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Abstract—Background: As improving code review (CR) effec-

tiveness is a priority for many software development organiza-

tions, projects have deployed CR analytics platforms to identify

potential improvement areas. The number of issues identified,

which is a crucial metric to measure CR effectiveness, can be

misleading if all issues are placed in the same bin. Therefore,

a finer-grained classification of issues identified during CRs can

provide actionable insights to improve CR effectiveness. Although

a recent work by Fregnan et al. proposed automated models

to classify CR-induced changes, we have noticed two potential

improvement areas – i) classifying comments that do not induce

changes and ii) using deep neural networks (DNN) in conjunction

with code context to improve performances.

Aims: This study aims to develop an automated CR comment

classifier that leverages DNN models to achieve a more reliable

performance than Fregnan et al.

Method: Using a manually labeled dataset of 1,828 CR

comments, we trained and evaluated supervised learning-based

DNN models leveraging code context, comment text, and a set

of code metrics to classify CR comments into one of the five

high-level categories proposed by Turzo and Bosu.

Results: Based on our 10-fold cross-validation-based evalu-

ations of multiple combinations of tokenization approaches, we

found a model using CodeBERT achieving the best accuracy of

59.3%. Our approach outperforms Fregnan et al.’s approach by

achieving 18.7% higher accuracy.

Conclusion: In addition to facilitating improved CR analytics,

our proposed model can be useful for developers in prioritizing

code review feedback and selecting reviewers.

Index Terms—code review, review comment, classification,

open source software, analytics, OSS

I. INTRODUCTION

Peer Code Review (CR) is ubiquitous among contemporary
software development pipelines. CR acts as a quality assurance
gateway among popular Open Source Software (OSS) and
commercial organizations such as Microsoft, Google, and
Facebook [1], [2] [1], [3]. Since many projects have made CR
mandatory [4], [5], developers spend, on average, 10-15% of
their time (i.e., more than an hour each day) on CR tasks [2].
While the primary expectation behind CR adoption is finding
defects, most CRs do not meet this expectation [6]. Recent
studies found four out of the five CR comments regarding style
and nitpicking issues [7]–[9] that can also be identified using
static analysis tools. Therefore, some project managers often

wonder if their CRs are cost-effective and worth practicing [6],
[10].On the other hand, some project managers, although they
consider CRs crucial due to other benefits such as knowledge
dissemination [3], [6], they seek to improve CR effectiveness,
as even a minor improvement can incur significant savings for
large organizations such as Microsoft and Google [3], [7].

To identify potential improvement areas, many organiza-
tions have developed dashboards detailing various CR analyt-
ics such as review completion time, best reviewers, and the
number of issues identified [11], [12]. Although the number
of issues identified during CRs is an important metric to
measure CR effectiveness, this metric, as measured by existing
analytics tools [11], can be misleading due to the coarse-
grained analysis of identified issues. For example, a CR
comment identifying a critical functional defect is placed in
the same bin as one suggesting nitpicking issues such as
fixing typos. Therefore, the ratio of functional defects as
opposed to nitpicking ones among the identified issues can
not be measured. If CRs mostly identify nitpicking issues,
yet bugs are identified post-CR, there may be shortcomings
in the current CR process that current CR analytics would
fail to reveal. An automated classifier is necessary to facilitate
more informative CR analytics as manual classification of CR
comments on a large scale is infeasible.

On this need, Fregnan et al. [13] developed an automated
model to classify CR-induced changes into four categories.
The results of their user evaluation show a need for such a
CR analytics platform among the developers. However, we
noticed two potential improvement areas over their work.
First, as their model focuses on classifying review-induced
changes, it fails to account for CR comments that do not
trigger changes (e.g., discussion or changes deferred as future
works), even though that feedback was beneficial. Therefore,
analytics based on Fregnan et al.’s [13] model fail to allocate
credits to authors of such reviews. Second, Fregnan et al. [13]
uses only classical Machine Learning (ML) algorithms such
as Naive Bayes, Decision Tree, and Random Forest in their
evaluation. We aim to explore deep neural network (DNN)-
based algorithms with CodeBert [14], as these combinations
have shown superior performances for code classification
tasks [15], [16]. Therefore, this study aims to develop an
automated CR comment classifier that leverages DNN models978-1-6654-5223-6/23/$31.00 ©2023 IEEE



to achieve a more reliable performance than Fregnan et al. [13]
On this goal, we have manually labeled a dataset of

1,828 CR comments following the CR comment classification
scheme proposed by Turzo and Bosu [8]. Using this dataset,
we trained and evaluated supervised-learning-based DNN
models leveraging various code and feedback characteristics
to classify each CR comment into one of the five high-level
categories proposed by Turzo and Bosu [8]. We empirically
evaluated multiple combinations of tokenization approaches to
identify the best-performing model. In summary, we answer
the following two research questions:
(RQ1) Can we use an automated machine learning-based

approach to classifying code review comments?

Motivation: An automatic CR comment classification model
would provide three benefits. First, an author can prioritize
high-priority issues to prepare revisions. Second, based on
prior CR analytics, an author may identify reviewers who
are more likely to identify their priority issues and select
reviewers accordingly. Finally, it can provide project managers
with additional CR analytics to access individuals and overall
process performances.
Method: We develop a machine learning-based classification
approach that considers code context, CR comments, and a set
of code attributes for classifying CR comments.
Results: The proposed approach can classify CR comments
with an overall accuracy of 59.3%. Our evaluation also sug-
gests that all the features (i.e., code context, comment text,
and code attributes) improve model performance.
(RQ2) Can our review comment classification tool perform

better than the current state-of-the-art?

Motivation: Review comment classification task is slightly
different from change classification because some comments
might not induce change. However, by retraining, the existing
change classification approach of Fregnan et al. [13] can be
used for classifying review comments. They considered code
attributes only for classifying a change. Our hypothesis is if
we incorporate code context, review comment, and additional
code attributes, we may achieve better performance to classify
review comments. RQ2 tests this hypothesis.
Method: We replicated the study of Fregnan et al. [13]
on our dataset of 1,828 CR comments from the OpenDev
Nova project. We used precision, recall, F1-score, and model
accuracy to compare the performance of both approaches.
Results: Experimental results found that our proposed ap-
proach achieved an 18.7% performance improvement in model
accuracy over Fregnan et al.’s approach in the review comment
classification task.

The primary contributions of this study are the following:
• A novel machine learning approach for classifying CR

comments.
• A detailed investigation by varying the input attributes

and experimenting with the effect of different review
comment tokenization and vectorization approaches on
the model’s performance.

• Empirically validated that the proposed approach per-
forms better than the existing comparable automatic
change classification approach of Fregnan et al. [13].

• We have made our code and dataset publicly
available at: https://github.com/WSU-SEAL/
CR-classification-ESEM23

The remainder of the paper is organized as the following.
Section II discusses prior related works. Section III presents
the data collection and manual labeling approach. Section IV
details our model construction and evaluation approach and
answers RQ1. Section V answers RQ2 by comparing the
performance of our approach with the approach of Fregnan
et al. [13]. Section VI discusses the insight gathered from this
experiment. Section VII and VIII address the threats to validity
and concludes the paper, respectively.

II. RELATED WORKS

The following subsections briefly describe prior research
relevant to the goals of this study.
Code review effectiveness : Due to the widespread adoption
of code review, recent years have seen increased research focus
on this area. This mismatch between developers’ expectations
from CRs and outcomes is due to code comprehension chal-
lenges with limited time and context [6]. Their finding that
approximately 80% CRs do not find bugs is also supported
by several subsequent studies [7]–[11]. Although most CRs
do not find bugs, developers still consider CR as an essential
practice due to other benefits such as knowledge dissem-
ination, improving project maintainability, and community
building [2], [3], [17]. Studies investigating CR effectiveness
have identified several technical and non-technical factors
having positive associations, which include the reviewer’s
experience [7], [8], [18], the author’s reputation [19], and
project tenure [7]. On the other hand, factors with negative
associations with CR effectiveness include missing rationale,
discussion of non-functional requirements of the solution,
and lack of familiarity with existing code [20], co-working
frequency of a reviewer with the patch author [8], [21],
description length of a patch [22], changeset size [1], the
number of files under review [7], [8] and the level of agreement
among the reviewers [23].

Code review automation: To help the reviewers understand
the code better, several studies have focused on developing
the changeset decomposition tool [24]–[27]. By decomposing
the changeset, these studies aim at helping reviewers under-
stand the code better so that reviewers can provide useful
functional feedback. A large number of prior studies have
developed tools for selecting appropriate reviewers [28]–[32].
By finding appropriate reviewers, those tools assist code au-
thors in obtaining useful review comments. Existing reviewer
recommendation systems consider history as a benchmark
for measuring performance. But a recent study suggests that
history can overestimate or underestimate the capability of a
reviewer recommendation system [33]. Several recent studies
have proposed the complete automation of the whole code

https://github.com/WSU-SEAL/CR-classification-ESEM23
https://github.com/WSU-SEAL/CR-classification-ESEM23


review process [34]–[38]. With the recent advancement of
transformer model [39], automation of code review activity can
be achieved. But, such complete automation of code review ac-
tivity would deprive developers of the benefits of code review,
such as knowledge sharing among team members. We are
motivated by prior studies that found the need to develop tools
for automating different aspects of the code review process and
developers’ interests in CR analytics platforms [11]–[13].

Code review classification: Several studies have manually
classified CR comments to identify the ratios of various
categories of identified issues. Mäntylä and Lassenius first
studied industrial and student CRs and found that only one-
fourth of CRs affect code functionality [40]. They found
12 types of CR-identified issues, which they further catego-
rized into three higher-level groups. Beller et al. manually
classified 1,400 CR changes and found 10-22% of changes
unrelated to CR comments [9]. They also proposed a taxonomy
that categorized CR-induced changes into two higher-level
categories. As some of the CR comments do not induce
any change, prior studies also focused on classifying CR
comments. Bosu et al. conducted a study on Microsoft where
they identified 13 types of comments that appear in the code
review process [7]. Turzo and Bosu [8] recently adopted
Beller et al.’s change classification scheme to create a CR
comment taxonomy consists of 17 subcategories grouped into
five higher-level categories. Using a labeled dataset of 800 CR
comments, Bosu et el. [7] trained an automated classifier to
automatically identify useful CR comments. Building on their
work, two later studies have developed classifiers with the
same goal at different settings [11], [41]. While earlier studies
focused on a binary classification to predict whether a CR
comment was useful, Fregnan et al. [13] is the first to propose
an automated model to classify review-induced changes into
four categories. As Fregnan et al.’s [13] model focuses on
classifying review-induced changes, our work also differs from
theirs by considering non-change inducing CR comments.

III. DATASET PREPARATION

This section details our project selection, data mining, CR
comment classification rubric, and manual labeling approach.
Figure 1 shows an overview of our dataset preparation steps.

A. Project Selection

For this study, we selected the OpenDev Nova project from
the OpenDev community for the following reasons:

1) Developers in the OpenDev community practice tool-
based CR [2], and OpenDev is one of the largest OSS
communities with contributors from more than 700 orga-
nizations 1 worldwide.

2) OpenDev projects have been the subject of prior CR
studies [8], [42], [43].

1https://openinfra.dev/annual-report/2022
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Fig. 1. An overview of our dataset preparations steps

B. Dataset Preparation
OpenDev community uses Gerrit2 to manage CRs. We

accessed the REST API provided by Gerrit to access and
mine all the publicly available CRs from OpenDev’s Gerrit
instance3. Our dataset spans July 2011 to March 2022 and
includes a total of 795,226 either ‘Merged’ or ‘Abandoned’
CRs. We stored the dataset in a local MySQL server.

C. Manual Labeling
We randomly selected 2,500 CR comments from the

OpenDev Nova project for manual labeling using MySQL’s
rand() function. We only selected CR comments from
OpenDev Nova as it has the highest number of posted
CRs during our dataset span of July 2011 to March 2022.
Prior studies have proposed several CR issues classification
schemes [7]–[9], [11], [13], [40]. In this study, we select
the classification scheme proposed by Turzo and Bosu [8],
as their classification considers CR comments that did not
induce any change, opposed to the one used by Fregnan et
al. [13] Since we aim to classify CR comments, Turzo and
Bosu’s scheme is more suitable for our goal. Table I shows
the 17 CR comment subcategories that are grouped into five
higher-level categories based on this classification scheme. As
building a reliable 17-category classifier is challenging, this
study focuses on the five higher-level categories, which are: i)
Functional, Refactoring, iii) Documentation’ iv)
Discussion, and v) False Positive.

Although our classifier requires labeling each CR com-
ment into one of the five high-level categories, we manually
labeled using the 17-category classification for future use
cases of this dataset and fine-grained error analysis. Each
of the CR comments was independently labeled by two
annotators. During this process, they read the entire comment
thread and its surrounding code context and induced changes
among subsequent reviews (if any) to assign one of the 17
labels (Table I). We compared the assigned labels to identify
conflicts. We computed Cohen’s kappa () [45] to measure
the inter-rater reliability of this manual labeling process. The
manual labeling achieved a  value of 0.68 which indicates
a substantial agreement4. To resolve the conflicts, a third
annotator independently went through the conflicting ones
to assign final labels. All three annotators are co-authors of
this paper and have significant research experience in code
reviews. After completing the manual labeling step, we assign

2https://www.gerritcodereview.com/
3https://review.opendev.org
4Kappa () value interpretation: 0.01–0.20 indicates ‘none to slight’,

0.21–0.40 indicates ‘fair’, 0.41– 0.60 indicates ‘moderate’, 0.61–0.80 indicates
‘substantial’, and 0.81–1.00 indicates ‘almost perfect agreement’ [46].



TABLE I
RUBRIC FOR CLASSIFYING CODE REVIEW COMMENTS WHICH WE ADOPTED FROM PRIOR STUDIES [7]–[9], [11], [40]

Group Category Description

Functional

Functional Functional issues are defects where a code functionality is missing or implemented incorrectly. If requires
large modification to resolve the issue.

Logical Logical issues are defects where there exist control flow problems or logical mistakes (wrong logic
implementation, comparison issues).

Validation All types of user data sanitization issues or issues related to exception handling.
Resource Any kind of variable, memory, or file issues while handling or manipulating them.
Timing Any kind of synchronization issues while using the thread.
Support issues Any kind of support systems-related issues (e.g. configuration problem or version mismatch).
Interface Any types of interfacing issues such as issues in an import statement, issues while interacting with the

database or internal system.

Refactoring

Solution approach Review comments that suggest an alternative approach for problem-solving.
Alternate Output Review comments that address issues within the alert message, toast message, or error message.
Code Organization Code organization or refactoring issues presented in the catalog of Martin Fowler [44].
Variable Naming Review comments that address the violation of the variable naming convention.
Visual Representation Any kind of indentation, blank line, or code spacing-related issues.

Documentation Documentation Review comments that address issues related to code comments or documentation files for aiding code
comprehension.

Discussion

Design discussion Comments that discuss design pattern or sourcecode architecture.
Question If reviewers ask anything to the code author for clarification.
Praise Review comments that praise or complement the developer.

False positive False positive An invalid concern. A CR comment is considered ‘False Positive’ if (a) the code owner explicitly mentions
the comment as an invalid concern or (b) no subsequent change occurred nor the code owner agrees to a
future change [8].

the target label for each CR comment according to our schema
from Table I . For example, if a category comment belongs
to ‘Design discussion’, ‘Question’, or ‘Praise’, we assign the
comment to the Discussion group. We found that 672
among the 2,500 CR comments were unrelated to source
code files (e.g., configuration, build, resources, and commit
message). As many of the code attributes selected for our
classifiers (Table II) cannot be computed for non-source code
files, we exclude those 672 CR comments at this step. After
this exclusion, we use the remaining 1,828 CR comments
to train and evaluate our classifiers. In this dataset, 8.64%
comments belong to False Positive, 24.34% belong to
Discussion, 32.71% belongs to Refactoring, 21.17%
belongs to Documentation, and 13.13% comments belong
to Functional group.

IV. (RQ1) MACHINE LEARNING MODEL FOR
CLASSIFYING CODE REVIEW COMMENTS

To classify CR comments, we consider three types of input
attributes for our machine-learning model. We consider the
code context where the review comment was made, the CR
comment in the form of natural language, and several code
attributes. This section presents our attribute selection, model
training approach, and results of our evaluations.

A. Attribute Selection
We first consider the code context where the review com-

ment was made. Bosu et al. [7] found that a code change
occurs within a limited proximity (+-10 lines) of code, which
they define as the ‘change trigger’. So, we consider the
code context of +-10 lines from the occurrence of a CR
comment and define that code segment as Review Comment
Range (RCR). Code context can be a crucial feature as CR
comments are made to pinpoint the existing code mistake. So,
the code context can provide significant insight for classifying

review comments. Several recent studies have also focused
on utilizing source code context by extracting source code
feature vector [14], [48]. We utilize the existing source code
vectorization technique and use the code vector as a feature
of the machine learning model. The second attribute that
we consider is the review comment in the form of natural
language. As our goal is to classify CR comments, comment
text can be a crucial feature for the classifier. Hence, we also
use comment texts as inputs to our models.

We additionally selected 27 code attributes. Those 27 code
attributes were calculated from the source and the destination
files. The source file is where the CR comment was made,
and the destination file is the file that finally merged into
the main codebase. If destination file is non-existent, no
change occurred after the CR comment was made. We selected
several Abstract Syntax tree-based (AST) based attributes,
as recent studies have found that AST can better represent
source code [49], [50]. Although AST difference-based code
attributes were not explored by Fregnan et al. [13], those
could be crucial to identify the type of recommendation
made in a CR comment. For example, if a CR comment
suggests no code change, only minor fixes such as updating
documentation, there would be no difference between source
and destination. If two ASTs have identical structures with
different token names, their associated CR comment may
be related to refactoring. Moreover, if two ASTs have the
same number of tokens and nodes but differ in comparison
operators, their CR comment may be related to a logical
issue (i.e., functional). As machine learning features, we have
incorporated nine AST-based attributes (e.g., anyDeleted, Any-
thingInLineMoved, getMovedSrcs). We also used 14 change-
based attributes and four file-based attributes. The change-
based and file-based attributes are selected considering our
classification goal and the insight we gather from prior studies



TABLE II
CODE ATTRIBUTES SELECTION FOR MACHINE LEARNING MODELING

Attributes Description Rationale

AST-based attributes

anyInserted Count of AST nodes inserted in the destination
file.

Some code changes involve the addition of a few AST nodes. For
example, in case of variable value assignment or logical changes.

anyDeleted Count of AST nodes deleted in the destination
file.

Some code changes involve the deletion of a few AST nodes. In
case of variable value assignment or logical changes, few AST
node deletions might occur.

getMovedSrcs How many AST nodes moved from the source
file.

If the source code chunk is moved to the destination, it might
indicate a refactoring change.

updatedSrcs How many sources AST nodes are updated in
the destination file?

Update of a few numbers of AST nodes may indicate logical
changes.

anythingInLineMoved Count of source AST nodes that were within
the Review Comment Range (RCR) but moved
elsewhere in the destination file.

Prior studies suggest most changes occur in close proximity to the
review comment. The number of AST nodes moved within close
proximity can provide valuable information about the change.

anythingInLineUpdated Count of source AST nodes that were within the
RCR and were updated in the destination file.

Similarly, the number of AST nodes updated within close prox-
imity of the review comment can provide valuable information
about the change.

anythingInLineDeleted Count of source AST nodes that were within the
RCR and were deleted.

Similarly, we argue that the number of AST nodes deleted within
close proximity of the review comment can provide valuable
information about the change.

anythingMovedIntoLine If an AST node is in the RCR of the source,
then the number of child nodes moved within
that node in the destination file.

Number of nodes moved within RCR can provide crucial infor-
mation for review comment classification, it can be indicative of
refactoring changes.

anythingInsertedIntoLine If an AST node is in the RCR of the source,
then the number of child nodes that are newly
inserted within that node in the destination file.

Number of nodes newly inserted within RCR can provide crucial
information for review comment classification, it can be indicative
of larger changes.

Change-based attributes

insertedIfConditions How many if statements in the destination file
were inserted?

Insertion of ‘if’ condition indicates logical Functional change.

deletedIfConditions How many if statements in the source file were
deleted?

Similarly, deletion of the ‘if’ condition indicates logical Func-
tional change.

elseInserted How many else inserted in the destination file? Insertion of ‘else’ condition indicates control flow change, which
is a Functional change.

elseDeleted How many else statements in the source file
were deleted?

Similarly, deletion of the ‘else’ condition indicates logical Func-
tional change.

entireLineMoved How many full lines in the RCR were moved in
the destination file?

Number of lines moved within close proximity can be valuable, for
example, a large number of moved lines can indicate a structural
rearrangement.

entireLineDeleted How many full lines in the RCR were deleted
from the source file?

Similarly, a large number of deleted lines can indicate a structural
change or a larger change.

stringsUpdated Number of strings in the source file that was
updated.

Higher number of strings updated in the source file can indicate
an ‘Alternate Output’ change.

magicStringsReplaced Number of Magic strings replaced with vari-
ables.

Magic Strings are strings that are specified internally and impact
the code behavior. Magic string replacement may indicate control
flow-related change.

movedBlocksInIfConditions Number of blocks within the if conditions were
moved in the destination file.

Number of moved blocks within the ‘if’ condition indicates
control flow-related issues within code.

insertedAssertConditions Number of asserts inserted in destination file As assert check for condition, insertion of assert condition might
indicate functional change.

insertedTryCatch Number of try-catch nodes inserted in the des-
tination file.

Inserted try/catch statement may indicate Validation issues within
code.

removedTryCatch Number of try-catch nodes in the source file that
was removed in the destination file.

Removed try/catch statement may indicate Validation issues or
even a Structural change within the code.

updatedValueAssignments Number of updated statements in the destination
file where any variables’ value was updated.

Variables’ value update can indicate logical functional issues.

updatedFunctionArguments Number of function arguments that were up-
dated in the destination file.

Number of updated arguments within a function can provide
valuable information about the change.

File-based attributes

hasNewFile A binary variable indicating destination file ex-
istence.

If 0, then it indicates no change occurred, so the comment might
be false positive.

hasOldFile A binary variable indicating source files’ exis-
tence.

Similarly to the previous one, this variable’s value can provide
information about a comment.

cyclomaticComplexity The Cyclomatic Complexity proposed by Mc-
cabe [47] of the source file.

Cyclomatic complexity can provide vital information regarding
the issue of the code or the types of review comments.

commentLOC The line number of the source file where the
review comment was made.

Comment line number can provide crucial information, such as
if the commentLOC is small, then most probably the review
comment is targeted for import statements.



Fig. 2. Architecture of our proposed Machine Learning model.
L

indicates a
concatenation unit in the image. CR Comments �! Code Review Comments.

[13], [47], [51]. Table II presents the 27 selected attributes, a
short description for each, and a brief rationale for selection.

B. Machine Learning Modeling
Figure 2 shows the architecture of our proposed model. The

proposed machine-learning model inputs code, CR comments,
and code attributes. Text data must be tokenized and converted
into vectors to use as inputs for machine learning models.
We tokenized the code and CR comments using CodeBERT
tokenizer [14] separately. CodeBERT tokenizer provides in-
put ids and attention mask for both source code and review
comments. For implementing the CodeBERT tokenizer, we
used transformers from Hugging Face [52].

For source code and review comment vectorization, we use
the CodeBERT encoder [14]. We separately pass the tokenized
source code and tokenized review comments to the CodeBERT
encoder. CodeBERT is a hybrid pre-trained vectorizer that
has been trained with both source code and natural language
text. Also, CodeBERT achieved state-of-the-art performance
for source code and natural language [14]. Since we use both
source code and CR comments together, CodeBERT may be

an excellent option for generating contextualized embedding
vectors. After getting the embedding vector for code and CR
comments, we pass it through separate LSTM layers.

Each embedded source code and review comment vectors
are then separately passed through an LSTM [53] layer. The
LSTM layer consists of 50 LSTM cells. The code output and
comment output from both the LSTM layers are concatenated
together. This concatenated vector is further concatenated with
the calculated code attributes of Table II. The concatenated
vector is then passed through a Dense layer with softmax
activation function. The Dense layer produces the final class
that a review comment belongs to. We used the Categorical
Cross Entropy [54] as the loss function and used Adam
optimizer [55] to optimize the loss function. For training the
model, we used batch size 4 and epoch 8. As the code context
and review comment generate a 512-dimensional vector, we
had to choose a small batch size for training. We also imple-
mented EarlyStopping method from the TensorFlow5 library
with 10% validation data. EarlyStopping was performed to
avoid overfitting. We performed 10-fold cross-validation, and
in each fold, 80% data were used for training, 10% were used
for validation, and the remaining 10% were used for testing.

C. Evaluation Metrics

To assess the performance of the proposed model, we
compute Precision, Recall, F1-Score, Matthew’s Correlation
Coefficient (MCC) [56], and overall Model Accuracy.

D. Experiments and Results

We conducted two types of experiments to evaluate the
performance of our proposed approach. First, we experimented
on the contribution of code context, CR comment, code
features separately, and the contribution while the attributes are
combined. We also experimented with different tokenization
and embedding on the review comment. The result then leads
us to perform an error analysis to understand the model’s bias.

1) Effect of code context, review comment, and code at-
tributes separately for classifying review comments: First,
we experimented with the impact of each feature sepa-
rately on the performance of the review comment clas-
sification task. Table III presents the result when we
experimented with code context, CR comment, and code
attributes separately. While Code context was used only,
we achieved F1-Score of 0.232, 0.565, 0.019, 0.056, and
0.523 for the Discussion, Documentation, False
Positive, Functional, and Refactoring classes,
respectively. While the Review comment was used only,
we achieved F1-Score of 0.637, 0.673, 0.257, 0.337, and
0.604 for the Discussion, Documentation, False
Positive, Functional, and Refactoring classes re-
spectively. While we used Code attributes only, we achieved
F1-Score of 0.062, 0.056, 0.014, 0.093, and 0.263 for
the Discussion, Documentation, False Positive,
Functional, and Refactoring classes respectively. So,

5https://www.tensorflow.org/



TABLE III
PERFORMANCE OF OUR PROPOSED TOOL WHILE CODE, REVIEW COMMENT, AND CODE ATTRIBUTES ARE CONSIDERED SEPARATELY

Comment class
Code context only Review comment only Code attributes only

Precision Recall F1-Score MCC Precision Recall F1-Score MCC Precision Recall F1-Score MCC

Discussion 0.326 0.208 0.232 0.396 0.586 0.706 0.637 0.543 0.049 0.121 0.062 0.183
Documentation 0.557 0.592 0.565 0.381 0.672 0.685 0.673 0.552 0.067 0.064 0.056 0.212
False Positive 0.033 0.013 0.019 0.414 0.441 0.194 0.257 0.571 0.009 0.036 0.014 0.235
Functional 0.176 0.055 0.056 0.414 0.416 0.327 0.337 0.568 0.068 0.297 0.093 0.224
Refactoring 0.415 0.719 0.523 0.283 0.602 0.624 0.604 0.520 0.255 0.452 0.263 0.145
Model Accuracy 0.418 0.579 0.230

Fig. 3. Example of a review comment where the reviewer presents a code line
to pinpoint the issue better. This example has been taken from the OpenDev
Nova project.

we can argue that Code context, Review comment, and Code
attributes all contribute to the model performance.

2) Effect of different tokenization and vectorization on
code review comment: CR comment is provided in natural
language, so initially we selected pre-trained BERT [57]
for review comment tokenization and vectorization task and
CodeBERT [16] for the same for code context. We also
experimented using CodeBERT as the tokenizer+vectorizer
for review comments as well. The processing of the other
two input features, code and code attributes, are kept un-
changed, i.e., code context features are always vectorized
with CodeBERT. Table IV compares the results between two
combinations, i) BERT for CR comments + CodeBERT for
code context, ii) CodeBERT for CR Comments + CodeBERT
for code context. Table IV suggests that with BERT for CR
+ CodeBERT for Code context combination, we achieved an
overall model accuracy of 0.502. However, with CodeBERT
for CR comments + CodeBET for code context combination,
the model achieves an accuracy of 0.593, which is almost 10
percent higher than the other combination.

From Table IV, the result suggests that CodeBERT performs
much better than the BERT for review comment tokenization
and vectorization task. We were initially surprised by the
findings and decided to manually inspect the CR comments.
We selected 200 review comments randomly from our dataset
for manual inspection. We found that reviewers present code
chunks in many CR comments for pinpointing the issue to the
code author. Figure 3 presents an example from the OpenDev
Nova project. CR comments may contain natural language
as well as programming language segments. Similarly, Code-
BERT, is trained on both natural language and source code.
Therefore, CodeBERT performs better than BERT for review
comment tokenization and vectorization tasks.

3) Error Analysis: We analyzed the misclassifications qual-
itatively and quantitatively to better understand our model’s
performances. Table V shows the confusion matrix from 10-
fold cross-validation for the best model. The confusion matrix
shows how many samples of each class are correctly predicted
and how many samples are classified into other classes. Since
we took the classified instances for the confusion matrix from
10 folds, we combined all the samples for the test set and put
their sums on the confusion matrix. The confusion matrix of
Table V also provides us insights into the model’s biases.
False Positive: According to the confusion matrix, out of 158
False Positive samples, 24 cases are accurately identi-
fied, whereas 43 samples are misclassified as Discussion,
29 samples are misclassified as Documentation, 36 sam-
ples are detected as Refactoring, and 26 samples as
Functional class. So, our classifier is biased toward
the other four classes in a similar ratio for the’ False
Positive comments. We manually analyzed those cases,
and an example of a False Positive review comment
that is classified as a Functional, “A simple unit test would
assert that we don’t call service get all if enabled services
is passed in.” This review comment addresses a Functional
comment, but the concern was not valid for that circumstance.
Therefore, our labelers marked it as a False Positive.
Discussion: We observe biases towards the Refactoring
class while predicting the Discussion class comments.
For example, “We should make this a public method now
yeah?” belongs to the Discussion class but our model has
misclassified it as a Refactoring.
Documentation: We found biases of the Documentation
class towards the Refactoring class. For example, “nit:
add a TODO to remove this proxy and just have callers hit the
necessary clients directly.” is a Documentation comment
that our classifier misclassified as a Refactoring.
Refactoring: From our evaluation, we found that
many Refactoring samples are misclassified as a
Discussions. For instance, “Is anything else using this
method now or can we remove it also?” is misidentified in
the Discussion class category.
Functional: In cases, where Functional samples were
misclassified, they were more likely to be predicted as the
Refactoring category. An example where a Functional
comment is misclassified as a Refactoring comment, “I
would lower this too to be safe, but I guess it’s not going to
change.”



TABLE IV
PERFORMANCE COMPARISON WHILE BERT AND CODEBERT ARE USED SEPARATELY FOR REVIEW COMMENT TOKENIZATION AND VECTORIZATION

TASK

Comment class

BERT CodeBERT
(tokenizer + vectorizer) (tokenizer + vectorizer)

Precision Recall F1-Score MCC Precision Recall F1-Score MCC

Discussion 0.516 0.570 0.522 0.449 0.611 0.685 0.638 0.547

Documentation 0.670 0.634 0.644 0.463 0.704 0.762 0.723 0.556

False Positive 0.124 0.041 0.056 0.487 0.376 0.158 0.207 0.576

Functional 0.380 0.116 0.162 0.483 0.408 0.358 0.365 0.572

Refactoring 0.461 0.632 0.523 0.409 0.628 0.633 0.616 0.527

Model Accuracy 0.502 0.593

TABLE V
CONFUSION MATRIX FOR ERROR ANALYSIS

Ground truth
Predicted

Discussion Documentation False Positive Functional Refactoring

Discussion 306 29 18 28 64
Documentation 32 292 3 8 52
False Positive 43 29 24 26 36
Functional 37 15 13 85 90
Refactoring 94 57 13 57 377

Key takeaway 1: The proposed machine learning model
can classify CR comments with 59.3% accuracy. The results
of our evaluation also suggest that all three categories
of input features (i.e., code attributes, code context, and
comment text) contribute to improving model performance.

Key takeaway 2: Although review comments are provided
in natural language, they often contain programming lan-
guage lines and keywords. So, for the tokenization and
vectorization of CR comments, we recommend using a
hybrid model that is trained both in natural language and
programming language, such as CodeBERT [14].

V. (RQ2) COMPARISON AGAINST CURRENT
STATE-OF-THE-ART FOR REVIEW COMMENT

CLASSIFICATION TASK

This section presents the replication of Fregnan et al.
[13] work and the performance comparison between the two
approaches.

A. Replication

The work of Fregnan et al. [13] proposed models to classify
review-induced changes into four categories. Although most
CR comment categories trigger changes, some categories, such
as false positive, discussion, or praise, do not. Even though
our classifier has a slightly different goal, we can train a
model using their approach and our dataset for CR comment
classification. Therefore, we retrained Fregnan et al.’s [13]
model to compare the performance of our approach against
theirs. We followed their approach as closely as possible for
replication. Despite the attributes of Fregnan et al. [13] being
calculated for Java code, and our selected project being written
in Python, we were able to calculate the same set of attributes

Since Fregnan et al. [13] provide adequate descriptions of
the selected attributes and have made their replication package
publicly available [58], we were able to write a script to
extract their selected attributes for our dataset. We use our five-
class category label for each CR comment as the dependent
variable, which we computed in the data preparation step.
Thus, we could utilize their approach in our context and obtain
results as a five-class classification. As the Random Forest
algorithm performed the best on classifying review-induced
changes during their evaluation, we used this algorithm with
10-fold cross-validation for comparison.

B. Result Comparison

Table VI presents the result of the Fregnan et al. [13]
approach and our proposed approach. The values presented
in Bold font represent the best value between the two models.
The results from Table VI indicate that for all the measures,
our proposed model performs better than the approach of
Fregnan et al. [13].

From Table VI, we can see that, for the Discussion,
Documentation, False Positive, Functional, and
Refactoring classes, Fregnan et al. [13] approach
achieved an F1-Score of ‘0.362’, ‘0.483’, ‘0.068’, ‘0.139’,
and ‘0.486’ respectively. Whereas, for the Discussion,
Documentation, False Positive, Functional, and
Refactoring classes, we have achieved an F1-Score of
‘0.638’, ‘0.723’, ‘0.207’, ‘0.365’, and ‘0.616’ respectively.
Fregnan et al. [13] approach achieved an overall model accu-
racy of 0.406, whereas we achieved an overall model accuracy
of 0.593. Our proposed approach has achieved a significant
performance improvement for all five comment classes and
overall model accuracy.



TABLE VI
COMPARISON BETWEEN OUR PROPOSED APPROACH WITH THE APPROACH OF FREGNAN et AL. [13]

Comment class
Fregnan et al.’s Approach Proposed Approach

Precision Recall F1-Score MCC Precision Recall F1-Score MCC

Discussion 0.355 0.373 0.362 0.368 0.611 0.685 0.638 0.547

Documentation 0.477 0.497 0.483 0.382 0.704 0.762 0.723 0.556

False Positive 0.283 0.040 0.068 0.410 0.376 0.158 0.207 0.576

Functional 0.297 0.093 0.139 0.408 0.408 0.358 0.365 0.572

Refactoring 0.415 0.592 0.486 0.307 0.628 0.633 0.616 0.527

Model Accuracy 0.406 0.593

Key takeaway 3: Our proposed approach acheives bet-
ter performance than Fregnan et al. [13] for the review
comment classification task across all measures. Freg-
nan et al. [13] approach shows lower performance for
the False Positive class. Although our proposed ap-
proach achieves a better performance than Fregnan et al.
[13] for the False Positive class; still, the perfor-
mance needs significant improvements. Further study is
required for better analyzing and improving the detection
of False Positive review comments.

VI. IMPLICATIONS

This section presents the insights obtained from this study,
potential future research directions, and recommendations for
CR practitioners.
1. Improving classification performance: Our proposed
model result shows that the model performs better for
the Discussion, Documentation, Refactoring, and
Functional classes than for the False Positive class.
The approach of Fregnan et al. [13] shows an even worse
performance for the False Positive class than our model.
This result leads us to further investigate the reasons behind
such poor showings for the False Positive class. We
found that only 8.64% comments in our dataset belong to
the False Positive class. This underrepresentation of
the False positive in our sample may be a possible
cause. While we did not explore class-balancing techniques
such as oversampling, that may be a possible direction to im-
prove performances. After examining false positive comments
closely, we found that sometimes review comments pointing
to issues belonging to other classes can become False
Positive if refuted. For example, a reviewer has alluded
to a Functional issue, but the concern is not valid for
the current scenario. Therefore, while the same comment may
have been Functional for another context, it is a False
positive under the current scenario. This observation also
shows the need to consider code context characteristics to
classify CR comments. Moreover, the results of our error
analysis also reveal cross miss-categorizations among the five
classes. This analysis can also help identify additional features
to distinguish between such pairs.
2. Selection of pre-trained vectorizers: From our experiment
with two different combinations of tokenizer + vectorizer,
we found that tokenization and vectorization can affect the

performance of the review comment classifier. Code review
comments contain both natural language and programming
language tokens. So, a multipurpose model, such as Code-
BERT [16] that is trained both in natural language and
programming language performs better for review comment
tokenization and classification task. Therefore, we recommend
evaluating multipurpose pre-trained models in conjunction
with general-purpose models for SE domain-specific NLP
pipelines. 3. Recommendations for Practitioners: To improve
CR effectiveness, an organization needs to define a set of
metrics and measure those to identify potential improvement
areas [11]. Projects can leverage our model to track CR
performances, such as counting the number of issues belonging
to various categories, issue category-wise contributions from
each reviewer for a project, and the ratios of defects escap-
ing. These insights can help managers to identify potential
improvement areas and adopt new initiatives [11]. Besides
analytic supports, our model can also help authors prioritize
CR comments. For example, a CR may receive ten comments
from a reviewer, where eight are minor nitpicking issues, and
the two remaining ones are critical defects. Using the code
context and CR comment text, our model can automatically
identify functional issues and help authors prioritize those
accordingly. Authors can also leverage an analytic platform
built on our model to identify reviewers who have more
frequently identified the type of issues (e.g., Refactoring
vs. Functional) that they are seeking for the current CR
4. Recommendations for researchers: Although our model
improves the current state-of-the-art (SOTA) for CR comment
classification by almost 20% in terms of accuracy, our best
model has only 59.3% accuracy. While a five-category auto-
mated classification is more difficult than binary classifica-
tions, we believe there are significant improvement opportu-
nities in this direction. Potential directions for improvements
include training on larger-scale datasets, including balanced
ratios of issues representing various categories and evaluating
with oversampling techniques.

In addition, to improving this classifier, we believe our
model can help build better review automation tools. As most
of the CR comments belong to trivial issues, CR automation
tools [34]–[38] trained on randomly curated datasets are more
likely to amplify such issues and miss the rare yet more crucial
ones. Future CR automation tools can leverage our model to
build a more balanced sample, as manual labeling is time-
consuming. Finally, existing history-based automated reviewer



recommendation systems [28]–[31] consider all prior review
interactions equally, which may not be the best approach.
Our automated model can analyze reviewers’ prior feedback
history and provide higher priority to reviewers who previously
provided more useful (e.g., Functional) feedback.

VII. THREATS TO VALIDITY

The following subsections detail potential threats to the
validity of this study and our countermeasures to mitigate
those threats.
A. Internal Validity: To compare the performance of our
approach with Fregnan et al. [13], we retrained their model
on our dataset. A possible threat might appear during this
retraining. To avoid any bias, we followed their approach
as described in their paper. Although their code is publicly
available, we could not directly use it because their attributes
were calculated for the Java project, while our subject (i.e.,
OpenDev Nova) is written in Python. However, this threat
may be minimal, as we used standard libraries to compute
the attributes and followed their definitions. We also performed
10-fold cross-validation to mitigate biases introduced by using
fixed training and testing samples.
B. Construct Validity: A significant threat to construct validity
is the manual categorization process. For categorizing the
code review comments, we performed a manual categorization.
Using a rubric adopted from prior studies, we categorized
each CR comment into one of the 17 categories. To mitigate
the effect of human error, two authors did the categoriza-
tion independently. We measured the agreement between the
two annotators using Cohen’s kappa [45] value. The manual
labeling task achieved a kappa value of 0.68, which shows
a ‘Substantial’ agreement. A third author then resolved the
conflicts between the two authors’ labeling. Therefore, this
threat to validity remains minimal. Another potential threat to
the construct validity is the features that were selected for the
machine learning approach. Sometimes, used features might
affect the performance of the model negatively. To mitigate the
effect, we experimented separately with each type of feature
we used in machine learning modeling. The result validates
that each feature category contributes to the model’s perfor-
mance. Also, to mitigate the effect of improper tokenization
and vectorization of review comments, we experimented with
both BERT and CodeBERT.
C. External Validity: The main threat to external validity is
the generalizability of the approach. Our approach requires
manual labeling, which is extremely time-consuming. As a
result, we could not incorporate multiple projects into this
experiment. Even so, as characteristics vary from project to
project, one cannot claim the generalizability of an approach
with multiple projects. Regardless, this study has proposed
an approach that can be utilized flexibly to develop project-
specific models. For example, if, for some projects, the code
context does not contribute to the overall performance, then
the processing channel of code context can be discarded, and
the remaining portion of our architecture can be utilized for

CR comment classification tasks. To facilitate the replication
of our work, we have made the dataset and the code publicly
available.
D. Conclusion Validity First, selecting metrics to evaluate a
model’s performance can also threaten conclusion validity. We
have used five different, widely used performance measuring
metrics to mitigate this threat: precision, recall, F1-score,
MCC, and model accuracy. Therefore, we do not anticipate
any biases arising from our metrics. Second, machine learning
models can show biased results when a fixed portion of data
is selected for testing and training. To mitigate the effect of
such bias, we performed a 10-fold cross-validation. Ten-fold
cross-validation ensured that every portion of the dataset was
utilized separately for the training and testing process. Finally,
overfitting can be a significant threat to machine learning
modeling. Overfitting occurs when a machine learning model
performs well on training data but poorly on test data. We
implemented the EarlyStopping method to avoid overfitting
with 10% validation data. This method monitors the model
performance on validation data and stops the training process
once the convergence of the training process halts.

VIII. CONCLUSION

We have proposed a machine-learning approach to classify
code review comments in this work. We collected 1,828
code review comments from the OpenDev Nova project and
manually classified the code review comments using the
prior review comment classification scheme. We experimented
with different features that might be used for the review
comment classification task and reported the contribution of
those features separately. We then combined those features and
developed a machine-learning model that uses those features
for classifying code review comments.

Our proposed approach takes code context, code review
comments, and a set of code attributes for classifying code
review comments. We achieved an overall model accuracy of
59.3%. Experimental results suggest our proposed approach
can classify code review comments better than the existing
change classification approach proposed by Fregnan et al.
[13]. We also experimented with how different tokenization
and vectorization approaches can influence the performance
of a review comment classifier. Finally, we presented the
insight gathered by conducting this study, opportunities for
researchers, and draw recommendations for practitioners.
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[40] M. V. Mäntylä and C. Lassenius, “What types of defects are really dis-
covered in code reviews?” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 430–448, 2008.

[41] M. M. Rahman, C. K. Roy, and R. G. Kula, “Predicting usefulness of
code review comments using textual features and developer experience,”
in 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 215–226.

[42] F. E. Zanaty, T. Hirao, S. McIntosh, A. Ihara, and K. Matsumoto, “An
empirical study of design discussions in code review,” in Proceedings
of the 12th ACM/IEEE international symposium on empirical software
engineering and measurement, 2018, pp. 1–10.

[43] T. Hirao, S. McIntosh, A. Ihara, and K. Matsumoto, “The review linkage
graph for code review analytics: a recovery approach and empirical
study,” in Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2019, pp. 578–589.

[44] M. Fowler, “Refactoring catalog,” Refactoring Home Page, URL:
http://www. refactoring. com/catalog/index. html (letzter Abruf: 09.02.
2006), 2012.

[45] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[46] J. R. Landis and G. G. Koch, “An application of hierarchical kappa-
type statistics in the assessment of majority agreement among multiple
observers,” Biometrics, pp. 363–374, 1977.

[47] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[48] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[49] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in

2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 783–794.

[50] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proceedings of the 31st
IEEE/ACM international conference on automated software engineering,
2016, pp. 87–98.

[51] B. Fluri, M. Wursch, M. PInzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,” IEEE
Transactions on software engineering, vol. 33, no. 11, pp. 725–743,
2007.

[52] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao,
S. Gugger, M. Drame, Q. Lhoest, and A. Rush, “Transformers: State-
of-the-art natural language processing,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. Online: Association for Computational
Linguistics, Oct. 2020, pp. 38–45. [Online]. Available: https:
//aclanthology.org/2020.emnlp-demos.6

[53] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[54] R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified
approach to combinatorial optimization, Monte-Carlo simulation, and
machine learning. Springer, 2004, vol. 133.

[55] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization
3rd int,” in Conf. for Learning Representations, San, 2014.

[56] Y. Reich and S. Barai, “Evaluating machine learning models for engi-
neering problems,” Artificial Intelligence in Engineering, vol. 13, no. 3,
pp. 257–272, 1999.

[57] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of naacL-HLT, vol. 1, 2019, p. 2.

[58] E. Fregnan, F. Petrulio, L. D. Geronimo, and A. Bacchelli, “What
happens in my code reviews? - Replication package,” Oct. 2021.
[Online]. Available: https://doi.org/10.5281/zenodo.5592254

https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://doi.org/10.5281/zenodo.5592254

	Introduction
	Related Works
	Dataset Preparation
	Project Selection
	Dataset Preparation
	Manual Labeling

	(RQ1) Machine Learning Model for classifying code review comments
	Attribute Selection
	Machine Learning Modeling
	Evaluation Metrics
	Experiments and Results
	Effect of code context, review comment, and code attributes separately for classifying review comments
	Effect of different tokenization and vectorization on code review comment
	Error Analysis


	(RQ2) Comparison against current state-of-the-art for review comment classification task
	Replication
	Result Comparison

	Implications
	Threats to Validity
	Conclusion
	References

