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Abstract—Deep neural networks (DNNs) are shown to be
vulnerable to adversarial attacks; carefully crafted additive noise
that undermines DNNs integrity. Previously proposed defenses
against these attacks require substantial overheads, making it
challenging to deploy these solutions in power and computational
resource-constrained devices, such as embedded systems and the
Edge. In this paper, we explore the use of voltage over-scaling
(VOS) as a lightweight and efficient defense against adversarial
attacks. Specifically, we exploit the stochastic timing violations
of VOS within computing elements to implement a moving-
target defense for DNNs. Our experimental results demonstrate
that VOS guarantees effective defense against different attack
methods, does not require any software/hardware modifications,
and offers a by-product reduction in power consumption. We
propose a space exploration to identify a possible trade-off
between robustness, accuracy and power gains. Furthermore,
we observe the behavior of models’ epistemic uncertainty under
variable undervolting aggressiveness. Our experiments show that
model uncertainty analysis is coherent with the observation in
our robustness/accuracy exploration.

Index Terms—Voltage overscaling, adversarial attack, DNN
security, moving-target defense, power savings

I. INTRODUCTION

RESENT day tech-dominated world is witnessing a sig-

nificantly widespread deployment of Deep Learning in
diverse sectors. Deep Neural Networks (DNNs) and especially
Convolutional Neural Networks (CNNs) deliver promising
performance in several challenging applications. However,
they are found vulnerable to adversarial attacks, i.e., models
output wrong prediction for adversarial input samples, which
are maliciously crafted by injecting low-magnitude noise that
is often imperceptible to human eyes. The consequence of such
misprediction can be dramatic. For example, in autonomous
vehicles, mistakenly classifying stop sign as yield or speed
limit sign can implies potential human or material damage. In
fact, attackers exploited this vulnerability and demonstrated
practical attacks in multiple domains: self-driving cars [1]
detecting stop sign as 45 MPH speed limit sign; e-diagnosis
system [2] detecting benign medical image as malignant
and vice versa; hardware malware detector [3]-[7] detecting
malware as regular software; face detection system [8] con-
fused by impersonation, voice-controlled system [9] misun-
derstanding speech commands, e.g., detecting “how are you”
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as “open the door”; copyright detection [10] failing to discern
protected and non-protected contents, etc. Thus, the issue has
raised serious concern especially for safety-critical areas and
security-sensitive applications.

Researchers and practitioners have proposed various de-
fense solutions, to harden CNNs against adversarial attacks,
that largely fall into the following four groups: Adversarial
Training (AT) [11], Input Preprocessing [12]-[14], Gradient
Masking (GM) [15], and Randomization-based Defenses [16]—
[18]. In AT, adversarial samples were used to train target mod-
els so that models can identify attacks during inference time.
Although known attacks can be detected by AT, new/unknown
attack variants cannot be detected by this defense technique.
Moreover, AT requires huge time in generating the attack
samples (for using in the victim training) and demands ex-
tra time for model fitting, rendering the solution time- or
compute-intensive and thus challenging. Input preprocessing
based defenses perform some transformations to the inputs
that, in essence, nullify the effect of adversarial perturbations;
the technique functions in a limited settings but is highly
susceptible to white-box attacks where attackers have access
to model’s gradients and the preprocessing units. GM is
model regularization based defense which requires retraining,
and more importantly, the defense has been undermined by
the renowned Carlini & Wagner attack [19]. Randomization
based defenses introduce random noise in the entire DNNs
or in some select layers [16], which stochastically changes
the classifier’s decision boundary, making it a moving target
defense. Such techniques have shown theoretical guarantee
of robustness, but the existing solutions are not implemented
at scale (e.g., Raghunathan et al. [18] evaluate only a tiny
neural network.), nor did they provide any practical source
of random noise. It is important to note that our proposed
defense is closest to the randomization based technique, where
we overcome the aforementioned limitations.

Inspired by [16], [17], our work aims at injecting noise into
the CNN computations to defend against adversarial attacks.
Instead of theoretical noise distributions that are impractical,
we propose a new paradigm in which we leverage stochastic,
hardware-induced noise to enhance DNNs robustness. Specif-
ically, we unprecedentedly propose to use VOS as a defense
against adversarial attacks. VOS is originally explored in the
approximate computing paradigm to reduce computational
complexity and power consumption at the expense of accuracy.
This paper leverages it for a fotally new objective, namely
DNNSs robustness, where power saving is a by-product gain.
Our defense exploits the stochastic noise injected by VOS-
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induced random timing violations. This stochastic behavior
makes the technique a practical moving-target defense; making
the gradient direction estimation very challenging for an
adversary, even with full knowledge of the target model and
the defense mechanism.

The contributions of this paper are summarized as follows.

1) We perform the characterization of VOS-induced com-
putational faults properties on a real CPU. Our results
show that VOS faults are stochastic (i.e., time-variant)
and controllable.

2) We unprecedentedly leverage VOS as a robustness en-
hancement technique for DNNs; we show that hardware-
induced noise can be utilized for securing DNNs in a
practical, easy-to-deploy, and power-efficient manner.

3) With no retraining overhead, but with by-product gain in
power savings, our method shows promising results under
strong white-box and black-box attack settings.

4) We also evaluate the effect of undervolting-induced
stochastic fault injection on prediction from a differ-
ent perspective. Specifically, we measure the epistemic
uncertainty, i.e., prediction uncertainty caused by the
randomized model, which is found low at the optimal
fault rate for accuracy/robustness tradeoff.

5) For research reproducibility and to encourage the com-
munity to further explore this technique, we plan to open-
source our code.

The remainder of the paper is organized as follows. Sec-
tion II briefly presents the necessary background; Section III
illustrates the VOS-induces computational faults characteri-
zation on real CPU; Section IV discusses the threat model
considered; Section V describes the proposed methodology;
Section VI thoroughly analyzes the security evaluation of our
defense; Section VII devises a sample way of finding trade-
off between accuracy, robustness, and power consumption;
Section VIII explores the epistemic uncertainty of model
prediction under voltage overscaling; Section IX summarizes
the related work; and finally Section XI concludes the paper.

II. BACKGROUND

A. Adversarial Attacks

Adversarial attack samples are generated by slightly per-
turbing the inputs in order to confuse the target classifier.
For instance in computer vision domain, adversarial examples
are crafted by injecting small noise, which often are not
perceptible to human eyes, into the original/clean image; such
adversarial inputs are capable of fooling the victim classifier
completely, resulting in incorrect predicted labels. Putting it
formally, suppose h(-) is an m — ary CNN classifier used
for image classification, = is an original/clean image, c is
the ground truth label of z such that ¢ = h(x), where
c €{1,2,...,m}. Next, the attacker’s target is to inject small
perturbation to x that will generate adversarial image, z’, so
that the predicted label for z’ is different from c. With this
information, the adversarial sample is generated by solving
the below optimization problem [20].

' =argmin D(z,z’), (1)

st. ' =h("), de{l,2,..m}\{c},

D(, il'/) <,

Where, € is the noise budget and D is the visual difference
between x and z’, which is measured using £, — norm as
follows:

n D
D(w,a')= (Y |Az|"| ;5 pe{0,2,00} (2
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Where, p = 0 indicates ¢p—norm, which counts the number
of pixels with different values at corresponding locations;
p = 2 indicates /,—norm, which measures the Euclidean
distance and p = oo indicates ¢, —norm, which is the Cheby-
shev distance measuring the maximum difference for all pixels
at corresponding locations. Suppose {z1,Z2,...,zn} is the
original image set and {z,x5, ..., 2’y } is the corresponding
adversarial image set, then the attack success rate is measured
using the following equation:

N
1
Attack success rate = N ; 1 [h (932) #h (ml)] 3)

B. VOS Basics

To cope with the end of Moore’s Law and performance
requirements of emerging applications, VOS has been used
in error tolerant applications; it consists of reducing supply
voltage without adapting the operating frequency. In this
section, we discuss the impact of VOS on hardware behavior.

While transistor size shrinks with the new generation
technologies, the effect of process variation becomes more
critical from a digital design perspective. In fact, lower de-
vice dimensions sharpen the circuit sensitivity to variations
such as imperfection of the manufacturing process, random
dopant fluctuation, and variation in the gate oxide thickness.
With reduced transistors dimensions, the standard deviation
of threshold voltage variation (AVy) increases since it is
proportional to the square root of the device area [21]:

oAv, = Aav,
" VWL

where W and L are the width and the length of the device,
respectively, and Ay, is characterizing matching parameter
for any given process. This variation in V; has a direct impact
on the circuit delay, which can be approximated using the
following equation [21]:

4)

Vbb
B(Vpp — V4)*

where o and [ are fitting parameters for a given gate in
a given process. For this reason, in the circuit design phase,
static timing analysis is generally achieved to verify that all
circuit paths meet the timing requirements to produce correct
output regardless of the input combination under given supply
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voltage. Scaling down the supply voltage (Vpp) from the
nominal operating voltage results in slowing down signals
propagation and thereby creating a timing overhead. If this
process is not accompanied with a corresponding frequency
scaling, timing errors may occur within the circuit results: this
is the case of VOS.

III. CHARACTERIZATION OF VOS-INDUCED FAULTS

This section is dedicated to explore VOS-induced fault
characterization on a real CPU. The characterization goal is
to understand the fault model of VOS, and verify if the VOS
computational fault have the properties that qualify it to be
used as a randomization based defense for securing DNNs. In
particular, we are interested to know if the VOS-induced faults
are: (1) stochastic: to obfuscate the classifier behavior, and
(2) controllable: to allow balancing the security and accuracy
trade-offs.

We experimented using an Intel Broadwell processor (model
number 17-5557U) running on Ubuntu 16.04 LTS with stock
Linux v4.15. Luckily, the reverse engineering effort [22],
[23] revealed that the operating voltage of modern processor
cores can be controlled from software through undocumented
model specific register (MSR). As such, we used the MSR to
control the voltage of the CPU from software. In particular,
we dynamically scaled voltage through MSR 0x150 (a 64-
bit register) where 3-bit (42-40) plain idx locates the CPU
components to apply voltage, and 11-bit (31-21) offset
indicates the requested voltage scaling offset. Encoding the
voltage offset (with respect to core’s base operating voltage)
using 11-bit signed integer allows us to achieve a step size
of 1/1024 V (about 1 mV), thus allowing a maximum voltage
offset of =1 V. We set plain idx to @ to adjust the voltage
of ‘processor core’ and kept CPU frequency at 2.2 GHz. We
observed that too little reduction in voltage does not produce
any fault but too far reduction results in system freezes or
crashes. Thus, to better understand the nature of the faults, we
reduced voltage by a small step size of 1 mV while repeatedly
executing the same instruction with the same operands until a
fault or system freeze occurs. Below, we will show the analysis
of VOS effect on multiplications as well as other operations.
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Fig. 1: Probability distribution of faulty bits location for
undervolted multiplication results. These results are generated
on i7-5557U at 2.2 GHz, with a CPU temperature of 49° C
and the CPU was undervolted by —130 mV.

A. VOS effect on multiplication

To understand how multiplication operation is effected by
VOS, we performed an experiment where we executed a mul-
tiplication several times without changing the operand values.

TABLE I: Examples of faulted multiplication on i7-5557U at
2.2 GHz. Figures in the table are in Hexadecimal format. Opl
and Op2 are the operands of multiplication. Red color in the

VOS result indicates fault location.

‘ Opl ‘ Op2 ‘ %IZ)IS >i'eg.l[;tz (g)[l’(}e: r?slfu
0x59a2f277 | 0xbee4b58 | 0x042d704dad4ae35e8 | 0x042d704al4ae35e8
0x59a2f277 | 0xbee4b58 | 0x0e2d704a14a205e8 | 0x042d704al4ae35e8
0x59a2f277 | Oxbee4b58 | 0x042d704a141735e8 | 0x042d704al4ae35e8
0x2d18c998 | Ox749ffff | 0x014844ad40d73668 | 0x0148b6ad40d73668
0x2d18c998 | 0x749ffff | 0x0148b6ad40dc3668 | 0x0148b6ad40d73668
0x2d18c998 | Ox749ffff | 0x0148b6ade5d73668 | 0x0148b6ad40d73668
OxfIffffff 0x6c4931e 0x0664931df93b6ae2 0x06c4931df93b6ce2
OxfIFFffff | 0x6c4931e | 0x06c493adf93bbece2 | Ox06c4931df93bbce2
OxfFffffff | 0x6c4931e | 0x06c4931d103b6ce2 | Ox06c4931df93b6ce2

The experiment is repeated for different sets of operands,
and some selected results (i.e., for faulty multiplications)
are reported in Table I. Each group (i.e., 3 rows) of results
shown in Table I was observed at a certain voltage. The first
group showed faults for 0.873 Volt, the second group for
0.861 Volt, and the third for 0.847 Volt. Specifically, for each
multiplication, we undervolted by a step of 1 mV starting from
the nominal supply voltage until we notice the first computing
errors. Then we maintain the voltage fixed and re-execute the
same multiplications and observe the computing errors before
resuming the VOS. We observed faults in the multiplication
result while the voltage was reduced by -103 mV to -145
mV. We observed faults in multiplication result while the
voltage was reduced by -103 mV to -145 mV as compared
to the base voltage. We noticed that the location of faults
varied randomly for the same operands. More interestingly, we
found that the pair of operands generating faults in one run
sometimes generate correct results in another run. As such,
these confirm that the VOS induces stochastic faults.

To examine the distribution of fault locations induced by
undervolting, we conducted an experiment using the above
mentioned experiment and calculated the fault rates for each
bit. This allowed us to gain insight into the distribution
of errors at a particular level of undervolting. The findings
are presented in Figure 1 (details of the experimental setup
provided in the caption). From this experiment, we observed
that the result sign bit was not flipped at all; it is because of the
fact that the multiplication result sign bit is just a simple XOR
operation of operands’ sign bits, which is far from the critical
path of the multiplier circuit. Likewise, we did not observe
any fault in the 8 least significant bits of the multiplication
result, mainly because the propagation delay is small in such
case.

Although from circuit perspective, under a given voltage,
for the same dopant fluctuation, and thermal condition, the
timing violation should be systematic, the stochastic faults
behavior is because of the critical path being input dependent.
In other words, different sets of operands may lead to different
critical-path lengths for a given operation. In addition, the
temperature’s impact on voltage threshold and delay varies
with the voltage [24]. Hence, by considering on-chip thermal
variability, timing violations are stochastically impacted by
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temperature.

After empirically observing that the VOS-induced faults
are stochastic, we check whether the faults are controllable.
Therefore, we setup an experiment such that multiplications
are repeatedly executed until a fault occurs. Figure 2 shows the
number of iterations, i.e., multiplications, needed to observe
the first fault for different voltage offsets, i.e, while scaling
the voltage down. The result shows that nominal reduction in
voltage requires higher number of iterations while aggressive
voltage reduction requires fewer number of iterations; the
probability of computational faults decreases while scaling
the voltage up and vice versa. Thus, demonstrating that VOS
induced faults are controllable.
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Fig. 2: Number of multiplications required to observe a
single computational fault vs. necessary voltage offset from
nominal — Vyg on i7-5557U at 2.2 GHz

B. VOS effect on other operations

Similar to multiplication operations, we performed the same
investigation on other operations such as addition, subtraction,
bit-wise AND, OR, and Shift operations. However, these op-
erations did not generate any fault while reducing the supply
voltage. This is because of the fact that these operations require
simpler circuit design, which have smaller propagation delay
in comparison with multiplication instruction.

IV. THREAT MODEL

This section describes the threat model under which we
evaluate the DNN models’ robustness. For this experiment,
two threat settings have been considered including the Black-
box attack and White-box attack scenarios explained as fol-
lows.

Black-box attack.

Under this threat model, attacker can query the target
models and observe their prediction for given inputs. In
other words, attacker can access the target model’s input and
output but does not have access to the victim model’s internal
information, e.g., model architecture, gradient, or hyperpa-
rameters. We implement the latest and the most powerful
attack called HopSkipJump (HSJ) [25], as a representative
of the black-box attack family. HSJ is an iterative attack that
utilizes only the decision of target model rather than model
gradient information. By relying on the victim’s final output,
HSJ estimates model gradients and approximates the direction
of gradient by using the binary information at the decision
boundary.

White-box attack.

White-box threat model assumes a more powerful attacker
than the black-box. Under this settings, attacker can access
input/output, target model’s architecture, gradients, weights.
bias, etc. Adversarial attacks are systematically generated by
utilizing the victim model’s internal information. Because of
the unrestricted access to model information, white-box attacks
are more difficult to defend against. Under this threat model,
we implemented Carlini & Wagner (C&W) attack [19] and
Projected gradient descent (PGD) attack [26], because of their
superior strength.

(1) C&W: It is one of the most powerful state-of-the-art
gradient-based adversarial attacks, which performs the follow-
ing optimization to create attack samples :

minimize 16]]2 + ¢ l(x+0) st. x=+06€0,1]"

Where ||§]|2 is the ¢ measure of the smallest perturbation
that can change the model’s prediction output and £(-) is the
loss function, which captures the difference between current
iteration and the objective of the attack as defined below:

U(x) = max(maxiz{Z(x)} — Z(x): — K)

Where Z(x) is the logits before applying softmax function,
t is the target label, and « is the class confidence.
(2) PGD: 1t is the strongest iterative variant of Fast Gradi-
ent Sign Method (FGSM) attack [11], where the adversarial
example is generated as follows.

2 =Py (2t + o - sign(VaLo(z',y)))

Where L£(-) is the loss function, 6 is the set of model
parameters, V is the gradient of loss, Pg, is a projection
operator projecting the input into the feasible region S, and
« is the amount of added noise in each iteration. Over
the iterations, PGD attack tries to find the perturbation that
essentially maximizes the loss on a given input while keeping
the size of perturbation smaller than the specified amount.
These attacks have been summarized in Table II.

TABLE II: Summary of the used attack methods. Notice that
the strength estimation (out of 5 stars) is based on [27].

‘ Method ‘ Category ‘ Perturb. Norm ‘ Learning ‘ Strength ‘
C&W Gradient-based Lo, Loo Iterative P
PGD Gradient-based l2,loo Iterative ks
HSJ Decision-based Lo, loo Iterative Hokokeoksk

V. PROPOSED APPROACH

We propose to harden DNN models against adversarial
attacks by leveraging hardware-induced noise, specifically
through VOS. We outline below the rationale behind choosing
VOS.

(i) It injects stochastic behavior: Injecting random noise’s
positive impact on DNNs robustness has been proven theo-
retically in [16], [17]. However, none of the related work has
shown a practical and controllable source of randomness that
does not require high overhead and considerable complexity.
One of the fundamental properties of VOS is that the induced
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timing violations are stochastic, as explained in Section III.
We leverage these properties as a natural and easy to deploy
source of random noise inside convolution layers.

(ii) Stochastic noise is controllable: While injected random
noise can be used to improve the robustness of DNNs [16],
[17], if the injected noise can’t be controlled, i.e., bounded,
the noise would drastically decrease the classifier accuracy on
clean input, i.e., not adversarial, as we show later in Figure 10.
Nonetheless, as we showed in Section III, the VOS induced
computational faults are controllable, which enables us to
balance the accuracy and security trade-offs.

(iii) Easy to deploy: VOS deployment does not include
any specific changes to the underlying hardware nor to the
running software, except for varying the supply voltage. It
does not require retraining the model, nor does it require
fine tuning parameters or changing hyper-parameters. These
properties make it highly practical and represent a drop-in
solution, contrasting with prior techniques, which require high
overheads. Moreover, VOS can be used on DNNs hardware
accelerators in System-on-Chips without impacting other com-
ponents reliability, especially if they are not fault-tolerant.
(iv) It reduces energy consumption: The very essence of
VOS is reducing supply voltage without adapting frequency.
It thereby comes with a high energy consumption reduction
because of the super-linear dependence of both dynamic and
leakage power on the supply voltage as follows:

P = OéCVl%Df + VDD]leak:age (6)

Where « is the activity factor, C' is the total capacitive load,
f is the frequency, Ijcqrage iS the leakage current, Vpp is the
supply voltage, and P is the total power consumption.

To model the impact of VOS on a large-scale system such
as a DNN, we utilized the VOS induced computational faults
characterization results shown in Section IIl. In particular,
based on the computational fault model generated through
our characterization, stochastic errors will be injected in the
multiplication operations. The impact of VOS-induced faults is
simulated by fault injection at the output of multiply operations
with different error rates to assess the impact of different
voltage levels. We modified the core convolution functions in
PyTorch to support this approach.

Terminology. In the remainder of the paper, we call
exact model: a conventional trained CNN model and
approximate model: a model where we apply VOS at
inference.

VI. SECURITY EVALUATION

In this section, we begin with the explanation of differ-
ent setups of our experiment (cf. Section VI-A). Later, we
thoroughly illustrate the effectiveness of our defense, which
shows how much resilient are the target models against attack.
Specifically, we evaluate the robustness of defending models
against white-box attack (cf. Section VI-B) and against black-
box attack (cf. Section VI-C) in the presence of our defense.

Dataset
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'
'
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Fig. 3: Different steps of the proposed exploration framework.
Here, € is the adversarial attacker noise budget and fr is the
VOS-induced fault rate.

A. Experimental Setup

This section describes how we setup the experiment and
step-by-step flow of the execution. Our experiments aim to
generate adversarial attacks on victim DNNs, comparatively
with and without our proposed defense, and report robustness.
We conducted our entire exploration using PyTorch, running
on a server, which comprises Intel Broadwell Xeon E5 pro-
cessor with 16 cores and 512 GB RAM.

Attack configurations: We implement both the ¢, and /.
variant of C&W, PGD, and HSJ attacks. We choose these
attacks because of their strong attack performance, as shown
in Table II. We perform these attacks using PyTorch-based tool
called Adversarial Robustness Toolbox (ART) [28].

Benchmark networks and datasets: We explored our defense
on five image classifiers using four different datasets briefly
summarized as follows. (a) LeNet-5 + MNIST: Here the model
has a total of 5 layers comprising 3 convolution layers and 2
fully connected layers. The model is trained and tested on a
10-class dataset (MNIST), which has 70,000 28 x28 grayscale
images of handwritten single digit between “0” and “’9’.
More specifically, it has 60,000 training images and 10,000
test images, where each class has 6,000 training and 1,000
test samples. (b) AlexNet + CIFAR-10: Here the model has
a total of 8 layers divided into 5 convolution layers and 3
fully connected layers. The model is trained and tested on a
10-class dataset (CIFAR-10), which has 60,000 32x32 color
images with 6000 images per class. More specifically, it has
50,000 training samples and 10,000 test samples, where each
class has 5,000 training and 1,000 test samples. (¢) ResNet-18
+ CIFAR-100: Here the model has a total of 18 layers split
into 17 convolution layers and 1 fully connected layer. The
model is trained and tested on a 100-class dataset (CIFAR-
100) comprising 60,000 32x32 color images with 600 images
per class. More specifically, it has 50,000 training samples and
10,000 test samples, where each class has 500 training and
100 test samples. (d) ResNet-50 + ImageNet: Here the model
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has a total of 50 layers grouped into 49 convolution layers
and 1 fully connected layer. The model is trained and tested
on a 1000-class dataset (ImageNet), which is a benchmark in
image classification and object detection; and finally (e) VGG-
16 (having 13 CONV layers and 3 FC layers) with ImageNet
dataset. The reason behind choosing different networks is that
they represent shallow, deep, and deeper network. Again, we
choose MNIST, CIFAR-10, and CIFAR-100 because they are
representative of easier to challenging datasets. Our goal is to
explore whether our defense is effective across diverse attack
variants (¢5 and /), across different threat models (white-
box and black-box), across different models (from shallow to
deeper), and across various datasets (from easy to challenging).

Exact models: We trained the exact (i.e., conventional) model
of LeNet-5 on MNIST, AlexNet on CIFAR-10, ResNet-18
on CIFAR-100, ResNet-50 on ImageNet, and VGG-16 on
ImageNet. We normalized the datasets before training the
models.

Approximate models: We implement the approximate models
by injecting controllable stochastic faults after CONV layers
of the exact models. The learnable parameters (i.e., weight,
bias, etc.) of approximate models are updated with the values
of that of their corresponding trained exact models.
Evaluation framework: Figure 3 outlines different stages
of our experimental framework to evaluate model robustness
under VOS. In the figure, the notation heyqq¢() indicates the
exact model and happmm() represents the approximate model.
We start with dataset preprocessing (e.g., normalization) and
model training. Next, we run adversarial attacks (e.g., C&W,
PGD, and HSJ attack) on the exact model and approximate
model to generate adversarial samples. Adversarial attacks
perturb clean/original inputs by injecting noise, with a noise

budget of e. For attacking exact model, we vary only the «;
however, for attacking approximate model, we vary both €
and fault rate fr. As such, %% (¢) is the adversarial sample
on exact model and (e, fr) is the adversarial sample
on approximate model. We implement approximate models
for different fault rates, fr € {10_67 107%,1074, 10_3},
corresponding to different VOS levels. It is to be mentioned
that every fault rate or VOS level generates a specific behavior
in the model, indicating a separate model-under-test. After
generating adversarial samples, we measure the detection
accuracy on exact model (cf. Figure 3-Step 6) and approximate
model (cf. Figure 3-Step 7). Because the approximate models
show stochastic behavior, in order to get representative results,
we repeat each experiment on approximate model 10 times and
report the mean and standard deviation of accuracy. Standard
deviation reflects the amount of stochasticity.

B. Resilience against white-box attacks

In this section, we show the security analysis of CNNs under
white-box attacks, particularly, using the powerful C&W and
PGD attacks with /., and ¢ variants.

Figure 4, shows the classification accuracy of the exact
model and approximate models of the LeNet-5, AlexNet,
ResNet-18, ResNet-50, and VGG-16 CNNs under /., C&W
attack while varying e. For LeNet-5 (Figure 4-(a)), the exact
model (heyqct) yields very high classification accuracy (around
99%) when € is very low (0.01). However, while we increase
€, the exact model accuracy decreases until it is nearly totally
fooled after ¢ = 0.4. Most importantly, approximate model
fr = 10~* maintains a high detection accuracy of about
78.06% while varying € (even when the exact model is totally
fooled, ¢ = 0.4), which provides considerable robustness.
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Interestingly, this observation holds for other networks for
fr = 1075, which helps them maintain a classification
accuracy of ~82.70%, ~67.77%, ~73.70%, and ~68.05%,
in Figure 4-(b), Figure 4-(c), Figure 4-(d), and Figure 4-(e)
respectively.

Figure 5 shows the robustness for /o C&W; we cannot vary
e for this attack since the ART toolbox does not provide this
parameter. In particular, the ART toolbox generates adversarial
samples for a fixed epsilon, which totally fools the exact model
of LeNet-5, and the exact model accuracy of AlexNet ResNet-
18, and ResNet-50 drops to about ~10%, and that of VGG-
16 drops to ~8%. Interestingly, approximate model fr=10"*
yields the highest robustness accuracy of ~82.51% for LeNet-
5 and fr=10"° makes others models robust— with ~81.09%
robustness for AlexNet in Figure 5-(b), ~66.04% for ResNet-
18 in Figure 5-(c), ~73.59% for ResNet-50 in Figure 5-(d),
and ~68.29% for VGG-16 in Figure 5-(e).

Again, Figure 6 shows the robustness results against (.,
PGD attack. This is the only attack variant where fr=10"°
yields the maximum robustness across all models. Specifi-
cally, the approximate model fr:l()’5 on LeNet-5, AlexNet,
ResNet-18, ResNet-50, and VGG-16 shows the robustness
accuracy of ~93%, ~83%, ~69%, ~77%, and ~70%, re-
spectively.

Similarly, Figure 7 shows the robustness against /o PGD at-
tack, where approximate model fr=10"° maintains the highest
robustness accuracy across all models considered. Specifically,
against this attack variant, LeNet-5 shows the robustness of
~93% in Figure 7-(a), AlexNet shows ~82% in Figure 7-
(b), ResNet-18 shows ~68% in Figure 7-(c), ResNet-50 shows
~76% in Figure 7-(d), and VGG-16 shows ~70% in Figure 7-

(e).

Despite white-box attack being the strongest setting due
to the availability of model internal information, our defense
still enables the protected models to maintain considerably
high accuracy on adversarial samples. In fact, we observe the
high robustness for all the considered models and against all
variants of C&W and PGD attacks. The exact model accuracy
in all figures does not have any standard deviation since the
exact model does not include our stochastic fault injection and
thus shows deterministic behavior.

C. Resilience against black-box attacks

Unlike white-box attacks, the adversary do not have access
to the noise budget in HSJ black-box attack. Thus, we run
the HSJ attack with the default configuration, which uses 40
iterations with /5 norm and 100 iterations with ¢, norm. For
all models, /., HSJ attack (i.e., Figures 8) used ¢ = 0.27
and ¢ HSJ attack (i.e., Figure 9) used ¢ = 3.5. We updated
Section. Figures 8 and 9 shows the classification accuracy
of exact model and approximate models of all CNNs con-
sidered under /., HSJ and ¢ HSIJ, respectively. For the
exact model, all results (figures) show that they are almost
totally fooled as their detection accuracy is close to zero.
For LeNet-5 (Figures 8-(a) and 9-(a)), approximate model
fr=10"% is the most robust, yielding an average of ~79.63%
and ~81.59% accuracy, respectively. Similarly, for AlexNet
(Figure 8-(b) and 9-(b)), approximate model fr=10"° shows
the highest robustness with ~77.69% and ~79.58% accuracy,
respectively. Likewise, for ResNet-18 (Figures 8-(c) and 9-(c)),
approximate model fr=10"% shows the highest robustness
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with ~65.04% and ~66.32% robustness accuracy, respec-
tively. Moreover, for ResNet-50 (Figures 8-(d) and 9-(d)),
approximate model fr=10"° shows the highest robustness
with ~73.18% and ~73.03% robustness accuracy, respec-
tively. Furthermore, for VGG-16 (Figures 8-(e) and 9-(e)),
approximate model fr=10"° shows the highest robustness
with ~68.05% and ~67.96% robustness accuracy, respectively

An interesting observation for HSJ attack is that LeNet-5
performs the best at fault rate of 10~% but AlexNet, ResNet-
50, and VGG-16 yield the highest robustness at fault rate of
10~5; this is because of the fact that we inject faults after each
convolution (CONYV) layer, and LeNet-5 has only 3 CONV
layers while others have more. Comparatively deeper models
receive substantial stochastic noise even for lower fault rates,
while LeNet-5 requires greater fault rates to reach the same
saturation out of only 3 CONV layers. The same observations
holds between ResNet-18 and ResNet-50, where the former is
comparatively shallow model than the latter.

Insight: From the comparison of black-box and white-box
settings, we notice an interesting counter-intuitive property.
In fact, we recorded higher robustness under white-box than
black-box setting. This is counter-intuitive since the former
is theoretically stronger than the latter, at least from the

(c) ResNet-18 +
CIFAR-100

(d) ResNet-50 +
ImageNet

(e) VGG-16 +
ImageNet

Baseline accuracy of the tested models under different VOS levels (i.e. fault rates)

attacker’s knowledge perspective. We believe that this is due
to the impact of VOS on the actual gradient. In fact, the
gradient V,, which is the derivative of logits with respect to
input, is impacted by the internal computation stochasticity, in
every single attack generation iteration. However, the black-
box does not have access to the internal feature maps and is,
by consequence, less impacted by the internal stochasticity. It
is more impacted by the variations in the output, which appear
more clearly with the higher error rates.

D. Transferability of Attacks

So far, we considered generating adversarial samples based
on approximate models, specifically targeting a particular fault
rate, and then evaluated on the same model. However, here
we evaluated the transferability of attacks, where adversar-
ial samples are generated on one model (the exact model)
and tested on another model (the approximate model). The
heatmap presented in Figure 11 illustrates the results in terms
of adversarial accuracy (expressed as a percentage). Notably,
the heatmap reveals the presence of a “sweet spot” in fault
rates that ensures a high level of adversarial accuracy is
maintained.
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Fig. 11: Transferability of attacks generated on exact model.
Results in the heatmap represent the adversarial accuracy (in
percentage). Heatmaps show the results for ¢ variants of
C&W (e = 1.35), PGD (e = 2.5), and HSJ (e = 3.5) attacks
on CIFAR-10 and CIFAR-100 datasets.
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Fig. 12: An illustration of the accuracy/robustness tradeoff
for AlexNet with CIFAR-10 on HSIJ. In the figure, fr = 0
indicates the exact model, hcgpqer-

VII. ACCURACY, SECURITY AND POWER TRADE-OFF

For any defense solution, it is necessary to investigate how
the defense is affecting secured model’s baseline accuracy
(on clean inputs) besides its robustness (on malicious inputs).
Because it is of no use deploying a robust model that has
low classification accuracy on benign inputs. It is especially
important since models are more frequently expected to clas-
sify benign inputs than malicious inputs. Thus, after assessing
security/robustness aspect of VOS (cf. Section VI-B and
Section VI-C, we delve into the effect of VOS on model
baseline accuracy in this section. Furthermore, we analyze the
effect of VOS on power consumption.

Baseline accuracy: Baseline accuracy refers to the classifi-
cation accuracy on clean/original inputs; in other words, it
is the accuracy without attack scenario. Figure 10 shows the
baseline accuracy for various VOS levels, contrasting with
the respective exact (undefended) models. We observe that
nominal fault rates result in approximate models yielding com-
parable baseline accuracy like the exact model. However, more
aggressive fault rates (e.g., fr=10"2) cause significant drop
in accuracy of the approximate models. Nevertheless, from

the security analysis, the faults rates that achieves the highest
robustness resulted in ~2.65%, ~2.67%, ~2.88%, ~2.93%,
and ~1.36% accuracy loss for LeNet-5, AlexNet, ResNet-18,
ResNet-50, and VGG-16, respectively. We interpret such loss
in accuracy as the cost for security.

Power savings: Since the supply voltage is reduced in VOS,
using such technique as a defense also intrinsically offers
by-product savings of energy/power consumption. To demon-
strate the power saving advantage, we implement a multiply-
accumulate (MAC) circuit at 45 nm technology with PTM
[29] using Keysight Advanced Design System (ADS) platform
and run Monte Carlo simulations under VOS considering
process and thermal variation. This allows us to evaluate
the computational faults rate as a function of VOS level.
Figure 13 shows the dynamic power savings corresponding to
the multiplier accuracy loss. The results demonstrated that a
considerable power gains come with down-scaling the supply
voltage.

Trade-off: Our results show that a tradeoff between accuracy
and robustness with by-product power savings could be found,
thereby ensuring robust models with low accuracy cost and by-
product power savings. An example of possible “sweet-spots”
that can be found for a CNN is given in Figure 12 for Alexnet
under HSJ attacks. We show Figure 12 as a sample that can
be followed to obtain all tradeoff results for all networks;
however, we could not include them all to avoid repetition.
Nonetheless, the example shows that a quick exploration can
be done for a given CNN to achieve the highest possible
robustness with the lowest possible accuracy drop.

1072 <00
_y[*— Fault rates 26.0% ALA%]° f .
g 10 Power savings o7 o 0-U70 40% 2
E 0! o 30% 2
= 105 18.9% 200; f
E o 610.35% ‘ |2
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Supply voltage (volts)
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Fig. 13: MAC timing error rates and corresponding power
saving under different supply voltage levels.

VIII. EPISTEMIC UNCERTAINTY

This section explores the uncertainty of model prediction
under voltage overscaling. It is important to analyze uncer-
tainty because models can be uncertain even if they assign
a high probability to a predicted class [30]. In practice,
uncertainty may arise due to the input or model. In our defense
approach, we inject stochastic faults into the inference compu-
tation of the model rather than the input. Thus, we estimate the
model uncertainty or epistemic uncertainty, which represents
the uncertainty when predicting a single data point with a
randomized model. We measure the epistemic uncertainty by
following the approach illustrated in [30]. Given a DNN model
h : X — ), an input image x € X, and a predicted class
y € Y, the epistemic uncertainty is defined by the softmax
variance. For this, we do N,, stochastic forward passes for
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each image = and obtain /V,,, softmax vectors. Then the model
uncertainty (MU) is estimated by the following equation.

Z Dij — pz (N

Where p;; is the probability of predicting the input x as the
i-th class in the j-th forward pass and p; is the mean ]grobablhty
for the i-th class over N, passes, i.e., p; = Z y 7 Dij- We
used N,,=100 for all models in our expenment
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Fig. 14: Effect of fault rates on accuracy and epistemic
uncertainty of different models— (a) LeNet-5, (b) AlexNet,
(c) ResNet-18, (d) ResNet-50, and (e) VGG-16. For each sub-
figure, left side Y-axis indicates the accuracy and right side Y-
axis indicates the epistemic uncertainty; the X-axis (i.e., fault
rate) is shared among all sub-figures.

We measure the epistemic uncertainty for each image in
test dataset while injecting stochastic faults in the model; for
each fault rate, we calculated the mean and standard deviation
of the uncertainty. Figure 14 shows the epistemic uncertainty
on the right-side Y-axis and contrasts it with model accuracy
on the left-side Y-axis. Figure 14 comprises five sub-figures,
one sub-figure per evaluated model. All sub-figures share a
common X-axis representing different fault rates. More specif-
ically, Figure 14(a) is for LeNet5+MNIST, Figure 14(b) is for
AlexNet+CIFAR-10, Figure 14(c) is for ResNet-18+CIFAR-

100, Figure 14(d) is for ResNet-50+ImageNet,
ure 14(e) is for VGG-16+ImageNet.

For each sub-figure, the solid line indicates mean accuracy,
the broken line indicates mean epistemic uncertainty, and
the shadow around the line indicates corresponding standard
deviation. In each sub-figure, fr=0 refers to the exact model,
where we did not inject any stochastic faults in the inference
computation, resulting in zero standard deviation for both the
accuracy and uncertainty. As we start injecting faults with
increasing fault rates, we observe increases in the standard
deviation. Likewise, the mean epistemic uncertainty increases
with the increasing faults, making the models more uncertain
about their prediction, resulting in decreasing trend in their de-
tection accuracy. Interestingly, the fault rate that is optimal for
accuracy/robustness tradeoff corresponds to low uncertainty
and high accuracy. For instance, we devise a sample tradeoff
between accuracy and robustness for AlexNet classifier on
CIFAR-10 dataset in Figure 12, which shows that fault rate
fr=107% turns out to be optimal. The impact of this optimal
fault rate fr=10"5 on epistemic uncertainty for this model is
shown in Figure 14(b), which shows an epistemic uncertainty
of 0.0068. Besides, at this fault rate, the model maintains
a classification accuracy of 84.43%, which is ~2.67% loss
in accuracy compared to the baseline accuracy. We observe
similar trend for other models as can be seen in Figure 14.

and Fig-

IX. RELATED WORK

This section presents the related work on different defenses
methods.
Adversarial Training (AT).Adversarial training was proposed
by Goodfellow et al. [11] and Madry et al. [31], where adver-
sarial samples were used to train target models so that models
can identify attacks during inference time. Although known
attacks can be detected by AT, new/unknown attack variants
cannot be detected by this defense technique. Moreover, AT
requires huge time in generating the attack samples (for using
in the victim training) and demands extra time for model
fitting [32].
Input Preprocessing. Das et al. [12], Osadchy et al. [13], Gu
et al. [14], and Guesmi et al. [33] proposed input preprocessing
based defenses, where adversarial perturbations are removed
from the input by means of applying various transformations.
However, while black-box attacks are defeated by this defense,
whit-box attacks are still effective, where the knowledge about
gradients and preprocessed inputs are available to adversaries.
It happens because the insight of gradients and transformation
enables the adversaries to restore adversarial perturbations by
reversing the defensive preprocessing.
Gradient Masking (GM): Under this category of defense,
Papernot et al. [15] introduced defensive distillation, where
gradient masking and regularization of model has been used.
However, later, Carlini & Wagner published the powerful
C&W attack [19], which severely undermines the defensive
distillation defense. Furthermore, Ross and Doshi-Velez [34]
proposed another defense along this line; specifically, authors
penalize model output variation with respect to input changes,
in order to perform regularization of gradient input; authors
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perform these steps for training models that are differentiable.
Nevertheless, Athalye et al. [35] exposed the downside of GM
as it depends on model re-training and shows a false sense of
security.

Hardware-based defenses: Hardware-based defenses were
proposed to overcome the performance overhead introduced by
software-based defenses. 2-in-1 accelerator [36] showed that
adversarial attacks transfer poorly between different precisions
of an adversarially trained model. Thus, they built a ML accel-
erator that can randomly switch between adversarially trained
model during inference. Defensive Approximation [37], pro-
posed to inject input dependent noise using approximate multi-
pliers that is able to make the model robust against adversarial
attacks. However, both works [36], [37] require hardware
changes (i.e., building new hardware). Majumdar et al. [38]
showed that undervolting an FPGA introduce computational
noise to the model inference that makes the model more
robust against adversarial attacks. Compered to our work, this
work focused on FPGAs while our work focused on CPUs. In
addition, we provide full characterization of the faults.
Randomization-based defenses. Lecuyer et al. [16], Cohen et
al. [17] and Raghunathan et al. [18] porposed randomization
based defenses, which are the closest to our proposed defense.
Specifically, the entire CNN has been randomized and an en-
semble of several copies of the CNNs were used for inference.
Likewise, the first layer of CNN is randomized by injecting
random noise in [16] and a Monte Carlo simulation is used for
output estimation. A bounded formal guarantee of robustness
is achieved by those techniques. Moreover, Islam et al. [4],
[5] demonstrated that malware detectors can be secured via
VOS against evasive malware attacks. Furthermore, defensive
approximation [37] is another defense, proposed by Guesmi
et al., which empirically showed that CNNs can be harden
against adverasarial samples by injecting noise that are data
dependent.

TABLE III: Comparison of defenses

retrainin inference| specialized |results in| low effect
Defenses &loverhead| hardware power |on baseline
free? . .
free? |independent?| savings? | accuracy?
Ad ial
Tve.rs'arla X X v X X
raining
I
Prenpt x x v x X
reprocessing
Gradient
Masking X X v X X
Hardware
based v v X v X
defense
Randomization
based X X v X X
defense
Our v v v v v
defense

X. DISCUSSION

This work has unprecedentedly shown that a promising
security enhancement technique of CNN/DNN can be imple-

mented in a practical and efficient manner using undervolting.

Calibration: The faults induced by undervolting can differ
between devices, making it necessary to perform a distinct
calibration for each one to identify the optimal level of under-
volting that balances accuracy and robustness. Additionally,
temperature plays a crucial role in influencing these faults, as
suggested by the findings in [39]. As a result, the undervolting
level should be adaptive based on the temperature to maintain
the optimal tradeoff between accuracy and robustness.
Limitations: Models that perform computations on values
that are close to zero cannot be protected because the least
significant bits cannot be flipped via undervolating.

Effect of stochastic faults on the variance of the reported
results: We also investigate how the mean and standard
deviation of accuracy are effected if we increase the number of
iterations of our experiments. Therefore, repeated the experi-
ments while increasing the number of iterations to 150 rather
than 10. To understand the effect, we subtracted the mean of
10 iterations and from that of 150 iterations. We found some
changes in mean accuracy for the approximate models due to
their stochasticity. Our results shows that the fluctuation in
accuracy of the approximate models are negligible (i.e., less
than 1%).

XI. CONCLUSION

We propose an effective defense technique, by unprecedent-
edly leveraging VOS, to enhance the security of CNN/DNN
against adversarial samples. VOS generates randomness in
DNN computation by violating the timing requirement delib-
erately and stochastically, which transforms the DNNs into
moving target defense. The proposed defense does not require
re-training or additional computation and can be used with
pre-trained models. Moreover, besides the security advantage,
the proposed defense offers a by-product energy savings due
to its intrinsic undervolting and cutting power consumption,
As such, based on the empirical results, we believe that our
defense advances the sate of the art, especially for the machine
learning applications targeting edge/embedded/IoT devices.
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