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ABSTRACT: Interferometric scattering microscopy (iSCAT) is a
label-free optical microscopy technique that enables imaging of
individual nano-objects such as nanoparticles, viruses, and proteins.
Essential to this technique is the suppression of background
scattering and identification of signals from nano-objects. In the
presence of substrates with high roughness, scattering hetero-
geneities in the background, when coupled with tiny stage
movements, cause features in the background to be manifested
in background-suppressed iSCAT images. Traditional computer
vision algorithms detect these background features as particles,
limiting the accuracy of object detection in iSCAT experiments. Here, we present a pathway to improve particle detection in such
situations using supervised machine learning via a mask region-based convolutional neural network (mask R-CNN). Using a model
iSCAT experiment of 19.2 nm gold nanoparticles adsorbing to a rough layer-by-layer polyelectrolyte film, we develop a method to
generate labeled datasets using experimental background images and simulated particle signals and train the mask R-CNN using
limited computational resources via transfer learning. We then compare the performance of the mask R-CNN trained with and
without inclusion of experimental backgrounds in the dataset against that of a traditional computer vision object detection algorithm,
Haar-like feature detection, by analyzing data from the model experiment. Results demonstrate that including representative
backgrounds in training datasets improved the mask R-CNN in differentiating between background and particle signals and elevated
performance by markedly reducing false positives. The methodology for creating a labeled dataset with representative experimental
backgrounds and simulated signals facilitates the application of machine learning in iSCAT experiments with strong background
scattering and thus provides a useful workflow for future researchers to improve their image processing capabilities.

■ INTRODUCTION
In the past two decades,1 interferometric scattering (iSCAT)
microscopy has enabled imaging and tracking of nano-objects
such as gold nanoparticles,2−5 viruses,6 and individual
proteins7−9 for dynamic studies on cell membranes,5 molecular
motors,10 and quantitative mass/size measurements.11−13 As a
scattering-based technique, imaging of nano-objects in iSCAT
experiments does not require fluorescent labeling.14 This
advantage mitigates challenges inherent to fluorescence-based
techniques such as photobleaching and photoblinking.14

Fluorescent labels on the surfaces of nano-objects also alter
their surface chemistry, rendering iSCAT advantageous in
studies where surface chemistry dominates (e.g., adsorption
experiments, interactions within a cell, and diffusion along
surfaces). Given these advantages, the contributions of iSCAT
to the biological and physical science community are
continually growing.
The label-free capabilities of iSCAT also represent its

greatest limitation.15 All materials with a different refractive
index than that of the surrounding medium will scatter light
and convolute signals of interest with the background.
Consequently, extracting meaningful information from
iSCAT images is a two-step process: (1) identifying and

suppressing the background and (2) detecting objects of
interest in background-suppressed images. While numerous
background extraction and suppression techniques have been
developed through optical enhancements12,16,17 and software
algorithms,8,12,14,18 stage movements, on the order of tens of
nanometers (comparable to the pixel size in many iSCAT
configurations), are difficult to eliminate and cause background
features to appear even in background-suppressed images.15

This problem is especially evident when the background
contains regions of high roughness or refractive index
heterogeneity and limits the ability of iSCAT to detect
scatterers in complex environments. Here, background features
that produce signals due to stage drift or vibrations appear as
objects with a similar intensity and morphology as objects of
interest in background-suppressed images. Experimenters are
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typically required to perform time-consuming, intricate
filtering of detections with similar characteristics. The method
could therefore benefit from improvements in step two of the
analysis process through improved computer vison strategies to
detect particles in complex iSCAT images where less effort has
been focused to date.
Convolutional neural networks (CNNs) in the field of

supervised machine learning computer vision have emerged as
a powerful means to improve performance in the problem of
object detection in scientific images relative to traditional edge
and thresholding computer vision algorithms.19,20 Still,
employing supervised machine learning in object detection
currently requires a labeled dataset (i.e., known truths of object
locations) that is representative of experimental images to use
in training a CNN.21,22 In a recent publication, Newby23 et al.
circumvented this limitation by generating a dataset consisting
of synthetic fluorescent microscopy images by mathematically
modeling both background and particle signals. However, in
background-suppressed iSCAT images, the background is
comparatively more complex and difficult to simulate. This
makes creating simulated datasets to use in training a CNN for
object identification in iSCAT images challenging. Compound-
ing the problem, training CNNs from randomly initialized
weights requires large datasets and great amounts of
computing power.20 To facilitate the use of machine learning
in iSCAT object detection, both these obstacles are addressed
in this work.
We demonstrate a machine learning workflow to improve

object detection in complex background-suppressed iSCAT
images. To accomplish this, we establish a procedure for
creating labeled datasets containing synthetic particle signals
with and without real experimental background-suppressed
images from a model iSCAT experiment of 19.2 nm gold
nanoparticles adsorbing to a rough layer-by-layer (LbL)
polyelectrolyte film. We then train a mask region-based
CNN (mask R-CNN)20,23 in under 1 h using transfer
learning24 with readily accessible computational resources
using the labeled datasets. By analyzing the model iSCAT
experiment, we test the performance of the mask R-CNN
(trained with and without experimental backgrounds in the
dataset) in object detection and classification against that of a
Haar-like feature image segmentation algorithm, an edge
detection and threshold based algorithm previously used to
detect objects in iSCAT images.11,25 Results highlight the
improved performance in object detection via a reduction of
false positive (FP) detections [precision improved from 80.2%
(Haar) to 96.5% (mask-RCNN)] and the importance of
including representative experimental backgrounds in datasets.
The result is not an automated, catch-all machine learning
network to use in iSCAT image processing, but rather, it shows
how to create datasets and optimize a CNN via transfer
learning to improve object detection in experimental data. The
improved analysis technique should expand capability of
iSCAT to detect scattering objects in situations where
background scattering is complex.
iSCAT Principles: Stage Movements Hinder Back-

ground Suppression. The theory behind iSCAT imaging has
been reviewed extensively.15,26,27 We provide a summary of
iSCAT operating principles below to highlight the benefit of
enhanced object detection methods in expanding the
application of iSCAT to substrates with strong scattering
background features due to roughness and/or areas of varying
refractive indexes.

The contrast in an iSCAT experiment is the result of
interference between light scattered from nano-objects (e.g.,
nanoparticles, proteins, and viruses) and light from a reference
source, commonly light reflected back at the substrate−
solution interface from a normally incident coherent light
source. The intensity of the signal detected is determined by
the superposition of the scattered and reflected lights

I E E E r s r s2 cos( )iSCAT r s
2

i
2 2 2| + | = [ + + | | ] (1)

where IiSCAT is the intensity at the detector; Er, ES, and Ei are
the reflected, scattered, and incident electric fields, respec-
tively; r is the fraction of Ei reflected; s is the fraction of Ei
scattered; and ϕ is the phase difference between the reflected
and scattered lights due to a difference in optical path length.
According to Mie scattering theory (applicable when the
wavelength of light is of the order of the nanoparticle size), the
magnitude of s scales linearly with the volume of the particle
(dNP3 ),13,28 and in the limit of small scattering objects, reflected
light dominates the detected signal making the pure scattering
contribution negligible (r2 ≫ s2).28 eq 1 then reduces to

I E r r s2 cos( )iSCAT i
2 2= [ + | | ] (2)

Equation 2 illustrates the power of iSCAT and highlights its
limitations. In comparison to pure scattering-based contrast
techniques (i.e., dark field microscopy) where the scattering
term for small objects decreases with the volume of the particle
squared,28 the scattering term in an iSCAT signal decreases
linearly with the particle volume. This is what lowers the
detection threshold for label-free imaging of nanoparticles,
viruses, and individual proteins.9,11 However, because all
interfaces with a difference in the refractive index scatter
light, backgrounds in iSCAT experiments often scatter light at
stronger intensities than the nanoparticles or proteins of
interest. To generate sufficient contrast, CiSCAT, for analysis,
strongly varying background features are typically suppressed
by dividing or subtracting a reference background image from
experimental images. This background suppression, the
mechanisms of which are discussed in the Methods section,
is described mathematically as
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where rbkg represents the fraction of Ei reflected by the optics
and substrate that forms the background reference from an
earlier frame capture and rimage represents the fraction of Ei
reflected that forms the image currently being analyzed. If the
imaging stage and optical components are stable, rbkg = rimage,
and all background reference features would be suppressed by
division resulting in the approximate solution below eq 3.
However, in practice, drift or vibrations on the order of tens of
nanometers (i.e., comparable to the pixel dimension) are
typical for optical microscopes.15,29 These stage movements
cause rbkg to differ from rimage, and scattering from the substrate
contributes significant features to background-suppressed
images. These substrate features may have morphologies
resembling those of scattering features from nano-objects, and
the essential step of detecting objects of interest in back-
ground-suppressed iSCAT images becomes more difficult as
background complexity increases. The challenges presented by
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the presence of particle-like background features in back-
ground-suppressed iSCAT images motivate our application of
machine learning to aid in particle detection in iSCAT
experiments with complex backgrounds.

■ METHODS
Experimental Details. 150 μm thick glass coverslips were

coated with a LbL film (dry thickness = 60 nm, wet thickness =
85 nm) composed of 11 alternating polycation [poly
(allylamine hydrochloride)] and polyanion [poly(acrylic
acid)] layers. The LbL film was capped by the polycation
leaving a positive zeta potential of +14.7 mV on the substrate
when exposed to 1 mM sodium phosphate buffer at a pH of
7.0 (see Section S1 for material information and Section S2 for
substrate preparation and characterization). LbL films were
characterized using atomic force microscopy (AFM, Figures S3
and S4) and shown to increase the roughness of the substrate
by a factor of 4 when compared to uncoated glass coverslips
used in other iSCAT experiments (Rrms,LBL = 3.2 nm, Rrms,glass =
0.8 nm, area = 10 μm × 10 μm).
Using a flow cell (Figure S5), a 200 pM solution of

monodisperse gold nanoparticles (AuNPs. See Section S4 for
solution preparation and characterization) with a mean
diameter of 19.2 nm in 1 mM sodium phosphate buffer, pH
of 7.0, was exposed to the LbL film on an inverted iSCAT
microscope (see Section S5 for iSCAT instrumentation and
imaging details). At this pH, the AuNPs had a negative zeta
potential of −58 mV because of their carboxy-terminated
ligands, and electrostatic interactions drove irreversible
adsorption of the AuNPs to the positively charged LbL coated
glass coverslip over the course of a 4 h experiment. At 30 min
intervals, iSCAT images were collected for ∼1 min at a frame
rate of 184 fps (∼5.44 ms between frames). The pixel size of
the iSCAT setup was measured using a stage micrometer to be
50 nm/pixel, giving the 256 × 256 pixel images a field of view
of 12.8 μm × 12.8 μm. This resulted in an experimental dataset
consisting of 108 videos of 1000 frames each for a total of
108,000 iSCAT images.
Image Flattening. Raw iSCAT videos were processed in

two operations: flattening followed by ratiometric processing.
The flattening techniques described here were detailed
previously28 and implemented using custom Python scripts.
In the first flattening step, a static background image was
collected by laterally translating the sample stage during data
collection in a Lissajous pattern using piezoelectric motors and
calculated as the pixelwise median of 100 images collected
during that movement. Each raw iSCAT image was divided by
its corresponding static background image to remove spurious
features inherent to the optical configuration. Next, a median-
filtered image containing only features larger than the
scattering features of the nanoparticles was calculated by
convoluting the image from the first flattening step with a
kernel of 21 pixels and calculating the median of pixels in that
kernel. The resulting image from the first flattening step was
then divided by the median-filtered image yielding flattened
images with a mean background value of 1. All subsequent
ratiometric processing was done on these flattened images. An
example of the conversion of a raw iSCAT image to a flattened
image is shown in Figure S7.
Ratiometric Processing. After flattening, we employed

ratiometric processing12 to suppress the background. By
balancing images that follow a nanoparticle adsorption event
with those that precede the event, ratiometric processing

capitalizes on time-dependent variations in scattering signals
during the collection of iSCAT videos to isolate adsorption
events in background-suppressed images. In doing so, it
enables the measurement of the scattering contrast and the
binding times of analytes and has been previously used to
detect nanoparticles13 and proteins.11

To apply ratiometric processing to detect nanoparticle
adsorption events, we began by defining a time-binning
window of Nratio = 5 frames. Nratio effectively defined the
minimum residence time for a particle to be considered
adsorbed as a particle that remained attached to the surface for
at least 2Nratio frames. In our experiments, Nratio = 5 frames
defined the minimum residence to be 2Nratio × frame interval
or 54.3 ms. Faster frame intervals would have allowed for the
analysis of shorter residence times, but in our experiments, we
did not see any desorption events, indicating that this
minimum residence time was sufficient.
We calculated ratiometric images as follows: For a given

frame i, two batches of sequential images were averaged to
produce two images I1(i) and I2(i), where I1(i) corresponded
to the pixelwise average of images i to Nratio and I2(i) to images
i + 1+ Nratio to 2Nratio. After normalizing I2(i) and I1(i) by
dividing each average image by its mean, we then divided I2

(i)/ I i( )1 to obtain ratiometric images, Iratio(i). Frames were
then incremented across each video one frame at a time,
creating a new movie consisting of ratiometric images. As
frames are incremented forward in time, the scattering contrast
of adsorbing particles increases in magnitude reaching a
maximum when the adsorption event is located between the
two frame batches and decreases back to the background value
of 1 thereafter. Adsorption events in our configuration
destructively interfered with the reflected light and were
manifested in dark spots on a gray background. The reverse
process, desorption, if present, would present as bright spots
on a gray background. In this way, by finding the point of
maximum scattering contrast magnitude, the scattering
contrast and occurrence time for adsorption and desorption
events can be precisely quantified. An illustration of ratiometric
processing is illustrated in Figure S8a−c.

Particle Detection Using the Haar Method. Following
ratiometric processing, particle signals or point spread
functions (PSFs) were detected using traditional and machine
learning object detection algorithms. The Haar-like feature
algorithm was implemented in Python following details
described in refs 11 and 30. First, ratiometric images were
convoluted with a 2D Gaussian in eq 4

I x y A
x x y y

B( , ) exp
( )

2

( )

2PSF
0

2

2
0

2

2

= + +
i

k

jjjjjjj
i

k
jjjjjjj

y

{
zzzzzzz

y

{

zzzzzzz
(4)

where A is the contrast amplitude, x0 and y0 are the center
position, B is the background, and σ is the standard deviation.
The parameters of the 2D Gaussian used for the convolution
were determined empirically by fitting a particle PSF in a
ratiometric image. Next, Haar feature scores were calculated
for each pixel with higher scores corresponding to vertical
edges, horizontal edges, and circular features using three
kernels each 9 × 9 pixels in size. The pixelwise Haar scores
were averaged between these three features and weakly
thresholded to remove pixels with Haar feature scores lower
than 0.20. From the weakly thresholded images, only
thresholded pixels with 4 neighbors were kept as candidate
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pixels that belong to a particle signal. The probability that a
pixel belongs to a particle was then calculated as the fraction of
pixels that satisfied all threshold and neighbor candidacy
requirements within a 7 × 7 kernel of neighboring pixels. If this
probability was greater than 0.3, the pixel was classified as
belonging to a particle, resulting in a segmented binary image
that was then labeled in object detection. Although the Haar-
like feature algorithm was used as a control in this study, it
would be valuable in future studies to test other state-of-the-art
object detection methods, such as the circular Hough
transform used by Melo13 et al., to see how performance
compares to that of the mask R-CNN when the background
scattering is high.
Particle Detection Using the Mask R-CNN. The mask

R-CNN, described in detail by He20 et al., detects objects in
images in four main stages. First, features are detected and
mapped to pixels using a CNN. From these feature maps,
bounding boxes around regions of interest (ROIs) are
proposed. Then, simultaneously, bounding boxes around
ROIs are refined, regions are classified, and instance-level
segmentation masks within the refined bounding boxes are
generated as the final outputs. In our implementation, we
capitalized on the inference output of bounding boxes and
classifications to perform Gaussian fitting and particle tracking
in subsequent steps.
To implement the mask R-CNN for object detection in

iSCAT images, Matterport’s implementation23 of the mask R-
CNN in TensorFlow and Keras was used with minor
hyperparameter modifications. Namely, a ResNet50 backbone
was used, and image dimensions were constrained to the size
of our iSCAT images, 256 × 256 pixels. For training, all ROIs
with a detection confidence below 0.7 were rejected. In
inference, all ROIs with a detection confidence below 0.9 were
rejected. We normalized all input images by rescaling their
intensity to a minimum of 0 and a maximum of 1 and
converted the normalized grayscale images to 8 bit red−
green−blue images. While not an exhaustive optimization, only
these minor changes were required to obtain good perform-
ance in both training and inference. Additionally, maintaining
most hyperparameters at their default values made transfer
learning from ImageNet weights easier, reducing the amount of
data required for training and shortening the training time on
limited computational resources.
Creating Datasets to Train the Mask R-CNN. An

essential contribution of this work is the methodology for
creating labeled image datasets with realistic experimental
backgrounds to use in training a neural network for object
detection. A custom Python script was used to generate 500
synthetic dataset images. First, a particle image was generated
using a PSF approximation in the form of a 2D Gaussian (eq
4) to generate synthetic nanoparticle signals approximating
those measured in iSCAT on an image with a background of 0.
In experiments with less background roughness, secondary
interference fringes beyond the central lobe maybe visible, and
Bessel functions, which more accurately approximate the
interference of a plane wave with a spherical wave, may serve as
better PSF models for simulated particle signals. PSF
parameters (listed in Table 1) were empirically determined
by fitting 10 particles from ratiometric images. Notably, an
amplitude (A) at the high end of the measured scattering
contrast from our experiments was selected to increase the
contrast between synthetic particle signals and background
features. We found this contrast to be vital to ensure good

performance during inference. Dark particles were assigned a
negative amplitude, while bright particles were assigned a
positive amplitude in the 2D Gaussian. Particles were
randomly positioned within an image of the same size as the
iSCAT ratiometric images with the minimum spacing between
other particles and the border limited, and positions and
particle class types were logged. Instance-level masks with
corresponding class labels were then generated using particle
positions and a circular mask of defined size to serve as the
ground truth in training.
To add variance to the dataset and make it more realistic, a

shot noise image of Gaussian noise with a mean of 0 and a
given standard deviation, σshot noise, was created. Next, a real
background from the ratiometric experimental images was
sampled as follows: One image from every third video
(1,4,7,...,106) in the experiment was randomly selected to
capture representations of the background over the course of
the iSCAT experiment. To ensure that background images
contain no particles, images were visually inspected and
resampled until no particle PSFs were present in any
background images resulting in a set of 36 particle-free
ratiometric background images. When the dataset was
generated, one image from this set was randomly selected to
serve as the background for that image. Figure 1 shows how
the particle image, shot noise, and randomly sampled
background (top row) were summed to create the dataset
image (bottom, left) and corresponding labels for each class
(bottom, middle, and right).

Training the Mask R-CNN. Training via transfer learning
was implemented using configurations detailed by Abdulla23

with minimal modifications. In brief, network weights were
initialized from a mask R-CNN trained on the ImageNet
dataset. Three new classes (“background”, “bright”, and
“dark”) were defined for the generated dataset images and
corresponding masks. Images in the dataset were augmented
during training through vertical and horizonal flips, Gaussian
blurring, and scaling to limit overfitting and improve
generalization. Head weights were fine tuned for the first 20
epochs of training at a learning rate of 0.001 followed by fine
tuning of all network weights at a learning rate of 0.0001 for a
total of 200 training epochs. Trained model weights were saved
after each epoch. The loss function decayed, and average
precision increased (Figure S9) in both training and validation,
indicating that the mask R-CNN learned iSCAT particle
signals and showed no signs of overfitting. Visual inspection of
the performance of the mask R-CNN (Figure S10) confirmed
that the mask R-CNN learned particle signals successfully. On
a standard desktop computer (8 GB 2070 NVIDIA RTX GPU,

Table 1. Parameters Used to Create Synthetic Particle
Images for Our Dataset

parameter value

A (au) 0.06
σ (pixels) 2.00
particles per image 10−15
minimum spacing between particles (pixels) 40
minimum particle centroid distance to border (pixels) 5
mask diameter (pixels) 21
particle classes dark, bright
σshot noise (au) 0.001−0.004
training image number 350
test image number 150
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AMD Ryzen 5 2600X 6 Core CPU, 64 MB RAM), training on
the 500-image synthetic dataset was completed in ∼40 min.
Inference predictions of particle detection by the mask R-CNN
on experimental iSCAT data were inspected visually using
weights from the 100th and 200th epochs. The 200th epoch
showed the best performance despite a plateau in precision
during training and validation after ∼50 epochs. We
hypothesize that this extended training beyond average
precision saturation allowed for enhanced learning of the
background and thus justified the use of weights from the
200th epoch in all subsequent analyses.
Single Particle Tracking. From PSFs detected in

ratiometric images, the magnitude of the scattering contrast
and event time for an adsorbing or desorbing particle were
quantified using single particle tracking techniques. First, PSFs
from adsorption events were detected using the Haar or mask
R-CNN methods. For detections using the Haar method,
bounding boxes of 15 pixels around the centroids of the
proposed particle detections were generated. For detections
using the mask-RCNN, bounding boxes from inference were
directly used. Any candidate particle with a bounding box
center within 5 pixels of the image border was discarded. The
PSFs of candidate particles were fit to a 2D Gaussian31 using a
least-squares regression algorithm from the LMFIT32 Python
package using eq 4 where contrast amplitude, A, and center
position (x0, y0) of the Gaussian were allowed to vary, while
the background, B, and standard deviation, σ, were fixed at 1.0
contrast units and 2.0 pixels (∼100 nm), respectively. Fixed
values were determined by empirical fits to PSFs manually
sampled from ratiometric images. In Haar detections, the
signal to noise ratio, SNR, for each proposed detection was
calculated as the ratio of |A| to the background standard
deviation, and all detections with an SNR less than 3 were
discarded. The A, frame, time, and position for all PSFs were
logged. After PSF detection and fitting, PSFs with center
positions within 2 pixels of each other in subsequent
ratiometric images for a minimum of 6 frames were linked
into trajectories using the Trackpy Python package.33 Within

each trajectory, the average of the two highest magnitude
amplitude (|A|) points was used to separate the data for a given
particle trajectory into regions of the opposite slope. Two lines
were fit to A as a function of time in each region, and the
position of intersection of these lines was defined as the
relative scattering contrast, |Aevent|, and event time at sub-frame
interval temporal resolution. We note that for convenience,
|Aevent| will be referred to as scattering contrast for the
remainder of this work. An example of the single particle
tracking techniques used to quantify the scattering contrasts
and event times of an adsorption event is illustrated in Figure
S8d,e.

■ RESULTS
Stage Vibrations Lead to FPs. The LbL films used in the

model experiment analyzed here exhibited higher roughness
compared to minimally functionalized glass coverslips used in
other iSCAT experiments (AFM images in Figures S3 and S4,
Rrms,LbL = 3.2 nm, Rrms,glass = 0.8 nm, area = 10 μm × 10 μm).
Figure 2 shows that when the LbL film roughness was coupled

with stage movements, strong scattering features (red arrows,
left) were manifested as particle-like features in ratiometric
images (red arrows, right). These background features had
contrasts and morphologies similar to those of the AuNP
scattering signals (blue arrows, right). The Haar method used
to detect particles frequently identified these features as
particles leading to FP identifications. In this way, Figure 2
highlights the limitations of using edge and threshold-based
image analysis algorithms, such as the Haar method, to detect
particles.

Reducing FP Detections with the Mask R-CNN. CNNs
have been shown to be successful in object detection and to be
less sensitive to algorithm parameters that normally must be
tuned for object detection in every experiment.21,22 To see if
these benefits translate to iSCAT image processing, a hybrid
dataset containing background images from an iSCAT
experiment and simulated particle PSFs was generated as
described in the Methods section. This dataset was used to fine
tune mask R-CNN weights via transfer learning, giving a CNN
adept at identifying and classifying common place objects (e.g.,
animals, balls) and the ability to identify and classify
nanoparticle PSFs in ratiometric iSCAT images. We compare

Figure 1. Visual representation of the process of creating labeled
datasets for training the mask R-CNN via transfer learning. The
dataset image (bottom, left) was created by summing the simulated
particle image (containing randomly positioned synthetic PSFs), a
simulated shot noise image, and a randomly sampled experimental
ratiometric background image. Using stored particle positions from
the simulated particle image, instance-level masks (bottom, middle,
and right) for dark and bright particle classes served as labels for
training and testing. All scale bars are 1 μm but were not included in
the dataset images.

Figure 2. (Left) flattened image from an iSCAT experiment of 19.2
nm AuNPs adsorbing to LbL films with 3.2 nm roughness. Increased
substrate roughness created regions of high scattering contrast,
indicated by the red arrows. Scattering from the background
dominated the image, and particle signatures were indistinguishable
from the background. (Right) ratiometric image from the same
experiment. Stage movements caused strongly scattering roughness
features to show up in the background of the ratiometric images as
indicated by the red arrows. These background features have similar
contrast and morphologies to the scattering features from AuNPs as
indicated by the blue arrows. All scale bars are 1 μm.
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the performance of particle detection using the mask R-CNN
with that of the Haar method by analyzing the data from the
same AuNP-LbL adsorption experiment using both methods in
Figure 3.

Figure 3 shows the distribution of scattering contrasts
measured using ratiometric image processing and detected
using the Haar method (pink) and mask R-CNN (blue). In the
mask R-CNN histogram, the distribution is monomodal with a
peak at ∼0.04. The Haar histogram is bimodal, with a
dominant peak at ∼0.04 and a second lower peak at ∼0.02 (the
peak position and count were determined by eye). The
bimodal nature of scattering contrasts detected by the Haar
method demonstrates the main improvement in performance
of the mask R-CNN over the Haar method. Despite our
particles being monodisperse in size (as confimed by the SEM
image shown in Figure S6), the Haar histogram shows multiple
peaks in ratiometric scattering contrast. The low contrast peak
near 0.02 in the Haar histogram, indicative of FPs during
particle detection, is not present in the mask R-CNN
histogram. Moreover, the breadth of the low-scattering
intensity peak near 0.02 in the Haar histogram overlaps
significantly with the breadth of the central peak in the Haar
histogram at 0.04. Because of this overlap, post-processing to
remove FP detections without excluding true positive (TP)
detections was not feasible. In addition, mask R-CNN’s
detection capabilities are invariant to parameter settings such
as the minimum SNR (Figure S11), while the Haar algorithm
is very sensitive to the minimum SNR value, leading to
improved trajectory linking during particle tracking. This
invariance also emphasizes the ability of the mask R-CNN to
identity particles in complex backgrounds at low SNR values.
Also, though beyond the scope of this work, the ability to
detect objects at low SNRs would extend the capability of
iSCAT experiments to detect weaker scattering objects such as
proteins or small, low-dielectric nanoparticles in complex,
heterogeneous backgrounds as has been recently shown by
Dahmardeh et al.34 in a publication currently under review.
Learning the Background Improves Performance

with the Mask R-CNN. The ability of CNNs to detect
objects has been attributed to the ability of the network to
learn features related to the objects of interest.22,35 However,
CNNs also inherently learn to classify features as belonging to
the background. The overlap of the dominant peaks at 0.04 in
both histograms shown in Figure 3 suggests that detecting
particles is not the main challenge, but rather, the problem lies

in discerning particles from the background−the inverse
problem in object detection. Also, because there is no bimodal
behavior in the mask R-CNN histogram due to FP detections
at low scattering contrasts, the improved performance of the
mask R-CNN may not stem from an ability to learn a better
representation of the particle signals but instead its ability to
learn a better representation of the background in iSCAT
ratiometric images. Therefore, the inclusion of representative
background images that capture real experimental backgrounds
in datasets for training may be important.
To test the hypothesis that including experimentally

representative backgrounds in the dataset improves mask R-
CNN’s performance relative to edge detection and threshold
based methods like the Haar-method, an analogous dataset was
generated without the inclusion of representative background
images from ratiometric images. Figure 4 presents histograms
of the scattering contrast detected by mask R-CNNs trained
with (blue) and without (gray) experimental backgrounds in
the dataset images.

Figure 4 demonstrates the impact of including representative
experimental backgrounds in the training dataset. An increased
density of FP detections appears at scattering contrast values
centered around 0.01 when particle detection is executed with
the mask R-CNN trained on a dataset that did not include
information about the background. The central scattering peak
at 0.04 was also slightly decreased in the particle count when
data was processed using the mask R-CNN trained on the
dataset that did not contain experimental backgrounds (the
peak position and count were again determined by eye). This
indicates that in addition to reducing FPs, insufficient learning
of background features may result in missed detections.
Consequently, the improved performance of the mask R-CNN
is not solely a product of learning of the background features.
Rather, it is a combination of the ability of the mask R-CNN to
learn the background and to better detect particle features in
that background when the mask R-CNN is exposed to
experimental backgrounds during training.

■ DISCUSSION
Visual Inspection of 100 Randomly Selected Images.

To quantify the performance of the Haar method against that
of both mask R-CNN models (trained using datasets with and
without background), 100 random images were selected from
the experimental ratiometric images. For each image, the three

Figure 3. Histograms of scattering contrast for particles detected
using the Haar method (pink) and mask R-CNN (blue). Scattering
contrast (|Aevent|) represents the peak contrast amplitude for each
particle as determined by the single particle tracking algorithm.

Figure 4. Histograms of scattering contrast comparing the perform-
ance of mask R-CNN models trained on datasets that included (blue)
and did not include (gray) experimental backgrounds. Scattering
contrast (|Aevent|) represents the peak contrast amplitude for each
particle as determined by the single particle tracking algorithm.
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object detection methods described in the Results section were
used to detect particles in the same sampled image, and the
results were inspected visually to assess performance by
counting the number of TP, FP, and false negative (FN)
detections. Examples of true and FP detections are shown in
Figure 2. FNs are particle signals that have not been detected
by the algorithm as potential PSFs. From this, precision and
recall were calculated, and the results are tabulated in Table 2.

We note that true negative detections cannot be quantified in
object detection tasks as there are an infinite number of pixel
groupings that form background features that should not be
detected.36 Due to the low concentration of particles in
solution, landing events occurred infrequently during our
experiment, resulting in ratiometric images that contained 0−2
particles on average.
Table 2 summarizes the results of the visual inspection of

100 random images. The biggest difference in performance
across the three methods is seen in the FP count where the
Haar, mask R-CNN (no background), and mask R-CNN
methods incorrectly identified 19, 21, and 3 background
features as particle PSFs, respectively. In general, the numbers
given in Table 2 agree with the distributions of scattering
contrast shown in Figures 3 and 4 and support the observation
that the secondary, low-scattering contrast peaks at 0.010
represent FPs and have the biggest impact on the quality of
PSF detection in these iSCAT images.
In Table 2, we also quantified performance using precision

and recall metrics. Recall quantifies the ability of each method
to capture all possible PSF-like features without missing
features that represent true particle PSFs. Precision quantifies
the accuracy of those detections and thus quantifies the impact
of FPs on the analysis. An optimal particle detection algorithm
would detect all features that represent particle PSFs (high
recall) without incorrectly identifying background features as
particle PSFs (high precision). The Haar method recall is
95.1%, indicating that the Haar method detects particles well,
but precision is 80.2% as many background features are
identified as particle signals. In the mask R-CNN (no
background) method, both recall (76.4%) and precision
(84.0%) are lower than those in the Haar method indicating
that without the background in the training datasets, the neural
network suffers from falsely detecting background features as
particle signals and from missing real particle signals when they
are convoluted with the background. We see the best
performance in the mask R-CNN (with background) where
high recall (97.5%) and precision (96.3%) show that the mask

R-CNN, when trained using a dataset that includes
experimental backgrounds, correctly identifies particle PSFs
while also correctly avoiding classifying background features as
particles. Evidently, neural networks demonstrate the potential
to learn experimental backgrounds, and this translates to
improved performance in particle detection in iSCAT
experiments.

FP Detections Negatively Impact Single Particle
Tracking. The analysis described in the Methods section
utilized single particle tracking algorithms to link PSFs
detected into trajectories based on the proximity of the PSF
centroid locations in subsequent ratiometric images. We then
used these trajectories to fit lines to the PSF amplitude versus
time. When a feature representing an adsorbing particle in a
ratiometric video was correctly identified, the trend of
scattering contrast with time within a trajectory followed a
linear decrease to the time of the adsorption event followed by
a linear increase after the adsorption event as shown in the
example in Figure S8e. However, when FP detections of the
background features are present, particle tracking algorithms
may link a true particle detection with an FP if the false
position is close to the TP position from the previous image.
When this happens, the trends in A with time for a given
trajectory can deviate from the expected decreasing−increasing
pattern, and this causes the linear fit algorithm to either fail or
report an incorrect scattering contrast and adsorption event
time. In general particle tracking experiments, such as those
that measure diffusion, incorrect linking can skew the detected
velocity.37 Thus, the improvements in particle detection
demonstrated here could benefit all particle tracking studies,
and our dataset creation/training methodology provides a
single particle tracking strategy with improved reliability.

Utility Beyond iSCAT. The main contribution here is the
methodology behind including real experimental background
images in datasets for training CNNs via supervised machine
learning. Including real background images in the training
datasets leads to an improvement in particle detection and,
more importantly, a reduction in FPs when iSCAT images are
analyzed with the mask R-CNN. However, the process
developed here is not limited to iSCAT experiments. If
experimentalists can accurately capture the background in their
collected images and model signals (e.g., PSFs) that they wish
to detect, they can create labeled datasets for many types of
experimental images (e.g., AFM, transmission and scanning
electron microscopy, and other optical microcopy methods) to
aid in the development of accurate, high-throughput
processing of their data using machine learning without the
need for expensive, high-performance computing resources.
A particular challenge for further expansion of the methods

for creating labeled datasets that include experimental
backgrounds described here is that it requires a researcher to
have access to background images lacking the target objects of
interest. Dataset creation in this work was enabled by the low
(200 pM) concentration nanoparticle solutions used in our
adsorption experiment. The low concentration of nanoparticles
slowed the adsorption process relative to the frame rate of
iSCAT (184 fps) to the point that only 0−2 events were
detected per frame and resulted in multiple ratiometric images
that contained no particle signatures. For characterization tools
compatible with solutions such as iSCAT, a blank solution
could also have been imaged without particles. This situation,
though, is inefficient from a data versus information standpoint
and is uncommon in other characterization methods. To

Table 2. Summary of Results of Particle Detection in 100
Randomly Selected iSCAT Images Analyzed by Visual
Inspection across the Three Methods Tested

Haar
mask R-CNN

(no background)
mask R-CNN

(with background)

total particles
(ground truth)

81 81 81

TP count 77 68 79
FP count 19 21 3
FN count 4 13 2
precisiona 80.2% 76.4% 96.3%
recallb 95.1% 84.0% 97.5%
aPrecision is defined as TP/(TP + FP). bRecall is defined as TP/(TP
+ FN).
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implement the dataset creation method in experiments where
all images contain objects of interest, users would need to
remove the objects from their images to create signal-free
background images, which requires detecting them, rendering
the workflow obsolete. A promising approach to extend the
method of creating datasets with real experimental back-
grounds may exist in the computer vision machine learning
field in the form of neural style transfer.38 In neural style
transfer, a neural network takes two images as inputs, a content
image and a style reference, and blends the two together such
that the output image contains important features in the
content image “painted” in the style of the reference image. In
our workflow, the content image would be the particle image
shown in Figure 1, and the reference would be sets of images
from an experiment with or without particles (i.e., the
experimental ratiometric background image shown in Figure
1). In theory, the output from this network could result in a
dataset containing synthetic particles in an image atop a
realistic background with labels from the particle image serving
as ground truth labels for training.

■ CONCLUSIONS
The methods presented here demonstrate a workflow for
creating labeled datasets with representative experimental
backgrounds containing simulated particle signals on back-
ground-suppressed iSCAT microscopy images to use in
training a mask R-CNN using transfer learning without
extensive computational resources. Results showed that the
high performance of the mask R-CNN in detecting nano-
particles adsorbing to a rough, high-scattering LbL film in an
iSCAT experiment stemmed from the ability of the mask R-
CNN to learn background features, thereby reducing the
number of FP detections. The improved analysis technique
expands capability of iSCAT to detect scattering objects in
situations where background scattering is complex.
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