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ABSTRACT

Functional interactions and anatomic connections between

brain regions form the connectome. Its mathematical rep-

resentation in terms of a graph reflects the inherent neu-

roanatomical organization into structures and regions (nodes)

that are interconnected through neural fiber tracts and/or in-

teract functionally (edges). Without knowledge of the ground

truth topology of the connectome, functional (directional or

nondirectional) graphs represent estimates of signal corre-

lations, from which underlying mechanisms and processes,

such as development and aging, or neuropathologies, are dif-

ficult to unravel. Biologically meaningful simulations using

synthetic graphs with controllable parameters can comple-

ment real data analyses and provide critical insights into

mechanisms underlying the organization of the connectome.

Generative models can be highly valuable tools for creating

large datasets of synthetic graphs with known topological

characteristics. However, for these graphs to be meaning-

ful, the variation of model parameters needs to be driven by

real data. This paper presents a novel, data-driven approach

for tuning the parameters of the generative Lancichinetti-

Fortunato-Radicchi (LFR) model, using a large dataset of

connectomes (n = 5566) estimated from resting-state fMRI

from early adolescents in the historically large Adolescent

Brain Cognitive Development Study (ABCD). It also presents

an application, i.e., simulations using the LFR, to generate

large datasets of synthetic graphs representing brains at dif-

ferent stages of neural maturation, and gain insights into

developmental changes in their topological organization.

Index Terms— Brain connectome, topology, generative

models, development

1. INTRODUCTION

Coordinated brain activity, reflected in correlations between

electroencephalographic (EEG), functional MRI (fMRI) or

magnetoencephalographic (MEG) signals, is often repre-

sented by a graph G(V, E), with V nodes, corresponding to
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brain regions, and E edges representing correlation strength.

This representation facilitates the investigation the brain’s

topological organization and properties [1]. Brain graphs are

typically estimated using a wide range of methods, including

time-domain cross-correlation, frequency-domain coherence,

covariance, and probabilistic measures and their variants [2].

Despite invaluable insights gained by brain graph analyses,

the absence of a ’ground truth’ topology makes it difficult to

elucidate the mechanisms underlying normal or pathological

connectome changes. In turn, this limits our understanding

of fundamental biological processes, such as neural matura-

tion and degeneration, and the effects of neuropathologies

on the organization of brain circuits. Simulations using syn-

thetic brain graphs with known and controllable topological

properties can complement real data analyses, facilitate per-

turbations of specific graph properties, and provide mecha-

nistic insights into the effects of these perturbations on neural

information processing and cognitive function.

Generative network models are valuable for simulating

large datasets of brain graphs. An early generative model

of the human connectome was proposed by [3] to describe

the probability of edge formation between brain regions. It

incorporated a function that favored connections between

nodes sharing nearest neighbors, and was able to reproduce

hallmark topological properties of the brain, such as global

efficiency, clustering, and modularity. Similar models have

been used to generate synthetic structural networks, and have

shown that model parameters and fit are affected by age, with

worse fit in older individuals [4]. The study by [5] modeled

white matter networks, which were hypothesized to undergo

developmental changes that are necessary to increase their

controllability and decrease synchronizability. To test this

hypothesis, structural networks of over 800 subjects, ages 8

-22 years, were analyzed. Network development was simu-

lated using a generative model that optimized controllability.

Results showed that simulated graphs had similar develop-

mental trajectories as real brain circuits. Other types of mod-

els have also been used to describe the human connectome.

The Weighted Stochastic Block Model (WSBM) has been

used to study how community structure in brain networks
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changes across the lifespan [6]. Community structure is of-

ten estimated using modularity maximization approaches,

such as the Newman method [7]. However, WSBM has been

shown to be an effective alternative, resulting in synthetic net-

works with more realistic organization than those based on

maximizing modularity. Exponential Random Graph Models

(ERGM) have also been used to describe the the structural

and functional connectomes and individual brain networks

[8, 9, 10]. Finally, other types of network models, such as

graph convolutional networks, are increasingly used to learn

the organization of brain networks for classification and pre-

diction purposes [11, 12].

When simulating the topology of the human connectomes,

the resulting synthetic graphs need to be biologically realis-

tic. Thus, real datasets play a critical role in deriving model

parameters. If these datasets are small, derived model param-

eters may not be representative of the population. Large-scale

studies, such as the Human Connectome Project (HCP) [13]

and the Adolescent Brain Cognitive Development (ABCD)

study [14], provide a unique opportunity to estimate gener-

alizable model parameters, an realistic synthetic graphs with

topological characteristics that are similar to those of real con-

nectomes. In addition, the selected generative model needs to

have biologically interpretable parameters that can be mapped

onto the brain’s topological properties.

We present a novel approach that leverages the histori-

cally large ABCD dataset to estimate resting-state connec-

tomes of early adolescents and related property statistics.

The latter are used as inputs to the Lancichinetti-Fortunato-

Radicchi (LFR) model [15], to generate a large dataset of

synthetic brain graphs with variable topologies. The LFR

was chosen for its flexibility (compared to other models), to

vary model parameters in a way that can be mapped onto

biologically meaningful changes in topological graph proper-

ties. Tuning the parameters of the LFR model can be linked

to specific changes in node degree, community size (and

number of communities), and inter-community connected-

ness, which is not straightforward or even possible with other

models. In some of these models, parameter tuning can lead

to simultaneous changes in multiple topological properties

that are difficult to disentangle. As an application, we use

the generated dataset in simulations, to investigate system-

atical changes in graph topology that reflect developmental

processes and reorganization of brain circuits.

2. METHODS

2.1. Neuroimaging Data

Resting-state (rs) fMRI data from 5566 early adolescents in

the ABCD study (median age = 120.0 months, inter-quartile

range (IQR) = 13.0 months) were analyzed, to estimate task-

independent connectomes and their topological properties.

These data were selected based on quality of fMRI signals

(minimal contamination by motion-related and nonbiologi-

cal artifacts). Data were analyzed in the custom-developed

Next-Generation Neural Data Analysis (NGNDA) platform

[16]. They were first preprocessed to register the fMRI to

each participants structural MRI, map onto a common atlas,

correct for motion, and suppress various cardiorespiratory

and nonbiological artifacts. Voxel-level time series were then

downsampled to a parcel-level resolution. For this purpose,

a high-resolution cortical parcellation [17] and additional at-

lases for subcortical regions and the cerebellum were used.

Connectivity was estimated as the peak cross-correlation be-

tween parcel time series. Each functional connectivity matrix

was thresholded using bootstrapping of multiple statistical

and percolation-based thresholds. The moderate outlying

peak cross-correlation was used as a conservative but realistic

threshold, to eliminate weak connections and retain rela-

tively strong connections. For comparison, connectivity was

also estimated using mutual information, to assess method-

dependence of connectome topologies. Both methods yielded

statistically similar connectivity patterns. The data processing

and connectivity estimation are described in detail in [18].

2.2. Network Generation Algorithm

Synthetic networks were generated using the LFR algorithm

and Python library Networkx [19]. The algorithm assumes a

power law distribution for node degree and community size.

The distribution can be controlled using power law exponents,

τ1 and τ2, for degree and community size, respectively. The

number of nodes in the graph is specified by parameter n. For

each node, the fraction of its connections to a node outside its

community is determined by the parameter µ. Thus, µ = 0
results in a graph where all edges are between nodes of the

same community, whereas µ = 1 leads to a network where all

edges are between nodes from different communities. Other

inputs, such as the average (median) degree, can be used to

further constrain node degree and community size. The steps

to generate a graph using the LFR algorithm are:

1. Assign a degree to a node, drawn from the power law

distribution of τ1. If average degree is given as an in-

put, the resulting degree sequence must have an average

degree equal to that value.

2. Select community sizes, by drawing from the power

law distribution for exponent τ2 until the sum of com-

munities equals the number of graph nodes n.

3. Randomly assign each node u to a community, under

the condition that the assigned community contains at

least (1 − µ) ∗ (degree(u)) nodes. If the community

becomes too large, randomly select a node to be moved

to a different community.

4. For each node u, generate (1−µ) ∗ (degree(u)) edges
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within and (mu) ∗ (degree(u)) edges outside its com-

munity.

2.3. Data-Driven Simulations

Resting-state connectivity matrices were thresholded to ob-

tain binary and weighted adjacency matrices. The Newman

algorithm was used to identify the number of communities

and their respective sizes. For each brain, median community

size was then estimated. The 25th and 75th quartiles of the

number of communities, median community size, and median

inter-community edge ratio in n = 5566 brains were then es-

timated. Similar statistics were estimated for median degree,

and are summarized in Table 1.

Table 1. Quartiles (Q) of graph properties estimated from

resting-state brain networks.

Property 25th Q 75th Q

Median Degree 25 91

Number of Communities 4 9

Community Size 103 273

Inter-Community Connectedness (µ) 0.13 0.34

These statistics were used to guide the model input. Given

that the appropriate values for degree and community size

were not a priori known, a wide range of starting values for

τ1 and τ2 were used, within the estimated quartile bounds.

Not all values τ1 and τ2 led to graphs with a biologically re-

alistic number of communities. Only graphs with a relatively

small number of communities (< 20) were used in the next

set of simulations, which extended the range of values for av-

erage degree and µ, to simulate developmental stages before

and beyond early adolescence. Lower and upper bounds for

average degree were set to 10 and 150, respectively, and for

µ, 0.05 to 0.70. The lower bound corresponds to developed

brains, in which communities that are highly connected lo-

cally are linked to each other by strong but sparse long-range

connections. The upper bound corresponds to highly under-

developed brains (in early life), in which redundant connec-

tions have similar weights and communities are difficult to

distinguish.

To create a large set of networks that replicated the het-

erogeneity of the real dataset, τ1, τ2, µ and average degree

input were individually varied. Although every combination

of parameters was attempted, some simulations did not con-

verge, thus 2669 valid binary graphs were generated. Non-

zero edges in these binary graphs were assigned weights by

sampling from the distribution of peak cross-correlation val-

ues estimated from the real data.

To simulate realistic connectomes at different stages of

neural maturation, the following approach was used. First, in-

dividual resting-state networks were identified in the real data,

using the anatomical delineations in [20], and were catego-

rized as fully-developed, partially developed, or underdevel-

oped based on a large body of prior work. Given that partici-

pants were in pre/early adolescence, visual networks were as-

sumed to be fairly well developed, the somatomotor network

to be partially developed, and the frontoparietal control, lim-

bic, reward and default-mode networks to be underdeveloped.

This categorization was necessary in order to estimate ranges

of connectivity values that reflected differential stages of net-

work development, and assign weights to the binary graphs

based on distributions of correlation values in each of these

developmental categories. Second, in each synthetic graph,

within-community connectivity was assigned assuming a de-

velopmental stage of the community (fully, partially or under-

developed). Each edge between nodes within that community

was assigned a weight by randomly sampling from the distri-

bution of correlation values for its corresponding category. Fi-

nally, between-community connectivity was assigned assum-

ing low, medium, and high correlation ranges. The bottom

10% values in real weighted adjacency matrices were used

as the range of low intra-community correlation. Medium

correlation was drawn from values between the 40th - 50th

percentiles (below the median). The top 10% values were

used as the range of high intra-community correlation. Cor-

responding median values for the 3 categories were r = 0.54,

0.67 and 0.73. Since each of the 2669 binary graphs was as-

sociated with three weighted graphs (corresponding to graphs

with weakly, moderately and highly correlated communities),

a total of 8007 weighted graphs were analyzed. Topologi-

cal properties were estimated using the Brain Connectivity

Toolbox and custom-developed codes [18, 21], and included

global efficiency, global clustering, small-worldness, modu-

larity, topological robustness, and topological stability. All

properties used the weighted graphs (thus results are based

on 8007 graphs), except small-worldness, for which results

are based on 2669 binary graphs.

3. RESULTS

Simulations first assessed the relationship between model

parameters and topological properties. To examine the link

between µ (reflecting inter-community connectedness) and

topological properties, degree and number of communities

were held constant. Parameter µ was inversely related with

small-worldness, modularity, and global clustering, which

monotonically decreased as a function of reaching a plateau

at µ ∼0.40. Global efficiency sharply increased from µ = 0.05

to 0.20, but at a slower rate after that. Both robustness and

stability increased up to µ ∼0.5, and then began decreasing.

The results are shown in Figure 1. Each data point represents

a median over all graphs with a particular µ value.

Next, the relationship between number of communities

and topological graph properties was examined, holding µ

and degree constant. A higher number of communities was
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associated with higher modularity and small-worldness, but

lower global efficiency, robustness, global clustering, and sta-

bility The results are shown in Figure 2.

Fig. 1. Changes in topological properties as a function of µ.

Shaded areas reflect the range of values in the real data.

Fig. 2. Changes in topological properties as a function of

number of communities. Shaded areas reflect the range of

values in the real data.

Finally, the impact of varying intra- and inter-community

connectivity was examined. Linear regression models as-

sessed the relationship between median connectivity and

graph properties (with the exception of small-worldness since

it was calculated from binary graphs). Models were adjusted

for number of communities, µ value, and average degree, and

p-values were adjusted for the False Discovery Rate [22],

over all network properties. Models also assessed the ef-

fect of inter-community connectivity, categorized as low (=

1), medium (= 2) or high (= 3). Median connectivity and

inter-community connectivity were positively associated with

global efficiency, stability, and clustering (p < 0.04). Both

were negatively correlated with modularity. Median connec-

tivity was linearly related with global efficiency and stability,

but nonlinearly related with global clustering and modularity.

The results are shown in Figure 3.

Fig. 3. Topological variations as a function of overall median

connectivity (A), and inter-community connectivity (B).

4. CONCLUSION

We have presented a data-driven approach for generating

large-scale synthetic brain graph datasets, using the flexible

LFR model with realistic model parameters that reflect topo-

logical properties of real developing connectomes. We have

outlined an approach for informing simulations of develop-

mental topological variations and corresponding variations in

model inputs, using statistics estimated from a large dataset

of resting-state connectomes from early adolescents. As an

application, we have used this generative graph framework

to study the impact of normative development on the orga-

nization of the connectome. Together, the simulation results

provide novel insights into topological changes across devel-

opment. Early developmental stages (reflected in the choice

of µ and lower median and inter-community connectivity)

were associated with lower global clustering, efficiency and

topological stability. Later developmental stages were as-

sociated with high small-worldness, stability and efficiency.

However, increasing median connectivity was not monoton-

ically related to modularity or clustering, with high median

connectivity inversely proportional to global clustering and

modularity. Instead, non-linear relationships between these

parameters suggested a maximal optimization point as a

function of changing connectivity. Increasing the number

of network communities while holding µ to a range corre-

sponding to partially developed connectomes was associated

with lower efficiency, robustness, topological and global clus-

tering. These results suggest that, in contrast to developed

connectomes, an increasing community structure does not

necessarily lead to more efficient and stable networks, when

the underlying intra- and inter-community organization re-

mains suboptimal (reflected in µ). They also highlight the

value of complementing real graph analyses with large-scale

simulations to elucidate the effects of complex biological

processes such human brain development.
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