perceived as useful [6]. For each reviewer A and review

2https://www.ovirt.org/
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comment 2 , the*⇡ value can be calculated using the equation:

*⇡A ,2 = U0 + U1+
A2
1 + U2+

A2
2 + U3+

A2
3 + ... + U=+

A2
= + n8

n8 indicates the error term, U0 represents the intercept term, and
each of + A2

1 ,+ A2
2 ,+ A2

3 , ...,+ A2
= represents either a historical attribute

or one dimension code context vector, and U1,U2,U3, ...,U= repre-
sents the coe�cient of historical attribute or context vector respec-
tively. For each reviewer A , the model would compute the*⇡ score.
Then the available reviewers would be ranked based on higher*⇡
scores and the topmost reviewers would be recommended.
Research Progress: The data collection, manual labeling, and
attribute calculation are already completed. In model �tting, the
regression model is showing poor performance. The main reason
I identi�ed behind such performance is, 87% of code review com-
ments discuss trivial issues such as documentation, refactoring, and
variable naming-related issues. Providing such comments requires
less expertise and codebase understanding than �nding defects
[3]. So, the historic attributes (such as reviewer coding experience,
and reviewing experience) fail to provide the expected result. Code
review is a multi-objective approach as modeled by Mirsaeedi and
Rigby [22]. I am experimenting now to incorporate code context
and other objectives (such as reviewer workload factor).
Expected Contributions: The expected contributions of Study
2 include: i) A manually labeled dataset of 2500 code review com-
ments categorized as ‘useful’ or ‘not useful’; ii) A novel approach
for constructing reviewer recommendation systems based on the
reviewer’s prior ability to provide useful review comments; and iii)
An empirical evaluation for assessing the performance and practical
usability of the proposed recommendation system in OSS projects.

3.3 Study 3: Automatic identi�cation of buggy
code segments

Bugs are software defects that can be a serious security threat.
The longer a bug takes to be identi�ed, the more cost it will incur
in the development process [20]. Despite code going through a
rigorous review process, bugs are identi�ed in the later development
phase and even after the release of the product. So the central idea
which propels the study is if we highlight a suspicious code segment,
then reviewers can concentrate their focus on those suspicious code
segments. The objective of this study is to improve the e�ectiveness
of static analysis tools by locating buggy code segments and by
suggesting potential solutions to �x those bugs.

Static analysis tools are e�ective in identifying programming
practice violations and certain types of bugs such as null pointer
dereference, and over�ow of array [2]. Several existing solutions
have already proposed the integration of static analysis tools in
the code review pipeline. However, the novelty of my proposed
research lies in the development of this tool. In a prior study, we
�nd that existing static analysis tools are better at �nding certain
classes of defects, while human reviews are at others [25]. I plan
to enhance existing static analysis tools with human knowledge
disseminated during code reviews. I can use the large code review
corpus that identi�es bugs to train a machine learning model and
later incorporate the model with static analysis tools. If we train a
supervised machine learning-based static analysis tool with bugs
identi�ed by human reviewers, then the e�ciency of static analysis

tools can be improved. Thus, the proposed research can augment
the e�ectiveness of the static analysis tools by incorporating a
trained model.
Research Methodology: To identify buggy code segments within
a code �le, I plan to conduct a three-stage study. In the �rst stage of
the study, I will construct an automated model which will analyze
code review comments and corresponding code to identify bug-
�nding review comments. There are existing models for classifying
review comments, but they use commit messages for classi�ca-
tion [15, 37] or use code analysis metrics (e.g., Lines Of Code, or
Cyclomatic Complexity) [10]. My approach di�ers from previous ap-
proaches as I am planning to construct the model considering code
characteristics such as number of operators, number of brunches,
and number of keywords.

In the second stage, I would use the automated model developed
in the �rst stage to construct a large-scale dataset of the buggy
and benign methods. Each buggy method is the pre-review version
and the benign method is the corresponding post-review version.
My dataset will contain only code reviews where bugs have been
identi�ed. In the third stage, I will use the dataset to train a machine
learning model for identifying buggy and benign methods. Lever-
aging the automated approach of the �rst stage, I would collect a
large dataset with buggy and corresponding benign methods. The
approach can be considered as a sequence-to-sequence translation,
where a buggy sequence needs to be converted into a benign se-
quence. In such sequence-to-sequence translation, transformers
models [35] work well [33, 34]. I will experiment with di�erent
transformers architectures. So my hypothesis is if transformers can
be trained using a large code review corpus and integrated with static
analysis tools, the e�ectiveness of static analysis tools can be aug-
mented. Using transformer models will provide bene�ts not only
by identifying bugs but also by providing potential improvements.
Research Progress: The data collection, manual labeling, and
model building is yet to be done for Study 3.
Expected Contributions: The expected contributions of Study 3
include: i) A novel automatic approach to identify bug-�nding code
review comments; ii) A large-scale dataset containing buggy (pre-
review version) methods and corresponding benign (post-review
version) methods; and iii) An empirically evaluated machine learn-
ing model to identify buggy code segments within a code �le.

4 CONCLUSION
In this doctoral dissertation, my primary focus is to improve the
e�ectiveness of peer review by automating some code review tasks.
On this goal, I have conducted Study 1 to gather the perspective of
developers about the usefulness of code review comments. Then
utilizing the concept of useful code review from the �rst study, in
Study 2, I have proposed a reviewer recommendation system for
automating the reviewer selection task. The reviewer recommen-
dation system would consider a reviewer’s prior ability to provide
useful review comments while suggesting appropriate reviewers.
In Study 3, I would focus on automating bug localization task and
automatic code change suggestions for �xing those bugs in the code
review process. I believe the proposed studies would improve the
e�ectiveness of code review by augmenting existing approaches
and fostering future research in automating code review tasks.
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