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Abstract 

Background: Sepsis is a heterogeneous syndrome, and the identification of clinical subphenotypes is essential. 

Although organ dysfunction is a defining element of sepsis, subphenotypes of differential trajectory are not well stud-

ied. We sought to identify distinct Sequential Organ Failure Assessment (SOFA) score trajectory-based subphenotypes 

in sepsis.

Methods: We created 72-h SOFA score trajectories in patients with sepsis from four diverse intensive care unit (ICU) 

cohorts. We then used dynamic time warping (DTW) to compute heterogeneous SOFA trajectory similarities and 

hierarchical agglomerative clustering (HAC) to identify trajectory-based subphenotypes. Patient characteristics were 

compared between subphenotypes and a random forest model was developed to predict subphenotype member-

ship at 6 and 24 h after being admitted to the ICU. The model was tested on three validation cohorts. Sensitivity 

analyses were performed with alternative clustering methodologies.

Results: A total of 4678, 3665, 12,282, and 4804 unique sepsis patients were included in development and three 

validation cohorts, respectively. Four subphenotypes were identified in the development cohort: Rapidly Worsening 

(n = 612, 13.1%), Delayed Worsening (n = 960, 20.5%), Rapidly Improving (n = 1932, 41.3%), and Delayed Improving 

(n = 1174, 25.1%). Baseline characteristics, including the pattern of organ dysfunction, varied between subpheno-

types. Rapidly Worsening was defined by a higher comorbidity burden, acidosis, and visceral organ dysfunction. 

Rapidly Improving was defined by vasopressor use without acidosis. Outcomes differed across the subphenotypes, 

Rapidly Worsening had the highest in-hospital mortality (28.3%, P-value < 0.001), despite a lower SOFA (mean: 4.5) 

at ICU admission compared to Rapidly Improving (mortality:5.5%, mean SOFA: 5.5). An overall prediction accuracy 

of 0.78 (95% CI, [0.77, 0.8]) was obtained at 6 h after ICU admission, which increased to 0.87 (95% CI, [0.86, 0.88]) at 
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Introduction
Sepsis is defined as a dysregulated immunological 

response to infection that results in acute organ dysfunc-

tion [1, 2]. The morbidity and mortality of sepsis remain 

high despite decades of research and numerous failed 

clinical trials [3, 4]. Recent research has highlighted that 

sepsis is a complex and heterogeneous syndrome, which 

includes a multidimensional array of clinical and biologi-

cal features [5]. Identifying rigorous sepsis subpheno-

types that present with similar prognostic markers and 

pathophysiologic features has the potential to improve 

therapy  [6–9].

Recent sepsis subphenotyping studies used static 

measurements available soon after admission to the 

emergency department or intensive care unit (ICU) to 

characterize patients [5, 10–12]. However, due to the 

stochastic nature of infection and variable presentation 

to health care after developing symptoms, static assess-

ments of sepsis subphenotypes may be incomplete, ignor-

ing the dynamic nature of organ failure in sepsis [13].

More recently, subphenotypes characterized by 

dynamic patient temperature trajectories have been 

identified in sepsis. The differential pattern of tempera-

ture change may represent a varied underlying inflam-

matory response to infection [1]. The trajectory of the 

Sequential Organ Failure Assessment (SOFA) score after 

ICU admission has been used to predict outcomes and 

improve prognostic stratification in sepsis [13, 14]. In a 

recent study, Sanchez-Pinto et al. [15] leveraged a matrix 

factorization-based approach to identify multiple organ 

dysfunction syndrome subphenotypes according to 

longitudinal pediatric SOFA (pSOFA) scores, but their 

approach was focusing on the subphenotypes captured 

by the “motifs,” or frequent subsequence patterns, of the 

SOFA trajectories, which may not characterize the long 

term trends encoded in those trajectories well. How-

ever, whether the trajectory of multisystem organ failure 

is associated with distinct phenotypic patterns in sepsis 

remains largely unexplored. Identifying distinct subphe-

notypes of organ dysfunction trajectory in sepsis can 

refine our understanding of the natural history of sepsis 

in the ICU in response to standard of care treatment and 

define patterns of disease that may benefit from novel 

therapeutic strategies [16].

The objective of this study was to develop and evalu-

ate sepsis subphenotypes. The first goal was to determine 

whether distinct SOFA score trajectory-based subphe-

notypes in patients with sepsis can be identified through 

the electronic health record. The second goal was to 

understand whether those different subphenotypes are 

associated with the patterns of biomarkers and clini-

cal outcomes. The third goal was to determine whether 

the identified subphenotypes can be predicted by using 

patient baseline characteristics and early-stage clinical 

features.

Methods
Overview

We did a cohort study on datasets that contained granu-

lar patient level data from a total of 221 hospitals in the 

USA, whose overall workflow is illustrated in Fig. 1. Our 

goal was to derive sepsis subphenotypes of patients in 

ICU according to their SOFA organ dysfunction trajec-

tories using dynamic time warping (DTW) [17] and hier-

archical agglomerative clustering (HAC) [18]. We then 

characterized these subphenotypes using comprehensive 

patient information including demographics, comor-

bidities, use of mechanical ventilation, type of ICU unit, 

admission source, organ source of sepsis, and examined 

their associated clinical outcomes as well as clinical bio-

markers. We further built multiple random forest models 

to predict the derived subphenotypes from different time 

points’ patient clinical characteristics. To ensure replica-

bility, the same analysis pipeline was conducted in three 

validation cohorts.

Definition of sepsis and study population

The development cohort (Medical Information Mart for 

Intensive Care III database: MIMIC-III) was from Beth 

Israel Deaconess Medical Center (BIDMC) with admis-

sions dating from 2001 to 2012, which has 673 licensed 

beds, including 493 medical/surgical beds, 77 critical 

24 h. Similar subphenotypes were replicated in three validation cohorts. The majority of patients with sepsis have an 

improving phenotype with a lower mortality risk; however, they make up over 20% of all deaths due to their larger 

numbers.

Conclusions: Four novel, clinically-defined, trajectory-based sepsis subphenotypes were identified and validated. 

Identifying trajectory-based subphenotypes has immediate implications for the powering and predictive enrichment 

of clinical trials. Understanding the pathophysiology of these differential trajectories may reveal unanticipated thera-

peutic targets and identify more precise populations and endpoints for clinical trials.

Keywords: Sepsis, Subphenotype, Sequential Organ Failure Assessment (SOFA) score, Precision medicine, Dynamic 

time warping
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care beds, and 62 OB/GYN beds [19]. The first valida-

tion cohort was from Northwestern Medicine Enterprise 

Data Warehouse (NMEDW), which is a network of 

eleven hospitals located in northern Illinois with 2,554 

beds in total, with ICU admissions dating from 2012 to 

2019 [20]. The second validation cohort was from the 

Fig. 1 Workflow of study. A The MIMIC-III dataset was used as development cohort and NMEDW, eICU, and CEDAR datasets were used as validation 

cohorts. Electronic health records including laboratory tests, vital signs, and medication were extracted to compute the SOFA score every 6 h 

during 72 h after admission to ICU. B Each patient was represented as a 72-h SOFA score trajectory. Dynamic time warping (DTW) was used to 

compute heterogeneous SOFA trajectory similarities and HAC was applied to identify subphenotypes based on trajectory similarities. C To re-derive 

subphenotypes in three validation cohorts and consider sensitivity analysis to clustering method, specifically, use another method (Group-Based 

Trajectory Modeling, GBTM) to generate subphenotypes. Statistical analysis were performed among subphenotypes in terms of demographic 

factors, laboratory tests and vital signs. D The predictive model of subphenotypes at successive time points (hours 6, 24, 36, 48, 60) after ICU 

admission was constructed based on a random forest classifier by using patients’ clinical data including laboratory tests, vital signs, and SOFA 

subscores
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eICU collaborative research database, which combined 

multicenter data from patients who were admitted to 

one of 335 units at 208 hospitals located throughout the 

USA between 2014 and 2015 [21]. The third validation 

cohort was from Weill Cornell Critical carE Database for 

Advanced Research (CEDAR) with ICU admissions dat-

ing from 2001 to 2020, which was built on NewYork-Pres-

byterian/Weill Cornell Medical Center (NYP/WCMC), 

including 862 beds in total [22]. The inclusion–exclusion 

cascade for the patients are shown in Additional file  1: 

Fig. S1, where Sepsis-3 criteria are defined as in Singer 

et al. [2]

SOFA score computation and model descriptions

The SOFA score was derived from six organ-specific sub-

scores including respiration, coagulation, liver, cardio-

vascular, CNS, and renal [16], which was obtained every 

6 h within the first 72 h of ICU admission. For each 6-h 

period, the worst variable value was used to compute the 

SOFA subscores. To obtain the urine output during 6 h, 

we divided daily urine output by 4. The lowest GCS for 

each 6-h period was used irrespective of sedation. Miss-

ing values (Additional file  1: Table  S14) were imputed 

using last observation carried forward (LOCF) and next 

observation carried backward (NOCB) [23]. If there was 

no any value during the first 72 h, we used 0 to fill.

After the SOFA scores were derived, each patient is 

represented as a vector of 12 SOFA scores from the first 

6 h to the last 6 h across the 72-h period after ICU admis-

sion. Then, DTW and HAC were used to derive subphe-

notypes [17]. In particular, DTW was used to evaluate 

the similarities between pairwise patient SOFA trajec-

tories (Additional file 1: Figs. S19 and S20). This method 

can capture the differences among the evolution hetero-

geneity in terms of the temporal curves, which can assess 

similarity between patients robustly. HAC was then used 

to perform clustering among patients based on the simi-

larities obtained from DTW. Multiple clustering indices 

(Supplemental Appendix 7) were calculated to determine 

the optimal numbers of subphenotypes.

Subphenotype reproducibility and prediction

To ensure the robustness of the derived subphenotypes, 

we re-derived them with group-based trajectory mod-

eling (GBTM), which is one type of latent class analysis 

(LCA) that assigns each patient a probability of belong-

ing to each particular subphenotype on the basis of maxi-

mum likelihood estimation [24].

We trained a random forest model to predict the 

derived subphenotypes from the baseline patient clini-

cal collected characteristics at successive time points 

after ICU admission, with the goal of examining whether 

the trajectory subphenotypes could be predicted early. 

Candidate predictors included demographics, comor-

bidities, SOFA subscores, laboratory tests, and vital signs. 

Predictor contributions were evaluated with the Shapley 

additive explanations (SHAP) strategy [25].

Statistical analysis

Data were analyzed using tslearn package 0.3.1 and scikit-

learn package 0.22.2 with Python 3.7. Survival analysis to 

28 days was performed using Kaplan–Meier curves. Sta-

tistical significance was set at P < 0.05, and all tests were 

2-tailed. The detailed descriptions about statistical test-

ing are shown in Supplemental Appendix 2.

Results
Cohort characteristics

Our development cohort MIMIC-III had 4,678 sepsis 

patients with the median age 65.9  years (Interquartile 

Range (IQR) [53.7–77.9]), which included 2,625 male 

(56.1%) and 3,367 white (71.9%) patients. The overall in-

hospital mortality rate was 10.9%, and the median ICU 

length-of-stay was 2.8  days (IQR [1.6–5.6]). There were 

1,893 patients (40.5%) treated with mechanical ventila-

tion during the first three days. The mean baseline SOFA 

score obtained from the first 6 h after ICU admission was 

4.96 (Standard Deviation (SD): 2.8). Most of the patients 

(2,611, 55.8%) were in the medical intensive care unit 

(MICU). The overall demographic distributions of the 

validation cohorts from NMEDW(n = 3,665) and eICU 

[21] (n = 12,282) are similar to the development cohort. 

Patients in validation cohort CEDAR (n = 4,804) were 

older (median age 77 years (IQR [66.0–88.0]) compared 

to development cohort. The overall in-hospital mortal-

ity rates of patients in NMEDW, eICU, and CEDAR were 

14.0%, 10.5%, and 199%, respectively. The median length-

of-stay were 3.8 days (IQR [1.9–7.9]), 2.8 days (IQR [1.7–

5.1]), 4.4 days (IQR [2.7–7.9]). There were 1,524 (41.6%), 

5,772 (47.0%), and 2,263 (47.1%) patients that needed 

mechanical ventilation in the first three days. The mean 

baseline SOFA scores were 5.68 (SD:2.8), 5.9 (SD:3.1), 

and 6.4 (SD:3.1) in validation cohorts.

Comparisons between survivors and nonsurvivors

In the development cohort, nonsurvivors were older than 

survivors, with a median age of 71.5  years (IQR, [59.9–

80.9]) compared with 65.2  years for survivors (IQR, 

[53.2–77.4], P-value < 0.001). Nonsurvivors had higher 

comorbidity burden with a median Elixhauser index 

score [26] 7.0 (IQR [2.0–12.0]). Median ICU length-of-

stay for nonsurvivors was 3.95 days (IQR [1.9–7.7]), and 

the rate of mechanical ventilation during the first three 

days was 59.8%. Nonsurvivors had higher baseline SOFA 

scores, with a mean value 7.1 (SD: 3.7). More nonsurvi-

vors were admitted in MICU (Additional file 1: Table S1). 
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Similar statistics in validation cohorts are shown in Addi-

tional file 1: Tables S2, S3, and S4.

SOFA trajectory and the derived subphenotypes

Based on the pairwise patients’ SOFA trajectory similar-

ity matrix obtained from DTW, we generated cluster-

maps with HAC (Additional file  1: Fig. S2), where four 

distinct clusters were identified as subphenotypes. The 

number of clusters was determined according to multi-

ple clustering indexes (Additional file 1: Appendix 6 and 

Table S5).

The overall trajectory and prevalence of each sub-

phenotype across four cohorts are shown in Figs. 2 and 

3. Specifically, in the development cohort, the Rapidly 

Worsening subphenotype (n = 612, 13.1%) was character-

ized by continuously increased SOFA scores from a mean 

(SD) of 4.5 (2.8) at admission to more than 7 at 72  h. 

This subphenotype had the fewest patients. The Delayed 

Worsening subphenotype (n = 960, 20.5%) was character-

ized by decreased SOFA scores within the first 48 h from 

a mean (SD) of 5.2 (2.7) at baseline to 3.7 (2.8), followed 

by an increase over the last 24  h. The Rapidly Improv-

ing subphenotype (n = 1,932, 41.3%) was characterized 

by a consistent continuous improvement in SOFA scores 

from a mean (SD) of 5.54 (2.9) at baseline to less than 3. 

This was the most common subphenotype and it had the 

highest SOFA score at baseline. The Delayed Improving 

subphenotype (n = 1,174, 25.1%) was characterized by an 

Fig. 2 Sequential Organ Failure Assessment (SOFA) trajectories of the identified subphenotypes in development and three validation cohorts. DI: 

Delayed Improving; RI: Rapidly Improving; DW: Delayed Worsening; RW: Rapidly Worsening
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increase and then a gradual decrease in SOFA score over 

72 h. It had the lowest SOFA score at baseline with mean 

(SD) 4.0 (2.4). Similar trajectory trends were obtained in 

all three validation cohorts (Figs. 2 and 3, Supplemental 

Appendix  3). Individual SOFA subscore trajectories for 

each subphenotype are provided in Additional file 1: Figs. 

S3, S4, S10, and S14.

Patient characteristics comparisons across subphenotypes

Patient characteristics differed across subphenotypes 

(Table 1, Figs. 4, 5, and Additional file 1: Table S6). Spe-

cifically, Rapidly Worsening patients had the highest 

rates of mechanical ventilation (46.41%), the highest 

median Elixhauser comorbidity burden value of 5 (IQR 

[0–10]) but the lowest baseline SOFA score compared 

to the other subphenotypes. They had the highest mor-

tality rate (Fig.  4A 28.3%, P-value < 0.001) and a longer 

length of stay (Table  1, 2.9  days, P-value < 0.001). Rap-

idly Improving patients had the lowest rate of mortality 

(Fig.  4A 5.5%) and mechanical ventilation (37.9%), and 

the shortest length-of-stay (2.4  days). It had the high-

est proportion of patients meeting criteria for septic 

shock (15.5%, P-value = 0.002). Delayed Improving and 

Delayed Worsening patients had lower rates of mortal-

ity (10.7%, 10.6%) and mechanical ventilation (42.5%, 

39.3%) than the Rapidly Worsening subphenotype. The 

median age of the four subphenotypes was similar in the 

development cohort. Male patients were more common 

in all subphenotypes. Chord diagrams (Fig.  5) showed 

the differences of subphenotypes in terms of abnormal 

clinical biomarkers. The Rapidly Worsening group was 

more likely to have patients with abnormal cardiovas-

cular biomarkers (bicarbonate, troponin T or I, lactate) 

and hematologic (such as hemoglobin, INR, platelet, glu-

cose, RDW). Patients in this subphenotype had a higher 

chronic comorbidity burden and had abnormal SOFA 

subscores including respiration, coagulation and liver. 

The Rapidly Improving patients were more likely to have 

abnormal inflammatory laboratory values (temperature, 

WBC, bands, CRP, albumin, lymphocyte percent) and 

abnormal cardiovascular, CNS, and renal SOFA sub-

scores. There was a lower chronic comorbidity burden 

in this subphenotype. Delayed Worsening group had 

more abnormal hematologic and respiration, coagula-

tion, CNS, and SOFA renal subscores. Abnormal respi-

ration, coagulation, and cardiovascular SOFA subscores 

were strongly associated with Delayed Improving. The 

characteristics on validation cohorts are provided in 

Additional file 1:  Appendix 4 and Tables S7, S8, S9, S10, 

S11, and S12. The associations between all comorbidi-

ties and subphenotypes were investigated and shown in 

Additional file 1: Tables S16, S17, S18, and S19. Multiple 

Fig. 3 The prevalence of each subphenotype in development (MIMIC-III) and other three validation cohorts (NMEDW, eICU, CEDAR). DI: Delayed 

Improving; RI: Rapidly Improving; DW: Delayed Worsening; RW: Rapidly Worsening
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comorbidities such as congestive heart failure, renal 

failure, liver disease, and cancer showed the differences 

among subphenotypes.

Subphenotype reproducibility and prediction

Sensitivity analysis with another clustering approach 

GBTM confirmed the four subphenotypes with the 

data from development cohort (Additional file  1: Fig. 

S8). Patients’ memberships of the four subphenotypes 

re-derived by GBTM were highly consistent with those 

obtained from HAC (Additional file 1: Fig. S9), and thus, 

we did not find substantial changes in clinical character-

istics of those subphenotypes derived from the sensitivity 

analysis (Additional file 1: Table S13).

We trained random forest models for predicting sub-

phenotypes according to early-stage patient characteris-

tics. Overall, with the first 6 h after ICU admission, the 

models obtained the accuracy of 0.78 (95% Confidence 

Interval [CI] [0.77, 0.8]) in development cohort and 0.79 

(95% CI [0.78, 0.8]), 0.81 (95% CI [0.8, 0.84]), and 0.82 

(95% CI [0.81, 0.84]) in NMEDW, eICU, and CEDAR 

validation cohorts, respectively. Predictor contributions 

Table 1 Patient characteristics among subphenotypes in the development cohort

Infection items were defined based on ICD-9 code (see Additional file 1: Table S15)

IQR interquartile range, SD standard deviation, SOFA sequential organ failure assessment, SICU surgical ICU, CCU  coronary care unit, TSICU thoracic surgery ICU, MICU 

medical ICU, CSRU cardiac surgery ICU, DI delayed improving, RI rapidly improving, DW delayed worsening, RW rapidly worsening

† P-value calculated by Chi-square test/Fisher’s exact test, or student’s t-test/Mann–Whitney test where appropriate

Characteristics Total (N = 4,678) DI (N = 1,174) RI (N = 1,932) DW (N = 960) RW (N = 612) P-value†

Age, median (IQR) 65.9 [53.7–77.9] 67.25 [54.8–79.2] 65.3 [53.3–77.2] 66.9 [53.9–78.3] 64.5 [52.5–76.7] 0.204

Sex, No. (%)

 Male 2625 (56.1) 594 (50.6) 1100 (56.9) 548 (57.1) 383 (62.6) 0.081

 Female 2053 (43.9) 580 (49.4) 832 (43.1) 412 (42.9) 229 (37.4)

Race, No. (%) 0.207

 White 3367 (71.9) 870 (74.1) 1398 (72.4) 670 (69.8) 429 (70.1)

 Black 424 (9.1) 92 (7.8) 189 (9.8) 101(10.5) 42 (6.9)

 Other 887 (18.9) 212 (18.1) 345 (17.9) 189 (19.7) 141(23.0)

 Elixhauser index, median (IQR) 4.0 [0.0–9.0] 4.0 [0.0–9.0] 4.0 [0.0–9.0] 4.0 [0.0–9.0] 5.0 [0.0–10.0] 0.015

 Length stay, median (IQR) 2.8 [1.6–5.6] 2.9 [1.8–6.2] 2.4 [1.5–4.8] 2.9 [1.7–5.3] 2.9 [1.6–6.7]  < 0.001

 Mechanical ventilation at admission, No. (%) 1893 (40.5) 499 (42.5) 733 (37.9) 377 (39.3) 284 (46.4)  < 0.001

 Baseline SOFA, mean (SD) 4.96 (2.8) 4.0 (2.4) 5.5 (2.9) 5.2 (2.7) 4.5 (2.8)  < 0.001

ICU unit at admission, No. (%) 0.037

 SICU 771 (16.5) 185 (15.8) 341 (17.7) 135 (14.1) 110 (17.9)

 CCU 443 (9.5) 117 (9.9) 167 (8.6) 94 (9.8) 65 (10.6)

 TSICU 593 (12.7) 173 (14.7) 226 (11.7) 119 (12.4) 75 (12.3)

 MICU 2611 (55.8) 634 (54.0) 1087 (56.3) 569 (59.3) 321 (52.5)

 CSRU 260 (5.6) 65 (5.5) 111 (5.8) 43 (4.5) 41 (6.7)

Admission location, No. (%) 0.196

 Transfer from other hospital 810 (17.3) 213 (18.1) 304 (15.7) 165 (17.2) 128 (20.9)

 Emergency room 1497 (32.0) 355 (30.2) 628 (32.5) 328 (34.2) 186 (30.4)

 Clinic referral 1985 (42.4) 493 (41.9) 847 (43.8) 396 (41.3) 249 (40.7)

 Transfer from ward 4 (0.1) 2 (0.2) 1 (0.1) 1 (0.1) 0 (0.0)

 Physician referral 367 (7.9) 106 (9.0) 145 (7.5) 69 (7.2) 47 (7.7)

 Transfer from skilled nursing facility 15 (0.3) 5 (0.4) 7 (0.4) 1 (0.1) 2 (0.3)

Infection item, No. (%)

 Central nervous system 56 (1.2) 10 (0.9) 27 (1.4) 8 (0.8) 11 (1.8) 0.189

 Intra-abdominal 880 (18.8) 230 (19.6) 363 (18.8) 172 (17.9) 115 (18.8) 0.808

 Pneumonia 1257 (26.9) 328 (27.9) 494 (25.6) 262 (27.3) 173 (28.3) 0.385

 Septicemia bacteremia 1587 (33.9) 359 (30.6) 717 (37.1) 300 (31.3) 211 (34.5)  < 0.001

 Skin soft tissue 276 (5.9) 60 (5.1) 140 (7.3) 42 (4.4) 34 (5.6) 0.008

 Urinary tract 1044 (22.3) 276 (23.5) 439 (22.7) 228 (23.8) 101 (16.5) 0.003

 Septic shock, No. (%) 635 (13.6) 148 (12.6) 299 (15.5) 101 (10.5) 87 (14.2) 0.002
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Fig. 4 Survival analysis in terms of the identified subphenotypes in development and three validation cohorts. DI: Delayed Improving; RI: Rapidly 

Improving; DW: Delayed Worsening; RW: Rapidly Worsening. The A, B, C, and D show the survival analysis results in development and three 

validation cohorts, respectively
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on four cohorts are shown in Fig.  6 and Additional 

file 1: Figs. S5, S11, and S15, which demonstrated differ-

ent patterns when predicting different subphenotypes. 

For example, creatinine, bicarbonate, RDW, and BUN 

contribute more for predicting the Rapidly Improving 

group, while platelet, INR, AST, and lactate contributed 

more to the prediction of the Rapidly Worsening group. 

The prediction performance at successive time points 

Fig. 5 Chord diagrams showing abnormal variables by subphenotype in development cohort. a abnormal biomarkers vs. all subphenotypes; I: 

abnormal biomarkers vs. DI; II: abnormal biomarkers vs. RI; III: abnormal biomarkers vs. DW; IV: abnormal biomarkers vs. RW; b abnormal subscores 

vs. all subphenotypes; V: abnormal subscores vs. DI; VI: abnormal subscores vs. RI; VII: abnormal subscores vs. DW; VIII: abnormal subscores vs. RW. DI: 

Delayed Improving; RI: Rapidly Improving; DW: Delayed Worsening; RW: Rapidly Worsening
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are shown in Additional file  1: Fig. S18. The accuracy 

increased to 0.87 (95% CI [0.86, 0.88]) in development 

cohort and 0.86 (95% CI [0.85, 0.88]), 0.86 (95% CI [0.85, 

0.87]), and 0.84 (95% CI [0.83, 0.85]) in NMEDW, eICU, 

and CEDAR validation cohorts at the 24  h after ICU 

admission, respectively.

Discussion
We reported four sepsis subphenotypes based on 

dynamic organ dysfunction trajectories using a data-

driven methodology. DTW was used to calculate 

patients’ SOFA trajectory similarities because of its capa-

bility of capturing heterogeneous evolution among the 

temporal sequences robustly, based on which HAC was 

leveraged to identify patient groups with similar tra-

jectories. The subphenotypes identified were Rapidly 

Worsening, Delayed Worsening, Rapidly Improving, and 

Delayed Improving. Patients in the Rapidly Worsening 

subphenotype had progressive organ dysfunction with 

the ongoing ICU stay. The two Delayed groups had 

unstable organ dysfunction over the study period and 

the Rapidly Improving group had the highest admission 

organ dysfunction but quickly improved. Outcomes fol-

lowed SOFA trajectory across each subphenotype were 

irrespective of traditional baseline SOFA score and septic 

shock categories.

A major strength of this analysis is that we have iden-

tified time-dependent progression patterns that may be 

related to the differential response of specific organ dys-

function to standard of care interventions. For example, 

the Rapidly Improving group had cardiovascular and res-

piratory failure at admission that resolved over 72 h. The 

Rapidly Worsening groups developed multisystem organ 

failure including visceral organ dysfunction, specifically 

liver failure in addition to cardiovascular and respira-

tory failure. These differential patterns suggest varying 

Fig. 6 SHAP value-based predictor contribution to the subphenotype prediction of the predictive model in development cohort. Features’ 

importance is ranked based on SHAP values. In this figure, each point represented a single observation. The horizontal location showed whether 

the effect of that value was associated with a positive (a SHAP value greater than 0) or negative (a SHAP value less than 0) impact on prediction. 

Color showed whether the original value of that variable was high (in red) or low (in blue) for that observation. For example, in RW, a low platelets 

value had a positive impact on the RW subphenotype prediction; the “low” came from the blue color, and the “positive” impact was shown on the 

horizontal axis. DI: Delayed Improving; RI: Rapidly Improving; DW: Delayed Worsening; RW: Rapidly Worsening
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time-dependent, treatment responsive organ dysfunc-

tion pathophysiology in sepsis. The cardiovascular and 

respiratory subscores are driven by the vasopressor dose 

and PaO2/FiO2, respectively, which may respond to 

therapeutic interventions such as corticosteroids, vol-

ume resuscitation, and the application of PEEP or thera-

peutic suctioning [27]. However, as demonstrated by our 

analysis, sepsis-related renal and liver failure may be less 

modifiable with our current therapeutic strategies over 

the past twenty years [28, 29]. Our study highlights that 

patterns of organ dysfunction in patients with sepsis are 

Rapidly Improving, Rapidly Worsening, and Delayed. 

Each of these patterns may be due to a different patho-

physiology and benefit from different treatments in the 

future. However, these findings have immediate impli-

cations for those designing clinical trial endpoints such 

as change in SOFA subscore [30]. Moreover, enrolling 

patients with a Rapidly Improving phenotype into a trial 

evaluating a therapeutic agent to reduce the duration of 

organ dysfunction will unlikely reveal a difference.

It deserves noting that our Rapidly Improving patients 

had better outcomes across all patients studied, but still 

represented 21%, 36%, 21%, and 24% of all deaths in our 

development and validation cohorts (NMEDW, eICU, 

and CEDAR cohorts), respectively, despite an overall 5%, 

10%, 5%, and 9% in-hospital mortality. This low mortal-

ity rate but high numbers of absolute deaths highlights 

that further research is needed to understand the cause 

of death in patients with rapidly improving organ dys-

function in sepsis [31]. The Rapidly Worsening subphe-

notype was less common compared to rapidly improving 

and may represent patients with our classical under-

standing of septic shock [32]. More recent evidence sug-

gests that the pathophysiology of early, progressive organ 

dysfunction in our Rapidly Worsening patients may be 

due to over exuberant activation of necroinflammatory 

cell death pathways in multiple organs, highlighting the 

need for novel treatment strategies [33–35]. The Delayed 

Worsening and Improving subphenotypes had interme-

diate outcomes across our cohorts, and more nuanced 

differences in clinical characteristics. These trajectories 

may be influenced by non-resolving inflammation or 

immune paralysis [36, 37]. Further understanding of the 

biology underlying these subphenotypes will be critical to 

develop the next generation of treatments for sepsis in all 

its forms.

The potential for distinct pathophysiologic etiologies 

for the differential trajectories is supported by the dif-

ferential patterns of organ dysfunction, infectious source, 

vital signs, inflammatory, hematologic, and cardiovascu-

lar variables at admission to the ICU. As shown in Fig. 5, 

and Additional file 1: Figs. S6, S7, S12, S13, S16, and S17, 

there were different variables associated with different 

groups over the course of the study. For example, those 

patients of Rapidly Improving were more likely to have 

more abnormal inflammatory markers (such as WBC, 

bands, albumin, temperature, and lymphocyte) and more 

abnormal values on cardiovascular, and CNS subscores. 

They were also more likely to have urosepsis. There was a 

lower comorbidity score in patients with this subpheno-

type, which suggests that sepsis outcomes may be more 

dependent on underlying illness. The Rapidly Worsening 

patients had more comorbidities and distinct derange-

ments in clinical variables associated with metabolic 

acidosis and hypoperfusion, e.g., a low bicarbonate and 

higher lactate, and disseminated intravascular coagula-

tion, e.g., low platelets and a higher INR and respiratory 

failure. Both of the Delayed subphenotypes had less spe-

cific variables associated with group membership, includ-

ing inflammatory, hepatic, hematologic, and pulmonary 

associated with Delayed Improvement and hemato-

logic, cardiovascular and renal variables associated with 

Delayed Worsening. These differences may be related to 

secular trends in therapeutics and differing case mixes in 

each cohort.

We built multivariable prediction models for the iden-

tified trajectory subphenotypes from patient baseline 

characteristics and early-stage clinical features. Several 

interesting findings were obtained. (1) A high comor-

bidity score tended to predict the subphenotypes of 

Rapidly Worsening because patients with high comor-

bidity burden were more likely to present worse organ 

dysfunction in ICU; (2) the roles of laboratory tests and 

vital signs were different on prediction. For example, low 

platelets had a positive impact on the Rapidly Worsen-

ing prediction and high platelets had a positive impact 

on the Rapidly Improving prediction. These prediction 

models may enhance the clinical utility of the identified 

subphenotypes in practice, as they can be predicted with 

the EHR information captured within the early hours of 

ICU admission, especially for Rapid Improving and Rapid 

Worsening subphenotypes, which has important clini-

cal implications as discussed above. Our model can be 

implemented within the EHR system as a risk calculator 

for subphenotype assignments.

Our manuscript complements and adds to other recent 

study of sepsis subphenotypes. For example, Seymour 

et al. and Knox et al. each identified four subphenotypes 

that were associated with organ dysfunction patterns and 

clinical outcomes in patients with sepsis using a panel of 

baseline clinical variables [5, 10]. There is some overlap 

in our high risk groups, notably both include liver injury 

and shock. However, our work demonstrates that the 

difference in outcome in this group is due to progres-

sive non-resolving organ dysfunction that calls for novel 

treatments. Prior work by Ferreira et  al. and Sakr et  al. 
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used changes in the SOFA score after ICU admission to 

improve prognostic stratification in sepsis, but did not 

use these changes to establish subphenotypes. Bhavani 

et al. used longitudinal temperature trajectories to iden-

tify four sepsis subphenotypes, with significant variabil-

ity in inflammatory markers and outcomes, highlighting 

the potential for novel immune signatures to be uncov-

ered through trajectory analysis [1]. Differential organ 

dysfunction trajectory may be related to the immune 

response but may also be explained by differences in pre-

existing frailty, effective source control, resuscitation, and 

processes of care.

This study has several limitations. First, our sepsis 

subphenotypes were identified based on the data-driven 

method, which may not be directly related to underly-

ing differences in biology. Integration of biological data 

may help refine our understanding of differential dis-

ease progression and the potential for therapeutics to 

alter the course. Second, although we used many sepa-

rate hospitals in validation, all of them are located in the 

USA, which may limit generalizability to other locations 

of care. Moreover, these observational cohorts may not 

directly reflect sepsis clinical trial populations but are 

representative of academic and community hospitals 

across the USA. Third, we did not evaluate the effect of 

specific randomized interventions on SOFA score tra-

jectory. Fourth, this identified sepsis subphenotypes 

only focused on patients admitted to an ICU, which is 

subject to differences in ICU admission practices across 

institutions. Last but not the least, we did not investigate 

the association between care processes and the subphe-

notypes, which would be an important topic in future 

research.

Conclusion
We discovered four sepsis subphenotypes with different 

natural histories following admission to the ICU. Our 

results suggest that these subphenotypes represent a dif-

ferential host pathogen response in the setting of cur-

rent standard of care therapy. Understanding differential 

trajectory has implications for the design and predictive 

enrichment of therapeutic clinical trials [38]. Further 

understanding of the underlying biology of subpheno-

types may reveal insights into sepsis pathophysiology and 

improve the personalization of sepsis management.
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