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Abstract: This study revealed the effects of incorporating ionic liquid (IL) molecules: 1-ethyl, 1-butyl,
and 1-octyl-3-methyl-imidazolium chlorides with different alkyl chain lengths, in interfacial polymer-
ization (IP) on the structure and property (i.e., permeate-flux and salt rejection ratio) relationships of
resulting RO membranes. The IL additive was added in the aqueous meta-phenylene diamine (MPD;
0.1% w/v) phase, which was subsequently reacted with trimesoyl chloride (TMC; 0.004% w/v) in the
hexane phase to produce polyamide (PA) barrier layer. The structure of resulting free-standing PA
thin films was characterized by grazing incidence wide-angle X-rays scattering (GIWAXS), which
results were correlated with the performance of thin-film composite RO membranes having PA
barrier layers prepared under the same IP conditions. Additionally, the membrane surface properties
were characterized by zeta potential and water contact angle measurements. It was found that the
membrane prepared by the longer chain IL molecule generally showed lower salt rejection ratio
and higher permeation flux, possibly due to the inclusion of IL molecules in the PA scaffold. This
hypothesis was supported by the GIWAXS results, where a self-assembled surfactant-like structure
formed by IL with the longest aliphatic chain length was detected.

Keywords: reverse osmosis membranes; interfacial polymerization; thin film composite; polyamide;
ionic liquid; grazing incidence wide-angle X-rays scattering

1. Introduction

Reverse osmosis (RO) desalination is an effective way to deal with the global scarcity
of freshwater, especially in the coastal regions. This technique has been widely adopted
because of its energy efficient performance and ability to provide potable water for di-
verse households, industrial and agricultural applications [1–5]. In the fabrication of RO
membranes, varying membrane materials and formats have been demonstrated, includ-
ing nanoporous cellulose acetate membranes and thin-film composite (TFC) membranes
containing a polyamide (PA) barrier layer. Typical, the PA-TFC membranes can be oper-
ated over a wider pH range and at lower pressures than those used for cellulose acetate
membranes [6–8].

The most essential component of the TFC composite membrane is the ultrathin PA
barrier layer (with thickness in the range of several hundred nanometers), which is pri-
marily responsible for the filtration performance. This PA layer is typically synthesized
by interfacial polymerization involving the reaction between an aromatic diamine (e.g., m-
phenylene diamine (MPD)) in the aqueous phase, and an acyl chloride (e.g., trimesoyl
chloride (TMC)) in the immiscible organic phase. The structure of the cross-linked PA layer
is highly sensitive to the polymerization conditions. Minor changes in the monomer types,
concentration and volume, additives (e.g., surfactants), and other processing conditions
can significantly affect the filtration performances of the resulting membranes [9–12].

Ionic liquids (ILs)-based surfactants have been used in preparation of filtration mem-
branes as processing aides for varying water purification applications, such as wastewater
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treatment and potable water production [13]. Both anionic and cationic surfactants have
been used in fabrication of RO membranes with the goal of increasing the permeation
flux while maintaining high rejection ratio [14,15]. For example, Barabski-Karakby et al.,
modified the low-pressure RO membranes by grafting the material with poly(glycidyl
methacrylate) using redox-initiated radical polymerization with a non-ionic surfactant
(Triton X-100) to enhance the uniform monomer-coating [16]. They found that the inclusion
of Triton X-100 could enhance the adherence of the grafted polymer to the membrane
materials and increase the membrane surface polarization, which in turn reduced the
monomer consumption and achieved a high reject ratio against sodium and chloride ions
as well as boric acid [17]. Raval et al., investigated the chemical structural changes in
RO membranes treated with different surfactants (anionic, cationic and non-ionic) and
reported that the inclusion of different surfactants could result in an enhanced filtration
performance [18]. Several other groups demonstrated that the inclusion of surfactants could
also reduce the membrane fouling tendency. For example, Chen et al., reported the fouling
reduction of ultrafiltration (UF) membranes for protein purification by incorporating a
combination of surfactants during membrane fabrication [19]. In a similar study, Yamagiwa
et al., confirmed the use of a series of non-ionic surfactants could prepare membranes with
low fouling characteristics [20]. Wilbert et al., adopted this concept and used a homologous
series of polyethylene-oxide surfactants to modify RO membranes, which also exhibited
fouling resistance [21]. Finally, several studies further showed that the use of surfactants
could qualitatively change the membrane surface property, such as roughness and wet-
tability [22,23]. Unfortunately, the in-depth knowledge on the structure and property
relationship by using the above surfactant-mediated interfacial polymerization approaches
is still limited.

Conventional techniques to characterize the structure and functionality of PA barrier
layers in RO membranes include Fourier transform infrared (FTIR) spectroscopy, scan-
ning/transmission electron microscopy (SEM/TEM), atomic force microscopy (AFM), and
X-ray photoelectron spectroscopy (XPS). However, considering that the barrier layers are
made of highly cross-linked aromatic molecules and contain very small nanopore sizes
(less than 1 nm), it is challenging to truly understand the porous structure at the molecular
level with these techniques. Recently, some advances using synchrotron X-ray scattering
techniques have been made in characterizing the ultrathin barrier layer structure [24].
For example, our group has demonstrated the use of grazing incidence wide-angle X-ray
scattering (GIWAXS) technique to reveal the packing of molecular aromatic moiety in the
polymer backbone, where two packing motifs (i.e., parallel and perpendicular) with a
preferential surface-induced orientation were observed, which otherwise would not have
been possible to reveal using other X-ray scattering techniques [25]. Foglia et al., used the
X-ray and neutron reflectivity techniques to investigate the thickness of PA film exposed
to different levels of H2O and D2O relative humidity (RH) and reported swelling and
water uptake behavior of these thin films [26]. Sunday et al., further used soft X-rays to
quantify the concentrations of different functional groups, namely, amide carbonyl and
carboxylic acid, in PA films [27]. With small-angle X-ray scattering (SAXS) technique, Singh
et al., reported that the polymer chains in the PA barrier layer facilitated the formation of
nanostructures, which were interconnected and formed nanoclusters [28]. Pipich et al., also
demonstrated the use of small-angle neutron scattering (SANS) measurements to character-
ize PA films and revealed the surface morphology and its relationship with interconnected
pore distributions [29].

In this study, we have investigated the fabrication of PA barrier layers in RO mem-
branes synthesized by using the ionic liquid (IL)-mediated interfacial polymerization
approach. The approach involves the dispersion of cationic IL molecules containing the
same imidazolium hydrophilic head but different alkyl chain lengths, in the aqueous so-
lution of MPD. The effect of IL molecules with different alkyl chain length (the longest
alkyl IL molecule behaves as a surfactant) on the structure of resulting PA layers was
studied by the GIWAXS technique. The objective of this study is to understand the effects
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of incorporating imidazolium-based IL molecules, from inert shuffling agent to surfactant,
in interfacial polymerization on the structure and property (i.e., permeate-flux and salt re-
jection ratio) relationships of resulting RO membranes. In specific, we aim to understand if
the imidazolium-based molecules can be trapped and/or self-assembled in the PA scaffold,
leading to changes in the barrier layer structure, filtration performance and membrane
surface properties (e.g., hydrophilicity and charge). It should be noted that some previous
studies have dealt with the similar thin film composite membrane system. However, no
structural studies on the polyamide barrier layer at the molecular or nanoscale level by
using GIWAXS have ever been carried out. Additionally, no information has been reported
for the solute transport by relating it with the aromatic motif orientation in these barrier
layers, which is the focus of the present study.

2. Ionic Liquid Selection

Three ionic liquid molecules were chosen for this study: (a) EMIC (1-ethyl-3-methyl-
imidazolium chloride, molecular weight = 146.62 g/mol) with 2 carbon atoms, (b) BMIC
(1-butyl-3-methyl-imidazolium chloride, moleular weight = 174.67 g/mol) with 4 carbon atoms,
and (c) OMIC (1-octyl-3-methyl-imidazolium chloride, molecular weight = 230.78 g/mol) with
8 carbon atoms. Our rationale for explore the IL-mediated interfacial polymerization study
is that OMIC can behave as a surfactant molecule, which can be aligned at the water/solvent
interface because of the amphiphilic nature. In other words, the hydrophobic tails of the
OMIC molecules should be immersed in the organic phase and their hydrophilic heads
are in the aqueous phase, where the self-assembly process at the interface may facilitate
the MPD diffusion and create an oriented structure during the formation of the PA barrier
layer. In contrast, EMIC and BMIC should not exhibit the surfactant behavior and behave
as a chemical agent. In this case, no self-assembled structures of BMIC and EMIC can be
formed at the interface, but these molecules can attract MPD and shuffle them across the
interface due to the higher solubilities of BMIC and EMIC in hexane [30] (MPD is nearly
insoluble in hexane) and the favorable attractive interaction (π-π stacking) between the
aromatic groups between MPD (benzene ring) and BMIC/EMIC (imidazolium ring).

In a study of [C4mim][PF6] surfactants, the liquid-like (LL) model was applied to
determine the molecular volume (Vm) as a function of mass density, Avogadro number,
and molecular weight [31]. This approach was also used to determine Vm of the chosen
surfactants. Figure 1a,b show the structure of the surfactants in this study, and the plots
for Vm against the number of carbon atoms in the alkyl chain for both [C4mim][PF6] [32]
and EMIC/BMIC/OMIC surfactants, respectively. A linear dependency of Vm change
with the number of carbon atom was observed in the selected surfactants. The slopes
from both sets of the surfactants were approximately the same, and they could be used to
determine the effective volume for each -CH2- moiety. These results indicate that a uniform
alkyl slab/liquid-like structure is also present in the EMIC/BMIC/OMIC surfactants on
the nanoscale.

3. Experimental
3.1. Materials

1,3,5-Benzenetricarbonyl trichloride (TMC, 98.0+%, TCI America), m-phenylenediamine
(MPD, 99+%, ACROS Organics), 1-octyl-3-methyl-imidazolium chloride (OMIC, 97%),
and 1-butyl-3 methyl-imidazolium chloride (BMIC, 96%) were purchased from Alfa
Aesar. 1-Ethyl-3-methyl imidazolium chloride (EMIC, 97%) and ethanol (99.5%) were
purchased from Acros Organics. All chemicals were used as received without further
purification unless otherwise noted. The polysulfone (Psf) ultrafiltration (UF) flat mem-
brane sheets (US020) with a molecular weight cut-off of 20,000 g/mol was used as an
RO membrane support was purchased from RisingSun Membrane Technology Co., Ltd.
(Beijing, China).
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Figure 1. Schematics of (a) the surfactant molecule structures showing different lengths in increasing
orders and (b) their molecular volumes as a function of carbon atoms.

3.2. IL-Mediated Interfacial Polymerization (IP) for RO Membrane Fabrication

The as-received US020 substrate (cut in a 11” × 9” sheet) was sequentially immersed
in ethanol for 5 min and then in 0.1% (w/v) MPD aqueous solution containing the IL
molecules (i.e., EMIC, BMIC, OMIC (1% w/v) for 2 min. The MPD-soaked membrane
was carefully taped onto a clean glass plate. Excess MPD solution was removed using
a glass rod. Subsequently, the MPD-soaked supported membrane was immersed in a
0.04% (w/v) TMC solution for 2 min. The tape was carefully peeled off and the interfacially
polymerized membrane was placed in an oven at 70 ◦C for 10 min. A schematic diagram for
the preparation of the RO membrane is depicted in Figure 2. The resulting membranes were
evaluated for the RO filtration performance using a crossflow apparatus to be described
below. Zeta potential and contact angle measurements were also carried out to characterize
these membranes.
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3.3. RO Filtration Evaluation

A bench-scale crossflow device was used to simultaneously evaluate the RO perfor-
mance (water permeation flux and salt rejection ratio) of six prepared membranes (Figure 3).
The effective membrane area for the measurement was 36 cm2. All membranes were first
subjected to simulated seawater prepared using a 3.5% (w/v) NaCl solution in DI water for
30 min at 800 psi, regardless of the IL molecules used, and then operated for another 5 h at
800 psi to measure water permeability and salt rejection ratio. In the filtration measurement,
the crossflow unit was first stabilized with deionized water at a hydraulic pressure of 1 bar
for 1 h. The volume of the filtrate was measured to determine the water permeation flux
(L m−2 h−1; LMH), where the salt rejection, R was determined as (1 − Cp/Cf), where Cp is
the salt concentration of the permeate and Cf is the salt concentration of the feed solution.
The permeation flux was measured for 5 h to evaluate the stability of the membrane. The
reported results of the permeation flux and rejection ratio were the averaged values of
three independent measurements.
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3.4. Preparation of Free-Standing Thin Films

To probe the structure of the PA barrier layer in the RO membranes, free-standing
thin films were also prepared using the same IL-mediated IP methods, as illustrated in
Figure 4. Briefly, 5 mL of 0.1% (w/v) MPD solution thoroughly mixed with 1% (w/v) IL
was poured in a 50 mL beaker containing a clean 3 cm × 2 cm silicon wafer at the bottom
of the beaker. Approximately 2 mL of pure hexane was added dropwise as a buffer layer to
ensure a smooth formation of thin film at the interface. Next, 1 mL of 0.004% (w/v) of TMC
solution was carefully added dropwise onto the buffer layer. After 2 h, excess solution was
drained using a pumping syringe, gradually letting the film to settle over the silicon wafer.
The film was then treated with 5 mL of ultrapure water for 6 h. Excess liquid was drained
again, and the silicon wafer was left to dry overnight for further use.

3.5. GIWAXS Characterization

Two-dimensional (2D) GIWAXS measurements of the PA thin films prepared by
the IL-mediated IP method were carried out in the Complex Materials Scattering (CMS)
beamline (11-BM) at the National Synchrotron Light Source II (NSLS-II), Brookhaven
National Laboratory. The X-ray patterns were collected by Pilatus (Dectris) detector and the
data acquisition time for each GIWAXS pattern was from 5 to 30 s. A slit limited beam size
of 0.05 by 0.2 mm2 was used to illuminate the sample using a 0.0918 nm X-ray wavelength
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and at a grazing angle of 0.12◦, close to the critical angle of the underlying silicon wafer
where the signal is enhanced. These are operated in the sample vacuum chamber as the
sample, thus minimizing the background scattering. The sample to detector distance was
22.9 cm. Details of the data analysis procedures have been previously described using
two-Lorentzian profiles to extract relevant structured parameters regarding the aromatic
motif arrangements in the PA chains [25].
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3.6. Contact Angle Measurement

The contact angle of a water droplet on the IL-mediated interfacially polymerized
membrane surface was measured using an optical contact angle analyzer (CAM200, KSV
instrument, LID, Helsinki, Finland). Approximately 5 µL-water droplet was gently placed
on the surface of the membrane, and digital images were collected using the CAM software.
The images were recorded after a fixed time of 5 s. The water contact angle was determined
using the curve fitting method and was reported as an average value at 3 different locations.
The experiments were repeated three times to check the reproducibility.

3.7. Zeta Potential Measurement

A zeta potential analyzer (Anton Paar, SurPASS 3, Graz, Austria) was used to study
the surface charge of the membrane fabricated using different ILs at a fixed concentration.
In this measurement, the membranes with dimensions of 20 mm × 10 mm was glued onto
an adjustable gap cell, maintaining a gap distance of approximately 100 µm. The streaming
potential measurements were carried out over the pH range of 3.5–9.0. The reported value
was also the averaged results from 3 independent runs.
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4. Results and Discussion
4.1. Performance Evaluation of IL-Mediated Interfacially Polymerized RO Membranes

Figure 5 describes the NaCl rejection ratio and permeation flux of IP membranes as a
function of EMIC, BMIC, OMIC concentrations used during the preparation procedures,
along with those of commercial membranes. The results clearly indicated that the inclusion
of all IL concentrations in the aqueous MPD monomer yielded a higher permeation flux
but lower rejection ratio. As shown in Figure 5a–c, the IL-mediated IP RO membranes
increased the permeation flux by around 50% (over 22 L m2-h−1) but decreased the rejection
ratio by around 10% with 5% of IL in interfacial polymerization. Such a trade-off between
the rejection ratio and permeation flux is a common characteristic in RO membranes.
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Figure 5a–c also show the effects of different ILs and their concentrations (1–5 w/v%)
on the membrane performance. EMIC being the smallest molecule showed the highest salt
rejection and lowest water flux, while OMIC being the longest molecule showed the lowest
salt rejection and highest water flux with an average flux of ~34.50 L m2-h−1. On the contrary,
the BMIC-modified membrane showed a mean permeation flux of ~25.57 L m2-h−1 and EMIC
showed a mean flux of ~24.00 L m2-h−1. However, the rejection ratio of EMIC (~98.90%) was
found to be higher than those of BMIC (~95%) and OMIC (~92%). The different behavior can
be attributed to the different content of the IL molecule trapped in the PA scaffold, depending
on its chain length, leading to different rejection ratio against Na and Cl ions. It was found
that the increase in the alkyl chain length resulted in the increasing water flux but decreasing
salt rejection ratio.

Regarding the effect of chain length of the IL molecule, the membranes fabricated with
the longest chain length OMIC exhibited the highest permeation flux but lowest rejection
ratio (Figure 5). There are several possibilities that can explain this observation. Since
OMIC molecules are typical surfactant molecules, they can preferentially migrate to the
water/organic solvent interface during IP and lower the interfacial surface tension. This
process would facilitate the transport of MPD molecules to the organic phase and initiate
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the reaction with TMC. It is conceivable that as the surfactant concentration increases,
the tendency to form micellar structure in the aqueous phase and self-assembled layered
structure at the interface would increase, whereby the latter could also hinder the transport
of MPD to the organic phase and resulting in some entrapment of the OMIC layered
assembly in the PA scaffold. In this scenario, the existence of hydrophobic tail aggregates
are likely to enlarge the free volume space within the PA matrix that would increase the
permeation flux and decrease the rejection ratio. These hypotheses are consistent with
the observed filtration results in Figure 5c, and our earlier study of OMIC-based RO
membranes [33]. We further speculate that once these OMIC molecules are incorporated in
the PA scaffold, they may be difficult to be removed by conventional washing methods.
This is because the sizes of the OMIC assemblies may be too large to be extracted away and
the assembly may be anchored by strong attractive interaction forces between the aromatic
groups between PA and OMIC. To further understand the relationship between the filtration
performance and the structure of the PA barrier, GIWAXS results of IL-mediated interfacial
polymerized PA films will be discussed in the next section.

In a different perspective, EMIC and BMIC with short aliphatic chain lengths cannot
exhibit surfactant behavior, but they can serve as chemical carriers to shuffle MPD
from the aqueous phase to the organic phase and facilitate the polymerization process
between MPD and TMC. This is because the solubilities of EMIC and BMIC in hexane
are higher than MPD in hexane due to their aliphatic tails. As a result, the presence of
EMIC and BMIC molecules can increase the diffusion rate of MPD across the interface
into the organic (hexane) phase. This hypothesis is based on a previous study which
reported that the ammonium ionic compound (having a similar structure as EMIC and
BMIC) acted as a carrier of the reactant species from the aqueous phase to the organic
phase and facilitated the polymerization reaction [34]. In Figure 5a,b, it was seen that
the increase in EMIC or BMIC concentration all resulted in membranes with higher
permeation rate and lower rejection ratio, which are certainly consistent with the concept
of the shuffling agent.

In Figure 5a–c, it was seen that the membrane prepared by the longer chain IL molecule
generally showed lower salt rejection ratio and higher permeation flux. One possible reason
for this observation is due to the higher solubility of OMIC (because of its longer alkyl chain)
in hexane than those of BMIC and EMIC. The relatively higher solubility would allow more
OMIC molecules to migrate into the hexane phase, thereby causing a higher degree of OMIC
entrapment in the PA scaffold and preventing the tightening of the network formation.
Based on the flux data, the average water permeances for EMIC, BMIC, and OMIC-based
membranes are calculated as 0.447, 0.489, and 0.642 L m−2 h−1 bar−1, respectively [35].
Similarly, the corresponding salt permeability coefficients are calculated as 0.787, 1.22, and
2.732 L m−2 h−1, respectively [36]. To this end, Figure 5d presents the comparative data
of the membranes synthesized in this study using IL and the commercially available RO
membranes. Although the commercial membranes exhibit relatively higher permeation
flux, the IL-mediated membranes fabricated in this study show larger salt rejection ratio.

4.2. GIWAXS Study of IL-Mediated IP PA Films

Figure 6 illustrates the GIWAXS results, including the as-measured scattering images,
circularly averaged scattering profiles and the Lorentzian fits (black line), and the scattered
intensity versus χ plots of free-standing PA thin films synthesized with the aid of EMIC,
BMIC and OMIC. These results revealed some new insights into the roles of these IL
molecules during interfacial polymerization, and how they might affect the cross-linked
network of the barrier layer. The as-measured 2D GIWAXS patterns for PA thin films
synthesized using EMIC, BMIC and OMIC are shown in Figure 6A–C, respectively, and
without the surfactant molecules (the layer thickness has been reported to be around
8–24 nm using neutron and X-ray reflectivity measurements [26]). These images can be
interpreted as follows.
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The 2D GIWAXS scattering patterns in Figure 6A–C show uniform scattering rings
with equal intensity at all azimuthal angles, irrespective of the ILs incorporated. The
scattering feature is broad in width and can be perceived as of an amorphous phase with a
short-range order. The qr and qz labels represent the parallel and normal scattering wave
vectors for the film surface, respectively, on the y-axis and x-axis. These scattering features
are evidently radially diffused and are of rather isotropic characteristics. The scattered
intensity profiles extracted at three selected azimuthal angles (χ = 10, 40, and 80◦) for
each film are shown in Figure 6D–F, where these linear profiles were fitted as the sum
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of two independent Lorentzian curves along with a sloping background. The rationale
and the fitting procedure to obtain these structural parameters have been described in our
previous study [25]. Briefly, the PA chains in the barrier layer are amorphous, whereby
the observed GIWAXS patterns (after the background subtraction) indicted the molecular
packing of polymer chains. In the previous study, two distinct peaks were identified in the
GIWAXS profiles, which were attributed to two different packing motifs of the aromatic
moiety: parallel stacking and perpendicular stacking (or T-shape stacking), both could
exhibit some preferred orientation [25], in the PA network. Moreover, molecular spacing
was closer packed in orientations along the surface normal direction than in orientations
along the surface in-plane direction.

It is interesting to see in the present spectra (Figure 6D–F), one fitted peak (q1) was
centered around 1.62 Å−1, while the other peak (q2) was centered around 1.83 Å−1, irre-
spective of the IL molecules used. The d-spacings corresponding to these two q-values
(using Bragg’s law) were 3.5 and 3.8 Å, respectively. Both values indicate the presence
of parallel π-π stacking of aromatic moieties in the PA scaffold, perhaps in two differ-
ent populations [25]. Unfortunately, the presence of the perpendicular packing motif (or
T-shape motif), typically observed at q = 1.22 Å−1 (or d = 5 Å) is not observed. The maxi-
mum scattered intensities of the two Lorentzian fits at different χ values are found to be
approximately constant (Figure 6G–I), implying a random distribution of parallel stacking
of aromatic moieties. These features were seen in all PA films, indicating that the presence
of IL molecules promotes the random distribution of parallel motif and hinders the for-
mation of perpendicular motif. Therefore, it is unlikely for a water molecule (diameter
about 2.75 Å) to transport through two parallelly stacked aromatic rings with a separation
distance of 3.5–3.8 Å; therefore, there must be the presence of larger molecular channels
formed in the loosely cross-linked PA network.

The RO membranes based on EMIC and BMIC (short alkyl chain lengths) indicate
a high rejection ratio, as discussed earlier. However, such an effect diminishes in the RO
membranes synthesized using OMIC (with 8-carbon atoms). As seen in Figure 6C, an
intense low-q scattering peak appears at around 0.2 Å−1 (d ~31.4 Å). This peak indicates
that the OMIC layered assemblies were trapped within the PA scaffold. Although the
initial concentration of OMIC in the aqueous MPD phase was below the critical micelle
concentration (CMC ~20%), the formation of PA chains increases the concentration trapped
OMIC molecules, resulting in a possible micellar formation. In this case, the low-q scattering
peak (0.2 Å−1) reflects the dimension of the self-assembled OMIC molecules, formed by
the aggregation of hydrophobic tails and parallel stacking of aromatic heads (i.e., the
imidazolium group) with the surrounding benzene groups in PA chains. This low-q
scattering peak is often referred as the “pre-peak” in imidazolium-based ionic liquids, which
has been explained via the mesoscopic organization of molecules leading to nanoscale
segregation [37]. The presence of the pre-peak in OMIC also confirms that the layered
structure is present in the PA matrix during the IP process and such assembly cannot
be washed away. In contrast, no low-q scattering peak can be found in PA thin films
fabricated using EMIC and BMIC. Therefore, if EMIC and BMIC molecules are also trapped
within the PA matrix, these two molecules lack the self-assembly capability as they are
not surfactant molecules. The incorporation of EMIC/BMIC/OMIC will all decrease the
cross-linking density of the PA scaffold, thus promoting the water flux but reducing the
rejection ratio. The self-assembly behavior of OMIC molecules can further decrease the
cross-linking density [38] and cause a much looser network work structure. It is conceivable
that the OMIC’s capacity to self-assemble aromatic heads together during the IP process
leads to OMIC being stacked in a parallel fashion. The occurrence of a parallel shaped
motif thus may contain benzene-benzene stacking, benzene-imidazolium stacking and
imidazolium-imidazolium stacking. As a result, T-shaped motifs in the PA matrix may be
overshadowed by the high presence of parallel shaped motifs and thus disappear. As a
result, the membranes containing OMIC assemblies have no preferred orientation, which
limits the degree of cross-linking. As observed in the OMIC-mediated membrane filtration
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data, a low cross-linking PA matrix favors the formation of water channels with high
flux but low selectivity. Table 1 sumarrizes the GIWAXS characterization data and the
membrane performance indicators.

Table 1. Peak positions and resulting d-spacings of free-standing films fabricated using different ILs
(at different concentrations), and the corresponding measured rejection and flux.

IL
(in Thin PA Film) Alkyl Chain Length q1

(Å−1)
q2

(Å−1)
d1
(Å)

d2
(Å) R (%) F (L m2-h−1)

EMIC 1 2 1.62 1.83 3.8 3.6 98.32 22.89

BMIC 2 4 1.61 1.82 3.9 3.4 95.29 27.07

OMIC 3 8 1.61 1.81 3.9 3.4 92.34 34.73
1 with EMIC; 2 BMIC; 3 OMIC, each 5% w/v.

4.3. Water Contact Angle Measurements of IL-Mediated IP RO Membranes

Figure 7 shows the water-contact angle results from the RO membranes prepared
by using different IL molecules. The data showed an increase in hydrophilicity of the
membranes with increasing hydrophobic chain lengths of ILs. This is in contrast with the
hydrophobicity of the pure ILs, which increases in the order EMIC < BMIC < OMIC because
of the increase in the number of saturated (-CH2-) bonds. However, it was interesting to
observe that when the IL molecules were included in the aqueous MPD solution during
interfacial polymerization, the trend reversed. The reason that membranes fabricated using
OMIC exhibited more hydrophilic characteristics than those with BMIC and EMIC can be
as follows. The number of the amide bonds in PA formed from interfacial polymerization is
mainly responsible for the hydrophilicity of the membrane. In addition, the free carboxylic
group or unreacted acyl chloride in TMC in the barrier layer can also contribute to the
hydrophilicity of the membranes. It is conceivable that the membranes prepared by OMIC
contains trapped OMIC assemblies, creating a loos network structure with more unreacted
carboxylic groups than those prepared with EMIC and BMIC molecules. In other words,
the smaller IL molecules with shorter alkyl chains can create the PA scaffold with a tighter
network structure and fewer unreacted chain ends (carboxylic groups) and thus more
pronounced hydrophobic behavior.
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4.4. Zeta Potentials of IL-Mediated IP RO Membranes

Figure 8 shows the zeta potential values of the RO membranes fabricated using ILs
at different pH values. The tested membranes were prepared using 0.1% (w/v) MPD and
0.04% (w/v) TMC, while the IL concentration was maintained at a constant value of 5% w/v.
It was seen that the changes in the isoeclectric points (around pH = 3.0) were insignificant
because these IL molecules did not participate in the polymerization reaction. In addition,
the zeta potentials remained negative in the pH range of 3–10 for all samples at a fixed
IL concentration. However, it was interesting to observe that the zeta potential in the
neutral pH range was approximately −10 V for OMIC, which decreased significantly to
approxiamtely −35 V for both EMIC and BMIC. In contrast, for the pristine membrane
fabricated without IL, its zeta potential curve was between those of OMIC and BMIC/EMIC.
For the large chain length molecule, i.e., OMIC, the zeta potential values were positive at
low pH values (pH < 4).
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5. Conclusions

The difference between the surface charges of these membranes can be explained by
the existence of unreacted monomers (e.g., MPD) and adsorbed IL molecules in the PA
barrier layer. Both moieties are anionic and can affect the charge density on the membrane
surface, despite not being part of the PA chains. In specific, the negatively charged carboxyl
functional groups in the PA scaffold can be formed by hydrolysis of unreacted acyl chloride
groups in TMC [39]. As the pH value increases, the acidic carboxyl groups can deprotonate,
therefore decreasing the zeta potential. This explanation is consistent with the results
obtained in Figure 8. Furthermore, since the zeta potential of the pristine membrane
(without IL) was always higher than those of the membranes fabricated by EMIC and
BMIC, this observation indicated that these anionic IL molecules were probably trapped
within the PA scaffold. This is because the presence of EMIC and BMIC molecules in the
PA scaffold could further decrease the zeta potential of the membrane, even though their
existence cannot be detected by the GIWAXS method. In contrast, the presence of the OMIC
assemblies was verified in the PA layer (Figure 6C). However, the formation of OMIC
self-assembled structure did not reduce the membrane zeta potential when compared with
that of the pristine membrane. Furthermore, the zeta potential decline of the membrane
having OMIC became smaller with increasing pH values, when compared to the zeta
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potential decline in other membranes, because of the OMIC assembly being stable at higher
pH values, resulting in a less charged surface.

The current study provides some new insights into the effects of adding ionic liquids
in interfacial polymerization to prepare RO membranes, based on the combined structural
and filtration performance studies. The filtration study indicated the incorporation of IL
generally increases the permeate flux but decreases the salt rejection rate. OMIC being
the longest chosen IL molecule with surfactant characteristics showed the lowest salt
rejection (94.25%) and the highest water flux of 34.50 L m2-h−1, whereas EMIC, the shortest
chosen IL molecule showed the lowest flux of ~24.00 L m2-h−1 and the highest rejection
rate (~95%) compared to the BMIC and OMIC-mediated RO membranes. The differences
between the alkyl chain lengths in IL molecules lead to different roles of ILs can play during
interfacial polymerization, from molecular shuffling agent to a surfactant. After interfacial
polymerization, some IL molecules appear to be trapped within the PA scaffolds, creating
a loose cross-linked structure leading to an increase in permeation flux and a decrease
in rejection ratio results. The evidence of the IL entrapment is evident by the existence
of OMIC layered assembly in the PA scaffold, and the notably zeta potential decrease
in membranes prepared with EMIC and OMIC. The entrapped IL molecules cannot be
easily removed by conventional washing process, and they appear to be stable during
RO filtration. This study has shown the GWAX analysis of the structure-performance
relationship in the IL-mediated membranes to be useful in selecting an appropriate IL, in
particular the effect of chain length on permeate flux and salt rejection ratio.
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