
Drill: Log-based Anomaly Detection for Large-scale
Storage Systems Using Source Code Analysis

Di Zhang1, Chris Egersdoerfer1, Tabassum Mahmud2, Mai Zheng2, and Dong Dai1

1Computer Science Department, University of North Carolina at Charlotte, {dzhang16, cegersdo, ddai}@uncc.edu
2Department of Electrical and Computer Engineering, Iowa State University, {tmahmud, mai}@iastate.edu

Abstract—Large-scale storage systems, a critical part of mod-
ern computing systems, are subject to various runtime bugs,
failures, and anomalies in production. Identifying their anoma-
lies at runtime is thus critical for users and administrators.
Since runtime logs record the important status of the systems,
log-based anomaly detection has been studied extensively for
timely identifying system malfunctions. However, existing log-
based anomaly detection solutions share common limitations
in representing log entries accurately and robustly, hence can
not effectively handle log entries that were not seen in the
historical logs, which is a common real-world scenario due to
logs’ inherent rarity and the continuous evolution of the systems.
To address the issues of existing methods, we propose Drill, a
new log pre-processing method to generate high-quality vector
representation of runtime logs by leveraging both storage system-
specific sentiment-classifying language models and log contexts
built from the source code. Through extensive evaluations of two
representative distributed storage systems (Apache HDFS and
Lustre), we show that Drill can achieve up to 41% improvement
when compared with state-of-the-art anomaly detection solutions,
showing it is a promising solution for general anomaly detection.

I. INTRODUCTION

Large-scale storage systems are a critical part of modern
computing infrastructure in both Cloud and High-Performance
Computing (HPC) environments [1], [2]. Due to increasing
scale and complexity, they are subject to various bugs, failures
and anomalies in production, which lead to data loss, service
outages and degradation of the quality of service [3], [4], [5],
[6]. It is thereby critical for anomaly detection mechanisms
deployed to accurately and swiftly detect malfunctions, so
that system operators can pinpoint the issues and resolve them
promptly to mitigate losses.

The runtime logs, which record the internal status of storage
systems, such as values of variables, function return values,
and performance statistics, are considered valuable sources for
detecting potential system anomalies. As a result, an extensive
amount of research on log-based anomaly detection tools has
been conducted recently [4], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19].

Log-based anomaly detection frameworks essentially in-
volve four key components: log collection, log pre-processing,
pattern learning, and the actual online detection [20]. The run-
time logs, which are generated by log statements in the source
code (using printf or logging libraries such as Log4J [21],
[22]), are collected periodically. For the collected runtime

logs, log pre-processing is applied to convert their free-form
texts into a more structured representation, such as id or
vector-based form [23], [24]. The pre-processing may further
group logs using different grouping techniques, such as fixed
windows, sliding windows, or session-based windows [17],
[18], [25] to form a sequence of closely related events for
the downstream machine learning models to learn the patterns.
Extensive manual efforts are often needed in this stage to label
each sequence of logs as normal or abnormal, for training the
supervised machine learning models. After training, the model
will be applied to future runtime logs in real-time to conduct
the actual online anomaly detection. As described here, among
these four components, log pre-processing turns chunks of
runtime logs into sequences of log representations for later
pattern learning, hence this step is critical for the accuracy of
the downstream machine learning models and the performance
of overall anomaly detection. How to generate accurate log
representations effectively has been studied extensively.

The ID-based representation was initially widely used due
to its simplicity. We can simply map each runtime log back
to its corresponding log statement in the source code and
assign a unique ID accordingly. However, this may generate
unnecessary IDs since many log statements are similar and
can be grouped. Researchers then leveraged the similarity
of text characters in logs to generate a more concise ID
representation [23], [24]. For instance, Spell used the longest
common sequence to calculate the similarity of different log
texts [24]. But these methods still share the same drawback of
ID-based representation: similar to the one-hot representation
of words in natural language processing, ID can not represent
the similarity between different logs. This creates issues when
a log ID does not exist in the training data but shows up later
in the runtime logs. The previously trained models can not
make accurate decisions on these unseen IDs.

Hence, vector-based representation has become popular
recently. Different pre-trained natural language (NLP) models,
such as BERT [26], have been applied to the raw runtime
logs to understand their semantics and generate vectorized
representation for each log. Because of their enhanced ability
to generalize, the vector representation-based approaches lead
to better training accuracy in downstream models, as well
as better performance in actual anomaly detection [15]. For
instance, NeuralLog uses the BERT model to encode logs and

189

2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/23/$31.00 ©2023 IEEE
DOI 10.1109/IPDPS54959.2023.00028

20
23

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d 

Pr
oc

es
si

ng
 S

ym
po

si
um

 (I
PD

PS
) |

 9
79

-8
-3

50
3-

37
66

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IP

D
PS

54
95

9.
20

23
.0

00
28

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 04,2023 at 06:21:13 UTC from IEEE Xplore.  Restrictions apply. 



achieves state-of-the-art accuracy in anomaly detection [27].
However, there are still fundamental issues with existing

vector-based pre-processing methods. First, the pre-trained
natural language models (e.g., GLoVe [28], BERT [26]) used
in the existing studies are based on general human language.
Although log texts are also human-readable, they are written
differently and work in different contexts. Similar words in
human language may have different meanings in log texts. This
impacts the accuracy of the generated vector-based represen-
tations and the performance of the trained anomaly detection
models (as shown in our evaluations later). Second, the issues
created by unseen logs, although lightened, still exist. In the
real world, runtime logs observed in a given period are often
a small portion of the logs which could be triggered. For
instance, in HDFS v0.17, there are in total 956 distinct log
statements in the source code. However, the widely used HDFS
log trace collected from a 200-node cluster only covers 29
unique runtime logs [17]. Hence, it is challenging to train high-
quality downstream models by observing only such a limited
variety of runtime logs. The generated models still fall short at
handling unseen runtime logs (shown in later evaluations). Last
but not least, existing studies mainly focus on understanding
the contents of the runtime logs using NLP models but neglect
the contexts of a runtime log. Since logs are created by
developers to indicate the important status of the software,
context information in the source code, such as whether or
not a given log is in an if block, is highly relevant to the
purpose of the log and may accurately indicate the anomalies.
An effective log-based anomaly detection framework should
take the context into consideration.

In this study, we propose and implement Drill1 to address
the aforementioned challenges. Drill essentially is a new
log pre-processing method to generate high-quality vector
representations of runtime logs by leveraging both storage
system-specific sentiment language models and log contexts
in the source code. Instead of naively applying existing NLP
language models on raw logs, Drill leverages the source code
of multiple large-scale distributed storage systems to re-train
a more specific and robust ‘sentiment’ language model, which
hints whether a runtime log entry is likely to be an anomaly or
not. We further conduct static analysis of the source code to
collect context-relevant features. By combining both of these
features, Drill generates accurate vector representations and
uses them to form sequences of logs for training a downstream
model, which is a bidirectional Long Short Term Memory
neural network, Bi-LSTM [29], [30]. Through extensive eval-
uations, we show that Drill can achieve better performance
compared with state-of-the-art log-based anomaly detection
methods on representative storage systems in both Cloud
(HDFS [1]) and HPC environments (Lustre [2]). We also
demonstrate how Drill performs when unseen logs continu-
ously arrive, simulating a real-world scenario, and show its
advantages. The contributions of this work are threefold:

• Different from previous work which considers only log

1https://github.com/DIR-LAB/DRILL

contents or sentiment, we combine the content-relevant
sentiment features and context-based features to better
represent runtime logs to achieve more accurate anomaly
detection, especially for cases with unseen logs.

• We propose to apply static program analysis on the source
code of storage system to extract accurate context features
for building accurate vector representations of logs.

• We conduct extensive evaluations to show the effective-
ness and performance of Drill in a variety of scenarios.

The remainder of this paper is organized as follows: In
§II we introduce the background about log-based anomaly
detection and discuss the key observations to motivate Drill.
In §III we present the overall design of Drill. We present the
main results in §IV. We compare with related work in §V, and
conclude this paper and discuss the future work in §VI.

II. DESIGN MOTIVATION

The runtime logs of large-scale storage systems play an
important role in understanding the runtime status of systems.
In Figure 1, we show a snippet of runtime logs generated
while running Lustre. As the example shows, each log is
a single line of free-form text containing multiple sections
of information, such as the runtime and content information.
The runtime information may include timestamp, PID, and
thread Id, which are often generated automatically. The
content information mostly originates from the developers,
and generally consists of a constant part, such as "connect
to ...", which corresponds to the texts written in the source
code, and a variable part, such as 10.0.0.8 and 4296114409,
which correspond to placeholders (e.g., %d, %s) in the source
code. The log levels, such as debug, info, warn, and error, are
often contained in the logs to denote the intention of the log,
but these are not necessarily accurate for detecting anomalies
due to the complexity of the runtime systems. This is also why
advanced log-based anomaly detection tools are needed.

00000004:00080000:0.0:1607450691.765123:0:3263:0:(osp_object.c:1517:o
sp_create()) lustre-OST0002-osc-MDT0000: Wrote last used FID: 
[0x100020000:0x316f:0x0], index 2: 0

00002000:00080000:0.0:1607317382.389082:0:6295:0:(ofd_dev.c:1752:ofd_
create_hdl()) lustre-OST0002: reserve 8 objects in group 0x0 at 10242

00080000:00020000:0.0:1607317006.208902:0:5057:0:(osd_handler.c:1588:
osd_trans_commit_cb()) transaction @0xffff9676bad55900 commit error: 
2 

00000004:00080000:0.0:1607448546.792679:0:2697:0:(osp_precreate.c:684
:osp_precreate_send()) lustre-OST0000-osc-MDT0000: current precreated 
pool: [0x100000000:0x7e24:0x0]-[0x100000000:0x7ee1:0x0]

Fig. 1: A runtime log example from Lustre.

Terminology In this study, we use some specific termi-
nology to refer to specific parts of the logging system for
simplicity. We use log statement to denote the source code
written by developers to produce the logs; runtime log to refer
to the collected logs at runtime; log template to refer to the
constant parts of the log content, such as ‘‘*: connect to
NID *@tcp last attempt *’’, whereas the wildcards (*)
can be replaced using variable parts such as 10.0.0.8. The
log templates can be identified by parsing the runtime logs

190

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 04,2023 at 06:21:13 UTC from IEEE Xplore.  Restrictions apply. 



using tools like Drain [23] or Spell [24]. Multiple log entries
can be gathered together into a session or sequence of logs,
which serve as the main inputs for the downstream anomaly
detection models.

A. Key Observations and Design Motivations
Drill is designed based on two key observations we made

from the file system source code and runtime logs. In this
subsection, we discuss these observations before introducing
Drill’s design in the next section.

1) Storage system-specific language model: As described
earlier, it is known that a simple index ID does not contain
enough information for logs. Hence, many recent studies have
focused on leveraging natural language models to turn each
runtime log into a vector with enriched features [15], [31],
[27]. For example, NeuralLog [27] uses BERT [26], which
was pre-trained on general human language texts to encode
logs. However, these methods are reliant upon the assumption
that storage system logs can be treated identically to natural
language, which may not be the case. In fact, although the log
content contains human-readable texts, they are noisy, brief,
and often do not strictly follow grammar rules, such as "%s
Route resolved: %d" in Fig. 2. We argue that the language
model used to vectorize logs should be storage system domain
specific. However, training a new or even fine-tuning an
existing language model is known to require a large amount of
training data. For example, BERT was trained on 3.2 billion
words [26]. In contrast, if we look at the unique lines of logs
in storage systems, such as Lustre, only thousands of unique
training data examples are available (detailed numbers are in
Table I), far less than what would be required to meet the
needs of re-training or even fine-tuning a language model.

...
CNETERR("Connection to %s at host %pI4h on port %d was "

"refused: check that Lustre is running on that node.\n",
libcfs_nid2str(peer_nid), &peer_ip, peer_port);

...
CDEBUG(D_HA, "recovery of %s on %s failed (%d)\n",

obd2cli_tgt(imp->imp_obd),
(char *)imp->imp_connection->c_remote_uuid.uuid, rc);

...
CDEBUG(D_HA, "%s: reserve %d objects in group %#llx"

" at %llu\n", ofd_name(ofd),
count, seq, next_id);

...
CDEBUG(D_HA, "%s: Wrote last used FID: "DFID", index %d: %d\n",

d->opd_obd->obd_name, PFID(fid), d->opd_index, rc);
...
CDEBUG(D_NET,"%s Route resolved: %d\n",

libcfs_nid2str(peer_ni->ibp_nid), event->status);
...
CDEBUG(D_HA, "%s: transno %lld is committed\n",

ccb->llcc_tgt->lut_obd->obd_name, ccb->llcc_transno);

1
2
3

1
2
3

1
2
3

1
2

1
2

1
2

������
�

����	��

��
���
�

Wrote 

reserve 

refused

failed 

resolved

committed\

Fig. 2: Example log statements from Lustre source code and
their sentiment indicators (colored).

Not only is it difficult to train a complete storage system-
specific language model, we further argue that it is actually not
necessary to do so. The complete language models are useful
in many NLP tasks such as machine translation and question
answering because these tasks require a deep understanding
of the sentences, including their word selection, grammar,
tense, and so on. However, in log-based anomaly detection,
we can generally disregard grammar and tense, and the key

information we need is simply whether logs indicate anomalies
or not. These simplifications should allow for the use of a far
less complicated language model.

If we take a closer look at the log statements in the source
code, as shown by Fig. 2, although logs texts are informal
and noisy, they do use different tones to describe abnormal
and normal system statuses, simply because code is written
by developers and developers in the same community likely
share common tones and vocabulary. For instance, developers
typically use negative tones such as ‘error’ or ‘exception’ for
anomalies and use neutral or positive tones such as ‘connection
successes’ for normal behaviors. We believe such sentimental
difference is generic across different software in the same
community and can be captured via sentiment analysis. For
example, in Figure 2, the first log statement expresses negative
sentiment as it describes the failure of a connection. The
second log statement shows a neutral sentiment as it just
reports routine updates of the system. The last log statement
seems to be positive as it contains words such as ‘resolved’
and ‘committed’.

Given this example, we believe the sentiment of the texts
could reflect the developers’ intentions and may be a strong
indicator of the system anomalies we are trying to detect.
Additionally, utilizing sentiment to encode the logs can be
more feasible due to lower training complexity, which makes
using the limited amount of training data feasible.

...
rc = ostid_set_id(&oa->o_oi, ostid_id(&oinfo->loi_oi));
if (rc) {

CERROR("Bad %llu to set " DOSTID " : rc %d\n",
(unsigned long long)ostid_id(&oinfo->loi_oi),
POSTID(&oa->o_oi), rc);

}
...

1
2
3
4
5
6

...
rc = kgnilnd_find_and_cancel_dgram(peer->gnp_net->gnn_dev,

peer->gnp_nid);
if (rc) {

LCONSOLE_INFO(“Received NAK from %s for %s errno %d; ”
“canceled pending connect request\n”,
libcfs_nid2str(connreq->gncr_srcnid),
libcfs_nid2str(connreq->gncr_dstnid), errno);

}
...

1
2
3
4
5
6
7
8

Fig. 3: Context feature of Lustre log statements.

2) Context of the source code: While previous studies have
focused on the contents or even the sentiment of logs for
anomaly detection, we argue that they neglect the valuable
information buried in the source code to denote whether an
actual anomaly may be captured by the log statements. For
instance, if developers check the return value of a function
call and further print some logs if the return value is not
expected, then such a log statement is more likely to indicate
a possible anomaly. These actions (e.g., assign function calls
return code to a variable, use if-statement to check the return
code) represent the contexts of a log statement, which can
be potential anomalies. For instance, Fig. 3 shows two ex-
amples of log contexts, which include both the log statement

191

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 04,2023 at 06:21:13 UTC from IEEE Xplore.  Restrictions apply. 



Context 
Feature 
Builder Feature Vector

Database

1

2

Runtime Logs
00000004:00080000:0.0:1607450691.76
5123:0:3263:0:(osp_object.c:1517:os
p_create()) lustre-OST0002-osc-
MDT0000: Wrote last used FID: 
[0x100020000:0x316f:0x0], index 2: 
0

00002000:00080000:0.0:1607317382.38
9082:0:6295:0:(ofd_dev.c:1752:ofd_c
reate_hdl()) lustre-OST0002: 
reserve 8 objects in group 0x0 at 
10242
...

Log Statement Vector Representation

Q
ue

ry

Anomaly 
Detection
(Training 

and 
Testing) Vector Sequences

Runtime Log Training and Testing

3

Sentiment
Feature 
Builder

Context Feature
Sentiment Feature…,…

Source
Code

Fig. 4: The overall architecture of Drill

and its surrounding code. Here, the top log statement uses
error log level (CERROR) to report if the previous operation
ostid set id fails (checking rc); the bottom one uses info
log level (LCONSOLE INFO) to report a similarly wrong rc
issue while transferring data between LNET network inter-
faces. Although these two log statements are in different log
levels, they actually both report system anomalies in Lustre.
This clearly shows that the context of log statement (i.e., after
‘if (rc)’) could be a strong feature to indicate the abnormal
states. On the other hand, developers may periodically print
logs for recording system status. Such logs are more likely
related to normal system status. Such actions, showing benign
condition, manifest in the context code as a log statement in a
for-loop or while-loop. Hence, the context of a log statement
in the source code could be a strong feature in understanding
the nature of the relevant logs, which motivates the design of
Drill.

III. DRILL DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation
details of Drill. We begin by showing its overall workflow in
Fig. 4. There are two fundamental components in Drill: Log
Statement Vector Representation and Runtime Log Training
and Testing.

First, the Log Statement Vector Representation component
takes charge of generating vector representation of logs. As
described earlier, Drill analyzes the source code to build
the vector representations. More specifically, it leverages the
Sentiment Feature Builder component ( 1 ) to build sentiment
features, and leverages Context Feature Builder component
( 2 ) to build context features. More details about these two
components will be explained in the later subsections. These
two sets of features will be combined together to form a
complete vector representation. We store the representation
in the Feature Vector Database, so that we can quickly query
the database to assign vectors for runtime logs. The Feature
Vector Database is a key-value store. During the log statement
vector generating phase, each log statement in the source code

DAOS
neural: "drain btree …
neural: ”write metadata …
...
D_ERROR("dkey can not be …
D_ERROR(”fail to drain …
...

BeeGFS
neural: "try to lock"
neural: "no owner node find …
...
negative: "fail write runtime …
negative: ”authentication for …
...

DAOS
Ceph

BeeGFS
Lustre

���

Lustre
neural: "before portal …
neural: "invoke lnet debug …
...
negative: "error invoke lnet …
negative: "cfs fail timeout …
...

Sentiment Model�����������
DAOS

BeeGFS

Lustre

Fig. 5: The workflow for sentiment model training

is processed. Its generated vector representation is stored in
the database using its string-based log statement as the key.
Later, when runtime logs arrive (in Runtime Log Training and
Testing phase), we first use Drain [23] to pre-process them to
retrieve their string-based log templates. We then use each log
template to match the closet log statement key in the database
to retrieve the vector representation. In this way, querying the
database should always return a vector representation.

Second, the Runtime Log Training and Testing component
works on actual runtime logs for both training and testing.
When a runtime log arrives, Drill queries the Feature Vector
Database for its vector representation as described earlier. For
a sequence of log events, we will build a sequence of vectors,
which are later fit into the same bidirectional LSTM (BiLSTM)
model for both training and testing ( 3 ). The training is done
based on a set of labeled historical logs. The testing is done by
applying the trained model upon current runtime logs, which
may include log entries that were never seen in the training
dataset. More details regarding the bidirectional LSTM models
will be discussed in Section III-C.

A. Sentiment Feature Builder
In the Drill workflow, building a high quality storage

system-specific language model to generate the sentiment
feature is the key to obtaining accurate vector representations
for the logs. Building such a model is the core task of the
Sentiment Feature Builder.

One key challenge when training the sentiment model for
log statements is obtaining the labeled training data. Given
a log statement, we do not know the common ‘tone’ or
‘intention’ shared by the community. To address this issue,
we directly use the log level of each log statement as a
natural label to train the model. For example, CERROR indicates
abnormal and CDEBUG indicates normal. These labels are easy
to obtain from the source code, addressing the training data
issue. However, intuitively there is an accuracy problem as
log levels are not considered to be accurate as developers may
not always be consistent in using the correct log level. For
instance, BeeGFS [32] may use Log ERR to log an event
which in fact is not related to any anomaly [31].

To address this accuracy issue, we propose to train the
sentiment language model using source code of multiple open-
source distributed storage systems. Doing so allows us to
capture the developers’ general consensus in the community
and to avoid bias from a particular developer or software
implementation. Additionally, it allows us to train a generic
model in the system logs domain, which may be applied to

192

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 04,2023 at 06:21:13 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Training dataset for sentiment model

Log Level Log Mechanism
Debug Error

OrangeFS [33] 1058 1202 gossip debug, gossip err,...
Ceph [34] 15459 2726 dout, derr,...

DAOS [35] 1549 3444 D DEBUG, D ERROR,...
GlusterFS [36] 2460 5260 gf msg, gf log,...

a wide variety of storage systems. Here, we selected a set of
widely used open source distributed storage systems to train
the model, which are listed in Table I. We briefly list the
logging mechanisms used by each system and the total number
of training samples collected from each system. The Debug
logs are labeled as neutral and Error logs as negative. Note
that, the similar idea was cursorily examined in our previous
work SentiLog [31]. The major difference here is Drill not only
trains the sentiment model but also extracts the context-based
features and combines both features to form more accurate
representations of logs. In this way, the representations that
Drill builds can be used in downstream models to achieve
better anomaly detection for sequences of logs, while SentiLog
only predicts the abnormality of every single log entry via the
trained sentiment model.

The actual training workflow is shown in Fig. 5. During
training, the pre-processed logging statements from various
storage systems are fed into the model trainer. We use the same
bidirectional LSTM (BiLSTM) to conduct sentiment analysis.
The network contains two layers, 100 neurons in each layer,
and in total has 789K parameters. The model is trained in batch
size 64 and using Adam as optimizer with learning rate 0.01.
Since the BiLSTM network takes word vectors as the inputs,
we tokenize each single word of the logging statements using
the pre-trained GLoVe Embedding [28].

Drill pre-processes the raw logging statement before send-
ing it to the BiLSTM network for training because the log
statements contain information which is useless for senti-
ment analysis. For example, a logging statement from Lustre
may look like this: ‘Error %d invoking LNET debug log
upcall %s %s;’. The format strings (‘%s’) are clearly not
useful as they will be later substituted by the actual strings. In
NLP, text pre-processing is a typical step to obtain consistent
training results. Drill follows similar pre-processing on the
log statements [37], which includes the following steps: 1)
lowercasing all the texts; 2) stemming words to their root
form (e.g., invoking → invoke); 3) removing the stopwords
(e.g., ’this’,’that’,’and’,’a’,’we’); 4) normalizing a text into a
standard form; 5) removing noises such as the format strings
(e.g., %) and punctuation. The ultimate goal of these steps is
to bring the log statements closer to natural language, in order
to reduce the training time and maximize the accuracy.

As opposed to training a sentiment language model, it is
also theoretically possible to train a domain-specific language
model or fine-tune general language model on domain-specific
data. However, to obtain a decent rendition of such a model
typically requires a much larger volume of training data due to

the increased complexity of the task. Given the small volume
of log statements in source code, it is unrealistic to train this
kind of model. Instead, the simpler sentiment analysis task
does not require the same volume of data, which properly fits
in our scenarios. In fact, we evaluated the use of more general
language models and our sentiment model in Drill, and the
results show that sentiment model does in fact have better
performance. More details and results can be found in §IV-B.

B. Context Feature Builder
The Context Feature Builder takes the source code of the

target storage system and the log statement information as
input. Its goal is to output the context feature of the log
statement. The context of a log statements can be described
as the surrounding code of the log statement, which provides
information about the execution context of the log statement.
As Figure 6 shows, we consider the context by systematically
checking the code from before, after, within and around the
log statement.

...

rc = mdt_attr_get_complex(info, mo, ma);

if (rc) {

CERROR(“file attribute read error for ”DFID“: %d.\n”,

PFID(mdt_object_fid(mo)), rc);

RETURN(rc);

}

...

1

2

3

4

5

6 ��
�
�	����� 	�

rc = mdt_attr_get_complex(info, mo, ma);

if (rc) {

PFID(mdt_object_fid(mo)), rc);

RETURN(rc);

������������ ���	���� ����
	
�

����

������ ����
 ��

����

������ � 	����	����� �����


Fig. 6: Example Lustre code snippet showing log statement context.

To retrieve the contexts of log statements, based on their
location, Drill generates an Intermediate Representation (IR)
[38] of the relevant source code first and applies classic
static analysis on the IR to extract the context features. We
summarize the key steps of the context feature builder in
Algorithm 1 and describe it in more detail below.

First, similar to [39], based on the IR, we create a control
flow graph (CFG) of only the calling functions that contain
log statements. Here, each node represents a basic block
(i.e., a continuous sequence of non-branch statements [38])
and the edges represent possible transfers of control between
basic blocks. Next, based on the CFG, we iterate through
each instruction (I) in each basic block (BB) of the calling
function (F) to identify the log statement as well as its context
features. We consider four types of features among them. Since
Drill features may be combinations of classic static analysis
features, such as sequences of certain statements before or
after the log statements, we define four new terms to refer to
these features and explain how to retrieve them using standard
terms below.
• ControlType indicates the type of flow-of-control state-

ments (e.g. if, while) surrounding the log statement. It helps
measure the structural similarity among log statements in
Drill. The function CheckControlType in Alg. 1 (Line

193

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 04,2023 at 06:21:13 UTC from IEEE Xplore.  Restrictions apply. 



10-19) calculates this feature. The implementation is fairly
straightforward in static program analysis. For example, we
check the conditional jump to the basic block to determine
whether it is conditional Block.

• MessageType indicates the type of the message included in
the log statement, which may indicate the purpose of the log.
According to our observation, if the log statement only con-
tains string literals (e.g., CERROR("libcfs ioctl: user
buffer too small for ioctl\n");), it implies the gen-
erated log are the same, which typically serves the purpose
of monitoring the current system status. If the log statement
further includes non-string variables (e.g., CDEBUG ("...
%d\n", lov connects)), it often serves the purpose of
checking certain variables. These different purposes lead
to different features in Drill. The CheckMessageType in
Alg. 1 shows how we calculate this feature. Specifically,
we infer the message type based on the number of operands
in the log statement: a statement with only one operand
implies a string-only message, while additional operands in
the IR implies that additional variables in the message. In
this way, we can determine if a log statement is only for
status monitoring or for variable checking.

• ReturnTypeI and ReturnTypeII catpure the potential rela-
tionship between the log statement and the return statements
around it. For example, a log statement may be relevant to
an if statement which checks the return value of another
function, we call this a log–after–return type (ReturnTypeI).
If a log statement is immediately followed by a return
statement, we call it a return–after–log type (ReturnTypeII).
Since the return statements typically imply major transitions
in the program flow, their relative positions to log statements
help capture the characteristics of the logs. To check these
two return types, we leverage the log statement’s basic
block and next instruction as shown in Alg. 1 (Line 25-
33). Specifically, for ReturnTypeI, we check if there is a
conditional jump to the current BB that contains the log
statement. If yes, we then extract the condition and inspect
if it is a return value from another function, which can be
done by back-tracing the condition of the last instruction
and checking if it is a return value of a call instruction
to another function. Similarly, for ReturnTypeII, we extract
the next instruction of the log statement within the current
BB and check if it is a return instruction, which may imply
whether there is an immediate return after the log statement.

C. Anomaly Detection Model

After mapping runtime logs to feature vectors, we use the
grouped, sequences of relevant logs and their labels to train the
anomaly detection model. Here, grouping runtime logs may
vary across different systems. For instance, in many distributed
file systems, some global IDs may exist to denote a sequence
of relevant operations, which can be leveraged to build ses-
sions. For instance, Hadoop HDFS has block id [1], Apache
HTTP server has cache key [40], and Hadoop MapReduce
has task id [41]. Alternatively, other systems, such as Lustre

Algorithm 1: Context Feature Extraction
Input: IR, F
Output: Context Features

1 Function ExtractContextFeature(IR, F)
2 CreateCFG(IR, F )
3 foreach BB ∈ F do
4 foreach I ∈ BB do
5 if log statement

(CERROR ‖ CDEBUG) then
6 CheckControlType(BB)
7 CheckMessageType(I)
8 CheckReturnTypeI(BB)
9 CheckReturnTypeII(I)

10 Function CheckControlType(BB)
11 // implemented by checking conditional jump
12 if is conditional Block(BB) then
13 control type ← ”if”
14 else
15 // detecting cycle using depth-first-search
16 if is loop Block(BB) then
17 control type ← ”loop”
18 else
19 control type ← ”null”
20 Function CheckMessageType(I)
21 if num of operands(I) > 1 then
22 message type ← ”variable check”
23 else
24 message type ← ”status monitor”
25 Function CheckReturnTypeI(BB)
26 if is conditional Block(BB) then
27 condition ← jump condition
28 // back-trace the condition
29 if is function return value(condition)

then
30 log-after-return ← ”yes”
31 Function CheckReturnTypeII(I)
32 if is return statement(next instruction(I)) then
33 return-after-log ← ”yes”

and BeeGFS, do not have these global Ids. For these systems,
we still build sessions for training, except each session now
only contains one log entry. Note that we do not construct the
sessions by grouping logs within a designated time window
mostly because the size of the time window greatly impacts
the results. Also, due to the irregularity of log generation,
a fixed time window may contain thousands of logs or only
several logs, making the training extremely difficult. To ensure
reliable results, we will check each log entry in systems that
do not have reference IDs to build meaningful sessions.

Drill uses a BiLSTM model which takes sequences as inputs
and outputs a probability of abnormality. Each time, the input
is a vector representation of the runtime log. Each vector is re-
currently forwarded to the BiLSTM Model. The output of each
LSTM Cell will be concatenated and flattened, then passed

194

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 04,2023 at 06:21:13 UTC from IEEE Xplore.  Restrictions apply. 



to a dense network, turning into a two-dimensional vector
as the logit. Finally, a softmax layer is applied to calculate
the probability of normal and abnormal. If the probability of
abnormality is higher than 0.5, the model will report there
is an anomaly in the session. The BiLSTM network contains
two layers, 20 neurons in each layer, and has a total of 17K
parameters. The model is trained using a batch size of 64
sessions, along with the Adam optimizer and a learning rate
of 0.01. Once trained, the detection model is used to take
runtime logs and make predictions regarding the presence of
anomalies in the system. For unseen logs, the feature vector
database will still provide vectors, which will be fed to the
BiLSTM model to make a decision. Note that Drill provides
a general interface for sequence-based classification models
(e.g., GRU [42], Transformer [43]). In this prototype, we chose
BiLSTM mainly for two reasons. First, BiLSTM stacks two
layers of LSTM with one layer in a forward pass and the other
in a backward pass, capturing more sequential information of
logs in bi-direction. Second, it has been used in state-of-the-art
anomaly detection research, which performs well in real-world
systems [44]. We take on the comparisons of different models
as one of our future investigations.

IV. EVALUATION

A. Datasets and Evaluation Setup
1) Datasets: To evaluate Drill, we conducted evaluations on

two different distributed storage systems: Apache HDFS and
Lustre. Here, HDFS is written in Java and Lustre is written
in C, which demonstrates the generality of Drill. We collected
datasets from both systems to conduct the evaluation. Details
about these datasets are discussed below.

TABLE II: Description of datasets

HDFS 11,175,629 575,061 29 16,838
HDFS-Upcoming 104,634 4841 35 2277
Lustre 157,874 157,874 73 7,401

Datasets # of
log entries

# of
sessions

# of
log index

# of
anomalies

Table II shows all the datasets used in these evaluations.
First, the HDFS dataset is a publicly available set of run-
time logs collected from a 200-node cluster running Hadoop
0.17 [17]. There are ∼11 million logs in total, which form
575,061 pre-built sessions in the dataset. Among them, 2.9%
are anomalies which were labeled by domain experts. There
are 29 unique log templates detected among these 11 million
runtime logs.

To evaluate how anomaly detection tools will perform in a
real-world setting, facing continuously arriving new and prob-
ably unseen logs, we further generated the HDFS-Upcoming
dataset. This dataset was collected using a 4-node Cloud-
Lab [45] cluster running the same Hadoop 0.17 version. We
ran the built-in benchmark application (i.e. TestDFSIO), which
continuously generated logs (some are new compared with the
original HDFS dataset). We manually labeled each session as
normal or abnormal following the same protocol discussed in
the paper that originally introduced HDFS dataset [17].

We also generated the Lustre dataset to evaluate Drill perfor-
mance on different storage systems. We generated this set of
Lustre logs by running the IO500 [46] benchmark on a Lustre
cluster built in CloudLab. To accurately label the logs, we
leveraged an open-source fault injection tool called PFault [3]
which injects faults into Lustre and recorded the generated
logs. We considered logs generated before the injected faults
as normal. For logs generated after the fault injections, the
domain experts labeled each log entry depending on whether
or not it was relevant to the injected faults. Specifically, our
labeling criteria leveraged standard Linux error numbers (or
equivalent customized error numbers), as Lustre utilizes these
extensively while logging. Logs with a standard or equivalent
error number were considered to be abnormal. In addition, we
pruned any potential noise by examining the log descriptions
further. For example, logs related to transient network issues
are exempted from the abnormal logs as such transient issues
are common in pre-fault logs as well. In total, the numbers
of normal and abnormal log entries are 150,473 and 7,401,
respectively. Since it is hard to build sessions in Lustre logs,
we treat each log as a session. Note that, for both the HDFS
and Lustre log datasets, 1% of logs are chosen as the training
data and the remaining 99% serve as testing data. We used this
specific training and testing data partition for a fair comparison
with previous work [14] which used the same data partitioning.

2) Performance Metrics: To compare the performance of
different anomaly detection methods, we use four metrics:
Accuracy, Precision, Recall, F-measure defined as follows:

• Accuracy: measures the percentage of correct predictions
(both normal and abnormal) over all predictions.

• Precision: measures the percentage of the reported
anomalies which are actually anomalies.

• Recall: measures the percentage of total actual anomalies
which are reported.

• F-measure: the harmonic mean of Precision and Recall,
which often indicates the quality of the model.

B. Impacts of Sentiment Language Model
As discussed earlier, we argue that re-training or fine-tuning

complicated language models to work on storage system logs
is inefficient and unnecessary. Drill uses multiple open-source
storage systems’ source code to fine-tune a sentiment language
model using limited training data. To show that this design
decision makes sense, we compared different ways of lever-
aging the language models while keeping other components
of Drill unchanged. The results are reported in Figure 7(a).
Here, Drill-PretrainedLM indicates the direct use of the pre-
trained language model from natural language to encode the
logs; Drill-LogDomainLM uses the source code of multiple
storage systems to fine-tune an existing language model (i.e.
GLoVe) and uses that to encode the log; Drill is our sentiment
model-based design.

It can be seen that although Drill-PretrainedLM achieves
a precision of 1.0, it has considerably worse recall (i.e. 0.47)
and hence worse F-measure (i.e. 0.64) compared to Drill. We
consider two major reasons contributing to such a result: a)

195

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 04,2023 at 06:21:13 UTC from IEEE Xplore.  Restrictions apply. 



(a) Sentiment (b) Context
�������������	��������	�
������	��������	�

Fig. 7: (a) Performance comparison among Drill using pre-trained
language model, Drill using fine-tuned storage system-specific lan-
guage model, and Drill using our sentiment language model on
HDFS dataset; (b) The impact of context features on HDFS dataset.
Drill-C, Drill-R1, Drill-R2, and Drill-M mean Drill without different
context features, such as ControlType, ReturnTypeI, ReturnTypeII, and
MessageType.

the pre-trained language model used in Drill-PretrainedLM is
not effective for log analysis; b) Compared to the embedding
of raw content, sentiment is more effective. As for Drill-
LogDomainLM, it shows even worse performance than Drill-
PretrainedLM, which obviously means it is worse than Drill.
Note that, even though this is a domain-specific fine-tuned
model, we believe the poor result can be attributed to the
volume of domain-specific data, which is not enough to fine-
tune a workable language model, resulting in one which is not
as effective as the sentiment model.

C. Impacts of Context Features

One of the new designs of Drill is its integration of both
sentiment-based and context-based features. In this section,
we further explore how the context features contribute to the
performance of Drill. More specifically, we present our evalu-
ation of the effect of each context feature introduced in Drill,
such as ControlType and MessageType. In this evaluation, we
used the evaluation results of Drill on the HDFS dataset as
the baseline. Then we conducted multiple experiments with
one feature deliberately disabled each time. The results are
reported in Figure 7(b). Here, we only report the results of
F-measure due to limited space. On one hand, F-measure is a
reliable metric to indicate the quality of a model. Additionally,
the respective precision values of different evaluations showed
little variation, hence the recall shared the same trend as
the F-measure. From these results, we can see that disabling
any one feature leads to a tangible reduction in performance.
Especially when disabling MessageType, the F-measure was
reduced from 0.83 to 0.78. These results prove that the context-
based features are necessary and contribute to Drill’s overall
performance significantly.

D. Drill on Logs of Different Systems

In this evaluation, we compared Drill with several index-
based and content-based anomaly detection solutions, includ-
ing two traditional machine learning models, (i.e., Decision

Fig. 8: Performance comparison on HDFS and Lustre datasets.

Tree and SVM [20], [12], [13]), two deep learning, (i.e.,
DeepLog [14] and LogAnomaly [15]), and a state-of-the-art
solution NeuralLog [27] in statistical analysis.

The experimental results on the HDFS dataset are reported
in Figure 8. Among the three reported metrics, we again focus
on the F-measure metric since it is the harmonic mean of
precision and recall and often indicates the overall quality
of the model more accurately. From the results, we observe
that Drill achieves the best performance among all the six ap-
proaches (i.e., 0.83) on F-measure, presenting its effectiveness.
The F-measure of the Decision Tree and SVM are relatively
close, with 0.60 and 0.58 respectively. It is noticeable that even
though the overall performance of DeepLog and LogAnomaly
is not good, they have very high recall, which means that they
report more true anomalies. However, they suffer from low
precision, which means that only a small number of reported
anomalies are true anomalies. Such a high false positive rate
is not surprising as both DeepLog and LogAnomaly simply
consider all unseen log indices to be anomalies due to their
unexpected variation in log patterns when compared to the
seen logs. When these unseen logs are actually normal, both
of them will have a high false positive ratio. Oppositely,
the Decision Tree and SVM methods have high precision
(1.00) but low recall (0.43 and 0.41). This means that the
anomalies they reported are most likely true anomalies but
only cover a very small sets of the total anomalies. This
represents another extreme case for handling unseen logs:
simply consider them as normal. Both of these approaches
let the anomalies in unseen logs slip through, which may put
the systems which produce these logs at risk. NeuralLog has a
good overall performance due to its improved log vectorization
technique. However, its lack of context-based features makes
it less suitable to handle some anomalies which have no
obvious alarm in their log content but can be inferred through
consideration of code context.

The experimental results of the Lustre dataset are reported
in Figure 8. Drill still achieves the best performance when
compared with other baselines (i.e., 0.97 on F-measure).
Deeplog and LogAnomaly suffer from a similar issue on
the Lustre dataset as they did on HDFS: they achieve high
Recall but low Precision, leading to low F-measure. The

196

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 04,2023 at 06:21:13 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: Performance of log-anomaly detection methods for realistic streaming analytics Case 1 and Case 2.

Case1 Hist.(4k)+Upcom.(1k) Hist.(3k)+Upcom.(2k) Hist.(2k)+Upcom.(3k) Hist.(1k)+Upcom.(4k) Upcom.(5k)
Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure

Decision Tree 0.90 0.67 0.80 0.67 0.70 0.67 0.60 0.67 0.88 0.89
SVM 0.90 0.01 0.80 0.01 0.70 0.01 0.60 0.01 0.53 0.01
DeepLog 0.89 0.66 0.79 0.66 0.70 0.66 0.60 0.67 0.54 0.66
LogAnomaly 0.88 0.55 0.76 0.56 0.64 0.57 0.53 0.56 0.40 0.55
NeuralLog 0.97 0.74 0.96 0.65 0.96 0.60 0.96 0.56 0.95 0.49
Drill 0.99 0.95 0.99 0.97 0.99 0.98 0.99 0.99 0.95 0.95
Case2 Upcom.(5k) Hist.(4k)+Upcom.(5k) Hist.(8k)+Upcom.(5k) Hist.(12k)+Upcom.(5k) Hist.(16k)+Upcom.(5k)

Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure
Decision Tree 0.88 0.89 0.76 0.68 0.84 0.68 0.88 0.68 0.90 0.68
SVM 0.53 0.01 0.74 0.01 0.82 0.01 0.87 0.01 0.89 0.01
DeepLog 0.54 0.66 0.75 0.66 0.82 0.65 0.86 0.65 0.89 0.65
LogAnomaly 0.40 0.55 0.67 0.55 0.77 0.55 0.83 0.55 0.86 0.55
NeuralLog 0.95 0.49 0.97 0.72 0.97 0.77 0.97 0.77 0.97 0.79
Drill 0.95 0.95 0.97 0.95 0.97 0.92 0.95 0.80 0.97 0.89

reason is the same as before: DeepLog and LogAnomaly
assume the unseen log indices are anomalies. Decision Tree
and SVM perform much worse on the Lustre dataset, with
precision of 0.35, recall of 0.01, and F-measure of 0.01.
Compared to the performance on the HDFS dataset, apart
from the low recall, the precision of both approaches decreased
significantly. This means that they report many false positives
in the Lustre dataset. Conservatively predicting the unseen logs
as normal can give good precision, but if this leads to the
misclassification of some normal unseen logs as anomalies it
will incur low precision. Interestingly, NeuralLog has worse
performance on the Lustre dataset. We consider this is due to
the dissimilarity between the Lustre logs and natural language
which may confuse the language model which NeuralLog
relies on.

E. Drill on Logs in Streaming Analytic Patterns
In this section, we show how Drill and other anomaly

detection solutions will perform when they are applied to a
more realistic streaming scenario. Specifically, we used the
training data in the original HDFS log dataset to train Drill
and other systems. Then, we fixed the model and used it
to monitor the system where the new HDFS-Upcoming log
entries will continuously arrive. The HDFS-Upcoming dataset
includes approximately 5K logs in total with 12 new unseen
log indices. The HDFS-Historical dataset is the original HDFS
testing data. The goal of this evaluation is to compare the
effectiveness of different solutions when they were trained
using limited historical log data and then applied to process the
real-world stream of new logs online. Although computational
cost could be an important factor in this online setting, it is not
a bottleneck for any of the evaluated solutions. For instance,
Drill needs only 0.25 milliseconds to process a new session.
Other solutions run at a similar speed.

We simulate two separate cases for handling the streaming
new logs. Both cases are shown in Figure 9. In the first
case, we assume the anomaly detection tools will fix the
size of a monitoring window, and slide it towards up-to-date
logs (the HDFS-Upcoming log dataset) gradually. With each
measurement, we move forward by approximately 1K new

����� ��������

�����
��������

�	

����������	

�����������




����


��������
���

������ ��������

������ ��������

�	

����������	

�����������




����

(a) Case 1 (b) Case 2

�	����� �	�����

Fig. 9: Streaming of logs in realistic log anomaly detection.

log entries and re-evaluate the performance. Note that there
are roughly 5K log entries in HDFS-Upcoming dataset so,
after sliding four times, the model will only see the HDFS-
Upcoming dataset. In the second case, we assume that the
anomaly detection tools will keep searching back for more
logs to analyze after up-to-date logs arrive. Specifically, we
grow the window size from 5K to 21K logs as Figure 9(b)
shows.

The evaluation results are reported in Table III. In case 1, we
have two major observations. First, Drill has the best perfor-
mance with regard to both Accuracy and F-measure among all
the six methods for every sliding monitoring window. Second,
for Accuracy, the other methods have a decreasing trend as
more unseen logs arrive, while Drill consistently maintains
a stable performance. These results show that Drill remains
stable while handling streaming logs. In case 2, the two metrics
have a similar trend to case 1. For example, the accuracy of
other methods decreases as the size of the monitoring window
decreases, while the accuracy of Drill remains the highest
throughout the experiment and does not seem to be influenced
by changes in the size of the window. Combining the results
of case 1 and case 2, we conclude that Drill is the preferred
method to be used in a realistic streaming analytic scenario.

F. Robustness of Drill on Partial Training Data
Finally, we evaluate the robustness of Drill. Specifically, we

evaluated three settings on the HDFS dataset. In each setting,
the training dataset contained only a portion of the total log
indices while the testing dataset maintained all of the log

197

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 04,2023 at 06:21:13 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV: The impact of different unseen log percentage on different solutions applied to HDFS dataset.

Settings Full Training Logs Most Training Logs Half Training Logs
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Decision Tree 0.89 1.0 0.94 1.0 0.45 0.62 1.0 0.43 0.60
SVM 0.98 0.95 0.97 1.0 0.42 0.60 1.0 0.41 0.58
DeepLog 0.82 0.94 0.87 0.17 0.98 0.29 0.24 0.76 0.37
LogAnomaly 0.95 0.90 0.93 0.12 0.99 0.21 0.17 0.99 0.29
NeuralLog 0.94 0.93 0.94 0.96 0.81 0.87 0.49 0.50 0.49
Drill 1.0 0.96 0.98 0.89 0.81 0.85 1.0 0.71 0.83

indices, so that a variable percentage of partial training data
is used to evaluate the overall robustness of the models. The
settings are listed below. 1) Full Training Logs: the original
HDFS training dataset without removing any log indices . 2)
Most Training Logs: based on Full Training Logs, we remove
6 log indices from the training data. 3) Half Training Logs:
based on Most Training Logs, we further remove another 6
log indices from the training data.

For each setting, we generate the corresponding training
data, train the four models, and compare them. The testing
data is fixed as described in IV-A1, making all of the results
comparable across different percentages of unseen log indices.

The results are reported in Table IV. It can be seen that
for each percentage of unseen log indices, Drill has either
the best or second best F-measure among all the approaches
we considered. Additionally, as the percentage of unseen log
indices increases, Drill has a stable overall performance while
the performance of other approaches declines abruptly. The
presented robustness of Drill is primarily due to the fact that
it leverages the learned differences between seen and unseen
logs using feature vectors which effectively encapsulate vital
source code context and log content information.

V. RELATED WORK

Log-based anomaly detection has been extensively studied
recently. Generally, existing methods can be classified into
three categories. The rule-based methods leverage expert-
defined rules to assign unmatched log entries as anomalies [7],
[8], [9], [11]. For example, LogLens [11] predefined a series
of patterns that represent normal logs and considers logs that
do not match such patterns as anomalies. Rule-based methods
rely on expert knowledge and regularity in the logs, hence are
limited in handling unseen logs.

Index-based methods [16], [17], [18], [19], [14] treat the
runtime logs as independent entities encoded using index num-
bers. Once an index sequence is built, various methods ranging
from statistical analysis [18] to deep learning models [14]
can be applied to learn the patterns. DeepLog [14] utilizes an
LSTM neural network to learn the pattern of seen normal log
indices and treats unseen logs as anomalies. The index-based
methods share this potential problem when applied to unseen
logs. Drill is proposed to address such an issue. Specifically,
Drill extracts sentiment-based and context-based features for
log statements and constructs feature vectors to represent each
runtime log, which allows the model to extend learned patterns
to unseen logs.

Log content-based methods include static analysis [47]
and natural language processing strategies [15], [44], [48],
[31], [27], [49]. Among them, the NLP-based strategies offer
advanced models to understand the log contents. For exam-
ple, Meng et al. [15] extend DeepLog by considering the
synonyms and antonyms in the log content. Le et al. [27]
utilize BERT [26] to extract the semantic information of raw
log content. Particularly, Zhang et al. [31] train sentiment
analysis from the source code to directly predict the anomaly
of each single runtime log. Compared with these studies, Drill
takes advantage of both the sentiment model and context-based
features from source code analysis to generate more accurate
representations of logs, which leads to more robust results as
our evaluation results have shown.

VI. CONCLUSION AND FUTURE WORK

This paper presents Drill, a new log-based anomaly detec-
tion solution based on source code analysis. Drill introduces
two new designs for generating more accurate and robust vec-
tor representations of logs: a storage system-specific sentiment
language model and context-based feature extraction. Our
evaluations show Drill outperforms state-of-the-art approaches
on two representative large-scale storage systems, HDFS and
Lustre. In the future, we plan to further investigate more
features or even automated features. Additionally, we plan to
apply more sophisticated language models, such as BERT [26]
for sentiment analysis.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their
valuable feedback. This work was supported in part by
NSF grants CCF-1910727, CNS-2008265, CCF-1910747, and
CNS-1943204.

REFERENCES

[1] “Apache HDFS,” https://hadoop.apache.org, Accessed: 01/2023.
[2] “Lustre,” https://www.lustre.org, Accessed: 01/2023.
[3] J. Cao, O. R. Gatla, M. Zheng, D. Dai, V. Eswarappa, Y. Mu, and

Y. Chen, “Pfault: A general framework for analyzing the reliability
of high-performance parallel file systems,” in Proceedings of the 2018
International Conference on Supercomputing (ICS’18), 2018.

[4] A. Das, F. Mueller, P. Hargrove, E. Roman, and S. Baden, “Doomsday:
Predicting which node will fail when on supercomputers,” in Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis (SC’18), 2018.

[5] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in large
scale systems: long-term measurement, analysis, and implications,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’17), 2017.

198

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 04,2023 at 06:21:13 UTC from IEEE Xplore.  Restrictions apply. 



[6] R. Han, O. R. Gatla, M. Zheng, J. Cao, D. Zhang, D. Dai, Y. Chen, and
J. Cook, “A study of failure recovery and logging of high-performance
parallel file systems,” ACM Transactions on Storage (TOS’21), 2021.

[7] M. Cinque, D. Cotroneo, and A. Pecchia, “Event logs for the analysis
of software failures: A rule-based approach,” IEEE Transactions on
Software Engineering (TSE’12), 2012.

[8] S. Roy, A. C. König, I. Dvorkin, and M. Kumar, “Perfaugur: Robust
diagnostics for performance anomalies in cloud services,” in 2015 IEEE
31st International Conference on Data Engineering (ICDE’15), 2015.

[9] A. Oprea, Z. Li, T.-F. Yen, S. H. Chin, and S. Alrwais, “Detection
of early-stage enterprise infection by mining large-scale log data,” in
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’15), 2015.

[10] K. Yamanishi and Y. Maruyama, “Dynamic syslog mining for network
failure monitoring,” in Proceedings of the eleventh ACM SIGKDD inter-
national conference on Knowledge discovery in data mining (KDD’05),
2005.

[11] B. Debnath, M. Solaimani, M. A. G. Gulzar, N. Arora, C. Lumezanu,
J. Xu, B. Zong, H. Zhang, G. Jiang, and L. Khan, “Loglens: A real-time
log analysis system,” in 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS’18), 2018.

[12] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer,
“Failure diagnosis using decision trees,” in International Conference on
Autonomic Computing, 2004. Proceedings. (ICAC’04), 2004.

[13] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure prediction in ibm
bluegene/l event logs,” in Seventh IEEE International Conference on
Data Mining (ICDM’07), 2007.

[14] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS’17), 2017.

[15] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun et al., “Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs.” in Proceedings of the
28th International Joint Conference on Artificial Intelligence (IJCAI’19),
2019.

[16] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Online system
problem detection by mining patterns of console logs,” in 2009 Ninth
IEEE International Conference on Data Mining (ICDM’09), 2009.

[17] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles
(SOSP’09), 2009.

[18] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants
from console logs for system problem detection.” in USENIX Annual
Technical Conference (USENIX ATC’10), 2010.

[19] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log cluster-
ing based problem identification for online service systems,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C’16), 2016.

[20] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System
log analysis for anomaly detection,” in 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE’16), 2016.

[21] “Log4J,” https://logging.apache.org/log4j/2.x/, Accessed: 01/2023.
[22] “SLF4J,” http://www.slf4j.org, Accessed: 01/2023.
[23] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing

approach with fixed depth tree,” in 2017 IEEE International Conference
on Web Services (ICWS’17), 2017.

[24] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in
2016 IEEE 16th International Conference on Data Mining (ICDM’16),
2016.

[25] N. Buzikashvili, “Sliding window technique for the web log analysis,”
in Proceedings of the 16th international conference on World Wide Web
(WWW’07), 2007.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[27] V.-H. Le and H. Zhang, “Log-based anomaly detection without log pars-
ing,” in 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE’21), 2021.

[28] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP’14), 2014.

[29] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing (TSP’97), 1997.

[30] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional lstm and other neural network architectures,” Neural
networks, 2005.

[31] D. Zhang, D. Dai, R. Han, and M. Zheng, “Sentilog: Anomaly detecting
on parallel file systems via log-based sentiment analysis,” in Proceedings
of the 13th ACM Workshop on Hot Topics in Storage and File Systems
(HotStorage’21), 2021.

[32] “BeeGFS,” http://beegfs.io, Accessed: 01/2023.
[33] “OrangeFS,” http://www.orangefs.org, Accessed: 01/2023.
[34] “CephFS,” https://ceph.io/ceph-storage/file-system/, Accessed: 02/2023.
[35] “Intel DAOS,” https://daos-stack.github.io, Accessed: 01/2023.
[36] “GlusterFS,” https://www.gluster.org, Accessed: 01/2023.
[37] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use of

topic models when mining software repositories,” Empirical Software
Engineering (ESE’16), 2016.

[38] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: principles,
techniques, & tools, 2007.

[39] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and
G. Vigna, “DR. CHECKER: A soundy analysis for linux kernel drivers.”
in 26th USENIX Security Symposium (USENIX Security’17), 2017.

[40] “Apache Http Server,” https://httpd.apache.org, Accessed: 01/2023.
[41] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Communications of the ACM (CACM’08), 2008.
[42] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of

gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems (NeurIPS’17), 2017.

[44] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (FSE’19), 2019.

[45] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb et al., “The design and
operation of CloudLab,” in 2019 USENIX annual technical conference
(USENIX ATC’19), 2019.

[46] “IO500,” https://io500.org, Accessed: 01/2023.
[47] K. Rodrigues, Y. Luo, and D. Yuan, “CLP: Efficient and scalable search

on compressed text logs,” in 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’21), 2021.

[48] S. Huang, Y. Liu, C. Fung, R. He, Y. Zhao, H. Yang, and Z. Luan,
“Hitanomaly: Hierarchical transformers for anomaly detection in sys-
tem log,” IEEE Transactions on Network and Service Management
(TNSM’20), 2020.

[49] C. Egersdoerfer, D. Zhang, and D. Dai, “Clusterlog: Clustering logs
for effective log-based anomaly detection,” in 2022 IEEE/ACM 12th
Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS’22),
2022.

199

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 04,2023 at 06:21:13 UTC from IEEE Xplore.  Restrictions apply. 


