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Abstract—Similar to local file system checkers such as e2fsck
for Ext4, a parallel file system (PFS) checker ensures the file
system’s correctness. The basic idea of file system checkers is
straightforward: important metadata are stored redundantly in
separate places for cross-checking; inconsistent metadata will
be repaired or overwritten by its ‘more correct’ counterpart,
which is defined by the developers. Unfortunately, implementing
the idea for PFSes is non-trivial due to the system complexity.
Although many popular parallel file systems already contain
dedicated checkers (e.g., LFSCK for Lustre, BeeGFS-FSCK
for BeeGFS, mmfsck for GPFS), the existing checkers often
cannot detect or repair inconsistencies accurately due to one
fundamental limitation: they rely on a fixed set of consistency
rules predefined by developers, which cannot cover the various
failure scenarios that may occur in practice.

In this study, we propose a new graph-based method to build
PFS checkers. Specifically, we model important PFS metadata
into graphs, then generalize the logic of cross-checking and
repairing into graph analytic tasks. We design a new graph
algorithm, FaultyRank, to quantitatively calculate the correctness
of each metadata object. By leveraging the calculated correctness,
we are able to recommend the most promising repairs to users.
Based on the idea, we implement a prototype of FaultyRank on
Lustre, one of the most widely used parallel file systems, and
compare it with Lustre’s default file system checker LFSCK.
Our experiments show that FaultyRank can achieve the same
checking and repairing logic as LFSCK. Moreover, it is capable of
detecting and repairing complicated PFS consistency issues that
LFSCK can not handle. We also show the performance advantage
of FaultyRank compared with LFSCK. Through this study, we
believe FaultyRank opens a new opportunity for building PFS
checkers effectively and efficiently.

I. INTRODUCTION

To store and manage the massive data, HPC platforms heav-
ily rely upon parallel file systems (PFSes), such as Lustre [1],
GPFS [2], and PVFS [3], to serve data access requests from
scientific applications. Therefore, the reliability of parallel
file systems is critically important. However, as the scale
and complexity of HPC systems rapidly increase, even the
carefully-designed and well-maintained parallel file systems
may fail and run into inconsistent states due to various reasons
including hardware faults, software bugs, configuration errors,
human mistakes, etc [4].

When a file system is in an inconsistent state, a checking
and repairing program called file system checker is needed to
bring the file system back to a consistent state. Essentially,
file system checkers rely on the redundant metadata stored in
different places of the file systems to work. The checkers can
be either invoked explicitly or triggered implicitly to scan the

file systems and cross-check whether the redundant metadata
match with each other. If not, the checker may report and
attempt to repair the inconsistencies. File system checkers have
been widely used in local file systems, such as e2fsck [5] for
Ext2/3/4 and xfs_repair for XFS [6]. Similarly, parallel
file system checkers are also critically important for ensuring
the integrity of these PFSes. For instance, LFSCK is responsi-
ble for checking and repairing Lustre file system [7], BeeGFS-
FSCK is used for BeeGFS [8], and mmfsck is designed
for GPFS [9]. Although the importance of the parallel file
system checker has been well agreed upon, designing and
implementing an effective checker that can identify and repair
complicated inconsistencies under various failure scenarios is
still challenging based on recent studies [10, 11].

The main challenge comes from the vast amount of possible
failure scenarios that the PFSes may experience in practice.
These distinct scenarios lead to a variety of different incon-
sistency issues in the end and require different logic to detect
and repair them. Designing the complete set of logic for all
possible inconsistencies is notoriously complicated for the
developers. They often have to settle using a set of limited
and fixed rules. For example, in most cases, Lustre’s checker
LFSCK simply checks whether the metadata stored in data
object servers (OSS) matches its counterpart in the metadata
servers (MDS). If not, LFSCK will directly use MDS metadata
to overwrite the OSS metadata regardless of the root cause
of the inconsistency. Hence, it is not surprising that these
rule-based checkers may fail at repairing complicated PFS
inconsistencies as reported in previous studies [10, 11].

In this study, we take a different approach to building par-
allel file system checkers. Instead of relying on manual efforts
to specify fixed rules to check and repair inconsistencies, we
model the metadata of parallel file systems into a metadata
graph and leverage their point-to and point-back relationships
as graph edges to understand the correctness of metadata [12].
Based on the metadata graph model, we design an iterative
algorithm called FaultyRank to quantitatively calculate the
credibility score of each metadata field. The calculated scores
are then used to identify the root cause of the inconsistency
and determine the corresponding repair strategy.

We implement a prototype of FaultyRank1 in an offline
manner (detailed in Section IV) on the widely used Lustre
parallel file system and compare it with Lustre’s default

1https://github.com/DIR-LAB/FaultyRank
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checker (i.e., LFSCK). Our experiments show that FaultyRank
can achieve the functionality of LFSCK elegantly. Moreover,
we find that FaultyRank outperforms LFSCK in effectiveness
and efficiency: it can detect and repair various complicated
inconsistencies that LFSCK cannot handle, and it outperforms
LFSCK in terms of speed by up to 10x due to its holistic
design. In summary, the main contributions of this study
include the following:

• Designing a graph model to describe complicated PFS
checking-relevant metadata structures in a unified way.
To the best of our knowledge, this is the first graph model
to abstract PFSes metadata for checking.

• Developing an iterative algorithm FaultyRank to quantita-
tively calculate the correctness of different PFS metadata
to help detect the root causes of inconsistencies and
identify optimal repair strategies.

• Building a prototype of FaultyRank for the widely used
Lustre file system and demonstrating the improvement
over its own state-of-the-art checker in terms of both
effectiveness and efficiency.

The rest of this paper is organized as follows. In Section II,
we introduce background knowledge on the state-of-the-art
parallel file system checkers. We present the core design
of FaultyRank in Section III and its Lustre-based prototype
implementation in Section IV. We then evaluate FaultyRank
in Section V, and further discuss its generality and limitations
in Section VI. We discuss related work in Section VII and lay
out the future work in Section VIII.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the internal architecture
of parallel file systems and how the corresponding checkers
work. We then analyze the fundamental issues of existing PFS
checkers, which motivate our ideas. To make the discussion
concrete, we use Lustre and its checker LFSCK as one spe-
cific example. Other parallel file systems may have different
internal data structures and checker implementations but share
similar design principles and underlying limitations.

A. Lustre Architecture and Metadata

Fig. 1 shows a typical Lustre cluster, which includes three
types of servers: management server (MGS), metadata server
(MDS), and object storage server (OSS). The management
server (MGS) and metadata servers (MDSes) are often com-
bined to store the configuration information and the namespace
metadata of the file system. The object storage servers (OSSes)
store the actual data of the file system. Files are stripped into
fixed-size chunks and stored as data objects on OSSes. On both
MDS and OSS servers, Lustre leverages the local file system,
such as Ext4-based ldiskfs [13] and ZFS [14], to store the data
and metadata.

There are essentially two categories of metadata in Lustre:
the namespace and data layout metadata. The namespace
metadata maintains the directory tree of the Lustre file system,
such as the directory and its files. The data layout metadata
maintains the relationships between the Lustre file and its
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Fig. 1: The architecture of a Lustre cluster and the key
metadata structures on both MDS and OSS.

stripes stored on different object storage servers. Lustre stores
both metadata on the local file system.

Specifically, each Lustre file, directory, or data object cor-
responds to a file in the local file system. Their metadata
are embedded into the Extended Attribute (EA) field of the
inode of the corresponding local file. For instance, on MDS,
each local file inode’s extended attributes store the FID of
the corresponding Lustre file, the LinkEA field pointing to
its parent directory, and the LOVEA field pointing to all its
stripe objects stored on OSS servers. On OSS, each local file’s
inode’s extended attributes store the FID of the corresponding
Lustre stripe object and the LinkEA field pointing to the file
that the stripe belongs to, as shown in Fig. 1. To maintain
the Lustre namespace metadata, the directory entry still exists
and is extended to point to the child files or directories by
storing both their local inode id and Lustre FIDs. The FID
will point to the child file/directory in that directory. The child
file or directory will use its LinkEA to point back to its parent
directory by storing the parent’s FID.

As we can see from Fig. 1, each metadata stored in Lustre
has a redundant counterpart for cross-checking. For instance,
if a directory entry of a directory points to a sub-file, then that
sub-file will have its LinkEA field point back to the directory.
If the bi-directional mapping is violated, it implies that Lustre
is in an inconsistent state.

B. Parallel File System Checker and LFSCK

The goal of a parallel file system checker (e.g., LFSCK for
Lustre) is to ensure that the metadata of the parallel file system
is correct, i.e., the redundant metadata is consistent.

Fig. 2 shows a simplified example of metadata consistency.
It contains two metadata objects a and b, where a has a
property pointing to b; while b has a property pointing back to
a. In Lustre, such a model can be mapped to many checking
cases. For instance, a can be the MDS file object and b can be
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Types of Inconsistency Potential Root Causes LFSCK Behaviors
a’s property can not locate b

(Dangling Reference)
a’s property is wrong; b’s id is correct or wrong. Ignore and can not identify/repair.
a’s property is correct; b’s id is wrong. Identify but do not repair b’s id, put b in “lost+found”.

No object refers to b.
(Unreferenced Object)

b’s id is correct, but all its neighbors’ properties are wrong. Ignore and can not identify/repair.
b’s id is wrong; a’s property could be correct or wrong. Identify but do not repair b’s id, put b in “lost+found”.

More than one objects refer to b
(Double Reference)

a’s property duplicates c; both point to b. Ignore and can not identify/repair.
b’s id duplicates c; a points to both b and c. Identify but do not repair b’s id, put b in ”lost+found”.

Mismatch between a and b
(Mismatch)

a’s property and b’s id are both correct; b’s property is wrong. Identify and correctly use a’s id to repair b’s property.
a’s property and b’s id are both correct; a’s id is wrong. Ignore and can not identify/repair.

TABLE I: Four categories of inconsistency, the potential root causes, and the corresponding behaviors of LFSCK.

b

a
id = a
property = b

id = b
property = a

Fig. 2: A simplified example of metadata consistency.

its OSS stripe object, where a’s property is LOVEA, pointing
to an OSS stripe object, while b’s property is LinkEA, pointing
back to the MDS object.

Fig. 2 represents a consistent state where the two metadata
objects point to each other correctly. In practice, however, a
parallel file system may run into various inconsistent states.
Table I lists four major types of metadata inconsistencies,
their potential root causes, and the corresponding behaviors
of LFSCK, based on the LFSCK design documents [15]. For
clarity, we use Fig. 2 as a simplified scenario to illustrate the
four different inconsistency cases below.

Specifically, the first type is Dangling Reference, which
means a’s metadata property should refer to b, but could not.
There are two potential root causes for this inconsistency: 1)
a’s property is wrong, or 2) b’s id is wrong. For instance,
the MDS object uses the LOVEA property to refer to its
OSS objects. So each LOVEA of an MDS object should
contain a valid FID to locate an OSS object. But the LOVEA
property could be wrong and refer to non-exist OSS objects,
or the LOVEA is correct, but the OSS object’s ID is wrongly
assigned. Both of them may lead to the dangling reference
issue. To handle such a case, LFSCK simply assumes whatever
is stored in MDS or parent directory to be correct and should
overwrite the counterpart. As a result, it cannot identify the
potential root cause 1 and only puts b into ‘lost+found’ based
on the assumption of root cause 2.

The Unreferenced Object case means an object b exists, but
no other objects could reference it. For instance, an OSS stripe
object exists, but there is no MDS file claiming the OSS stripe
as part of it. Similarly, there are two possible root causes: 1) b’s
id is correct, then all its neighbors’ properties must be wrong
so that they can not refer it; 2) b’s id is wrong, then a can not
refer it. Similar to the Dangling Reference case, LFSCK does
not identify a being wrong. It always assumes b is in trouble
and fixes it by placing b in ‘lost+found’.

The Double Reference case means more than one object

claims the same relationship with b. It typically involves a
third object c, whose property is replicated by a, hence both of
them point to b; or whose id is replicated by b, hence a points
to both objects b and c. The duplication case is difficult for
LFSCK to handle as the sequential scanning in LFSCK does
not identify duplication. Most of the time, LFSCK will simply
treat such cases as Dangling Reference or Inconsistency.

The Mismatch case indicates scenarios where a can suc-
cessfully refer b, but object b can not point back. This might
be because b’s property is wrong or a’s id is wrong. Again,
LFSCK will not consider a’s id as being wrong and will simply
overwrite b’s property. So, it repairs the system based on the
assumption of root cause 1, ignoring root cause 2.
Limitations of Existing PFS Checkers. Based on the dis-
cussions above, we can see that even state-of-the-art PFS
checkers like LFSCK suffer from key limitations. First, they
are designed and implemented using fixed rules predefined
by developers, such as “metadata stored in MDS should
overwrite its counterpart stored in OSS”. Although these rules
are designed based on the domain knowledge, real-world
inconsistency scenarios could easily be more complicated,
making these fixed rules inadequate and inaccurate. Addition-
ally, due to the complexity of inconsistent scenarios, even
PFS developers may not be able to design strategies optimally
beforehand. They often have to play safe by placing files or
their stripes into ‘lost+found’ and rely on users to manually
fix it later, which is increasingly difficult and inconvenient for
end users as the scale of HPC storage grows.

C. Our Observations & Key Idea
Despite the complexity of building PFS checkers, we ob-

serve that it is possible to identify the actual root cause for
inconsistency by checking the file system more “intelligently.”
For example, if MDS object a can not refer to its OSS child b,
we can check if a can refer to its other OSS children, as most
files will contain multiple stripes. If a can not refer to any of
them, then the a’s property may be wrong instead of naively
assuming b’s id is wrong. Similarly, for namespace metadata, if
the parent directory contains multiple sub-directories and files
and all of their LinkEAs point to the same ‘wrong’ FID, then
the parent directory’s FID may be wrong instead of assuming
all LinkEAs are wrong.

The key to achieving intelligence is to comprehensively
check more relevant relationships to identify the root cause
of inconsistency accurately. To this end, we observe that
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the relationships among PFS metadata are similar to those
of web pages: a web page with more incoming links may
be considered more authentic than others; web pages that
are linked by important pages will also be more authentic.
Inspired by how web pages are modeled and ranked in search
engines [16], we propose to model the PFS metadata into
a graph structure and quantitatively calculate the credibility
score of each metadata field, such as a’s property or b’ id, in a
global way, based on the point-to and point-back links between
graph vertices. We then leverage the calculated credibility
scores to determine the accurate root cause of inconsistency.

To be more specific, the point-to and point-back links
between metadata in PFSes, such as the edges in Figure 2,
work similarly as hyperlinks between web pages contributing
credibility to each other. For example, if object a points to
object b by correctly having its property refer to b’s id, then
the credibility of b’s id is reinforced by such a link. Further,
if there are lots of objects pointing to object b, then b’s id
is highly possible to be correct as it is unlikely that other
objects’ properties are all wrong but point to the same b.
Additionally, such credibility is reversible. The credibility
of b’s id also contributes back to object a’s property if a
successfully pairs with b. Following such an idea, in this
study, we propose FaultyRank, a PageRank-like algorithm,
to calculate the credibility score of metadata for parallel file
system checking. We describe the detailed algorithm design
and implementation in the next section. Note that there are
still important differences between FaultyRank’s calculation of
metadata credibility and PageRank’s ranking of web pages. For
example, in file system checking, we focus on the extremely
low credibility scores for locating inconsistencies, not the rank
values of different objects. The low-degree nodes in our system
may have smaller credibility scores due to low connectivity,
but they will still be considered correct as long as their links
are consistent and receive enough credits from neighbors.

III. DESIGN OF FAULTYRANK

In this section, we first introduce the design of the pro-
posed FaultyRank algorithm assuming the metadata graph has
been built. We then introduce a prototype implementation of
FaultyRank on the Lustre file system in the next section to
explain how to build the graph and run FaultyRank in real-
world settings.

A. Metadata Graph
To run FaultyRank, we assume the metadata graph has

been built. The metadata graph is essentially a directed graph
to represent the PFS-level metadata. For example, the graph
vertices can represent the PFS directories, files, and stripe
objects. The directed edges show the point-to and point-back
relationships between these metadata objects. The left part of
Figure 3 shows an example of the metadata graph built from
the Lustre file system. It contains two Lustre files: b and c
under the same Lustre directory a. As part of the namespace
metadata, their metadata are stored on Lustre MDS server. The
file b further contains multiple stripes, and object d is one
of them, stored on one OSS server. The edges connect these

vertices through corresponding properties of the vertices. For
instance, a’s DIRENT property identifies all the subdirectories
and files; d’s LinkEA property points to its file b. In the next
section, we will discuss how the metadata graph was built.

Normally, there should always be paired edges between
objects, for instance, directory a has its DIRENT property
pointing to files c and b, each of which will have LinkEA
property pointing back to a. In Fig. 3, we can see c’s LinkEA
property is missing, introducing an inconsistency. Similarly, b’s
LOVEA property is also missing to point to object d, whose
LinkEA property points back to b correctly. We will show how
FaultyRank can identify these inconsistencies later.

Fig. 3: FaultyRank iterative algorithm workflow.

B. ID Rank and Property Rank
In FaultyRank, we consider two ranks to calculate for each

vertex as there are two major metadata fields for each object
in the parallel file systems: its unique ID which is pointed
back by other vertices, and its Properties which point to other
vertices. Since these two fields are often updated in different
file system operations, such as FID for file/directory creation
and Properties for sub-directory creation, we consider their
correctness to be independent and calculate them separately
in FaultyRank.

Specifically, we define two credibility scores for each ob-
ject: ID Rank (idrank) and Property Rank (proprank), which
correspond to the credibility score of ID and Properties,
respectively. Note that we do not further differentiate the
possible multiple properties of an object as we consider it
unlikely that one of the extended attributes is wrong but others
are correct. We plan to investigate how FaultyRank would
work in this scenario in the future work.

C. Iterative Algorithm
The key idea of FaultyRank is to leverage the point-to and

point-back edges between metadata objects to calculate their
credibility. We summarize the core iterative algorithm in Alg. 1
and discuss it in detail below.

First, we assume each object has an initial ID Rank
(id0rank = 1) and Property Rank (prop0rank = 1). The

203

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 04,2023 at 06:26:25 UTC from IEEE Xplore.  Restrictions apply. 



superscript 0 means iteration 0. Then, for each object, we
can calculate its new ID Rank (id1rank) by aggregating the
current Property Ranks (prop0rank) of all its neighbors who
point to it. The intuition is very simple: the credibility of an
object’s ID Rank can be calculated by: 1) how many other
neighboring objects point to it, and 2) how credible these
neighbors’ properties are. Such a calculation will be done for
all metadata objects in the graph.

After obtaining the new ID Rank for each object (id1rank),
the next step is to obtain the new Property Rank (prop1rank)
for each object. As we discussed earlier, to update the credi-
bility of the properties, we just need to check whether these
properties correctly point to some credible IDs. The more
correct IDs they point to, the higher the possibility is that these
properties are correct. As we consider the direction of an edge
means the credibility will be contributed from the source to
the destination vertex, we can simply reverse (logically) all the
edges from objects’ Properties to IDs to do the calculation.
With the reversed graph, we can calculate its new Property
Rank (prop1rank) by aggregating the ID Ranks (id1rank) of all
its neighbors, similar to the previous calculation.

We then repeat these two steps in multiple iterations until
it converges: the diff value of idrank in two consecutive
iterations is smaller than ε. We use ε = 0.1 in our experiments,
which typically leads to less than 20 iterations. The final
[idrank, proprank] value for each object simply indicates the
credibility of its ID and Property.

Algorithm 1 FaultyRank Iterative Algorithm
1: ! Metadata graph G and reversed graph GR

2: ! Initial ranks: id rank[G.v]=1 and prop rank[G.v] = 1
3: while diff > ε do " loop until converged
4: for v ∈ G do " calculate ID rank
5: sink nodes handling
6: s = prop rank[v]/outdegree(v)
7: for vout ∈ v.out-going-neighbors() do
8: id rank[vout] += s
9: end for

10: end for
11: for v ∈ GR do " calculate Property rank
12: sink nodes and weighted distribution handling
13: s = id rank[v]/outdegree(v)
14: for vout ∈ v.out-going-neighbors() do
15: prop rank[vout] += s
16: end for
17: end for
18: diff = calc diff()
19: end while

D. Sink Nodes and Weighted Distribution Handling

In Alg. 1 lines 5 and 12, we introduce logic for processing
sink nodes and handling weighted distribution.

First, handling sink nodes is a traditional task for PageRank-
like algorithms. Here, sink nodes in a directed graph indicate
those vertices that do not have any outgoing edges. During
the iterative calculation, the rank values get lost due to these
sink nodes. There are multiple ways to handle them in the
PageRank algorithm [17]. In FaultyRank, we simply assume

these sink nodes will point to all other vertices in the graph.
Hence their rank values will be distributed to all other vertices.

The weighted contribution, however, is introduced in Fault-
yRank to particularly address a credibility distribution prob-
lem. As we described earlier, the fundamental insight of Fault-
yRank is if a node a points to node b by making a.prop = b.id,
then we consider the credibility of a.prop should contribute to
b.id. In addition to that, FaultyRank also considers the reverse
also works. Specifically, it leverages ID Ranks to update the
Property Ranks. This is where the reversed graph is introduced.
This makes sense because if a.prop = b.id and b.id is known
to be correct, then a.prop should be rewarded for pointing to
b. However, such an intuition might be wrong in some cases
because anyone can point to b to increase their own credibility.
If an object falsely points to b, it still gets rewarded on its
Property Ranks, which is not correct.

To address this issue, FaultyRank lowers the weights of
unpaired edges in the reverse graph to penalize the objects
which wishfully point to a high credibility object but do
not receive an acknowledgment from it. Figure 4 shows an
example. On the left, we show a normal graph that contains
paired objects a and b, which will lead to highly credible ID
Ranks and Property Ranks for both of them. At the same time,
objects a and c do not have the paired edges.

c
a b c

a b

Reveresed GraphNormal Graph

����	������


Fig. 4: An example of weighted distribution.

In the reversed graph, we can observe the unpaired edge
from a to c. Based on the original FaultyRank, a.idrank
should be equally distributed to c.proprank and b.proprank.
However, we should not treat b and c the same as b receives
an acknowledgment from a but c does not (as shown in
the normal graph). In FaultyRank, we empirically lower the
weights of unpaired edges in the reversed graph to 1

10 of
normal edges. So, in this particular case, b.proprank will
receive a.idrank∗10

11 and c.proprank will only receive a.idrank
11 .

After several iterations, such a difference will lead to a very
low c.proprank, which helps identify the root cause for such
an unpaired inconsistency.

E. FaultyRank Running Example
The right part of Figure 3 shows the execution flow of

FaultyRank on the example metadata graph, which has some
inconsistencies. It first runs on the original graph to calculate
the idrank ( 1 ), then runs on the reversed graph to calculate
the proprank ( 2 ) until it converges.

We show the results of this FaultyRank calculation in
Table II, which contains the final [idrank, proprank] values
of these four objects. From these results, we can observe that
the Property Rank of object c and ID Rank of object d are
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extremely small (0.05) compared with other objects. Such a
small value generally means the particular metadata field lacks
support from other objects and hence is more likely to be
wrong and causes the inconsistency. The results do match
well with how we manually introduced the inconsistency in
the original case, where we removed the LINKEA property of
c and changed the ID of object d.

TABLE II: ID and Property Ranks of the example graph

Object Name ID Rank (idrank) Property Rank (proprank)
Object a 0.35 0.39
Object b 0.39 0.35
Object c 0.2 0.05
Object d 0.05 0.2

These results show a key advantage of FaultyRank: it can
differentiate the root causes of the inconsistency. In Table I, we
have discussed for each paired objects, the inconsistency may
come from either side, such as the dangling reference may
occur due to a’s property or b’s id being incorrect. Existing
rule-based file system checkers can not differentiate them well
and simply use what is stored on the metadata server to
overwrite its counterparts. Using FaultyRank, we can clearly
tell the inconsistency between a and c should come from c’s
property instead of a’s id, simply because a’s id has been
correctly pointed to by another credible object b. Similarly, the
inconsistency between b and d should be from d’s id instead
of b’s property, because b’s property has correctly pointed to
a and should be correct.

F. Identifying and Fixing Inconsistency

After calculating the ranks ([idrank, proprank]) for each
graph node, the next step is to leverage these ranks to identify
the reasons for inconsistencies and repair them.

To do that, we iterate graph vertices to examine whether the
node has paired edges with all of its neighbors. The nodes with
unpaired edges will be recorded in set Schk for the next stage
of checking. This step is typically done during FaultyRank
iterations. Note that, although we do not record nodes with
paired edges, we do not assume they will always be correct.
In fact, for paired nodes a and b, it is possible that both of their
properties a.prop and b.prop are wrong but successfully point
to each other. If that happens, there will be another object c
pointing to a but missing a proper point-back from a. In this
case, the (a,c) paired will be recorded for further checking.

We then iterate through all records in Schk and check their
ID Ranks and Property Ranks. We use a threshold value
of 0.1 to determine whether the corresponding field (ID or
Property) might be incorrect. If the rank value is smaller than
the threshold, then we consider the corresponding field as the
reason for the inconsistency and repair it by overwriting its
value based on its counterpart’s value. In Figure 5, we show
an example of how this procedure works.

Here, we show a Mismatch inconsistency case, where a
and b mismatch, and its two possible reasons. From the users’
perspective, the observation is the same: a points to b, but

Fig. 5: The calculated ID Rank and Property Rank [idrank,
proprank] of two different cases, which have the same incon-
sistency observation.

b does not point back. As we have discussed in Section III,
there are actually two possible reasons for such a case: 1)
b’s property is wrong so that it does not point to a, or 2)
a’s id is wrong so that b can not point to a. LFSCK does
not differentiate them and simply uses the metadata stored on
MDS or as the parent directory to overwrite its counterpart. In
FaultyRank, however, we can accurately calculate the different
rank values for both a and b’s properties and ids. It essentially
calculates a skewed distribution of correctness among nodes
based on the existence of inconsistencies. The distribution then
helps locate the errors. In the left part of Figure 5, we can
observe b.proprank is much smaller than 0.1 and therefore
chosen to be the wrong one compared with a.id, which equals
0.42. In the right part, we can observe a.idrank = 0.03
becomes extremely small while b.proprank = 0.34 is larger.
These results directly tell us what is the root cause. Knowing
that, delivering fixes becomes simple: if one node’s property is
wrong, we find out the corresponding unpaired node and use
its id to overwrite the property; if one node’s id is wrong, we
find out the corresponding unpaired node and use its property
to overwrite the id. The fixes are shown in Figure 5 as red
dashed lines.

From this example, we can see the key for FaultyRank to
differentiate the root causes of inconsistency is the extra edges
connecting with other nodes. For example, the paired edges
between a and c suggest both a’s ID and Property are likely
to be correct, while on the other hand, b does not have other
supporters on its property. Together, they make us believe b’s
property is more likely to be the reason. That being said, if
there are only two graph nodes a and b, then the root reason
becomes a mystery and only the users may be able to know
which part is wrong. Luckily, these extra edges commonly
exist in real-world parallel file systems, such as a file not only
connects to its parent but also connects to its stripe objects; or
a directory connects with both its parent directory and child
files or directories. FaultyRank leverages them to conduct the
intelligent and accurate checking and repairing.

IV. FAULTYRANK PROTOTYPE ON LUSTRE

To validate the idea of FaultyRank in real-world large-scale
settings, we implement a prototype of FaultyRank on Lustre.
The prototype consists of three essential components as Fig. 6
shows: 1) a scanner running on all MDS and OSS servers to
extract metadata from the local server into partial graphs; 2) an
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aggregator running on MDS server to receive and combine all
partial graphs into a unified graph; 3) executing the FaultyRank
algorithm on the unified graph to identify and repair the
inconsistencies. Since the third component has been discussed,
we focus on the first two in the following subsections.

Fig. 6: The architecture of FaultyRank prototype on Lustre.

A. Extract Metadata into Graphs
Similar to many parallel file systems, Lustre relies on local

file systems, such as ldiskfs or ZFS, to store its data and
metadata. In this prototype, we focus on the ldiskfs case.
Lustre metadata are stored in two places: 1) most of them
are embedded as Extended Attributes (EA) of the local inodes,
such as LinkEA or LOVEA; 2) the DIRENT metadata between
the directory and its sub-directories or files are stored as the
content of the directory. To extract Lustre metadata, we need
to scan the extended attributes of inodes and the contents of
directories in local ldiskfs completely.

We implemented a scanner which runs in parallel on all the
Lustre MDS and OSS servers once called by users. Running
the scanner is the first step of file system checking. To run it,
users need to stop and unmount the Lustre file system, which
allows the scanner to extract coherent metadata from disks.
This means the current FaultyRank prototype is an offline
checker. This is mostly for implementation simplicity and is
not required by the FaultyRank algorithm. In the future, we
plan to investigate how to implement FaultyRank online to
further reduce file system offline time.

Once started, the scanner will scan the whole disk image
from the superblock to each logic block group. Lustre’s ldiskfs
is essentially an extended version of Ext4, so we basically use
the Ext4 disk layout to scan MDS and OSS servers. Most
of the scanning is sequential and fast as it simply iterates all
inodes and reads their Extended Attribute (EA) fields. The only
exception is once it hits a directory, the scanner will move to
the corresponding data blocks to read their DIRENT entries.

The output of the scanner is a partial graph that represents
metadata stored on that server. The partial graph is a list of
edges created during scanning. Each edge has a source vertex
and destination vertex, each representing a Lustre directory,
file, or stripe object. Since Lustre already assigns unique FIDs
to these objects, we simply use those FIDs to uniquely identify
these vertices in the partial graph. These global FIDs also help
us match vertices generated from other storage servers.

B. Aggregate Partial Graphs into a Unified Graph

The next step is to aggregate the partial graphs collected
from multiple concurrent scanners on MDS and OSS servers
into a unified graph to execute the FaultyRank algorithm.

To generate the unified graph, we let the scanners on all
OSS servers send their generated partial graphs to the MDS
server aggregator once they finish the scanning. The MDS
aggregator receives the partial graphs and simply aggregates
them together with the local MDS partial graph. Since all the
vertices have unique global FIDs, there will not be conflict
during the aggregation. After the data transfer, a global graph
is formed on the MDS server.

In addition to simply combining partial graphs on MDS, we
do one more step to re-map the graph IDs before running the
FaultyRank algorithm. In our current FaultyRank implemen-
tation, we used Compressed Sparse Row (CSR) data structure
to store the graph in DRAM for extreme performance. For
the best performance, we re-map the graph vertex IDs, which
currently are 128-bit Lustre non-continuous FIDs, to vertex
GIDs which continue from 0 to MAX VERTEX NUM-1.
This processing happens in memory and takes minimal time,
as we will show in later evaluation sections.

Note that the implementation details discussed in this sec-
tion are based on Lustre. The FaultyRank algorithm and its
idea is not limited to Lustre and can be implemented on other
parallel file systems. The calculation phase will remain the
same, but scanner and graph building components will need
to be re-designed depending on the specific file systems.

V. EVALUATIONS

In this section, we discuss the evaluations of FaultyRank on
a realistic Lustre instance. We mainly examine two aspects of
FaultyRank: 1) functionality: how well it can handle various
inconsistency cases compared with the state-of-the-art Lustre
checker LFSCK; 2) performance: how fast it runs and whether
it will be a bottleneck in large-scale file systems.

A. Evaluation Testbed and Dataset

To conduct the evaluations, we built a local Lustre cluster
with 1 MDS/MGS server and 8 OST servers as the testbed.
The MDS/MGS server uses Intel(R) Xeon(R) Bronze 3204
CPU with 128GB DRAM and 256GB local SSD. The eight
OSS servers use Intel(R) Xeon(R) CPU E5-2630 CPU with
32GB DRAM and 1TB hard disk (partially partitioned for
Lustre). Based on the hardware, we installed Lustre version
2.12.8 (with the latest LFSCK implementation) and created a
Lustre instance with a total of 2.4TB of storage space.

To create a realistic Lustre instance for evaluation, we lever-
aged the public data released by USRC (Ultrascale Systems
Research Center) from LANL national lab [18]. Specifically,
we used its Archive and NFS Metadata dataset. This dataset
contains a file system walk of LANL’s HPC systems with
detailed information such as file sizes, creation time, modifi-
cation time, UID/GID, anonymized file path, etc. The LANL
dataset includes roughly 2PB of files.
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Fig. 7: Comparison between FaultyRank and LFSCK on eight different types of inconsistency.

Although we have only 2.4TB storage space in our local
testbed, we took several key measurements to generate meta-
data that can reflect the complete LANL trace. First, we used
the actual file paths to re-create the same directory structures
in our local testbed, which leads to the same Namespace meta-
data. Second, we tried to shrink the sizes of files in the 2PB file
system without affecting the representativeness of generated
Layout metadata. Specifically, we set the stripe_size
of our Lustre directories to be extremely small (i.e., 64KB)
and stripe_count to be −1. This allows us to generate
extra stripes starting from files larger than 64KB. Since the
testbed contains 8 OSTs and each stripe is 64KB, any file
larger than 512KB (8*64KB) will create the same number of
stripes regardless of its actual size. Hence, we can shrink files
that are larger than 512KB to 512KB without affecting their
layout metadata. All files smaller than 512KB will remain the
same size and create stripes based on FILE SIZE/64KB. It
is arguable that real-world Lustre could have lots of OSTs,
hence generate lots of stripes if having many large files,
which our testbed can not represent. However, real-world
Lustre’s stripe_size is typically large (1MB by default)
and most files in PFSes are actually very small (86% under
1MB, 95% under 2MB [19]). Together, these two factors
limit the number of stripes in the real world. Our testbed,
although smaller, leveraging the minimized stripe_size,
will generate similar or even more stripes, leading to complex
and representative Layout metadata for evaluations, since it is
the size of metadata and not the data which determines the
performance of file system checkers.

B. Functionality Evaluation on FaultyRank
We first evaluated how FaultyRank can check and repair

different inconsistency scenarios compared with the state-of-
art LFSCK. In this evaluation, we manually introduced eight

inconsistent scenarios based on the failure cases discussed in
LFSCK design documents [15], which represent what LFSCK
handles in production systems. These inconsistencies match
the four categories listed in Table I as well. To introduce
the inconsistency for each case, we randomly selected one
directory/file in the generated Lustre image and modified
the Extended Attributes of corresponding ldiskfs inodes on
MDS and OSS servers. We then ran both FaultyRank and
LFSCK on these cases and recorded their behaviors. We
compared whether they could identify the root reason for the
inconsistencies and repair them. The results are summarized
in Fig. 7. In the Example Plot column, we plot both how
the faults were introduced and the [idrank, proprank] values
calculated using FaultyRank for all of the vertices. Due to the
space limits, we can not show the complete directory and file
path for each vertex. But in most of the case, the vertices at the
top indicate a directory, and the vertices at the bottom indicate
a file or a stripe object. The red vertices indicate where the
faults are actually injected. For example, in the first case of
Dangling Reference inconsistency, we modified the properties
of the parent directory, hence it has all other vertices pointing
to it but it does not point to any other vertex. FaultyRank
captures that by calculating its property rank value to be 0.0,
which indicates the error is on its property, instead of assuming
other neighbors’ IDs are wrong. From these results, we can
see across all the cases that FaultyRank is able to identify the
root faults and fix them. By comparison, LFSCK is limited in
many cases to identify the root cause or to repair the error.

C. Performance Evaluations on FaultyRank
To evaluate the performance of FaultyRank, we conducted

two sets of experiments. First, we focused on the iterative
algorithm itself and tested its performance on different graph
datasets. This gives a basic idea of how long FaultyRank may
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take for extremely large file systems. Second, we conducted
the full system evaluation on the local Lustre testbed. We ran
both LFSCK and our FaultyRank prototype to compare their
performance. Note that, we ran each experiment multiple times
to ensure consistency and reliability and reported the averages.

1) Benchmark Iterative FaultyRank Algorithm: We imple-
mented the iterative algorithm based on in-memory CSR
structure. During execution, it first reads the edge-list file from
local storage and builds the CSR format in DRAM. After
that, the algorithm will run completely in DRAM. Using CSR
leads to minimal memory usage and extremely high speed due
to CSR’s cache-friendly compact memory layout. Note that,
the graph-building time is considered part of the FaultyRank
execution time.

To benchmark the FaultyRank graph algorithm, we used
well-known graphs with different sizes to evaluate the exe-
cution time and the memory footprints. The graphs we used
include both real-world from SNAP [20] and synthetic graphs
created using R-MAT library [21], listed in Table III. We
generated the R-MAT graphs using probabilities a = 0.57,
b = 0.19, c = 0.19 (recommended by Graph500 [22]) and set
the average vertex degree to 8.

Datasets Vertex Number Edge Number

Amazon 403,393 4,886,816
Road-Net 1,971,281 5,533,214
RMAT-23 8,388,608 67,108,864
RMAT-24 16,777,216 134,217,728
RMAT-25 33,554,432 268,435,456
RMAT-26 67,108,864 536,870,912

TABLE III: Graph inputs and their key properties.

Datasets Graph Build-
ing (s)

Iterations (s) Memory Us-
age (GB)

Amazon 0.92 1.37 0.24
Road-Net 1.46 1.75 0.40
RMAT-23 31.99 21.64 3.31
RMAT-24 69.14 50.55 6.66
RMAT-25 148.80 116.92 13.3
RMAT-26 315.11 275.38 26.5

TABLE IV: FaultyRank performance and memory footprint.

The performance of FaultyRank algorithm on different
graphs is listed in Table IV. From these results, we have
two key observations. First, both the graph building and the
iterative algorithm are fast. For a graph with more than 60
million vertices and 500 million edges (RMAT-26), we can
finish the whole execution in roughly 590 seconds. If we
consider each graph vertex represents 10MB of data, such a
graph could represent a Lustre with more than 600TB of data.
Finishing the checking within 10 minutes for such a scale is
impressive. Second, we observe that running FaultyRank does
not require extreme memory space. For example, the RMAT-
26 graph with average degree of 8 takes 26.5 GB of memory,
which can be stored and processed in a single MDS server.

In the previous evaluation, we scaled the number of vertices
but fixed the average degree (i.e., 8) for all the RMAT graphs.

It is also interesting to know how FaultyRank scales if the
number of vertices is fixed but average degree changes. In
this experiment, we further benchmarked FaultyRank on the
same RMAT-26 graph but with varying average degrees (from
4 to 32). The results are listed in Table V. From these results,
we can observe that FaultyRank still scales well in terms of
execution time and memory usage. For instance, when the
average degree reaches 32, the RMAT-26 graph will have more
than 2 billion edges. For such a scale, FaultyRank can finish
execution within 45 minutes and only use 90.4GB of memory.

Avg.
Degree

Graph Build-
ing (s)

Iterations (s) Memory Us-
age (GB)

4 165.05 180.46 15.9
8 315.11 275.38 26.5
16 727.06 623.37 48.7
32 1517.02 1168.86 90.4

TABLE V: FaultyRank performance and memory footprint on
RMAT-26 graphs for varying average degree.

2) Full System Benchmark: We run LFSCK and Fault-
yRank and compare their performance. One of the main issues
of Lustre LFSCK is its slow performance when running from
scratch on a well-aged file system [7]. The slow performance
mainly comes from its design, which consists of scalability
bottleneck on the metadata server (MDS), relatively high
fan-out ratio in network utilization, and unnecessary block-
ing among internal components. Specifically, LFSCK scans,
checks, and repairs inodes individually via several closely
coupled asynchronous kernel threads. It tangles disk scanning,
network, and processing logic together. Hence, any delay in
the pipeline may block others significantly.

Our graph-based parallel file system checker design ad-
dresses these issues as a nice side effect. First, the parallel
scanners transfer the entire partial graphs in bulk only once
after building the partial graphs. Such a bulk data transfer
significantly reduces the network communication workloads.
Second, there are no multiple dependencies among the internal
components of FaultyRank. It simply conducts an iterative
graph calculation, which could be done completely in DRAM
in a single machine without complicated I/O operations. To
show the performance advantages of the graph-based checkers,
we further benchmarked the performance of FaultyRank and
LFSCK on our testbed in this experiment.

It is worth noting that FaultyRank is currently implemented
as an offline checker while LFSCK is an online checker. To
conduct a fair comparison, each time, we re-mounted the
Lustre file system and ran LFSCK to simulate a complete
LFSCK run over the whole file system. We did not run other
workloads nor limited the speed of LFSCK. For FaultyRank,
we counted the end-to-end time, starting from un-mounting
the file system until the FaultyRank algorithm converges.
The reported execution time contains three parts: 1) metadata
scanning time (Tscan); 2) graph transfer and processing time
(Tgraph); 3) FaultyRank algorithm execution time (TFR).

Table VI shows the execution time of FaultyRank (including
the detailed performance of each stage) and LFSCK towards
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Lustre file system that was increasingly aged (with more
inodes being used). Since the total number of available inodes
in our Lustre testbed is around 4 million, we stopped the
experiments at aging the file system with 4 million files. Also,
since both LFSCK and FaultyRank work on metadata only, the
taken storage space does not play a key role in performance,
we do not list the actual data usage in the testbed. From
these results, we can quickly notice that FaultyRank performs
an order of magnitude faster than LFSCK in all cases. For
instance, when there are around 2 million MDS inodes used,
running a fresh LFSCK takes around 800 seconds. While for
the same file system, the overall time taken by FaultyRank
is only around 130 seconds. We can see the trend continues
when more inodes are used in the file system.

MDS Inodes LFSCK FaultyRank Tscan Tgraph TFR

651,553 207 12.40 3.8 3.2 5.40
1,099,717 364 37.69 16.74 11.74 9.21
1,555,351 525 57.62 25.09 19.39 13.14
2,007,043 667 83.28 43.78 22.46 17.04
2,231,988 803 130.47 79.22 32.22 19.03
3,335,597 1212 213.73 134.01 51.04 28.68
4,235,925 1612 292.83 185.92 70.79 36.12

TABLE VI: The execution time (in seconds) of FaultyRank
and LFSCK on local Lustre testbed.

VI. DISCUSSIONS ON GENERALITY AND LIMITATIONS

So far, we have shown the efficiency and effectiveness
of FaultyRank. In this section, we will further discuss its
generality and limitations.
Generality. In this study, we implemented FaultyRank on
the Lustre file system and mainly compared it with Lustre’s
LFSCK. But the core idea of FaultyRank, such as the graph-
based metadata abstraction and the iterative credibility calcu-
lation, is generic to be applied to other parallel file systems.
To implement it on a different PFS, the iterative calculation
should remain the same once the metadata graph is built. But,
the scanning and graph-building phases will be different and
depend on the file system implementation. For instance, in the
case of file systems like BeeGFS [8] that also use extended
attributes (EAs) of the underlying local file systems to store
metadata, the scanning and graph-building phases will be very
similar. For parallel file systems which store metadata in a
database (e.g., PVFS [3]), the scanning and graph-building
may be implemented directly upon the existing database.
Limitations. Although FaultyRank performs well in both
functionality and speed, it still has limitations. First, its current
implementation is offline, which will require stopping and
unmounting of the file system to work. This limitation is not
fundamental and can be addressable by making scanner and
graph building incremental. In this way, we can always run the
FaultyRank algorithm on the latest snapshot of the metadata
graph [23, 24]. We plan to investigate the online FaultyRank in
the future. Second, some real-world inconsistent issues could
be too complicated and beyond the capability of FaultyRank.
For example, if multiple paired metadata are all wrong but

pointing to each other coherently, FaultyRank cannot detect it.
Existing tools would not work either. Users’ inputs are likely
necessary in such cases.

VII. RELATED WORK

FaultyRank is mainly related to the existing efforts on file
system checkers and parallel file systems. We elaborate on the
two categories of related work in this section.
Improving File System Checkers. Given the importance of
maintaining file system consistency, great efforts have been
made to optimize file system checkers [25, 26, 27, 28, 29,
30, 31, 32]. For example, Carreira et al. [25] propose a
tool called SWIFT to test file system checkers using a mix
of symbolic and concrete execution to detect bugs in five
popular checkers. Gunawi et al. [26] also find that file system
checkers may create inconsistent or even insecure repairs
and propose a more elegant design based on a declarative
query language (i.e., SQCK). Gatla et al. [29] study the fault
resilience of file system checkers and propose a transitional
library (RFSCK) to enhance them. While these works are
effective for their original goals, they only focus on local file
system checkers. Mahmud et al. [32] analyze the configuration
dependencies between file systems and the checkers. In terms
of PFS checkers, Han et al. [33] study the defects in Lustre’s
LFSCK through fault injections, which partially motivates the
design of FaultyRank. But they do not provide a solution for
building more effective or efficient PFS checkers. Therefore,
FaultyRank is complementary to the existing works.
Tool Support for Parallel File Systems. Besides file system
checkers, many other tools have been proposed to improve
parallel file systems, including instrumentation, profiling or
tracing I/O activities, fault injections, and so on [34, 35,
36, 37, 38, 10]. For example, Sun et al. [38] propose to
study the crash consistency of PFSes via replaying workload
traces. Cao et al. [10] performs fault injections to PFSes
and analyzes the failure handling mechanisms including the
behaviors of PFS checkers. In addition, many of the existing
tools originally designed for analyzing the performance of
HPC systems may also help improve PFS reliability. For
example, Darshan [34] is able to capture the I/O characteristics
of various HPC applications. Since all I/O requests are served
by the backend PFS, these captured I/O metrics could be used
to help diagnose the root causes of reliability issues in PFSes.
Overall, these existing efforts aim at improving PFSes from
different perspectives and they do not directly enhance PFS
checkers. Therefore, they are complementary to FaultyRank.

VIII. CONCLUSION AND FUTURE WORK

In this study, we present FaultyRank, a new graph-based
parallel file system checker. Different from the existing rule-
based parallel file system checker design, FaultyRank lever-
ages the graph model to represent PFS metadata and proposes
a new iterative algorithm to quantitatively calculate the cred-
ibility of each metadata field for checking and repairing. We
implemented a prototype of FaultyRank on Lustre and showed
its advantages in both functionality and speed compared with
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Lustre’s file system checker, LFSCK. In the future, we plan to
extend FaultyRank algorithm by investigating how separating
multiple properties of an object will impact its design and cor-
rectness. Also, we plan to extend FaultyRank implementation
from two aspects: 1) implement online FaultyRank on Lustre;
2) extend FaultyRank to other widely used parallel file systems
and benchmark the performance.
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