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Abstract—Machine Learning (ML) systems are susceptible
to membership inference attacks (MIAs), which leak private
information from the training data. Specifically, MIAs are able
to infer whether a target sample has been used in the training
data of a given model. Such privacy breaching concern motivated
several defenses against MIAs. However, most of the state-of-the-
art defenses such as Differential Privacy (DP) come at the cost
of lower utility (i.e., classification accuracy).

In this work, we propose Privacy Preserving Volt (VPP ), a new
lightweight inference-time approach that leverages undervolting
for privacy-preserving ML. Unlike related work, VPP maintains
protected models’ utility without requiring re-training. The key
insight of our method is to blur the MIA differential analysis
outcome by comprehensively garbling the model features using
random noise. Unlike DP, which injects noise within the gradient
at training time, VPP injects computational randomness in
a set of layers’ during inference through carefully designed
undervolting. Specifically, we propose a bi-objective optimization
approach to identify the noise characteristics that yield privacy-
preserving properties while maintaining the protected model’s
utility. Extensive experimental results demonstrate that VPP

yields a significantly more interesting utility/privacy tradeoff
compared to prior defenses. For example, with comparable
privacy protection on CIFAR-10 benchmark, VPP improves the
utility by 32.93% over DP-SGD. Besides, while related noise-
based defenses are defeated by label-only attacks, VPP shows
high resilience to such adaptive MIA. Moreover, VPP comes with
a by-product inference power gain of up to 61%. Finally, for a
comprehensive analysis, we propose a new adaptive attacks that
operate on the expectation over the stochastic model behavior. We
believe that VPP represents a significant step towards practical
privacy preserving techniques and considerably improves the
state-of-the-art.

I. INTRODUCTION

The promising performance of ML models has made them
commonplace in myriads of applications: recommendation
system [1], medical diagnosis [2], system security [3], [4],
malware detection [5]–[7], image/audio/video based appli-
cation [8]–[10], resource provisioning [11] etc. Models are
being trained with increasingly sensitive datasets such as
clinical/biomedical records, personal photos, genome data,
financial, social, and location traces, etc. Due to its complexity
and high computational requirements, training ML models is
often performed with crowd-sourced data on cloud providers
(e.g., Amazon AWS, Microsoft Azure, Google API), which

offer ML-as-a-Service, thereby allowing novice end users as
well as professionals to train models that often contain person-
ally identifiable information or potentially sensitive personal
data [12]. For this reason, ensuring data privacy in these
systems, especially protecting training data from any leakage
is crucial for building trustworthy ML systems.

One of the first privacy-related ML vulnerabilities is mem-
bership inference attack (MIA). MIAs leak sensitive infor-
mation about the private training data by only accessing the
model at inference time. More precisely, MIAs are able to infer
whether a target sample has been used in training a targeted
model. Due to overfitting to the training data, ML models
are generally biased and behave differently on training data
(members) versus test data (non-members). This bias can be
observed through a statistically higher confidence of models in
members classification compared to non-members. Attackers
exploit this bias and mount MIAs [13].

In the literature, MIAs are demonstrated using several
features, e.g., logit, confidence, loss, entropy, gradients, hidden
layer output, etc [12], [14]. While MIAs may seem like a
weak and harmless attack model, revealing the membership in
settings such as shown in [15] can represent a critical threat.
In addition to the privacy threat, MIAs can also be used for
privacy auditing purposes as an upper bound method. The
importance of MIAs have motivated researchers to investigate
various defenses [12], [16]–[19]. In general, defenses against
MIAs try to inhibit the model behavioral bias between mem-
bers and non-members. For instance, Differentially-Private
Stochastic Gradient Descent (DP-SGD) [16] is a state-of-the-
art defense that leverages differential privacy in training mod-
els. Specifically, it adds bounded random noise to gradients in
the back-propagation during training to obfuscate the impact
of individual samples on the overall loss function. However,
this method comes at a cost in terms of utility; it considerably
reduces models’ baseline accuracy. Private Aggregation of
Teacher Ensembles (PATE) [20], [21] is another defense based
on ensemble learning that uses differential privacy; while
ensuring theoretical privacy guarantee, PATE also comes at
a significant cost in terms of models’ utility.

In contrast with provable privacy approaches, recent works
are based on empirical membership privacy, where the eval-



uation of model privacy is empirical using practical MIAs, to
preserve model utility. For example, AdvReg [17] enhances
privacy by improving model’s regularization. However, like
other regularization techniques, such as label smoothing [22]
or dropping [23], AdvReg achieves a low privacy-utility trade-
off (i.e., acceptable privacy guarantee with a substantial loss
in utility). MemGuard [18] another defense, which proposed
to inject bounded noise to the model’s prediction vector to
confuse the attack. While MemGuard can maintain high utility,
it shows considerably high privacy risk compared to other
defenses. More specifically, since the noise is injected only
in the output layer, MemGuard has been shown vulnerable
to Label-Only MIA [24]. More recently, distillation for mem-
bership privacy (DMP) [12] and Self Ensemble Architecture
(SELENA) [19] have been proposed, which improve both the
utility and privacy significantly. However, both defenses re-
quire changes to the training procedure and add computational
overhead to both training and inference of the defended model.

Recent works show that undervolting can be leveraged to
introduce computational noise to the model inference that
makes the model more robust against adversarial attacks,
i.e., carefully crafted additive noise that undermines model
integrity [4], [25]. More interestingly, the particularity of
undervolting is that beyond offering effective defense against
adversarial attacks, it comes with by-product power savings,
without requiring changes to the hardware/software nor to the
model, i.e., no retraining is needed.

Inspired by recent works on undervolting as a defense, we
propose Privacy Preserving Volt (VPP ), a randomness-based
approach for privacy-preserving ML that maintains protected
models’ utility via undervolting. Unlike related noise-based
techniques that inject random noise in the gradient (e.g., DP-
SGD [16]) or exclusively in the output (e.g., MemGuard
[18]), VPP injects noise within the model computations at
inference time. The injected noise is a random variable whose
parameters are identified through a design-time, bi-objective
space exploration to maintain both privacy and utility. Inter-
estingly, since noise is injected during inference, VPP does
not require retraining the model, thus, can be deployed on
off-the-shelf pre-trained models. The intuition behind VPP

is that the behavioral bias can be obfuscated at inference
time by introducing stochasticity within the model’s decision
boundary to inhibit the information leakage from the confi-
dence distribution of members and non-members. Therefore,
instead of limiting the stochasticity to the output, VPP exploits
the noise-tolerance characteristic of ML models to explore the
noise space in a way that garbles features used for MIA and
obfuscates the model’s behavioral bias. The challenge of such
approach is to use sufficient noise to stop the information
leakage, without degrading the model’s accuracy. Therefore,
we propose to explore the space for optimal noise properties;
we formulate the problem as a multi-objective optimization
with two objectives: minimizing both privacy leakage and
accuracy drop due to the injected noise. To solve this problem,
we use a Multi-Objective Genetic Algorithm (MOGA), which
explores for the Pareto front, and chooses the solution that

maximizes the model privacy. Our results show that VPP

achieves the best privacy/utility tradeoffs compared to prior
defenses. In particular, VPP incurs only a minor drop (no more
than 2.37%) in classification accuracy, while achieving similar
privacy protection to the strong DP-SGD defense. In addition,
we propose an adaptive attack against VPP , which operate on
the expectation over the stochastic model behavior.

The key contributions of this work are as follows:
• We propose VPP , a new randomness-based defense

against MIAs that protects models privacy with neg-
ligible utility loss and without requiring re-training.
Specifically, we inject undervolting-induced noise within
the computation of a number of layers at inference time.

• We recorded an average inference power gain that ranges
from 29% to 61.3% due to VPP for an FPGA set-up.

• To find the optimal noise magnitude and stochasticity
depth (i.e., the number of stochastic layers), we propose
a multi-objective evolutionary algorithm to explore the
space for both privacy and accuracy. The output of the
proposed algorithm is a set of non-dominated solutions
(noise standard deviation and stochasticity depth combi-
nations).

• We demonstrate a hardware-based implementation of
VPP using undervolting that results in a by-product en-
ergy gain in addition to the privacy-preserving aspect. We
demonstrated this practical implementation on a Xilinx
FPGA and verify the noise models with both simulation
and real hardware.

• Our extensive evaluation using a range of state-of-the-art
MIAs shows that VPP yields significantly higher utility-
privacy tradeoff than prior work. For example, with simi-
lar privacy to DP-SGD (the strongest privacy defense),
our defense has a negligible impact on utility; VPP

outperforms DP-SGD by 32.93%, AdvReg by 21.53%,
DMP by 20.13%, MemGuard by 8.68%, and SELENA by
3.96% in terms of utility for AlexNet trained on CIFAR-
10 dataset.

• We systematically evaluated VPP against a new adaptive
attack that attempt to estimate the model expectation
over a set of repeated queries. The adaptive attack was
significantly more efficient than the state-of-the-art, yet
VPP showed ∼ 10× privacy preserving under low false-
positive-rates of the attacks.

II. CONTROLLED UNDERVOLTING ANALYSIS ON FPGA

In this section, our goal is to characterize the undervolting
effect on an FPGA and extract a statistical software frame-
work that simulates the model’s behavior under different sub-
nominal supply voltage levels.

A. Hardware Setup

The hardware setup consists of an FPGA board, external
voltage controller, and a host machine as shown in Figure 1.
Specifically, we use a Xilinx Zynq Ultrascale+ ZCU104 FPGA
board. The board consists of the XCZU7EV-2FFVC1156



Voltage Control 

Commands

PMBus/I2C

Voltage Controller

(Infineon USB005 )
 FPGA ZCU 104

 C
om

man
ds

USB

Data 


Transfer 


Link


JTAG-UART

Host Computer

Fig. 1: Hardware Setup Platform.

MPSoc. The device’s Processing System (PS) includes a quad-
core Arm Cortex-A53 applications processor and a dual-core
Cortex-R5 real-time processor. We leverage an external voltage
controller, the Infineon USB005, to perform undervolting on
the FPGA device, which is connected to the board via an I2C
wire. We read and write the different voltage rail supplies to
the board using PowerIRCenter GUI.

B. Undervolting Characterization

For any device, the voltage spectrum contains three regions:
Safe, Critical and Crash. Normally, devices operate in the Safe
region to avoid any faults/errors within the device. In the Crash
region, the device would not operate either due to system
safeguards or simply due to the intolerable errors. In this paper,
we are interested in the Critical region, where the device would
experience computational faults/errors but continue to operate.

We used the hardware setup as described in Section II-A
to perform undervolting characterization on an FPGA board.
We used CHaiDNN [26], an open-source DNN accelerator
from Xilinx, to implement VGGNet [27], AlexNet [28], and
ResNet18 [29] models and controlled the supply voltage
through the external voltage regulator. We focused on VC-
CINT voltage rail, which can be accessed via PMBus address
0x13, since it supplies voltage to the internal components in
PS, as well as the DSP and LUT units in PL, as shown in
Figure 2. The nominal supply voltage of VCCINT voltage
rail is 0.852V. Then, we gradually lower the voltage on the
VCCINT voltage rail with a step size of 4 mV (voltage change
resolution of the voltage controller) to find the three voltage
regions within the FPGA voltage spectrum. Our results shows
that the regions are: (1) Safe (0.7V < voltage < 0.85V ): the
device functions normally, (2) Critical (0.637V < voltage <
0.702V ): the device will occasionally have faults, and (3)
Crash (voltage < 0.637V ): the devices cannot function.
Moreover, the power consumption of these regions are as
follows: Safe (3.5w < p < 7.750W ), Critical (3W < p <
5.5W ), and Crash (2.750W < p < 3.250W ).
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Fig. 2: Undervolting the ‘compute unit’ of FPGA ZCU 104.

C. Software Simulation

CHaiDNN does not support the access to the internal
parameters of its models, which interferes with the ability of
performing MIAs. Therefore, we conducted an experiment to
test if injecting additive layer-wise Gaussian noise can provide
the same computational noise distribution of undervolting an
ML accelerator. Specifically, in this experiment, our goal is to
find the undervolting level that matches the noise distribution
of a given noise variance (σ).

We used three models such as VGGNet on ImageNet [30],
AlexNet on CIFAR10 [31], and ResNet18 on CIFAR100 [31]
dataset, which are denoted as ImageNet+VGGNet, CI-
FAR10+AlexNet, and CIFAR100+ResNet18 respectively. We
run each model using both software implementation (Soft
run) and hardware implementation (FPGA run). Following the
statistical modeling of undervolting impact in [32], [33], we
modeled the undervolting-induced computational error with
a bit flip in the output of computational elements. The bit-
flip location is a random variable that results in a zero-mean
Gaussian distribution added to the output of each layer in the
model on the software side. We varied the noise standard
deviation (σ) and reported the classification accuracy of the
model for each σ. In parallel to this process, we varied
the undervolting level at the FPGA side and tracked the
classification accuracy of the model. The results are shown
in Figure 3. The results show that the models’ accuracy
behavior, as a function of σ, matches very well with the trend
from FPGA undervolting side across all evaluated models.
Therefore, with some calibration, the FPGA undervolting noise
injection can be accurately replicated in the software model.

III. THREAT MODEL

Similar to the prior MIA defenses [17]–[19], we consider a
black-box threat model in this work. In particular, we assume
that the adversary can query the target model (F ) and see
its outputs but not any information from within the model.
Specifically, for a target sample, attackers have access to the
target model’s logits, confidence vector, loss, predicted label,
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entropy, etc. Adversaries exploit these black-box features and
either train an attack model or perform thresholding on the
metrics distribution to infer membership. Furthermore, similar
to prior works [17], [19], [34], we assume that the adversary
knows some members; they have access to a ratio of the
training data samples. In other words, we assume that the
adversary has access to part of the members or at least samples
from the same underlying distribution as the training data.
Thus, the adversary goal is to leak the membership of other
samples.

IV. APPROACH: PRIVACY PRESERVING VOLT (VPP )

In this work, we propose Privacy Preserving Volt (VPP ),
a new inference time randomness-based approach that relies
on undervolting for privacy-preserving ML without sacrificing
protected models’ utility. The hypothesis behind MIAs is that
ML systems retain information about the private dataset at
training time, which they are susceptible to leak at inference
time through the confidence levels associated with each class
in samples classification. The whole MIA approach relies
on the confidence bias at the inference of samples from the
training dataset. Our intention is to obfuscate this inference
bias using stochastic computations. Therefore, VPP injects
stochastic noise in a number of layers’ computations during
inference. The intended impact of random noise injection is
to garble the metrics of the model’s behavior on members and
non-members, i.e., to obfuscate MIAs features, to prevent an
adversary from inferring private information. For our approach
to remain practical, our objective is to additionally maintain
the baseline accuracy. Specifically, we exploit ML models’
noise tolerance property to explore the space for the highest
possible noise under accuracy constraint.
Design objectives – The objectives that guide our design are:

1) Preserving privacy: Our goal is to design a practical
defense against MIAs that guarantees the lowest infor-
mation leakage on training samples. Therefore, the pro-
posed defense needs to be rigorously and systematically
evaluated to ensure that it can achieve high membership
privacy (i.e., low MIA accuracy) across a broad range
of MIAs.

2) Maintaining utility: For a defense to be practically
useful, privacy protection should not come at the cost of

the baseline accuracy. Therefore, our goal is to protect
the model against MIA without degrading its utility.

3) Easy deployment: Our goal is to propose a solution that
does not interfere with the baseline training process.
Hence, our defense needs to be applied at inference time
and can be used to protect pre-trained models.

In this section, we will describe our proposed approach as
follows: (i) study the impact of stochastic noise on privacy,
(ii) describe our space exploration methodology.

A. Adding noise as a privacy defense

We propose to leverage stochastic computation noise to
preserve the privacy of the ML classifiers against MIAs. To
keep the noise under control, VPP applies undervolting to a
selected set of layers and not necessarily to the whole model.
In particular, to maximize privacy, VPP injects noise that is:
(i) strong enough to obfuscate the protected model behavior on
both members and non-members, and (ii) remains within the
noise tolerance of the model to preserve the model’s accuracy.
Therefore, VPP leverages the noise-tolerance property of ML
models to add noise to the model computations to maximize
privacy while preserving the model’s utility.

Let a model Fn composed of n layers ℓi, i = 1..n, s.t.,
Fn(.) = ℓn◦ℓn−1◦...ℓ1(.). A conventional neuron n(x) within
a given layer ℓ outputs n(x) = ψ(w⊤x), where ψ is the
activation function, w ∈ Rd is the weights and x ∈ Rd is the
input features to the neuron.

Technically, the proposed technique consists of injecting
additive layer-wise Gaussian noise within the computations.
We note ℓ̃i a stochastic layer, and a stochastic model F̃d

n is
composed of d stochastic layers, and expressed as:

F̃d
n(.) = ℓn ◦ ℓd+1 ◦ ℓ̃d ◦ ...ℓ̃1(.) (1)

More specifically, a stochastic layer is composed of stochas-
tic neurons where the noise is injected between the matrix
multiplication and the activation function. The inference-time
stochastic neuron ñi(x) within a stochastic layer ℓ̃i would then
be expressed by:

ñi(x) = ψ(w⊤x+ α), s.t. α ∼ N (0, σ2) (2)

Where α is a random variable that follows a normal distribu-
tion with a 0 mean and a variance σ2.



From Equations 1 and 2, there are two variables that would
shape the noise impact on the model behavior, both in terms
of accuracy and privacy: stochasticity depth d and the noise
variance σ2. However, the impact of these stochasticity param-
eters (d, σ) is also dependent on the model hyperparameters. In
fact, different networks consist of different number of layers,
types of each layers (e.g., convolutions/fully connected), and
the size of each layer. As a result, a given combination (d, σ)
has a different impact on each network in terms of utility loss
and privacy gain.

To illustrate this, Figure 4 shows an experiment where we
varied the number of stochastic layers (d) and noise stan-
dard deviation (σ) and observed their effect on both privacy
and utility; this result is obtained for ResNet50 trained on
ImageNet dataset. The results show that while higher noise
magnitude leads to higher privacy, it also leads to lower
accuracy. Similarly, while injecting noise in more layers leads
to higher privacy, it also leads to lower accuracy. Therefore,
a design space exploration is needed to be able to find the
optimal solution that achieves the best privacy-utility tradeoffs.
Thus, in this paper, we propose a design space exploration
framework based on a multi-objective genetic algorithm. An
overview of the design space exploration framework is shown
in Figure 5, and we describe the details in the next sub-Section.

B. Design space exploration

Our problem can be formulated as a multi-objective opti-
mization with two objectives: minimizing the vulnerability to
MIA and minimizing the accuracy drop due to the injected
noise. Let h be a model parameterized by the noise standard
deviation σ and the stochasticity depth d (the number of
stochastic layers). Notice that for (σ, d) = (0, 0), we have
a baseline model, i.e., no stochasticity. We note αMIA(h) the
accuracy of the inference attack, and we define L = 1−Aσ,d(.)
as the model loss of accuracy. Our problem could be formu-
lated as the following multi-objective optimization problem:

Minimize
(
Vσ,d(h),Lσ,d(h)

)
,

s.t. σ ≤ σmax,and d ≤ dmax
(3)
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Where Vσ,d(.) = |αMIA(h)−0.5| is the model vulnerability
to MIA. To solve this multi objective problem, we use a Multi-
Objective Genetic Algorithm (MOGA) detailed in Algorithm
1, which explores for the Pareto front but also proposes a
solution within the Pareto front that maximizes the model
privacy; optimal solutions of σ and d for different datasets
and models are shown in Table I.
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Fig. 5: Overview of VPP approach: Gaussian noise injection to a
typical DNN model. The figure shows a sample VPP for d = 2.

Algorithm 1: Multi-Objective Genetic Algorithm
Input: Initial Population P , A Model h;
Output: A set of non-dominated solutions and a proposed
solution (S, S∗);

1 S ← ϕ;
2 for all Xi = (σi, di) ∈ P s. t. σi ∈ [0, σmax] and di ∈ [0, dmax]

do
3 ki = Rank(Xi); // # of dominated solutions by Xi + 1

/* Selection of non dominated solutions*/
if ki == Sizeof (P) then

4 Append (S, Xi);
end

end
5 G= Crossover(S);
6 G= Mutation(G);
7 P = G ∪ S ;

/* Not yet hitting maximum iterations or solutions still improving */
8 if Stopping condition not met then
9 goto step 3;

end
S∗ = argmin

X
(VX(h)) s.t. X = (σ, d) ∈ S;

10 return (S, S∗);



TABLE I: Optimal solution of σ and d for different datasets and
models. FC: stands for Fully Connected DNN model.

Dataset + Model Optimal solution
σ d

Purchase100 + FC 0.01 d = 3

Texas100 + FC 0.1 d = 3

CIFAR10 + AlexNet 0.01 d = 4

CIFAR100 + ResNet18 0.01 d = 4

V. EXPERIMENTAL SETUP

This section details the datasets/models, the MIAs, and the
evaluation framework that have been used.

A. Datasets and Models

We follow prior works on MIAs [13], [14] and de-
fenses [12], [17], [19] to select the representative datasets and
models. We briefly summarize them below.
Purchase100 [35]: It is a dataset comprising 197,324 binary
feature vectors. Each vector has 600 features corresponding to
different products; the binary value for each feature indicates
whether the product is purchased or not for a given customer
sample, and the label indicates the purchase habit of a
customer.
Texas100 [36]: It is a dataset comprising 67,300 binary fea-
ture vectors. Each vector has 6,170 features corresponding to
different symptoms; the binary value for each feature indicates
whether the symptom is present or not in a patient, and the
label indicates the treatment given to a patient.
CIFAR-10 and CIFAR-100 [31] : CIFAR-10 is an image
classification dataset containing a total of 60,000 color images
representing 10 different classes; it has 5000 training images
and 1000 testing images for each class. Again, CIFAR-100 is
a collection of 60,000 color images representing 100 classes.

We split the dataset for the target and attack models, as
shown in Table II. We denote the training data and test data
of target model as Dtr and Dte respectively; we used |Dtr|=
|Dte| to build an unbiased target model. Again, D

′

tr and D
′

te

denote the training data and test data of the attack model,
respectively. As mentioned in the threat model, we assume
that the attacker has partial access to the target model dataset.
Following all prior works, we also assume an equal number
of members and nonmembers in D

′

tr and D
′

te.

TABLE II: Dataset split

Dataset Target model Attack model
Train |Dtr| Test |Dte| Train |D′

tr| Test |D′
te|

Purchase100 10000 10000 5000 5000
Texas100 10000 10000 5000 5000
CIFAR10 25000 25000 12500 12500

CIFAR100 25000 25000 12500 12500

Models: We train target models on Purchase and Texas
datasets using fully connected (FC) deep neural networks,
having six-layer architecture such as [features, 1024, 512,
256, 128, classes] and Tanh() activation after each layer.
We denote their corresponding models by Purchase100+FC
and Texas100+FC, respectively. We used AlexNet [28] for
CIFAR10 dataset and ResNet18 [29] for CIFAR100 dataset;

as such, their corresponding models are denoted by CI-
FAR10+AlexNet and CIFAR100+ResNet18 respectively.

B. Implemented Attacks

Here, we summarize four membership inference attacks
implemented in our paper. Specifically, we selected three
powerful score-based attacks and a decision-based (e.g., label-
only) attack to evaluate the effectiveness of our defense. Score-
based MIAs are mounted using various output scores of the
target model that are available before obtaining the predicted
label. On the contrary, decision-based MIAs are performed
using only the decision of the target model, which means
the hard label or predicted label. We outline the implemented
attacks more precisely as follows:
(i) Bounded loss (BL) attack (Ibl): Yeom et al. [37] used this
attack approach, where they inferred members by applying a
threshold (τ ) on the loss of the target model on the target
sample. They used 0-1 loss, meaning that the target model’s
gap between train and test accuracy indicates attack accuracy.
This is a score-based attack, and we denote this attack by Ibl.
(ii) NSH attack (Ibb): Nasr, Shokri, and Houmansadr
(NSH) [14] proposed this attack approach, where they used
black box features of the target model on target samples. More
specifically, they combined the target model’s class probability
(or the confidence) with the loss to train a binary attack model
for inferring membership. This is also a score-based attack,
and we denote this attack as Ibb.
(iii) NN attack (Inn): Salem et al. [38] introduced this
attack approach, where they trained a neural network using
the target model’s prediction (logits) as a feature to infer the
membership. This is yet another score-based attack, and we
denote this attack by Inn.
(iv) Label-only attack: Unlike Ibl, Ibb, and Inn attacks, where
different output scores of the target model are used to mount
an attack, label-only attacks [24], [39] fall in the category of
decision-based attack, which assume the availability of target
model’s predicted labels only. In many real-world ML-as-a-
service applications, ML model does not necessarily publish
the confidence scores but the predicted label only [24], [39].
After obtaining labels, attackers iteratively insert the necessary
amount of adversarial noise or perturbation to the input
samples in order to change their predicted labels. Then the
distortion between the original inputs and their corresponding
perturbed inputs are measured and exploited to perform at-
tacks, i.e., differentiate between members and non-members.
In fact, label-only attacks exploit the fact that member samples
are farther from the decision boundary than non-member
samples, implying that member samples need greater distortion
than non-members to change their predicted labels. Conse-
quently, simple thresholding on the adversarial distortion can
differentiate between members and non-members.

C. Experimental Methodology

Here, we present our experimental methodology: training
the attack models and mounting the membership inference
attacks.
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As shown in Figure 6 (a), we train a target model (F ) on its
training dataset (Dtr) using cross-entropy loss function; at this
stage, F is an unprotected target model. Then we extract attack
features (f⃗ ) of target model by making an inference using
attacker training dataset (D

′

tr). Table III summarizes the attack
features for each attack. Once the attack features are extracted,
we train the attack model (or inference model) (I) using binary
cross-entropy loss. Additionally, Figure 6 (b) shows the Ibb
and Inn membership inference attacks (MIAs) method; here
attack features are collected for attacker test data D

′

te and
subsequently used by the attack model to measure privacy
risk. Furthermore, Figure 6 (c) shows the Ibl attack method
that does not use an attack model; it rather uses threshold (τ )
on the attack feature to determine membership and privacy
risk.

TABLE III: Attack features of different attack variants.

Attacks Attack features f⃗ Attack type

Ibb [14] Confidence & loss Score based
Inn [38] Logit Score based
Ibl [37] Loss Score based

Label-only [24] predicted label Decision based

adversarial perturbation

attacker's
test dataset

target model

inference

No
Yes

privacy risk

thresholding

(e.g., AUC)

Fig. 7: Label-only attack.

Figure 7 explains the label-only attack, where attackers
iteratively inserts perturbation (i.e., ±δx) to original input

samples (x) to change their labels. Then the distortion between
the clean samples and the corresponding perturbed samples is
measured, which is essentially the distance of input samples
from the decision boundary. Finally, thresholding over the
measured distance is used to determine the membership.

VI. PRIVACY ANALYSIS

Score-based Attacks – In this section, we present the privacy
risk of unprotected and protected target models. We also
compare the privacy risk of our defense with that of the
existing defenses. Following prior works, we measure the
privacy risk as the MIA accuracy. Since attackers predict
as either member or non-member, privacy risk becomes the
least when attackers are most uncertain, which happens when
the prediction is a random guess or the MIA accuracy is
50%. Alternatively, MIA accuracy higher than 50% indicates
a higher privacy risk.

Test
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Test
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Test
Train
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Test
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Train

Baseline model Protected model

(a) Purchase100 + FC

(b) Texas100 + FC

(c) CIFAR10 + AlexNet

(d) CIFAR100 + ResNet18

Fig. 8: Impact of stochastic noise on confidence distribution of train
and test samples. Figures on the left side are for undefended model
and figures on the right side are for VPP protected model.

Figure 8 shows the confidence distribution of train (member)
and test (non-member) samples. Baseline models (figures
on the left side) have small overlaps between member and
non-member scores, showing a little confusion and greater
separability. On the other hand, VPP protected models (figures
on the right side) demonstrate greater overlaps, meaning
greater confusion and little separability. Table IV summarizes
the MIA accuracy (i.e, privacy risk) of unprotected models
and protected models for various defenses. From the table,
while unprotected models suffer from high privacy risks, VPP

protected models significantly reduce the privacy risks. This
is because of the garbling in the attack feature space shown
in Figure 8. Comparing with the most recent state-of-the-
art defense SELENA, our defense (i.e., VPP ) offers 2.01%,
0.63%, and 1.36% lower privacy risks on CIFAR100 dataset
for Ibb, Ibl, and Inn attacks respectively. For Purchase100,
Texas100, and CIFAR10 datasets, VPP also shows comparable
or lower privacy risks as contrasting other defenses.
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TABLE IV: Privacy risk for different defenses. Minimum privacy risk
in each attack category (Ibb, Ibl, and Inn) is marked in bold face.

Dataset + model Defense MIA accuracy (privacy risk)
Ibb Ibl Inn

Purchase100 +
FC

None 77.09% 63.6% 62.2%
AdvReg 55.4% 54.9% 50.1%

DMP 55.1% 55.2% 50.2%
SELENA 53.3% 53.2% 53.3%

VPP (Ours) 53.27% 53.2% 50.16%

Texas100 + FC

None 76.23% 76.2% 72.0%
AdvReg 57.9% 54.1% 50.8%

DMP 55.4% 53.6% 50.0%
SELENA 55.1% 54.8% 52.2%

VPP (Ours) 53.6% 52.4% 50.07%

CIFAR10 +
AlexNet

None 78.1% 66.6% 66.5%
AdvReg 51.2% 52.1% 53.14

DMP 50.6% 51.6% 51.65
SELENA 54.1% 53.5% 51.7%

VPP (Ours) 51.94% 51.85% 50.83%

CIFAR100 +
ResNet18

None 77.49% 68.3% 67.1%
AdvReg 53.4% 53.6% 53.48

DMP 54.4% 53.7% 51.92
SELENA 55.1% 54.0% 52.0%

VPP (Ours) 53.38% 53.37% 50.64%

Decision-based Attack: Label-only Attack – Score-based
attacks shown earlier have a drawback. Specifically, they can
be easily mitigated/averted if the target model only exposes
its final decision (i.e., top-1 predicted label) but not any
confidence score. It is, in fact, the case in many real-world
ML-as-a-service applications, where ML models provide only
the labels rather than their scores [24], [39]. Additionally,
label-only attacks have the potential to be robust against some
perturbation-based defenses (e.g., [17], [18], [40]). Thus, it is
important to evaluate our defense against label-only attacks.

Figure 9 shows the ℓ2 measure of the distortion (or distance)
of members and non-members across different datasets. Fig-
ure 9 (a) represents the case of unprotected models, which
clearly shows a huge gap between their distances and is thus
distinguishable simply by thresholding. On the other hand,
Figure 9 (b) shows the case of VPP protected models, where
members and non-members have significant overlaps in their
distortion distribution, lowering the efficacy of the distance
feature in differentiating members from non-members. Such
overlaps in the distortion space result from the defensive
distortion introduced by VPP as stochastic noise.

Figure 10 shows the privacy risk of different defenses
against label-only attacks. Following existing label-only at-
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Fig. 10: Effectiveness of defenses against label-only attack.

tacks [24], [39], we utilize the receiver operating characteristic
(ROC) curve and measure the privacy risk using the area under
the curve (AUC). As expected, baseline or unprotected models
suffer from high privacy risks across all datasets considered.
Furthermore, it shows that MemGuard fails to defend against
label-only attacks and has the same privacy risk as undefended
models. It is because MemGuard adds noise to the confidence
score under the constraint of not changing the predicted label.
In contrast, our defense (VPP ) offers 0.6% and 0.4% lower
privacy risk than the latest defense SELENA for Texas100
and CIFAR10 dataset, respectively. Moreover, compared to
adversarial regularization (AdvReg), VPP offers 3%, 2.1%,
7.4%, and 4.2% lower privacy risk on Purchase100, Texas100,
CIFAR10, and CIFAR100 datasets, respectively.
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VII. IMPACT ON BASELINE ACCURACY

Baseline accuracy is the classification accuracy without
applying a defense; accuracy of unprotected model. Following
the most recent defenses against MIAs, we use the same
datasets and models in our evaluation. Target model’s clas-
sification accuracy is also called the utility, which is expected
to be maintained as high as possible. However, privacy attacks
are resisted by perturbing either the learning outcome, model
gradients, or input itself, which in turn reduces the utility. Our
defense (i.e., VPP ) is also perturbation based, but contrasting



55
%

74
%

76
%

78
%

80
%

82
%

84
%

Classification accuracy

50%
55%
60%
65%
70%
75%
80%

M
IA

ac
cu

ra
cy

DP-SGD SELENA DMP MemGuard AdvReg VPP (Ours) Undefended

39
%

43
%

45
%

47
%

49
%

51
%

53
%

Classification accuracy

50%
55%
60%
65%
70%
75%
80%

M
IA

ac
cu

ra
cy

50
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

Classification accuracy

50%
55%
60%
65%
70%
75%
80%
85%

M
IA

ac
cu

ra
cy

50
%

65
%

68
%

71
%

74
%

77
%

80
%

Classification accuracy

50%
55%
60%
65%
70%
75%
80%

M
IA

ac
cu

ra
cy

(a) Purchase100+FC (b) Texas100+FC (c) CIFAR10+AlexNet (d) CIFAR100+ResNet18
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Fig. 13: Prediction confidence distribution of VPP protected models. Green overlapping leads to classification accuracy (i.e., utility) loss and
other overlappings indicate confusion that drops MIA accuracy (i.e., privacy risk).

existing methods, we perturb model computation by injecting
additive Gaussian noise to models’ computations. Thus, VPP

is also expected to reduce the utility. We show the utility
of VPP based protected model in green color in Figure 11.
Compared with baseline models, our proposed VPP based
defense loses the accuracy by 1.6% for Purchase100+FC,
1.58% for Texas100+FC, 2.37% for CIFAR10+AlexNet, and
1.8% for CIFAR100+ResNet18. In Figure 11, we also compare
the model accuracy under our defense (i.e., VPP ) with that
of other existing defenses such as DP-SGD, SELENA, DMP,
and AdvReg. We will compare our VPP defense with the
best performing existing defense, which is SELENA for all
datasets. SELENA is also the most recent among all existing
defenses. Thus, compared with SELENA, Figure 11 shows
that VPP yields 2.3% higher utility on Purchase100 dataset,
1.58% lower utility on Texas100 dataset, 3.96% higher utility
on CIFAR10 and 0.6% higher utility on CIFAR100 dataset.
Utility/Privacy Tradeoffs – Defense techniques aim to reduce
MIA accuracy (i.e., privacy risk), which also reduce the target
model’s classification accuracy (i.e., utility). However, for a
considerable defense solution, we expect higher utility but
lower privacy risk. Therefore, we compare the utility-privacy
tradeoff of our defense, i.e., VPP , with other defenses in
Figure 12. We report the privacy score of the best attack (i.e.,
the highest MIA accuracy of the three attacks).

Differential privacy based stochastic gradient descent (DP-
SGD) is the earliest defense, which offers strong member-
ship privacy guarantee by adding Gaussian noise to model

gradients. While preserving privacy, DP-SGD (for ε = 4)
incurs huge utility loss compared to baseline model (e.g.,
losing 27.2% on Purchase100 , 13.5% on Texas100, 35.3% on
CIFAR10, and 25.8% on CIFAR100). On the stark contrast,
MemGuard resists attackers from gaining reliable access to
model behavior by adding noise to model output while pre-
serving correct prediction. Thus, MemGuard ideally does not
lose utility; however, it cannot guarantee promising privacy, as
evident by its highest MIA accuracy among all the defenses.

However, Figure 12 shows that other defenses offer com-
paratively better tradeoff than DP-SGD and MemGuard. Inter-
estingly, our proposed VPP outperforms on Purchase100 and
CIFAR10 datasets and shows comparable tradeoff with the
state-of-the-art defense SELENA on CIFAR100 and Texas100.

VIII. WHY DOES STOCHASTIC NOISE HELP?

This section illustrates why stochastic noise helps protect
privacy while preserving utility. Injecting stochastic noise in
model computation obfuscates model’s exact behavior, which
resists attackers from having reliable access to model output.
Such nondeterministic behavior confuses the attack models (I)
which in turn reduces the MIA accuracy. To better understand
the stochastic noise effect, we take a closer observation in the
output confidence vector. We do so because attackers exploit
model’s output to mount membership inference attacks. As
such, we plot the Top-10 confidence distribution of VPP pro-
tected models in Figure 13. For all models, we see overlapping
between different confidence distributions; these overlapping



areas are the result of the nondeterministic behavior, which
is controlled by the variance of the injected noise during
computation.
Effect on utility: Utility, i.e., classification accuracy, is deter-
mined by Top-1 confidence. Additive Gaussian noise causes
overlapping in Top-1 confidence distribution, which is shown
in green color in Figure 13. These green overlapping zones
indicate the percentage of misclassification, which leads to
baseline accuracy loss. All VPP protected models in Figure 13
show small overlapping in Top-1 confidence, which suggests
a slight utility drop.
Effect on privacy: Attackers exploits output confidence vector
to mount MIA. Confidence distribution other than Top-1
shows multiple levels of overlapping, which indicates the
degree of unreliable access that the attackers might have. Such
nondeterministic attack features confuse the attack model (I),
which drops the MIA accuracy or the privacy risk.

IX. ADAPTIVE ATTACK

Adversaries naturally attempt to gain insight from the
defense to break it. Thus, when proposing a new defense
against MIAs, it is necessary to systematically evaluate new
defenses against adaptive attack to make sure they can’t be
easily bypassed. Therefore, in this section: we propose a new
adaptive attack against VP P based on the expectation over
several queries to compensate the noise impact. Then, we
evaluate VP P against the new adaptive attack. Our results
demonstrate the adaptive attack was not able to amplify
leakage, i.e., get significantly higher attack accuracy compared
to prior attacks.
Proposed adaptive attack: VPP depends on injecting ad-
ditive layer-wise Gaussian noise into the network/model. In
Section VI, we showed that VP P can indeed obfuscate the
protected model behaviour on both members and non-members
via the additive layer-wise Gaussian noise and thus protect
the model’s privacy. Thus, from an attacker perspective, an
adaptive method should be able to take into account the
stochastic component of the system, i.e., the Gaussian noise,
to bypass it. Therefore, our proposed adaptive attack tries
to estimate the model expectation over a set of repeated
queries. Specifically, we assume an adaptive attacker is able to
repeatedly query the target model for each sample to collect
a set of attack features per sample. The collected set of attack
features per sample represents a wider spectrum of attack
features variations. Accordingly, the attacker needs to average
the collected set of attack features per sample to get the
expectation of the model behavior under the assumption of a
zero-mean Gaussian noise model. Please notice that this needs
to be done per sample regardless if the attacker is using it to
generate data to be used in training the attack model or to infer
whether a specific sample is a member or non-member. As
such, we develop adaptive attack as described in Algorithm 2,
which outputs adaptive attack models based on Ibb attack. Line
3, 4, and 5 shows the averaging of different attack features for
n runs.

Algorithm 2: /*Adaptive Ibb attack */

Input: D
′
tr : Attacker data (member+nonmember);

F̃ : VPP protected target model;
n: # of queries per input sample;
Output: Ibbadap: adaptive attack model;

1 n← 10000; // Assign a large number
2 for all (x, y) ∈ D′

tr do

3 E(F̃ (x))← 1
n

n−1∑
i=0

F̃ (x); // F̃ (.): logit

4 E(f(F̃ (x)i))← 1
n

n−1∑
i=0

eF̃ (x)i∑K
j=1 e

F̃ (x)j
;

5 E(L)← − 1
n

n−1∑
i=0

k−1∑
j=0

yj log F̃ (x)j ; // L: CE loss

end
/* construct black-box adaptive attack features, f⃗bb */

6 f⃗bb ← E(F̃ (x))||E(f(F̃ (x)))||E(L)

/* train adaptive attack classifier using binary cross entropy loss */
7 Ibbadap ← min

θ
′∈Θ

′
LBCE((f⃗bb, y

′
); θ

′
);

8 return Ibbadap;

Adaptive attack evaluation: We varied n to be 20, 40, 60,
80, 100, 500, 1000, 5000, and 10000. Then we measure the
MIA accuracy (i.e., privacy risk) of adaptive attack. The result
is shown if Figure 14. The result shows that increasing the
number of queries per input sample helps attackers increase
the privacy leakage. In other words, attackers might see
higher MIA accuracy when applying more queries per sample.
However, as shown in Figure 14, the MIA accuracy gain is
not significant and saturates for most models after n = 10000.
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Fig. 14: MIA accuracy (i.e., privacy risk) of adaptive attack.

X. CONCLUSION

We propose a lightweight, effective defense called Privacy
Preserving Volt (VPP ) for preserving ML privacy while
maintaining utility. VPP injects computational noise to a
set of layers of the protected model during inference time
through undervolting. Interestingly, since noise is injected
during inference, VPP does not require retraining the model
and can be deployed on off-the-shelf pre-trained models.
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