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ABSTRACT

Functional interactions and anatomic connections between
brain regions form the connectome. Its mathematical rep-
resentation in terms of a graph reflects the inherent neu-
roanatomical organization into structures and regions (nodes)
that are interconnected through neural fiber tracts and/or in-
teract functionally (edges). Without knowledge of the ground
truth topology of the connectome, functional (directional or
nondirectional) graphs represent estimates of signal corre-
lations, from which underlying mechanisms and processes,
such as development and aging, or neuropathologies, are dif-
ficult to unravel. Biologically meaningful simulations using
synthetic graphs with controllable parameters can comple-
ment real data analyses and provide critical insights into
mechanisms underlying the organization of the connectome.
Generative models can be highly valuable tools for creating
large datasets of synthetic graphs with known topological
characteristics. However, for these graphs to be meaning-
ful, the variation of model parameters needs to be driven by
real data. This paper presents a novel, data-driven approach
for tuning the parameters of the generative Lancichinetti-
Fortunato-Radicchi (LFR) model, using a large dataset of
connectomes (n = 5566) estimated from resting-state fMRI
from early adolescents in the historically large Adolescent
Brain Cognitive Development Study (ABCD). It also presents
an application, i.e., simulations using the LFR, to generate
large datasets of synthetic graphs representing brains at dif-
ferent stages of neural maturation, and gain insights into
developmental changes in their topological organization.

Index Terms— Brain connectome, topology, generative
models, development

1. INTRODUCTION

Coordinated brain activity, reflected in correlations between
electroencephalographic (EEG), functional MRI (fMRI) or
magnetoencephalographic (MEG) signals, is often repre-
sented by a graph G(V, &), with V' nodes, corresponding to
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brain regions, and E edges representing correlation strength.
This representation facilitates the investigation the brain’s
topological organization and properties [1]. Brain graphs are
typically estimated using a wide range of methods, including
time-domain cross-correlation, frequency-domain coherence,
covariance, and probabilistic measures and their variants [2].
Despite invaluable insights gained by brain graph analyses,
the absence of a ’ground truth’ topology makes it difficult to
elucidate the mechanisms underlying normal or pathological
connectome changes. In turn, this limits our understanding
of fundamental biological processes, such as neural matura-
tion and degeneration, and the effects of neuropathologies
on the organization of brain circuits. Simulations using syn-
thetic brain graphs with known and controllable topological
properties can complement real data analyses, facilitate per-
turbations of specific graph properties, and provide mecha-
nistic insights into the effects of these perturbations on neural
information processing and cognitive function.

Generative network models are valuable for simulating
large datasets of brain graphs. An early generative model
of the human connectome was proposed by [3] to describe
the probability of edge formation between brain regions. It
incorporated a function that favored connections between
nodes sharing nearest neighbors, and was able to reproduce
hallmark topological properties of the brain, such as global
efficiency, clustering, and modularity. Similar models have
been used to generate synthetic structural networks, and have
shown that model parameters and fit are affected by age, with
worse fit in older individuals [4]. The study by [5] modeled
white matter networks, which were hypothesized to undergo
developmental changes that are necessary to increase their
controllability and decrease synchronizability. To test this
hypothesis, structural networks of over 800 subjects, ages 8
-22 years, were analyzed. Network development was simu-
lated using a generative model that optimized controllability.
Results showed that simulated graphs had similar develop-
mental trajectories as real brain circuits. Other types of mod-
els have also been used to describe the human connectome.
The Weighted Stochastic Block Model (WSBM) has been
used to study how community structure in brain networks

Data Science and Learning Workshop (DSLW): Unraveling the Brain
Authorized licensed use limited to: MIT Libraries. Downloaded on August 04,2023 at 11:24:25 UTC from IEEE Xplore. Restrictions apply.



changes across the lifespan [6]. Community structure is of-
ten estimated using modularity maximization approaches,
such as the Newman method [7]. However, WSBM has been
shown to be an effective alternative, resulting in synthetic net-
works with more realistic organization than those based on
maximizing modularity. Exponential Random Graph Models
(ERGM) have also been used to describe the the structural
and functional connectomes and individual brain networks
[8, 9, 10]. Finally, other types of network models, such as
graph convolutional networks, are increasingly used to learn
the organization of brain networks for classification and pre-
diction purposes [11, 12].

When simulating the topology of the human connectomes,
the resulting synthetic graphs need to be biologically realis-
tic. Thus, real datasets play a critical role in deriving model
parameters. If these datasets are small, derived model param-
eters may not be representative of the population. Large-scale
studies, such as the Human Connectome Project (HCP) [13]
and the Adolescent Brain Cognitive Development (ABCD)
study [14], provide a unique opportunity to estimate gener-
alizable model parameters, an realistic synthetic graphs with
topological characteristics that are similar to those of real con-
nectomes. In addition, the selected generative model needs to
have biologically interpretable parameters that can be mapped
onto the brain’s topological properties.

We present a novel approach that leverages the histori-
cally large ABCD dataset to estimate resting-state connec-
tomes of early adolescents and related property statistics.
The latter are used as inputs to the Lancichinetti-Fortunato-
Radicchi (LFR) model [15], to generate a large dataset of
synthetic brain graphs with variable topologies. The LFR
was chosen for its flexibility (compared to other models), to
vary model parameters in a way that can be mapped onto
biologically meaningful changes in topological graph proper-
ties. Tuning the parameters of the LFR model can be linked
to specific changes in node degree, community size (and
number of communities), and inter-community connected-
ness, which is not straightforward or even possible with other
models. In some of these models, parameter tuning can lead
to simultaneous changes in multiple topological properties
that are difficult to disentangle. As an application, we use
the generated dataset in simulations, to investigate system-
atical changes in graph topology that reflect developmental
processes and reorganization of brain circuits.

2. METHODS

2.1. Neuroimaging Data

Resting-state (rs) fMRI data from 5566 early adolescents in
the ABCD study (median age = 120.0 months, inter-quartile
range (IQR) = 13.0 months) were analyzed, to estimate task-
independent connectomes and their topological properties.
These data were selected based on quality of fMRI signals

(minimal contamination by motion-related and nonbiologi-
cal artifacts). Data were analyzed in the custom-developed
Next-Generation Neural Data Analysis (NGNDA) platform
[16]. They were first preprocessed to register the fMRI to
each participants structural MRI, map onto a common atlas,
correct for motion, and suppress various cardiorespiratory
and nonbiological artifacts. Voxel-level time series were then
downsampled to a parcel-level resolution. For this purpose,
a high-resolution cortical parcellation [17] and additional at-
lases for subcortical regions and the cerebellum were used.
Connectivity was estimated as the peak cross-correlation be-
tween parcel time series. Each functional connectivity matrix
was thresholded using bootstrapping of multiple statistical
and percolation-based thresholds. The moderate outlying
peak cross-correlation was used as a conservative but realistic
threshold, to eliminate weak connections and retain rela-
tively strong connections. For comparison, connectivity was
also estimated using mutual information, to assess method-
dependence of connectome topologies. Both methods yielded
statistically similar connectivity patterns. The data processing
and connectivity estimation are described in detail in [18].

2.2. Network Generation Algorithm

Synthetic networks were generated using the LFR algorithm
and Python library Networkx [19]. The algorithm assumes a
power law distribution for node degree and community size.
The distribution can be controlled using power law exponents,
71 and Ty, for degree and community size, respectively. The
number of nodes in the graph is specified by parameter n. For
each node, the fraction of its connections to a node outside its
community is determined by the parameter p. Thus, 4 = 0
results in a graph where all edges are between nodes of the
same community, whereas ; = 1 leads to a network where all
edges are between nodes from different communities. Other
inputs, such as the average (median) degree, can be used to
further constrain node degree and community size. The steps
to generate a graph using the LFR algorithm are:

1. Assign a degree to a node, drawn from the power law
distribution of 7. If average degree is given as an in-
put, the resulting degree sequence must have an average
degree equal to that value.

2. Select community sizes, by drawing from the power
law distribution for exponent 7, until the sum of com-
munities equals the number of graph nodes n.

3. Randomly assign each node u to a community, under
the condition that the assigned community contains at
least (1 — p) * (degree(u)) nodes. If the community
becomes too large, randomly select a node to be moved
to a different community.

4. For each node u, generate (1 — ) * (degree(u)) edges
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within and (mu) * (degree(u)) edges outside its com-
munity.

2.3. Data-Driven Simulations

Resting-state connectivity matrices were thresholded to ob-
tain binary and weighted adjacency matrices. The Newman
algorithm was used to identify the number of communities
and their respective sizes. For each brain, median community
size was then estimated. The 25" and 75! quartiles of the
number of communities, median community size, and median
inter-community edge ratio in n = 5566 brains were then es-
timated. Similar statistics were estimated for median degree,
and are summarized in Table 1.

Table 1. Quartiles (Q) of graph properties estimated from
resting-state brain networks.

Property 257" Q [ 75t Q
Median Degree 25 91
Number of Communities 4 9
Community Size 103 273
Inter-Community Connectedness (1) | 0.13 0.34

These statistics were used to guide the model input. Given
that the appropriate values for degree and community size
were not a priori known, a wide range of starting values for
71 and 7o were used, within the estimated quartile bounds.
Not all values 7; and 75 led to graphs with a biologically re-
alistic number of communities. Only graphs with a relatively
small number of communities (< 20) were used in the next
set of simulations, which extended the range of values for av-
erage degree and i, to simulate developmental stages before
and beyond early adolescence. Lower and upper bounds for
average degree were set to 10 and 150, respectively, and for
1, 0.05 to 0.70. The lower bound corresponds to developed
brains, in which communities that are highly connected lo-
cally are linked to each other by strong but sparse long-range
connections. The upper bound corresponds to highly under-
developed brains (in early life), in which redundant connec-
tions have similar weights and communities are difficult to
distinguish.

To create a large set of networks that replicated the het-
erogeneity of the real dataset, 71, T2, p and average degree
input were individually varied. Although every combination
of parameters was attempted, some simulations did not con-
verge, thus 2669 valid binary graphs were generated. Non-
zero edges in these binary graphs were assigned weights by
sampling from the distribution of peak cross-correlation val-
ues estimated from the real data.

To simulate realistic connectomes at different stages of
neural maturation, the following approach was used. First, in-
dividual resting-state networks were identified in the real data,

using the anatomical delineations in [20], and were catego-
rized as fully-developed, partially developed, or underdevel-
oped based on a large body of prior work. Given that partici-
pants were in pre/early adolescence, visual networks were as-
sumed to be fairly well developed, the somatomotor network
to be partially developed, and the frontoparietal control, lim-
bic, reward and default-mode networks to be underdeveloped.
This categorization was necessary in order to estimate ranges
of connectivity values that reflected differential stages of net-
work development, and assign weights to the binary graphs
based on distributions of correlation values in each of these
developmental categories. Second, in each synthetic graph,
within-community connectivity was assigned assuming a de-
velopmental stage of the community (fully, partially or under-
developed). Each edge between nodes within that community
was assigned a weight by randomly sampling from the distri-
bution of correlation values for its corresponding category. Fi-
nally, between-community connectivity was assigned assum-
ing low, medium, and high correlation ranges. The bottom
10% values in real weighted adjacency matrices were used
as the range of low intra-community correlation. Medium
correlation was drawn from values between the 40" - 50"
percentiles (below the median). The top 10% values were
used as the range of high intra-community correlation. Cor-
responding median values for the 3 categories were r = 0.54,
0.67 and 0.73. Since each of the 2669 binary graphs was as-
sociated with three weighted graphs (corresponding to graphs
with weakly, moderately and highly correlated communities),
a total of 8007 weighted graphs were analyzed. Topologi-
cal properties were estimated using the Brain Connectivity
Toolbox and custom-developed codes [18, 21], and included
global efficiency, global clustering, small-worldness, modu-
larity, topological robustness, and topological stability. All
properties used the weighted graphs (thus results are based
on 8007 graphs), except small-worldness, for which results
are based on 2669 binary graphs.

3. RESULTS

Simulations first assessed the relationship between model
parameters and topological properties. To examine the link
between g (reflecting inter-community connectedness) and
topological properties, degree and number of communities
were held constant. Parameter p was inversely related with
small-worldness, modularity, and global clustering, which
monotonically decreased as a function of reaching a plateau
at 4 ~0.40. Global efficiency sharply increased from p = 0.05
to 0.20, but at a slower rate after that. Both robustness and
stability increased up to ¢ ~0.5, and then began decreasing.
The results are shown in Figure 1. Each data point represents
a median over all graphs with a particular p value.

Next, the relationship between number of communities
and topological graph properties was examined, holding x
and degree constant. A higher number of communities was
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associated with higher modularity and small-worldness, but
lower global efficiency, robustness, global clustering, and sta-
bility The results are shown in Figure 2.
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Fig. 1. Changes in topological properties as a function of p.
Shaded areas reflect the range of values in the real data.
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Fig. 2. Changes in topological properties as a function of
number of communities. Shaded areas reflect the range of
values in the real data.

Finally, the impact of varying intra- and inter-community
connectivity was examined. Linear regression models as-
sessed the relationship between median connectivity and
graph properties (with the exception of small-worldness since
it was calculated from binary graphs). Models were adjusted
for number of communities, p value, and average degree, and
p-values were adjusted for the False Discovery Rate [22],
over all network properties. Models also assessed the ef-
fect of inter-community connectivity, categorized as low (=
1), medium (= 2) or high (= 3). Median connectivity and
inter-community connectivity were positively associated with
global efficiency, stability, and clustering (p < 0.04). Both
were negatively correlated with modularity. Median connec-
tivity was linearly related with global efficiency and stability,
but nonlinearly related with global clustering and modularity.

The results are shown in Figure 3.
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Fig. 3. Topological variations as a function of overall median
connectivity (A), and inter-community connectivity (B).

4. CONCLUSION

We have presented a data-driven approach for generating
large-scale synthetic brain graph datasets, using the flexible
LFR model with realistic model parameters that reflect topo-
logical properties of real developing connectomes. We have
outlined an approach for informing simulations of develop-
mental topological variations and corresponding variations in
model inputs, using statistics estimated from a large dataset
of resting-state connectomes from early adolescents. As an
application, we have used this generative graph framework
to study the impact of normative development on the orga-
nization of the connectome. Together, the simulation results
provide novel insights into topological changes across devel-
opment. Early developmental stages (reflected in the choice
of 1 and lower median and inter-community connectivity)
were associated with lower global clustering, efficiency and
topological stability. Later developmental stages were as-
sociated with high small-worldness, stability and efficiency.
However, increasing median connectivity was not monoton-
ically related to modularity or clustering, with high median
connectivity inversely proportional to global clustering and
modularity. Instead, non-linear relationships between these
parameters suggested a maximal optimization point as a
function of changing connectivity. Increasing the number
of network communities while holding y to a range corre-
sponding to partially developed connectomes was associated
with lower efficiency, robustness, topological and global clus-
tering. These results suggest that, in contrast to developed
connectomes, an increasing community structure does not
necessarily lead to more efficient and stable networks, when
the underlying intra- and inter-community organization re-
mains suboptimal (reflected in ). They also highlight the
value of complementing real graph analyses with large-scale
simulations to elucidate the effects of complex biological
processes such human brain development.
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