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Abstract

Background: Sepsis is a heterogeneous syndrome, and the identification of clinical subphenotypes is essential.
Although organ dysfunction is a defining element of sepsis, subphenotypes of differential trajectory are not well stud-
ied. We sought to identify distinct Sequential Organ Failure Assessment (SOFA) score trajectory-based subphenotypes
in sepsis.

Methods: We created 72-h SOFA score trajectories in patients with sepsis from four diverse intensive care unit (ICU)
cohorts. We then used dynamic time warping (DTW) to compute heterogeneous SOFA trajectory similarities and
hierarchical agglomerative clustering (HAC) to identify trajectory-based subphenotypes. Patient characteristics were
compared between subphenotypes and a random forest model was developed to predict subphenotype member-
ship at 6 and 24 h after being admitted to the ICU. The model was tested on three validation cohorts. Sensitivity
analyses were performed with alternative clustering methodologies.

Results: A total of 4678, 3665, 12,282, and 4804 unique sepsis patients were included in development and three
validation cohorts, respectively. Four subphenotypes were identified in the development cohort: Rapidly Worsening
(n=612,13.1%), Delayed Worsening (n =960, 20.5%), Rapidly Improving (n= 1932, 41.3%), and Delayed Improving
(n=1174, 25.1%). Baseline characteristics, including the pattern of organ dysfunction, varied between subpheno-
types. Rapidly Worsening was defined by a higher comorbidity burden, acidosis, and visceral organ dysfunction.
Rapidly Improving was defined by vasopressor use without acidosis. Outcomes differed across the subphenotypes,
Rapidly Worsening had the highest in-hospital mortality (28.3%, P-value <0.001), despite a lower SOFA (mean: 4.5)
at ICU admission compared to Rapidly Improving (mortality:5.5%, mean SOFA: 5.5). An overall prediction accuracy
of 0.78 (95% Cl, [0.77, 0.8]) was obtained at 6 h after ICU admission, which increased to 0.87 (95% Cl, [0.86, 0.88]) at
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numbers.

time warping

24 h. Similar subphenotypes were replicated in three validation cohorts. The majority of patients with sepsis have an
improving phenotype with a lower mortality risk; however, they make up over 20% of all deaths due to their larger

Conclusions: Four novel, clinically-defined, trajectory-based sepsis subphenotypes were identified and validated.
Identifying trajectory-based subphenotypes has immediate implications for the powering and predictive enrichment
of clinical trials. Understanding the pathophysiology of these differential trajectories may reveal unanticipated thera-
peutic targets and identify more precise populations and endpoints for clinical trials.
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Introduction

Sepsis is defined as a dysregulated immunological
response to infection that results in acute organ dysfunc-
tion [1, 2]. The morbidity and mortality of sepsis remain
high despite decades of research and numerous failed
clinical trials [3, 4]. Recent research has highlighted that
sepsis is a complex and heterogeneous syndrome, which
includes a multidimensional array of clinical and biologi-
cal features [5]. Identifying rigorous sepsis subpheno-
types that present with similar prognostic markers and
pathophysiologic features has the potential to improve
therapy [6-9].

Recent sepsis subphenotyping studies used static
measurements available soon after admission to the
emergency department or intensive care unit (ICU) to
characterize patients [5, 10-12]. However, due to the
stochastic nature of infection and variable presentation
to health care after developing symptoms, static assess-
ments of sepsis subphenotypes may be incomplete, ignor-
ing the dynamic nature of organ failure in sepsis [13].

More recently, subphenotypes characterized by
dynamic patient temperature trajectories have been
identified in sepsis. The differential pattern of tempera-
ture change may represent a varied underlying inflam-
matory response to infection [1]. The trajectory of the
Sequential Organ Failure Assessment (SOFA) score after
ICU admission has been used to predict outcomes and
improve prognostic stratification in sepsis [13, 14]. In a
recent study, Sanchez-Pinto et al. [15] leveraged a matrix
factorization-based approach to identify multiple organ
dysfunction syndrome subphenotypes according to
longitudinal pediatric SOFA (pSOFA) scores, but their
approach was focusing on the subphenotypes captured
by the “motifs,” or frequent subsequence patterns, of the
SOFA trajectories, which may not characterize the long
term trends encoded in those trajectories well. How-
ever, whether the trajectory of multisystem organ failure
is associated with distinct phenotypic patterns in sepsis
remains largely unexplored. Identifying distinct subphe-
notypes of organ dysfunction trajectory in sepsis can
refine our understanding of the natural history of sepsis

in the ICU in response to standard of care treatment and
define patterns of disease that may benefit from novel
therapeutic strategies [16].

The objective of this study was to develop and evalu-
ate sepsis subphenotypes. The first goal was to determine
whether distinct SOFA score trajectory-based subphe-
notypes in patients with sepsis can be identified through
the electronic health record. The second goal was to
understand whether those different subphenotypes are
associated with the patterns of biomarkers and clini-
cal outcomes. The third goal was to determine whether
the identified subphenotypes can be predicted by using
patient baseline characteristics and early-stage clinical
features.

Methods

Overview

We did a cohort study on datasets that contained granu-
lar patient level data from a total of 221 hospitals in the
USA, whose overall workflow is illustrated in Fig. 1. Our
goal was to derive sepsis subphenotypes of patients in
ICU according to their SOFA organ dysfunction trajec-
tories using dynamic time warping (DTW) [17] and hier-
archical agglomerative clustering (HAC) [18]. We then
characterized these subphenotypes using comprehensive
patient information including demographics, comor-
bidities, use of mechanical ventilation, type of ICU unit,
admission source, organ source of sepsis, and examined
their associated clinical outcomes as well as clinical bio-
markers. We further built multiple random forest models
to predict the derived subphenotypes from different time
points’ patient clinical characteristics. To ensure replica-
bility, the same analysis pipeline was conducted in three
validation cohorts.

Definition of sepsis and study population

The development cohort (Medical Information Mart for
Intensive Care III database: MIMIC-III) was from Beth
Israel Deaconess Medical Center (BIDMC) with admis-
sions dating from 2001 to 2012, which has 673 licensed
beds, including 493 medical/surgical beds, 77 critical
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Fig. 1 Workflow of study. A The MIMIC-IIl dataset was used as development cohort and NMEDW, elCU, and CEDAR datasets were used as validation
cohorts. Electronic health records including laboratory tests, vital signs, and medication were extracted to compute the SOFA score every 6 h
during 72 h after admission to ICU. B Each patient was represented as a 72-h SOFA score trajectory. Dynamic time warping (DTW) was used to
compute heterogeneous SOFA trajectory similarities and HAC was applied to identify subphenotypes based on trajectory similarities. C To re-derive
subphenotypes in three validation cohorts and consider sensitivity analysis to clustering method, specifically, use another method (Group-Based
Trajectory Modeling, GBTM) to generate subphenotypes. Statistical analysis were performed among subphenotypes in terms of demographic
factors, laboratory tests and vital signs. D The predictive model of subphenotypes at successive time points (hours 6, 24, 36, 48, 60) after ICU
admission was constructed based on a random forest classifier by using patients’ clinical data including laboratory tests, vital signs, and SOFA
subscores

care beds, and 62 OB/GYN beds [19]. The first valida- eleven hospitals located in northern Illinois with 2,554
tion cohort was from Northwestern Medicine Enterprise  beds in total, with ICU admissions dating from 2012 to
Data Warehouse (NMEDW), which is a network of 2019 [20]. The second validation cohort was from the
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elCU collaborative research database, which combined
multicenter data from patients who were admitted to
one of 335 units at 208 hospitals located throughout the
USA between 2014 and 2015 [21]. The third validation
cohort was from Weill Cornell Critical carE Database for
Advanced Research (CEDAR) with ICU admissions dat-
ing from 2001 to 2020, which was built on NewYork-Pres-
byterian/Weill Cornell Medical Center (NYP/WCMC),
including 862 beds in total [22]. The inclusion—exclusion
cascade for the patients are shown in Additional file 1:
Fig. S1, where Sepsis-3 criteria are defined as in Singer
etal. [2]

SOFA score computation and model descriptions

The SOFA score was derived from six organ-specific sub-
scores including respiration, coagulation, liver, cardio-
vascular, CNS, and renal [16], which was obtained every
6 h within the first 72 h of ICU admission. For each 6-h
period, the worst variable value was used to compute the
SOFA subscores. To obtain the urine output during 6 h,
we divided daily urine output by 4. The lowest GCS for
each 6-h period was used irrespective of sedation. Miss-
ing values (Additional file 1: Table S14) were imputed
using last observation carried forward (LOCF) and next
observation carried backward (NOCB) [23]. If there was
no any value during the first 72 h, we used 0 to fill.

After the SOFA scores were derived, each patient is
represented as a vector of 12 SOFA scores from the first
6 h to the last 6 h across the 72-h period after ICU admis-
sion. Then, DTW and HAC were used to derive subphe-
notypes [17]. In particular, DTW was used to evaluate
the similarities between pairwise patient SOFA trajec-
tories (Additional file 1: Figs. S19 and $20). This method
can capture the differences among the evolution hetero-
geneity in terms of the temporal curves, which can assess
similarity between patients robustly. HAC was then used
to perform clustering among patients based on the simi-
larities obtained from DTW. Multiple clustering indices
(Supplemental Appendix 7) were calculated to determine
the optimal numbers of subphenotypes.

Subphenotype reproducibility and prediction

To ensure the robustness of the derived subphenotypes,
we re-derived them with group-based trajectory mod-
eling (GBTM), which is one type of latent class analysis
(LCA) that assigns each patient a probability of belong-
ing to each particular subphenotype on the basis of maxi-
mum likelihood estimation [24].

We trained a random forest model to predict the
derived subphenotypes from the baseline patient clini-
cal collected characteristics at successive time points
after ICU admission, with the goal of examining whether
the trajectory subphenotypes could be predicted early.
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Candidate predictors included demographics, comor-
bidities, SOFA subscores, laboratory tests, and vital signs.
Predictor contributions were evaluated with the Shapley
additive explanations (SHAP) strategy [25].

Statistical analysis

Data were analyzed using tslearn package 0.3.1 and scikit-
learn package 0.22.2 with Python 3.7. Survival analysis to
28 days was performed using Kaplan—Meier curves. Sta-
tistical significance was set at P<0.05, and all tests were
2-tailed. The detailed descriptions about statistical test-
ing are shown in Supplemental Appendix 2.

Results

Cohort characteristics

Our development cohort MIMIC-III had 4,678 sepsis
patients with the median age 65.9 years (Interquartile
Range (IQR) [53.7-77.9]), which included 2,625 male
(56.1%) and 3,367 white (71.9%) patients. The overall in-
hospital mortality rate was 10.9%, and the median ICU
length-of-stay was 2.8 days (IQR [1.6-5.6]). There were
1,893 patients (40.5%) treated with mechanical ventila-
tion during the first three days. The mean baseline SOFA
score obtained from the first 6 h after ICU admission was
4.96 (Standard Deviation (SD): 2.8). Most of the patients
(2,611, 55.8%) were in the medical intensive care unit
(MICU). The overall demographic distributions of the
validation cohorts from NMEDW (n=3,665) and eICU
[21] (n=12,282) are similar to the development cohort.
Patients in validation cohort CEDAR (n#=4,804) were
older (median age 77 years (IQR [66.0-88.0]) compared
to development cohort. The overall in-hospital mortal-
ity rates of patients in NMEDW, eICU, and CEDAR were
14.0%, 10.5%, and 199%, respectively. The median length-
of-stay were 3.8 days (IQR [1.9-7.9]), 2.8 days (IQR [1.7—
5.1]), 4.4 days (IQR [2.7-7.9]). There were 1,524 (41.6%),
5,772 (47.0%), and 2,263 (47.1%) patients that needed
mechanical ventilation in the first three days. The mean
baseline SOFA scores were 5.68 (SD:2.8), 5.9 (SD:3.1),
and 6.4 (SD:3.1) in validation cohorts.

Comparisons between survivors and nonsurvivors

In the development cohort, nonsurvivors were older than
survivors, with a median age of 71.5 years (IQR, [59.9—
80.9]) compared with 65.2 years for survivors (IQR,
[53.2-77.4], P-value<0.001). Nonsurvivors had higher
comorbidity burden with a median Elixhauser index
score [26] 7.0 (IQR [2.0-12.0]). Median ICU length-of-
stay for nonsurvivors was 3.95 days (IQR [1.9-7.7]), and
the rate of mechanical ventilation during the first three
days was 59.8%. Nonsurvivors had higher baseline SOFA
scores, with a mean value 7.1 (SD: 3.7). More nonsurvi-
vors were admitted in MICU (Additional file 1: Table S1).
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Fig. 2 Sequential Organ Failure Assessment (SOFA) trajectories of the identified subphenotypes in development and three validation cohorts. DI:
Delayed Improving; RI: Rapidly Improving; DW: Delayed Worsening; RW: Rapidly Worsening
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Similar statistics in validation cohorts are shown in Addi-
tional file 1: Tables S2, S3, and S4.

SOFA trajectory and the derived subphenotypes
Based on the pairwise patients’ SOFA trajectory similar-
ity matrix obtained from DTW, we generated cluster-
maps with HAC (Additional file 1: Fig. S2), where four
distinct clusters were identified as subphenotypes. The
number of clusters was determined according to multi-
ple clustering indexes (Additional file 1: Appendix 6 and
Table S5).

The overall trajectory and prevalence of each sub-
phenotype across four cohorts are shown in Figs. 2 and
3. Specifically, in the development cohort, the Rapidly

Worsening subphenotype (n =612, 13.1%) was character-
ized by continuously increased SOFA scores from a mean
(SD) of 4.5 (2.8) at admission to more than 7 at 72 h.
This subphenotype had the fewest patients. The Delayed
Worsening subphenotype (n=960, 20.5%) was character-
ized by decreased SOFA scores within the first 48 h from
a mean (SD) of 5.2 (2.7) at baseline to 3.7 (2.8), followed
by an increase over the last 24 h. The Rapidly Improv-
ing subphenotype (n=1,932, 41.3%) was characterized
by a consistent continuous improvement in SOFA scores
from a mean (SD) of 5.54 (2.9) at baseline to less than 3.
This was the most common subphenotype and it had the
highest SOFA score at baseline. The Delayed Improving
subphenotype (n=1,174, 25.1%) was characterized by an
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Fig. 3 The prevalence of each subphenotype in development (MIMIC-II) and other three validation cohorts (NMEDW, elCU, CEDAR). DI: Delayed
Improving; RI: Rapidly Improving; DW: Delayed Worsening; RW: Rapidly Worsening

increase and then a gradual decrease in SOFA score over
72 h. It had the lowest SOFA score at baseline with mean
(SD) 4.0 (2.4). Similar trajectory trends were obtained in
all three validation cohorts (Figs. 2 and 3, Supplemental
Appendix 3). Individual SOFA subscore trajectories for
each subphenotype are provided in Additional file 1: Figs.
S3, 54, S10, and S14.

Patient characteristics comparisons across subphenotypes
Patient characteristics differed across subphenotypes
(Table 1, Figs. 4, 5, and Additional file 1: Table S6). Spe-
cifically, Rapidly Worsening patients had the highest
rates of mechanical ventilation (46.41%), the highest
median Elixhauser comorbidity burden value of 5 (IQR
[0-10]) but the lowest baseline SOFA score compared
to the other subphenotypes. They had the highest mor-
tality rate (Fig. 4A 28.3%, P-value<0.001) and a longer
length of stay (Table 1, 2.9 days, P-value<0.001). Rap-
idly Improving patients had the lowest rate of mortality
(Fig. 4A 5.5%) and mechanical ventilation (37.9%), and
the shortest length-of-stay (2.4 days). It had the high-
est proportion of patients meeting criteria for septic
shock (15.5%, P-value=0.002). Delayed Improving and
Delayed Worsening patients had lower rates of mortal-
ity (10.7%, 10.6%) and mechanical ventilation (42.5%,
39.3%) than the Rapidly Worsening subphenotype. The

median age of the four subphenotypes was similar in the
development cohort. Male patients were more common
in all subphenotypes. Chord diagrams (Fig. 5) showed
the differences of subphenotypes in terms of abnormal
clinical biomarkers. The Rapidly Worsening group was
more likely to have patients with abnormal cardiovas-
cular biomarkers (bicarbonate, troponin T or I, lactate)
and hematologic (such as hemoglobin, INR, platelet, glu-
cose, RDW). Patients in this subphenotype had a higher
chronic comorbidity burden and had abnormal SOFA
subscores including respiration, coagulation and liver.
The Rapidly Improving patients were more likely to have
abnormal inflammatory laboratory values (temperature,
WBC, bands, CRP, albumin, lymphocyte percent) and
abnormal cardiovascular, CNS, and renal SOFA sub-
scores. There was a lower chronic comorbidity burden
in this subphenotype. Delayed Worsening group had
more abnormal hematologic and respiration, coagula-
tion, CNS, and SOFA renal subscores. Abnormal respi-
ration, coagulation, and cardiovascular SOFA subscores
were strongly associated with Delayed Improving. The
characteristics on validation cohorts are provided in
Additional file 1: Appendix 4 and Tables S7, S8, S9, S10,
S11, and S12. The associations between all comorbidi-
ties and subphenotypes were investigated and shown in
Additional file 1: Tables S16, S17, S18, and S19. Multiple
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Table 1 Patient characteristics among subphenotypes in the development cohort
Characteristics Total (N=4,678) DI(N=1,174) RI(N=1,932) DW(N=960) RW (N=612) P-value’
Age, median (IQR) 659[53.7-779]  67.25[54.8-79.2] 65.3[53.3-772] 66.9[53.9-783] 64.5[52.5-76.7] 0.204
Sex, No. (%)
Male 2625 (56.1) 594 (50.6) 1100 (56.9) 548 (57.1) 383 (62.6) 0.081
Female 2053 (43.9) 580 (49.4) 832 (43.1) 412 (42.9) 229 (37.4)
Race, No. (%) 0.207
White 3367 (71.9) 870 (74.1) 1398 (72.4) 670 (69.8) 429 (70.1)
Black 424.(9.1) 92 (7.8) 189 (9.8) 101(10.5) 42 (6.9)
Other 887 (18.9) 212 (18.1) 345(17.9) 189 (19.7) 141(23.0)
Elixhauser index, median (IQR) 4.0[0.0-9.0] 4.0[0.0-9.0] 4.0[0.0-9.0] 4.0[0.0-9.0] 5.0[0.0-10.0] 0.015
Length stay, median (IQR) 2.8[1.6-5.6] 29[1.8-6.2] 241[15-4.8] 291[1.7-53] 291[1.6-6.7] <0.001
Mechanical ventilation at admission, No. (%) 1893 (40.5) 499 (42.5) 733(37.9) 377 (39.3) 284 (46.4) <0.001
Baseline SOFA, mean (SD) 4,96 (2.8) 4.0 (24) 559 52(.7) 45(2.8) <0.001
ICU unit at admission, No. (%) 0.037
SICU 771 (16.5) 185 (15.8) 341(17.7) 135 (14.1) 110(17.9)
CCcu 443 (9.5) 117 (9. 167 (8.6) 94 (9.8) 65 (10.6)
TSICU 593 (12.7) 173(14.7) 226 (11.7) 119 (12.4) 75(12.3)
MICU 2611 (55.8) 634 (54.0) 1087 (56.3) 569 (59.3) 321 (52.5)
CSRU 260 (5.6) 65 (5.5) 111 (5.8) 43 (4.5) 41(6.7)
Admission location, No. (%) 0.196
Transfer from other hospital 810(17.3) 213 (18.1) 304 (15.7) 165 (17.2) 128 (20.9)
Emergency room 1497 (32.0) 355(30.2) 628 (32.5) 328 (34.2) 186 (30.4)
Clinic referral 1985 (42.4) 493 (41.9) 847 (43.8) 396 (41.3) 249 (40.7)
Transfer from ward 4(0.1) 2(0.2) 1(0.1) 1(0.1) 0(0.0)
Physician referral 367 (7.9) 106 (9.0) 145 (7.5) 69 (7.2) 47 (7.7)
Transfer from skilled nursing facility 15(0.3) 5(04) 7(04) 1(0.1) 2(0.3)
Infection item, No. (%)
Central nervous system 56 (1.2) 10 (0.9) 27 (1.4) 8(0.8) 11(1.8) 0.189
Intra-abdominal 880 (18.8) 230(19.6) 363 (18.8) 172(17.9) 115(18.8) 0.808
Pneumonia 1257 (26.9) 328(27.9) 494 (25.6) 262 (27.3) 173 (28.3) 0.385
Septicemia bacteremia 1587 (33.9) 359 (30.6) 717 (37.1) 300 (31.3) 211 (34.5) <0.001
Skin soft tissue 276 (5.9) 60 (5.1) 140 (7.3) 42 (44) 34 (5.6) 0.008
Urinary tract 1044 (22.3) 276 (23.5) 439 (22.7) 228 (23.8) 101 (16.5) 0.003
Septic shock, No. (%) 635 (13.6) 148 (12.6) 299 (15.5) 101 (10.5) 87 (14.2) 0.002

Infection items were defined based on ICD-9 code (see Additional file 1: Table S15)

IQR interquartile range, SD standard deviation, SOFA sequential organ failure assessment, SICU surgical ICU, CCU coronary care unit, TSICU thoracic surgery ICU, MICU
medical ICU, CSRU cardiac surgery ICU, DI delayed improving, Rl rapidly improving, DW delayed worsening, RW rapidly worsening

* P-value calculated by Chi-square test/Fisher’s exact test, or student’s t-test/Mann-Whitney test where appropriate

comorbidities such as congestive heart failure, renal
failure, liver disease, and cancer showed the differences
among subphenotypes.

Subphenotype reproducibility and prediction

Sensitivity analysis with another clustering approach
GBTM confirmed the four subphenotypes with the
data from development cohort (Additional file 1: Fig.
S8). Patients’ memberships of the four subphenotypes
re-derived by GBTM were highly consistent with those
obtained from HAC (Additional file 1: Fig. S9), and thus,

we did not find substantial changes in clinical character-
istics of those subphenotypes derived from the sensitivity
analysis (Additional file 1: Table S13).

We trained random forest models for predicting sub-
phenotypes according to early-stage patient characteris-
tics. Overall, with the first 6 h after ICU admission, the
models obtained the accuracy of 0.78 (95% Confidence
Interval [CI] [0.77, 0.8]) in development cohort and 0.79
(95% CI [0.78, 0.8]), 0.81 (95% CI [0.8, 0.84]), and 0.82
(95% CI [0.81, 0.84]) in NMEDW, eICU, and CEDAR
validation cohorts, respectively. Predictor contributions
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contribute more for predicting the Rapidly Improving
group, while platelet, INR, AST, and lactate contributed
more to the prediction of the Rapidly Worsening group.
The prediction performance at successive time points

on four cohorts are shown in Fig. 6 and Additional
file 1: Figs. S5, S11, and S15, which demonstrated differ-
ent patterns when predicting different subphenotypes.
For example, creatinine, bicarbonate, RDW, and BUN
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are shown in Additional file 1: Fig. S18. The accuracy
increased to 0.87 (95% CI [0.86, 0.88]) in development
cohort and 0.86 (95% CI [0.85, 0.88]), 0.86 (95% CI [0.85,
0.87]), and 0.84 (95% CI [0.83, 0.85]) in NMEDW, eICU,
and CEDAR validation cohorts at the 24 h after ICU
admission, respectively.

Discussion

We reported four sepsis subphenotypes based on
dynamic organ dysfunction trajectories using a data-
driven methodology. DTW was used to calculate
patients’ SOFA trajectory similarities because of its capa-
bility of capturing heterogeneous evolution among the
temporal sequences robustly, based on which HAC was
leveraged to identify patient groups with similar tra-
jectories. The subphenotypes identified were Rapidly
Worsening, Delayed Worsening, Rapidly Improving, and
Delayed Improving. Patients in the Rapidly Worsening

subphenotype had progressive organ dysfunction with
the ongoing ICU stay. The two Delayed groups had
unstable organ dysfunction over the study period and
the Rapidly Improving group had the highest admission
organ dysfunction but quickly improved. Outcomes fol-
lowed SOFA trajectory across each subphenotype were
irrespective of traditional baseline SOFA score and septic
shock categories.

A major strength of this analysis is that we have iden-
tified time-dependent progression patterns that may be
related to the differential response of specific organ dys-
function to standard of care interventions. For example,
the Rapidly Improving group had cardiovascular and res-
piratory failure at admission that resolved over 72 h. The
Rapidly Worsening groups developed multisystem organ
failure including visceral organ dysfunction, specifically
liver failure in addition to cardiovascular and respira-
tory failure. These differential patterns suggest varying
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time-dependent, treatment responsive organ dysfunc-
tion pathophysiology in sepsis. The cardiovascular and
respiratory subscores are driven by the vasopressor dose
and PaO2/FiO2, respectively, which may respond to
therapeutic interventions such as corticosteroids, vol-
ume resuscitation, and the application of PEEP or thera-
peutic suctioning [27]. However, as demonstrated by our
analysis, sepsis-related renal and liver failure may be less
modifiable with our current therapeutic strategies over
the past twenty years [28, 29]. Our study highlights that
patterns of organ dysfunction in patients with sepsis are
Rapidly Improving, Rapidly Worsening, and Delayed.
Each of these patterns may be due to a different patho-
physiology and benefit from different treatments in the
future. However, these findings have immediate impli-
cations for those designing clinical trial endpoints such
as change in SOFA subscore [30]. Moreover, enrolling
patients with a Rapidly Improving phenotype into a trial
evaluating a therapeutic agent to reduce the duration of
organ dysfunction will unlikely reveal a difference.

It deserves noting that our Rapidly Improving patients
had better outcomes across all patients studied, but still
represented 21%, 36%, 21%, and 24% of all deaths in our
development and validation cohorts (NMEDW, eICU,
and CEDAR cohorts), respectively, despite an overall 5%,
10%, 5%, and 9% in-hospital mortality. This low mortal-
ity rate but high numbers of absolute deaths highlights
that further research is needed to understand the cause
of death in patients with rapidly improving organ dys-
function in sepsis [31]. The Rapidly Worsening subphe-
notype was less common compared to rapidly improving
and may represent patients with our classical under-
standing of septic shock [32]. More recent evidence sug-
gests that the pathophysiology of early, progressive organ
dysfunction in our Rapidly Worsening patients may be
due to over exuberant activation of necroinflammatory
cell death pathways in multiple organs, highlighting the
need for novel treatment strategies [33—35]. The Delayed
Worsening and Improving subphenotypes had interme-
diate outcomes across our cohorts, and more nuanced
differences in clinical characteristics. These trajectories
may be influenced by non-resolving inflammation or
immune paralysis [36, 37]. Further understanding of the
biology underlying these subphenotypes will be critical to
develop the next generation of treatments for sepsis in all
its forms.

The potential for distinct pathophysiologic etiologies
for the differential trajectories is supported by the dif-
ferential patterns of organ dysfunction, infectious source,
vital signs, inflammatory, hematologic, and cardiovascu-
lar variables at admission to the ICU. As shown in Fig. 5,
and Additional file 1: Figs. S6, S7, S12, S13, S16, and S17,
there were different variables associated with different
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groups over the course of the study. For example, those
patients of Rapidly Improving were more likely to have
more abnormal inflammatory markers (such as WBC,
bands, albumin, temperature, and lymphocyte) and more
abnormal values on cardiovascular, and CNS subscores.
They were also more likely to have urosepsis. There was a
lower comorbidity score in patients with this subpheno-
type, which suggests that sepsis outcomes may be more
dependent on underlying illness. The Rapidly Worsening
patients had more comorbidities and distinct derange-
ments in clinical variables associated with metabolic
acidosis and hypoperfusion, e.g., a low bicarbonate and
higher lactate, and disseminated intravascular coagula-
tion, e.g., low platelets and a higher INR and respiratory
failure. Both of the Delayed subphenotypes had less spe-
cific variables associated with group membership, includ-
ing inflammatory, hepatic, hematologic, and pulmonary
associated with Delayed Improvement and hemato-
logic, cardiovascular and renal variables associated with
Delayed Worsening. These differences may be related to
secular trends in therapeutics and differing case mixes in
each cohort.

We built multivariable prediction models for the iden-
tified trajectory subphenotypes from patient baseline
characteristics and early-stage clinical features. Several
interesting findings were obtained. (1) A high comor-
bidity score tended to predict the subphenotypes of
Rapidly Worsening because patients with high comor-
bidity burden were more likely to present worse organ
dysfunction in ICU; (2) the roles of laboratory tests and
vital signs were different on prediction. For example, low
platelets had a positive impact on the Rapidly Worsen-
ing prediction and high platelets had a positive impact
on the Rapidly Improving prediction. These prediction
models may enhance the clinical utility of the identified
subphenotypes in practice, as they can be predicted with
the EHR information captured within the early hours of
ICU admission, especially for Rapid Improving and Rapid
Worsening subphenotypes, which has important clini-
cal implications as discussed above. Our model can be
implemented within the EHR system as a risk calculator
for subphenotype assignments.

Our manuscript complements and adds to other recent
study of sepsis subphenotypes. For example, Seymour
et al. and Knox et al. each identified four subphenotypes
that were associated with organ dysfunction patterns and
clinical outcomes in patients with sepsis using a panel of
baseline clinical variables [5, 10]. There is some overlap
in our high risk groups, notably both include liver injury
and shock. However, our work demonstrates that the
difference in outcome in this group is due to progres-
sive non-resolving organ dysfunction that calls for novel
treatments. Prior work by Ferreira et al. and Sakr et al.
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used changes in the SOFA score after ICU admission to
improve prognostic stratification in sepsis, but did not
use these changes to establish subphenotypes. Bhavani
et al. used longitudinal temperature trajectories to iden-
tify four sepsis subphenotypes, with significant variabil-
ity in inflammatory markers and outcomes, highlighting
the potential for novel immune signatures to be uncov-
ered through trajectory analysis [1]. Differential organ
dysfunction trajectory may be related to the immune
response but may also be explained by differences in pre-
existing frailty, effective source control, resuscitation, and
processes of care.

This study has several limitations. First, our sepsis
subphenotypes were identified based on the data-driven
method, which may not be directly related to underly-
ing differences in biology. Integration of biological data
may help refine our understanding of differential dis-
ease progression and the potential for therapeutics to
alter the course. Second, although we used many sepa-
rate hospitals in validation, all of them are located in the
USA, which may limit generalizability to other locations
of care. Moreover, these observational cohorts may not
directly reflect sepsis clinical trial populations but are
representative of academic and community hospitals
across the USA. Third, we did not evaluate the effect of
specific randomized interventions on SOFA score tra-
jectory. Fourth, this identified sepsis subphenotypes
only focused on patients admitted to an ICU, which is
subject to differences in ICU admission practices across
institutions. Last but not the least, we did not investigate
the association between care processes and the subphe-
notypes, which would be an important topic in future
research.

Conclusion

We discovered four sepsis subphenotypes with different
natural histories following admission to the ICU. Our
results suggest that these subphenotypes represent a dif-
ferential host pathogen response in the setting of cur-
rent standard of care therapy. Understanding differential
trajectory has implications for the design and predictive
enrichment of therapeutic clinical trials [38]. Further
understanding of the underlying biology of subpheno-
types may reveal insights into sepsis pathophysiology and
improve the personalization of sepsis management.
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