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ABSTRACT2

Marine hypoxia has had major consequences for both economically and ecologically critical3
fish species around the world. As hypoxic regions continue to grow in severity and extent, we4
must deepen our understanding of mechanisms driving population and community responses5
to major stressors. It has been shown that food availability and habitat use are the most critical6
components of impacts on individual fish leading to observed outcomes at higher levels of7
organization. However, differences within and among species in partitioning available energy8
for metabolic demands – or metabolic prioritization – in response to stressors are often ignored.9
Here, I use both a multispecies size spectrum model and a meta-analysis to explore evidence10
in favor of metabolic prioritization in a community of commercially important fish species in the11
Baltic Sea. Modeling results suggest that metabolic prioritization is an important component of12
the individual response to hypoxia, that it interacts with other components to produce realistic13
community dynamics, and that different species may prioritize differently. It is thus suggested14
that declines in feeding activity, assimilation efficiency, and successful reproduction – in addition15
to low food availability and changing habitat use – are all important drivers of the community16
response to hypoxia. Meta-analysis results also provide evidence that the dominant predator in17
the study system prioritizes among metabolic demands, and that these priorities may change18
as oxygen declines. Going forward, experiments and models should explore how differences in19
priorities within and among communities drive responses to environmental degradation. This will20
help management efforts to tailor recovery programs to the physiological needs of species within21
a given system.22
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1 INTRODUCTION

Deoxygenating waters are a severe and enduring threat to communities of aquatic organisms (Wu 2002).24
Worldwide, oxygen has declined precipitously in both marine and freshwater systems (Diaz and Breitburg25
2009). In the marine environment, declines are driven by warming waters, increased nutrient loading, and26
changes in stratification (Breitburg et al. 2018). Ocean surface concentrations are expected to continue27
to decrease by 2-4% by 2100 (Cocco et al. 2013). This can lead to hypoxia. Hypoxia is often defined as28
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concentrations below 2 mg·L-1, though criteria can vary by community (Hofmann et al. 2011) Projected29
increases in the extent and severity of hypoxia will likely result in negative impacts on the structure and30
function of marine communities worldwide (Pezner et al. 2023; Thompson et al. 2023).31

Fish communities experience marked changes in response to deoxygenation. These include composition,32
distribution, size structure, availability and diversity of prey, and species interactions (Junk et al. 1983;33
Saint-Paul and Soares 1987; Pollock et al. 2007; Roberts et al. 2009; Thompson et al. 2023). Changes in34
community processes in response to hypoxia ultimately emerge from coping strategies of individual fish,35
such as: morphological changes (Val et al. 1998), increasing gill perfusion, ventilation, and rates of oxygen36
extraction (Farrell and Richards 2009) as well as compensatory declines in metabolic rate and changes37
in gene expression leading to long-term acclimatization (Richards 2009). Individuals may also alter their38
behavior. Changes in habitat selection, locomotor activity, predator avoidance, air breathing (if capable),39
and aquatic surface respiration (ASR) have all been observed in response to hypoxia (Kramer 1987). These40
individual responses can be conceptualized in reference to aerobic scope. Aerobic scope, or the difference41
between maximum and resting oxygen consumption, is a key parameter determining individual fitness42
(Pörtner et al. 2017). It represents an animal’s capacity to deliver oxygen to tissues for activity in excess of43
cellular maintenance (Fry 1947). High aerobic scope is typically associated with active fishes with low44
hypoxia tolerance, while low aerobic scope is associated with relatively sedentary fishes with high hypoxia45
tolerance, though there is some variability arising from habitat type and evolutionary history (Fu et al.46
2022). Oxygen consumption at rest often remains constant, but maximum consumption falls in response to47
deoxygenation (Oldham et al. 2019). This results in a decrease in aerobic scope and therefore in oxygen48
available for activity. In fact, hypoxia can be defined in relation to the ambient oxygen levels at which49
aerobic scope progressively declines (Farrell and Richards 2009). Declines in individual physiological50
and behavioral activities which use a large percentage of the aerobic scope are therefore a compensatory51
mechanism used to protect the remaining scope (Wang et al. 2009).52

There is evidence that fish prioritize certain activities as a part of their strategy to cope with declining53
oxygen (Kramer 1987; Claireaux and Chabot 2016). For example, in moderate hypoxia, European sea bass54
(Dicentrarchus labrax) maintain exercise performance (critical swimming speed, Ucrit) in lieu of specific55
dynamic action (SDA; Jourdan-Pineau et al. 2010). By contrast, southern catfish (Silurus meridionalis56
Chen) maintain digestion in lieu of locomotion in moderate hypoxia (Zhang et al. 2010). That is, fish species57
may prioritize energetically costly activities differently based on habitat, aerobic scope, and evolutionary58
background (Fu et al. 2022). This is referred to as metabolic prioritization. It is defined as the phenomena59
in which the proportion of the aerobic scope dedicated to a given behavior or internal process changes with60
intensifying stressors (Jourdan-Pineau et al. 2010). Metabolic prioritization may be due in part to oxygen61
demand, as energetically costly processes like digestion can use a larger percentage of scope in hypoxic62
waters (Jordan and Steffensen 2007). Several laboratory studies have demonstrated negative impacts of63
hypoxia on appetite, digestion, activity, and reproduction (Wang et al. 2009; Wu 2009; Thomas et al. 2015).64
This can lead to stunted growth and poor body condition (Casini et al. 2016), exacerbated by declines65
in prey density and availability (Eby et al. 2005). While these phenomena are relatively well-studied in66
isolation, it is generally unknown how individuals of different species prioritize among behavioral and67
physiological processes as oxygen declines. Experiments have shown that differences in vulnerability to68
environmental degradation among species and functional groups can lead to marked changes in species69
interactions, spatial dynamics, and community composition (Roberts et al. 2009; Smith et al. 2014; de70
Mutsert et al. 2016; Chu and Gale 2017). Might these differences arise in part due to differential metabolic71
prioritization among and within species?72
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In exploring the impacts of environmental stressors on communities, integrative models can help73
determine linkages between individual physiology and behavior, and emergent dynamics (Pollock et74
al. 2007; Koenigstein et al. 2016). This has been shown in a number of systems with several ecological75
stressors (Carroll and Smit 2011; Johnston et al. 2011; Parisi et al. 2021). One such integrative tool is the76
size spectrum model (SSM). This framework can simulate growth, reproduction, mortality, and habitat use77
of individuals of each species and resource within a community from size-based vital rates (Scott et al.78
2014). Dynamics ultimately emerge at the population and community levels, making the SSM an ideal79
method by which to understand how responses to stressors across biological levels of organization are80
connected. In a recent study, Duskey et al. (2023) used a SSM to explore how individual vulnerability to81
hypoxia may lead to observed community structure using the Baltic Sea as a case study. They showed82
that prey availability and habitat use are critical components structuring fish community responses to83
hypoxia. They also suggested that physiological and behavioral activities such as search rate, consumption,84
assimilation, and reproduction may not be as important. While it is possible that fish escape hypoxic waters85
before they incur significant physiological costs, there is direct evidence that hypoxic waters impact fish86
physiology in the Baltic Sea (Limburg and Casini 2019). Furthermore, Duskey et al. (2023) made the87
simplifying assumption that all physiological and behavioral activities decline in response to hypoxia at88
the same rate. Thus, individuals in the model were not able to prioritize among these activities. Such89
simplifying assumptions are common in ecosystem models. Examples include ignoring changes in all90
but one or two activities in response to hypoxia and the aggregation of several activities into a higher91
order process such as growth (Karim et al. 2003; de Mutsert et al. 2016; LaBone et al. 2021). This is a92
valid approach which provides valuable insight into fish population and community response to hypoxia.93
However, in order to use integrative models to better anticipate the effects of marine hypoxia across levels94
of biological organization, we must have an adequate understanding of how individuals balance metabolic95
demands as environmental stressors intensify.96

Here, I used both a SSM and a meta-analysis to explore evidence for metabolic prioritization in fish97
communities. For the SSM, I used the same model structure and data sources found in Duskey et al.98
(2023). In contrast to this study, I allowed for metabolic prioritization by relaxing the assumption that99
all physiological and behavioral activities decline with oxygen at the same rate. In order to test this new100
model’s predictive capabilities relative to those of the model in Duskey et al. (2023), I calibrated it to101
reflect the same community of commercially important fishes in the Central Baltic Sea: Baltic cod (Gadus102
morhua), flounder (Platichthys flesus and the recently discovered Platichthys solemdali), sprat (Sprattus103
sprattus), and Atlantic herring (Clupea harengus). While some were ignored, the Baltic Sea is overall a104
species poor system (Bonsdorff 2006), and those included represent the dominants. I compared the results105
of this novel model to address the following questions: (1) is there evidence for metabolic prioritization106
in observed dynamics of somatic growth, biomass, and fisheries yield? (2) does this match evidence of107
metabolic prioritization from laboratory experiments on benthic species exposed to hypoxia? and (3) do108
predicted impacts of hypoxia on growth, population dynamics, and energy flow change when individuals109
are allowed to prioritize among metabolic demands? Respectively, I hypothesized: (1) predictions of growth110
and population dynamics from the SSM would improve with the inclusion of metabolic prioritization;111
(2) the meta-analysis would provide additional evidence of metabolic prioritization in species exposed to112
hypoxia, and that the observed and predicted patterns of prioritization would match those of the SSM; but113
that (3) predicted impacts would be similar among this study and that of Duskey et al. (2023). That is,114
while simulated outcomes at higher levels of biological organization would be similar, the mechanisms115
leading to those outcomes would be different. The results of this set of analyses can help to guide both116
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model parameterization and further experimentation as we continue to investigate the effects of hypoxia on117
marine communities.118

2 METHODS

I used two methods to investigate metabolic prioritization in marine fish communities. First, I repeated the119
analysis presented in Duskey et al. (2023) with separate sets of oxygen-dependent parameters for each of120
the following physiological and behavioral rates: (1) search, (2) maximum consumption, (3) reproductive121
efficiency (alternatively understood as egg survival), (4) assimilation efficiency, and (5) maintenance costs122
i.e. the proportion of total ingested mass used for cellular maintenance. I then compared the results to those123
from the original analysis, in which there was only one set of parameters for rates (1-4), which are expected124
to decline in hypoxic conditions, and another set for rate (5), which is expected to rise in hypoxic conditions125
due to accumulation of byproducts of anaerobiosis (Thomas et al. 2019). The following two outcomes are126
considered to be evidence in favor of metabolic prioritization: (1) inclusion of physiological and behavioral127
rates in the best fitting model to observed community dynamics, and (2) a reduction in error in models with128
metabolic prioritization compared to their counterparts without metabolic prioritization. The first implies129
that oxygen dependence of individual physiology and behavior impact higher-order dynamics. The second130
implies that metabolic prioritization is critical to the proper characterization of physiology and behavior.131
Taken together, (1) and (2) lead to the conclusion that metabolic prioritization is an important component132
of fish community response to deoxygenation.133

Second, I looked for evidence in the literature by performing a meta-analysis on the effects of134
deoxygenation on proportional declines in rates of activity, consumption, and food conversion efficiency135
(FCE) in the top predator in my study system, Atlantic cod (Gadus morhua). Here, evidence in favor of136
metabolic prioritization is construed as a statistically significant improvement in model fit when activity,137
consumption, and FCE are allowed to decline with oxygen independently as compared to when they must138
all decline at the same rate.139

2.1 Study System140

The Baltic Sea is a large inland sea characterized by broad environmental gradients in temperature,141
salinity, and oxygen (Snoeijs-Leijonmalm and Andrén 2017). As in Duskey et al. (2023) this study focuses142
on the Central Baltic Sea. This region experiences year-round hypoxic conditions, the extent and severity143
of which has increased over the past few decades (Carstensen and Conley 2019). There are extensive144
databases on both oceanographic and biological attributes of the Baltic Sea. Estimates of spawning stock145
biomass (SSB), fisheries yield, and size-at-age were extracted either from the ICES Database on Trawl146
Surveys (DATRAS; ICES 2020b) or from stock assessments (ICES 2020a). Oxygen data were extracted147
from the Swedish Meteorological and Hydrological Institute (SMHI) for the years 1980–2020. Bottle data148
from ICES statistical rectangles with a depth of 50–120 m were used to estimate average temporal trends149
of oxygen in the pelagic (10–40 m) and benthic (bottom 10m) habitats in the entire Central Baltic Sea. The150
presence of widespread hypoxia and the availability of data make this an ideal system for the investigation151
of community responses to deoxygenation.152

153
154
155
156
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2.2 Size Spectrum Model157

I used a multispecies size structured food web model, referred to here as a size spectrum model (SSM), to158
simulate fish community dynamics in my study system. In these models, individual-level rates of growth,159
reproduction, and mortality are determined in large part by allometric functions of body size. Energy flows160
via trophic relationships, and conservation of mass is determined by the McKendrick-von Foerster equation161
(Silvert and Platt 1978):162

∂ni
∂t

+
∂gini
∂w

= −mini (1)

where ni is population size, gi is somatic growth, and mi is mortality of species i. This partial differential163
equation describes the balance between gains in mass due to somatic and population growth, and losses due164
to mortality. Recruitment, R, of individuals of species i at size w0 is determined by the boundary condition:165

Ri = gi(w0)ni(w0) (2)166

Costs of maintenance and imperfect assimilation of consumed food constitute losses. Recruitment is167
limited by a Beverton-Holt stock-recruitment relationship. Species are distinguished by unique estimates of168
von Bertalanffy growth parameters, maturity ogives, and both size- and species-based feeding preferences.169
Natural mortality may occur either via predation or additional unspecified process, and fishing mortality is170
determined by the user. This model structure produces dynamics at the population and community level.171
Therefore, one can use it to explore the effects of changes in individual physiological and behavioral172
processes on higher levels of organization. Results can be compared to observed dynamics, including173
estimates of biomass, yield, and growth arising from stock assessment procedures.174

The effects of stressors can be included by linking food availability, habitat use, mortality, and175
physiological and behavioral rates to the oxygen concentration experienced by each individual. In the176
model described in Duskey et al. (2023), benthic food availability (B), occupancy of individuals in the177
benthic habitat (O), mortality (M), and physiological and behavioral rates (search, maximum consumption,178
assimilation efficiency, and reproductive efficiency/egg survival; P) are all rendered as functions of oxygen.179
Each of these were expressed as a product of the value without oxygen dependence (ξ0) and a scaling180
equation varying with oxygen. For B, modeled with a simple semi-chemostat equation (Scott et al. 2014),181
the carrying capacity κb is a logistic (S-curve) type function of benthic oxygen at time t, Ob,t:182

κb =
κ0,b

1 + exp
(
−Uκb(Ob,t − kκb)

) (3)183

Parameters Uκb and kκb determine the rate of decline of carrying capacity at normoxia, κ0,b, with oxygen184
and the inflection point, respectively. O and P (with the exception of maintenance costs) for an individual185
of species i at weight w and time t are a similar logistic function of oxygen:186

ξ(Oiwt) =
ξ0,iw

1 + exp
(
−Uξ,i(Oiwt − kξ,iPcrit,iw)

) (4)187

where Oiwt is oxygen exposure. The symbol ξ is a dummy variable meant to stand in for all rates falling188
within categories O and P relative to ξ0,iw, the rate at normoxia. As above, parameter Uξ,i determines the189
rate of decline with oxygen. The inflection point is a product of kξ,i and critical oxygen level, or Pcrit,iw.190
This can be defined as the minimum ambient oxygen concentration at which standard metabolic rate (SMR)191
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can be maintained. Maintenance costs (ks), increase exponentially with declining oxygen:192

ks(Oiwt) = ks0,iw (1 + exp
(
−Uks,i(Oiwt − kks,iPcrit,iw)

)
) (5)193

where ks0,iw represents approximate maintenance costs at normoxia. The value of Uks,i determines the194
rate of increasing costs with declining oxygen. The oxygen level at which costs double is a product of kks,i195
and Pcrit,iw. Finally, mortality is a simple hazard function (Chechile 2003) of oxygen exposure:196

h(t) = b0,ie
biOiwt (6)197

The values of h(t) for each species are added to values of natural mortality from unknown sources chosen198
during calibration.199

The oxygen exposure Oiwt for each individual is determined by habitat use. This is a weighted average200
of oxygen in both habitats:201

Oiwt = Ob,t ρiwt +Op,t (1− ρiwt) (7)202

where Ob,t and Op,t are oxygen in the benthic and pelagic habitats, respectively, at time t, and where ρiwt203
is the probability of a fish of species i at weight w occupying the benthic habitat at time t.204

Additional spatial structure can be included implicitly in a n×n matrix (n = # of species) which describes205
horizontal overlap of each species with all other species. Here, this matrix is multiplied by vertical overlap.206
This vertical overlap arises from the occupancy probability described above. These calculations can be used207
to approximate three-dimensional spatial interactions of species in the community (Duskey et al. 2023).208

This model provides several pathways by which impacts of oxygen on individual fish can result in209
emergent population dynamics. These dynamics can then be fit to observations by optimizing values of210
Uκb and kκb (equation 3), Uξ,i and kξ,i (equation 4), Uks,i and kks,i (equation 5), and b0,i and bi (equation211
6). This can provide evidence of differential sensitivity to stressors of species within the community,212
individuals within species, rates within individuals, and their combined impact on the community as a213
whole.214

I used this new model structure and repeated the analysis performed in Duskey et al. (2023). Details215
are described within. Briefly, I calibrated all 16 possible combinations of oxygen dependence of benthic216
resources (B), cod benthic occupancy (O), mortality (M), and behavioral and phsyiological rates (P),217
including a model with no oxygen dependence, to observations of fish community dynamics in the Central218
Baltic Sea. In addition to the fish species listed above, the model also includes a pelagic food source219
(referred to as “plankton”) and a benthic food source (referred to as “benthos”). The calibration period220
included the years 1991-2000. This period was chosen because it includes high contrast in oxygen levels and221
species responses (Duskey et al. 2023). Unlike in Duskey et al. (2023) I included metabolic prioritization222
for species directly exposed to hypoxia i.e. cod and flounder. In practice, this means that I allowed all223
rates within P – search, maximum consumption, assimilation, reproductive efficiency/egg survival, and224
maintenance costs – to change with oxygen independently of one another. I projected biomass, fisheries225
yield, and individual somatic growth during the years 2001–2019 in order to choose a model. I calculated226
weighted error in fits of these projections to published observations of SSB, fisheries yield, and growth for227
each species during this time period. The best model was considered to be the one with the lowest total228
error. This out-of-sample approach to fitting and model selection is generally very robust (Cooke et al.229
2014).230
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I also performed a sensitivity analysis on the models with metabolic prioritization as in Duskey et al.231
(2023). I reran the analysis described above three additional times with randomly generated starting values232
for each set of parameters. This gave a rough measure of variability in error in fits to observations as a result233
of the nature of the optimization procedure. If the best model included oxygen dependence of physiological234
and behavioral rates (P) across all four repetitions of the analysis, then I considered this to be evidence in235
favor of metabolic prioritization.236

2.3 Meta-analysis237

In addition to the analytical approach described above, I also performed a meta-analysis to examine how238
activity, consumption, and food conversion efficiency of Gadiform fishes respond to declining oxygen.239
Studies of all of these rates, or analogous rates, together in response to declining oxygen appear to be240
rare. I combine them here to investigate differences in effect sizes among rates. While my intention was241
to examine all species exposed to hypoxia in the benthic environment, I ultimately chose not examine242
Pleuronectiformes for two reasons: (1) experimental data availability on Pleuronectiformes was poor (see243
GitHub repository), and (2) because growth of the flounder in the models was fit to just one year of data.244
Furthermore, estimates of SSB were not available, and were based on a constant ratio of flounder to cod245
SSB. The very high level of uncertainty in flounder data produces equally uncertain estimates of hypoxia246
sensitivity. Therefore, I only examined cod and their relatives.247

248
249

I used Web of Science to search for experimental studies on 3 February, 2023. The search terms were:250
”(gadiform* OR gadid* OR gadus) AND (search OR activity OR speed OR consumption OR intake OR251
conversion OR assimilation OR ”specific dynamic action” OR SDA OR ”egg survival” OR ”egg mortality”252
OR ”metabolic rate”) AND (hypoxi* OR oxygen* OR deoxygen*).” The query can be found here. This253
produced 474 papers. I selected those whose title or abstract made it clear that an experiment was conducted254
with gadiform fishes and oxygen levels either observed or made to vary. This resulted in 25 papers in255
total. I performed forwards and backwards citation searches on these papers, which produced an additional256
964 and 586 papers, respectively. Neither of these searches produced additional papers. The results of all257
searches are included as supplementary files.258

In examining the 25 papers chosen during the initial search, I applied the following inclusion criteria:259
the use of Gadiform fishes; controlled and measured oxygen variability; and measurements of activity,260
consumption, or food conversion efficiency (FCE) taken during periods of steady oxygen. This whittled261
down the number of papers to 10 in total (Thorarensen et al. 2017; Zhang et al. 2018; Koedijk et al. 2012;262
Herbert et al. 2011; Petersen and Gamperl 2010; Skjæraasen et al. 2008; Dutil et al. 2007; Johansen et al.263
2006; Herbert and Steffensen 2005; Chabot and Dutil 1999; Schurmann and Steffensen 1994) I extracted264
data and experimental details from each of these studies either by copying directly from tables, when265
available, or by using Web Plot Digitizer (Rohatgi 2021). I then calculated a proportional measure of effect266
size within each experiment and rate:267

µξ
µξ,max

(8)

While standardized effect size is often used in meta-analysis, I chose to use a proportional measure as268
it is scale-independent of the variance, interpretable, and easy to calculate, much like the simple effect269
size (Baguley 2009). This transformed measure of effect size also corresponds to the logistic model of270
oxygen dependence (equation 4). Given the largest possible values of each rate typically appear at the271
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highest oxygen levels tested, this transformation corresponds approximately to a measure often reported272
in behavioral research referred to as percentage of maximum possible score (POMP; Cohen et al. 1999).273
I did not scale results with standard deviation, as within each physiological rate, the values are already274
comparable (Bond Jr et al. 2003). I did, however, calculate a relative measure of standard error for each275
rate within each study:276

SEµ =
σξ

µξ
√
n

(9)

Data processing ultimately resulted in 119 effect sizes: 91 observations of activity, 14 observations of277
consumption, and 14 observations of FCE.278

To test for metabolic prioritization in these data, I built three models in Stan (v231stan2022; Carpenter279
et al. 2017). The first, the null hypothesis model, included just one set of parameters – U and k as in280
equation 4, as well as population standard deviation σ – for all rates. The alternative hypothesis model281
included a separate set of parameters for each of the three rates. While data on temperature and age class of282
individuals upon capture were available, I chose not to include these in the model. Several of the studies283
included growth experiments, and often the size during experimentation was not reported. Contrast in284
temperature was not adequate for the estimation of interaction terms. However, both the null and the285
alternative models were weighted by the inverse of the relative standard error (equation 9) and assumed a286
random, multiplicative effect of study for each of the three rates. I used standard, so-called uninformative287
priors for the parameters:288

U ∼ N(0, 1000)T [0, ]

k ∼ N(0, 1000)

σ ∼ Gamma(0.001, 0.001)

µstudy ∼ N(0, 1000)

σstudy ∼ Gamma(0.001, 0.001)

Study ∼ N(µstudy, σstudy)

(10)

The parameters U , k, and σ are as stated directly above. The modifier T [0, ] indicates that the distribution289
is truncated below at zero. The effect of study is given by a normal distribution with mean µstudy and290
standard deviation σstudy. I compared the null hypothesis model to the alternative hypothesis model291
using approximate leave-one-out cross-validation (LOO-CV; Vehtari et al. 2017). Briefly, if the expected292
predictive accuracy of the alternative model is higher, then the difference between this and the null293
hypothesis model will be negative. I considered this estimated difference to be statistically meaningful if294
its absolute value was greater than twice its standard error.295

As an additional test of the appropriateness of scaling physiological and behavioral rates using a logistic296
function (e.g. equation 4), I also compared the alternative hypothesis model to an additional model in297
which rates were instead dependent upon a Michaelis-Menten function of oxygen:298

ξ(Oiwt) =
ξ0,iw

kξ,iw +Oiwt
(11)

All subscripts, and fixed and independent variables are given as in equation 4. The only parameter in this299
function is k, which determines the oxygen exposure at which rate ξ falls to half its observed maximum.300
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This parameter had the following prior:301

k ∼ N(0, 1000)T [0, ] (12)

The priors for the random study effect and rate-dependent standard deviation were all identical to those in302
equation 10. I used LOO-CV for this comparison as well.303

2.4 Implementation304

I built, calibrated, and projected all multispecies size spectrum models using the mizer package (Scott305
et al. 2014; Delius et al. 2022) in R (R Core Team 2022). The details of calibration, projection, and306
error calculation are described in Duskey et al. (2023). I built all Bayesian models for the meta-analysis307
using the R package RStan (Stan Development Team 2023). The target average acceptance probability308
(adapt-delta) was set to 0.99 and the maximum tree depth to 15. Each model ran on 4 parallel cores309
with 5,000 warmup iterations and 5,000 sampling iterations. All models converged according to the310
Gelman-Rubin diagnostic (R̂ < 1.1; Gelman and Rubin 1992). There were no divergent transitions, and311
no iterations exceeded the maximum tree depth. The estimated Bayesian fraction of missing information312
(E-BFMI) indicated that there was no pathological behavior in the sampler. Each parameter from all three313
models had more than 4,000 effective samples. Therefore, I considered each model well-behaved and314
well-suited for hypothesis testing and inference.315

3 RESULTS

The size spectrum model (SSM) analysis and the meta-analysis both provide strong support for metabolic316
prioritization in response to marine deoxygenation. I discuss the results of each of these analyses separately317
below.318

3.1 Size Spectrum Model319

The results of the calibration and projection procedure indicated that the model which included oxygen320
dependence of benthic resource carrying capacity (B), occupancy of cod in the benthic environment (O),321
and physiological and behavioral rates (P) is best (Figure 1). In fact, the sensitivity analysis suggested322
the best model will always include B, O, and P (Figure 2). In two iterations, the best model also included323
oxygen dependence of mortality (M; Figure 2). However, parameter estimates for the hazard function324
(equation 2.2) describing M showed that it was independent of oxygen, i.e. bi ≈ 0. This was true across all325
models that included M, whether with or without metabolic prioritization. In contrast to results among326
models which included metabolic prioritization, the BOM model was best among those without (Duskey327
et al. 2023). Across four repetitions of the calibration and projection procedure, just one model included328
oxygen dependence of P (Duskey et al. 2023). Thus, when we allow for species directly impacted by329
hypoxia to prioritize distribution of energy among physiological and behavioral rates, the model selection330
procedure is much more likely to indicate that this is an important process in the individual, population,331
and community level response to marine deoxygenation.332

The results from the BOP model with metabolic prioritization suggest that cod and flounder prioritize333
differently among rates (Table 1). Generally, cod are more sensitive to hypoxia than flounder (Figure 3). As334
oxygen declines, search rate is most impacted, followed by food conversion efficiency (FCE), egg survival,335
and lastly by consumption (Figure 3, bottom left). Partitioning among these rates also changes as oxygen336
falls, with FCE falling more precipitously than search rate below about 2 mL·L-1. Maintenance costs of337
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cod increase anywhere from 1.1 to nearly 1.5 times the baseline value at oxygen concentrations just above338
1 mL·L-1 (Figure 3, top left). Maintenance costs even decline, and search rate increases, at very low oxygen339
values as cod move into oxygenated pelagic waters (Figure 3, left). Flounder, however, appear to exhibit340
the opposite order of prioritization. Search rate is maintained, while consumption and FCE fall by as much341
as 10%. There was very little variability in flounder rates across repetitions of the fitting procedure. Egg342
survival had much more variability, and fell by as much as 50% in some repetitions.343

Comparison of error among growth, yield, and SSB between models with and without metabolic344
prioritization show that the former are not always superior to the latter (Figure 1). However, the error of the345
best model, the BOP model, is about an order of magnitude lower when metabolic prioritization is included346
(Figure 1). Even when considering the range of weighted error rankings across repetitions, the total error347
in the BOP model is consistently similar or lower with than without metabolic prioritization (Figure 1).348
Models with less explanatory power tend to be more similar, and a large proportion of their error is driven349
by poor fits to growth data. Note, however, that the range in total weighted error is quite large in some cases350
(Figure 1). This is not entirely unexpected, given the nature of the range as a statistic. One must be careful351
when drawing conclusions on so small a sample size as just four model repetitions. This is why I draw352
conclusions primarily based on comparisons in error within repetitions of the calibration and projection353
procedure.354

Both the BOP model with metabolic prioritization, and the BOM model without, produce similar estimates355
of SSB and yield (Figures 4 and 5). Estimates for cod and flounder from the BOP model are more accurate,356
but only slightly (Figures 4 and 5). This suggests that a number of mechanisms could be responsible for357
biomass and fishery dynamics. The largest discrepancy between these models arises in their estimates of358
energy flow and ultimately of growth. In the BOP model, the flow of energy as mass from benthos to cod359
declines precipitously as oxygen falls (Figure 6a). This is a function both of declining carrying capacity360
of the benthos and of declining search rate, conversion efficiency, and consumption, in that order, and an361
increase in maintenance costs of cod. Flow from herring and sprat to cod only declines slightly, as changes362
in physiology and behavior are balanced by increasing occupancy of cod within the pelagic environment,363
and therefore in availability of clupeids as prey. Cod body size at maximum observed age falls about364
70% from nearly 15 kg to just over 5 kg. At oxygen levels below 2 mL·L-1, these estimates of body size365
coincide fairly well with values of W∞. At higher oxygen levels, they appear to be underestimates relative366
to maximum observed size (Figure 6a). There could be a number of factors influencing this, including367
underestimates of the Baltic cod’s ability to maintain high rates of search, consumption, and conversion at368
such low benthic oxygen concentrations. By contrast, in the BOM model, physiology and behavior are369
unaffected by hypoxia. Declines in the flow of benthos to cod are caused by movement into the pelagic370
environment. Body size is maintained from about 3 to 2 mL·L-1 (Figure 6b). However, as cod continue to371
move away from the benthic habitat, and the proportion of flow from sprat and herring increases, body372
size declines by as much as 30% (Figure 6b). This is due to a mismatch between size requirements and373
availability of food. While the BOM model appears to be better able to capture body size at higher oxygen374
levels, the BOP model is better able to capture the consequences of very low oxygen (Figure 6).375

Overall, the size spectrum model analysis provides strong evidence in favor of metabolic prioritization.376
The best models include oxygen dependence of physiological and behavioral rates (P) across repetitions377
of the fitting procedure (Figures 1 and 2). Oxygen dependence parameter estimates are very different378
both within and among species (Figure 3). Lastly, estimates of body size in very low oxygen are better379
represented by the best model among those with metabolic prioritization than by the best model among380
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those without. This further strengthens evidence in favor of metabolic prioritization in combination with381
declining food availability and changing habitat use as drivers of observed dynamics in hypoxic waters.382

3.2 Meta-analysis383

The results of the meta-analysis suggest that Atlantic cod prioritize among different rates as ambient384
oxygen concentrations decline, though the ideal form of the oxygen dependence equation is less certain. The385
logistic model without metabolic prioritization is referred to as H0, and the logistic and Michaelis-Menten386
models with metabolic prioritization as H1 and H2, respectively. The difference in expected predictive387
accuracy between H0 and H1 was -23.8 (SE: 6.3). Given that the absolute difference is more than three388
times the SE, the data from the meta-analysis provide strong support in favor of H1 over H0. The difference389
in expected predictive accuracy between H1 and H2 was -4.6. The standard error of this difference was390
only 3.5, indicating that this difference was statistically negligible. That said, both H1 and H2 include391
metabolic prioritization, and show roughly similar oxygen dependence of each rate (Figure 7).392

The size spectrum model (SSM) analysis and the meta-analysis suggest somewhat different relative393
oxygen dependence among physiological rates. Note that the SSM conceives of “search rate” strictly in394
relation to the amount of food consumed, while the observations gathered in the meta-analysis conceive of395
“activity” as some measure of movement speed or distance. For the SSM, the values for oxygen dependence396
of search rate and consumption are ultimately multiplied together. While patterns in the declines in search397
+ consumption and FCE are similar in the SSM and meta-analysis, percent declines differ. Consumption398
of cod falls by nearly 80% from its projected maximum in normoxic conditions at 1 mL·L-1 according to399
the meta-analysis (Figure 7, H1 and H2), while activity only falls by about 20-40% in the SSM (Figure400
3, bottom left). FCE falls by as much as 40-60% in the SSM. In the meta-analysis, FCE falls by 20-40%401
when considering both H1 and H2 (Figure 7). Note that the SSM was restricted to a much narrower range402
of oxygen values, about 1-3 mL·L-1. When considering only this range, consumption falls from about403
50% to 20% of its maximum, or about 30% in total when oxygen declines from 3 to 1 mL·L-1. FCE404
falls from about 90% of its maximum to 60-80%, or about 10-30%. Though the latter are slightly more405
optimistic relative to the SSM, results are generally comparable. The agreement between the model results406
and the meta-analysis was much greater than expected, and provides additional strong evidence in favor of407
metabolic prioritization.408

In summary, meta-analysis results support metabolic prioritization in Atlantic cod. They also support409
the conclusions of the SSM analysis. Together, these results suggest that not only do cod prioritize410
among energy-consuming processes, but that this has a demonstrable effect on population and community411
dynamics.412

4 DISCUSSION

Marine deoxygenation is an urgent issue around the globe. While it occurs naturally in some systems, it413
has increased in both extent and frequency in recent decades (Breitburg et al. 2018). Among the tools we414
can use to investigate the mechanisms behind its deleterious effects are integrative models. These models415
must accurately represent individual-level responses to declining oxygen in order to reproduce dynamics at416
higher levels of organization. Results from this study strongly suggest that fish prioritize among metabolic417
demands in response to worsening hypoxia, and that this is an important component of the emergent418
community response.419
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The size spectrum model (SSM) analysis indicates that the inclusion of metabolic prioritization improves420
estimates of observed population and community dynamics, as hypothesized. Main model results, combined421
with the sensitivity analysis, also show that the best model always includes oxygen dependence of422
physiological and behavioral rates (Figures 1 and 2). This implies that these individual-level impacts of423
hypoxia are critical components of higher-level dynamics. In contrast, the best model in Duskey et al.424
(2023) which assumed no metabolic prioritization, almost never included oxygen dependence of these rates.425
Note that the only difference between this study and that of Duskey et al. (2023) in both model structure426
and data sources is relaxation of the assumption that all physiological and behavioral activities decline with427
oxygen at the same rate. Thus, all discrepancies in fits and model selection are attributable to the inclusion428
of metabolic prioritization. The analysis presented here also produced superior fits to observations (Figure429
1). This is particularly true of growth, as differences in predictions of spawning stock biomass (SSB) and430
yield were relatively minor (Figures 4 and 5). That said, the explanatory power of the best model from the431
analysis with metabolic prioritization, compared to that without, was higher across all metrics (Figure 1).432
Thus, it is highly likely that the inclusion of metabolic prioritization is an important driver of observed433
outcomes.434

The SSM also produces estimates of oxygen dependence that generally concur with the literature. Model435
results suggest that cod are sensitive to deoxygenation, whereas flounder are relatively tolerant (Figure436
3). Note that flounder parameters are fit to just one year of growth data, and that dynamics in SSB and437
yield are very rough estimates (Duskey et al. 2023). Therefore, flounder parameter estimates are likely not438
very reliable. That said, flounder are generally known to be tolerant of hypoxia (Weber and Wilde 1975)439
while cod are intolerant (Plante et al. 1998). Therefore, these results are not surprising. When allowed to440
prioritize among physiological and behavioral rates, both cod and flounder do so, and in accordance with441
expectations.442

Metabolic prioritization results are similarly encouraging. Cod selectively decrease search rate in moderate443
hypoxia (Figure 3). While consumption rate remains high, overall food intake (search rate*consumption)444
thus declines steeply in response to deoxygenation. For fish whose regular activities use a significant445
portion of their aerobic scope, limitations imposed by hypoxia can change distribution, and restrict growth446
and survival (Norin and Clark 2016). For cod in particular, digestion uses up to half of the aerobic scope447
(Jordan and Steffensen 2007). This is several times the amount typically used by fish in general (Norin and448
Clark 2016). This may explain both why cod are vulnerable to hypoxia and why search rate receives such449
a low priority (Figure 3). Declining oxygen may thus impact energy acquisition and lead to a decline in450
growth (Chabot and Claireaux 2008), which is exactly the outcome observed in the Baltic Sea (Casini et al.451
2016). Cod do have a low aerobic scope compared to more active groups of fish (Schurmann and Steffensen452
1997) which implies they are visceral metabolic type and therefore relatively tolerant of hypoxia (Fu et al.453
2022). However, flounder have an even lower aerobic scope (Duthie 1982; Soofiani and Priede 1985). Note454
that model parameterization also predicts a lower Pcrit for flounder at a given body size relative to cod455
(Rogers et al. 2016). This may explain the weak oxygen dependence of physiological and behavioral rates456
in this species (Figure 3). Such differential responses to hypoxia, as well as their impacts on assemblages,457
have been shown in other systems (Petry et al. 2013). It is promising that the model structure generally458
matches these expectations. It implies that metabolic prioritization must be examined for different species,459
or among different classes of species, in order to represent individual-level responses to hypoxia.460

Conclusions regarding community dynamics are also different for the best model with metabolic461
prioritization (BOP, i.e. oxygen dependence of benthic resource carrying capacity, B, benthic occupancy462
of cod, O, and physiological and behavioral rates, P) versus the best model without (BOM, i.e. oxygen463
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dependence of B, O, and natural mortality, M). The latter implies that observed changes in growth arise464
primarily from hypoxia avoidance behaviors (Duskey et al. 2023). Cod move away from the benthic habitat465
and into the pelagic habitat. While they have increased access to plankton, sprat, and herring, this does not466
match their dietary needs. This is exacerbated by a decline in benthic food availability (Figure 6b). The467
BOP model, however, shows a much sharper decline in flow of energy from benthos to cod (Figure 6a).468
Estimates of oxygen dependence of cod benthic occupancy and sensitivity of benthos carrying capacity are469
nearly identical among the BOP and BOM models. This difference, then, is driven primarily by changes in470
feeding activity. The BOP model may underestimate maximum size at intermediate benthic oxygen levels,471
but it captures the consequences for growth at very low levels (Figure 6a). Given its superior fit to overall472
dynamics, it is more likely that reduced growth in cod is a consequence of a combination of impacts on473
food sources, habitat compression, and physiology and behavior, perhaps due in part to increased parasite474
load and disease (Ryberg et al. 2020). Partitioning of changes in growth, yield, and SSB among drivers at475
different oxygen levels may be a fascinating area of future research.476

Meta-analysis results provide additional evidence in favor of metabolic prioritization. Estimates of477
prioritization from this analysis generally agree with those from the SSM. Feeding activity falls quite478
sharply (Figure 7, center and right) just as it does in the SSM (Figure 3, bottom left). One might also be479
tempted to consider agreement between the meta-analysis and the SSM to indicate that estimated oxygen480
dependence of other species may be reliable. While this may be the case, one should also be careful to481
evaluate the reliability of the data upon which these estimates are based. This meta-analysis was limited to482
Atlantic cod due to data availability. However, effects of hypoxia on feeding, assimilation, and growth have483
been shown to be species-specific across several families (Jourdan-Pineau et al. 2010; Yang et al. 2013).484
As a caveat, there are stark differences between a set of SSM analyses and laboratory experiments. The485
latter are highly controlled, and often do not offer fish the opportunity to escape hypoxia as they do in the486
wild (Kramer 1987; Eby et al. 2005). Also, oxygen concentrations for the SSM fitting procedure were487
estimated on very broad spatial scales. This means that estimates of oxygen dependence are associated488
with general trends across the Central Baltic Sea, whereas experimental oxygen levels are known within489
a highly precise range. Oxygen concentrations specific to the time and place at which individuals were490
captured and measured for DATRAS (ICES 2020b) could likely be estimated from Swedish Meterological491
and Hydrological Institute SMHI bottle data, but this would be a significant endeavor that is outside the492
scope of this study. While comparisons are limited by these caveats, it is promising that model estimates493
are so similar.494

The SSM framework makes certain assumptions, and these must be heeded while drawing conclusions.495
Broadly, this model structure was designed for newly hypoxic habitats. This is in contrast to systems496
that experience natural, perennial hypoxia, such as the Amazon River and its seasonal floodplains. Given497
high diversity, low abundance, and a wider range of adaptations to hypoxia (Val et al. 1998), results may498
differ substantially. While hypoxic conditions are natural, changing hydrological regimes and warming499
temperatures have made the mechanisms underlyng fish community structure an urgent area of research500
(Chaudhari et al. 2019; Jung et al. 2020) There are also mechanisms within the model that operate based on501
simlpifying assumptions. For example, as in Duskey et al. (2023), I assume that all species besides cod are502
restricted to the benthic or pelagic habitat, that oxygen dependence is a logistic function of broad spatial503
estimates of oxygen, and that size at maturation is constant in time and space. There are also no additional504
stressors in the model, yet temperature and infection can have severe impacts on communities in the Baltic505
Sea (Olsson et al. 2012; Haarder et al. 2014). The SSM also essentially assumed no impact of hypoxia on506
locomotion besides search area. Swimming can use a large percentage of the aerobic scope (Chapman and507
Mckenzie 2009). The meta-analysis results suggest that while swimming activity receives a higher priority508
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than consumption in cod, it still declines by as much as 60% as oxygen approaches 1 mL·L-1 (Figure 7). In509
the future, swimming may be accounted for as a size-dependent component of maintenance costs (Delius510
et al. 2022). More sophisticated approaches to oxygen-dependence may wish to take advantage of this511
functionality. In general, mizer is highly flexible, and allows the inclusion of stressors in several ways512
(Delius et al. 2022).513

Lastly, while there is some concern that the superiority of model fits with metabolic prioritization could be514
due to a complexity bias, the second best model often did not include P. Those that do include P, for example515
the BMP and BP models, often have very high total error. This is because cod that are physiologically516
and behaviorally vulnerable to hypoxia must have a way to escape this habitat (O) lest their growth rate517
effectively drop to zero. This produces very large errors in fits to growth data, as well as in fits to SSB and518
in yield (Figures 1 and 2). Error is not simply a function of the number of parameters, but rather the nature519
of each component of oxygen dependence and how it interacts with other components. Therefore, I do not520
believe that complexity bias is a problem.521

In conclusion, there is strong evidence of metabolic prioritization in the study system. Species prioritize522
among metabolic demands differently, and therefore each system likely has a unique suite of responses to523
environmental degradation. We must examine how species respond physiologically and behaviorally in524
order to predict how environmental change will ultimately affect populations and communities.525
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4.1 Figures526

Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.

Frontiers 19



Duskey

Figure 6.

Frontiers 20



Duskey

Figure 7.
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Table 1. Physiological and behavioral oxygen dependence parameter estimates from each model. Subscripts s, c, α, and r refer to rates of search,
consumption, assimilation efficiency, and reproductive efficiency, respectively. These are scaled according to equation 4 in the text. Values of U
and k represent the rate of decline and oxygen level at the inflection point of the logistic function. Subscript m refers to maintenance costs, which
are scaled according to equation 5 in the text. Here, values of U and k represent the rate of increase and oxygen level at which maintenance costs
double. Values in parentheses are the minimum and maximum arising from the sensitivity analysis inclusive of the reported estimates.

Species Model Us ks Uc kc Uα kα Ur kr Um km

Cod BOMP 2.2 (1.5,3.3) 0.9 (0.7,1.0) 3.6 (2.2,3.8) 0.4 (-0.1,0.4) 3.7 (2.9,4.9) 0.8 (0.2,0.8) 0.3 (0.3,1.5) 1.3 (0.3,1.3) 2.5 (1.7,2.9) 0.8 (0.7,1.0)
BOP 2.5 (1.4,2.5) 1.0 (0.8,1.0) 4.0 (3.0,4.3) 0.7 (0.1,0.7) 4.7 (4.4,5.1) 0.8 (0.7,0.9) 1.3 (0.5,1.6) 0.3 (0.1,1.1) 2.1 (1.9,2.8) 0.5 (0.5,0.9)
BMP 2.0 (1.1,2.0) 0.9 (0.3,1.1) 2.1 (1.2,3.5) 0.5 (-0.3,0.5) 3.0 (1.2,4.6) 0.8 (0.4,0.8) 0.8 (0.0,1.7) 0.6 (-0.1,0.6) 1.9 (1.1,2.4) 0.4 (-0.1,0.4)
OMP 2.0 (1.3,2.3) 0.3 (0.3,0.6) 2.4 (1.9,4.0) 0.6 (0.4,0.6) 2.6 (2.3,4.1) 0.9 (0.8,0.9) 0.9 (0.5,1.2) 0.4 (0.2,1.7) 2.1 (1.3,2.1) 0.5 (0.2,0.5)
BP 1.4 (0.6,1.4) 0.4 (0.1,0.8) 1.7 (1.3,2.9) 0.6 (0.1,0.6) 1.9 (1.4,3.8) 0.7 (0.4,0.9) 0.8 (0.8,1.2) 0.3 (-0.5,1.2) 1.2 (1.1,2.3) 0.5 (0.5,1.0)
OP 1.7 (1.0,2.6) 0.1 (-0.3,0.4) 2.5 (2.3,3.4) 0.6 (0.6,0.8) 3.5 (2.8,4.1) 0.9 (0.6,0.9) 0.2 (0.2,1.3) -0.3 (-0.3,0.9) 2.1 (1.3,2.3) 0.6 (0.3,0.8)
MP 1.6 (1.0,1.6) 0.1 (-0.1,0.3) 1.7 (1.0,2.2) 0.8 (0.3,0.8) 3.0 (1.0,3.1) 0.8 (0.3,0.9) 0.5 (0.5,1.4) 0.1 (0.0,0.2) 2.3 (1.0,2.3) 0.5 (0.2,0.5)
P 1.7 (1.0,1.7) 0.1 (-0.1,0.2) 2.0 (1.0,2.0) 0.8 (0.2,0.8) 2.8 (1.0,3.2) 0.7 (0.2,0.8) 1.0 (0.9,1.3) 0.2 (-0.6,0.2) 1.4 (1.0,2.1) 0.2 (0.2,0.7)

Flounder BOMP 1.8 (1.6,2.8) -1.0 (-1.0,-0.8) 0.5 (0.5,1.1) -1.9 (-1.9,-1.0) 0.7 (0.4,0.8) -1.8 (-3.5,-1.6) 1.9 (1.5,1.9) -0.6 (-0.6,1.0) 1.0 (0.9,1.0) -1.8 (-2.1,-1.3)
BOP 2.2 (1.7,2.2) -1.3 (-1.5,-0.5) 0.8 (0.5,0.9) -1.0 (-2.1,-1.0) 0.8 (0.6,0.8) -1.4 (-2.2,-1.4) 1.9 (1.9,3.0) -0.5 (-0.5,0.5) 0.7 (0.5,1.2) -2.6 (-2.7,-1.0)
BMP 1.4 (1.4,2.3) -1.7 (-1.7,-0.8) 0.8 (0.6,0.8) -1.0 (-1.7,-1.0) 0.9 (0.7,0.9) -1.2 (-1.6,-1.2) 1.7 (1.5,2.2) -0.2 (-0.2,0.6) 0.9 (0.6,1.1) -1.4 (-2.8,-1.4)
OMP 1.3 (0.6,2.2) -1.2 (-2.8,-1.1) 0.5 (0.5,0.6) -2.5 (-2.8,-2.5) 0.4 (0.4,0.5) -3.0 (-4.8,-3.0) 2.0 (1.2,4.8) 0.2 (-0.5,1.9) 0.4 (0.4,0.5) -3.1 (-4.2,-2.7)
BP 1.8 (1.6,1.8) -1.4 (-1.7,-1.1) 0.8 (0.6,0.9) -1.1 (-1.6,-0.8) 0.5 (0.5,1.0) -2.6 (-2.6,-1.2) 2.2 (1.8,3.0) 1.1 (0.0,1.2) 0.9 (0.5,1.7) -1.8 (-2.6,-1.3)
OP 0.8 (0.8,2.4) -1.9 (-1.9,0.1) 0.4 (0.4,2.3) -3.7 (-3.7,0.1) 0.5 (0.4,2.3) -2.7 (-3.2,0.1) 3.4 (1.4,3.4) -0.2 (-0.2,0.5) 0.5 (0.3,1.8) -2.6 (-3.7,0.1)
MP 0.6 (0.6,1.7) -2.2 (-2.2,-1.0) 0.5 (0.5,0.8) -2.6 (-2.6,-1.5) 0.6 (0.5,0.8) -2.2 (-2.7,-1.8) 0.9 (0.9,1.8) 1.5 (-0.2,1.5) 0.8 (0.4,0.8) -2.1 (-3.2,-2.1)
P 1.0 (1.0,2.8) -1.6 (-2.1,-0.3) 0.5 (0.4,0.6) -2.9 (-3.9,-1.7) 0.5 (0.4,0.9) -3.1 (-4.1,-1.3) 1.9 (1.5,2.6) 0.2 (-2.0,0.7) 0.4 (0.4,0.8) -3.2 (-3.2,-1.8)
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FIGURE CAPTIONS

Figure 1. Weighted error for each model with (MP) and without (No MP) metabolic prioritization. Errors812
are scaled to fall between the minimum (0) and the maximum (1) error within each category – i.e. growth,813
yield, and spawning stock biomass (SSB) – and within each calibration and projection procedure. Bars give814
the range of total weighted error values calculated during the sensitivity analysis. Asterisks mark the best815
model within each pair. Models are ordered left to right from best (lowest error) to worst (highest error)816
according to rankings within the models with metabolic prioritization.817

Figure 2. Weighted error across all three repetitions of the calibration and projection procedure performed818
for the sensitivity analysis. Stacked bars give total weighted error in growth, yield, and spawning stock819
biomass (SSB). Models are ordered left to right from best (lowest error) to worst (highest error).820

Figure 3. Oxygen dependence of physiological and behavioral rates (P) for cod and flounder in the best821
model with metabolic prioritization (BOP). Results are given as a proportion of the maximum in normoxic822
conditions for search rate, consumption, food conversion efficiency (FCE), and egg survival. They are given823
as a proportion of the minimum for metabolic costs. All results are reported for individuals at maturation824
weight, about 577 g and 64 g for cod and flounder, respectively. The top two graphs give increases in825
maintenance costs (light blue line). The bottom two graphs give search rate (dark blue line), consumption826
(dark green line), food conversion efficiency (FCE; dark red line), and egg survival (yellow line) as oxygen827
declines. Shaded areas give the range of oxygen dependence values at each oxygen concentration arising828
from the sensitivity analysis.829

Figure 4. Spawning stock biomass (SSB) of the BOP model (oxygen dependence of benthic resource830
carrying capacity, B, benthic occupancy of cod, O, and physiological and behavioral rates, P; dashed orange831
line) with metabolic prioritization (w/ MP) and the BOM model (oxygen dependence of B, O, and natural832
mortality, M; the dotted green line) without metabolic prioritization (w/o MP). The solid blue line gives833
observations. All results are reported relative to (i.e. divided by) the observations. Shaded region is the834
calibration period (1991-2000), un-shaded region is the projection period (2001-2019).835

Figure 5. Yield at fishing mortality (F) of the BOP model (dashed orange line) with metabolic836
prioritization and the BOM model (dotted green line) without metabolic prioritization. Abbreviations are837
given as in Figure 4. The solid blue line gives observations. All results are reported relative to, or divided by,838
the observations. Shaded region is the calibration period (1991-2000), un-shaded region is the projection839
period (2001-2019).840

Figure 6. Stacked area plots of energy flow to cod (left) and body size at maximum observed age (right)841
as a function of a range of benthic oxygen concentrations (3-1 mL·L-1) for (a.) the BOP model with842
metabolic prioritization (MP) and (b.) the BOM model without metabolic prioritization (No MP). Energy843
flow (kg/year) is given as the average for mature individuals weighted by abundance. Abbreviations are844
given as in Figure 4. The legends above the plots lists all possible food items (left) and the origin of the845
reported body sizes (right). Pelagic oxygen was held constant at 6 mL/L across all scenarios. Maximum846
modeled body size (kg, dashed blue line) of cod is given in contrast to maximum observed size (blue847
triangles) in a given year (ICES 2020b) as a function of annual estimates of benthic oxygen concentration848
during 1991–2019 (ICES 2020b).849

Figure 7. Bayesian meta-analysis results on evidence for metabolic prioritization in Atlantic cod850
(Gadus morhua) among swimming activity, consumption, and food conversion efficiency (FCE). The null851
hypothesis model, H0, applied equation 4, while the alternative hypotheses models H1 and H2 applied852
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equation 4 and a Michaelis-Menten equation, respectively, to data on each of the three rates. The size of853
each point is proportional to the inverse of the standard error divided by the mean and number of replicates854
within each study. Shaded regions are 95% highest posterior density intervals (HDI).855
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