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We discover a new type of nonequilibrium phase transition in a model of chromatin dynamics,
which accounts for the coherent motions that have been observed in experiment. The coherent
motion is due to the long-range cooperation of molecular motors tethered to chromatin. Cooperation
occurs if each motor acts simultaneously on the polymer and the surrounding solvent, exerting on
them equal and opposite forces. This drives the flow of solvent past the polymer, which in turn affects
the orientation of nearby motors and, if the drive is strong enough, an active polar (“ferromagnetic”)
phase of motors can spontaneously form. Depending on boundary conditions, either transverse
flows, or sustained longitudinal oscillations and waves are possible. Predicted time and length scales
are consistent with experiments. We now have in hand a coarse-grained description of chromatin
dynamics which reproduces the directed coherent flows of chromatin seen in experiments. This
field-theoretic description can be analytically coupled to other features of the nuclear environment
such as fluctuating or porous boundaries, local heterogeneities in the distribution of chromatin or
its activity, leading to insights on the effects of activity on the cell nucleus and its contents.

Introduction - Chromatin is the functional form of
DNA in living cells, with a variety of active processes
such as transcription, replication and DNA repair, tak-
ing place directly on the chromatin fiber [1–3]. Active
forces from these processes affect the organization and
dynamics of chromatin [4–6]. Through Displacement
Correlation Spectroscopy (DCS), chromatin motions
were simultaneously mapped across the entire nucleus
in live cells, revealing that chromatin exhibits fast
uncorrelated motions at short times (< 1 s) and slow
correlated motions at longer times [7]. The correlated
chromatin motions are coherent over 3–5 µm for several
seconds, before the coherent domains break up and
new ones form, resembling an oscillatory-like behavior
[7]. Furthermore, while the uncorrelated motions were
shown to be thermal-like, the coherent chromatin flows
were eliminated upon ATP depletion or inhibition of
major nuclear enzymes such as RNA polymerase II,
DNA polymerase and topoisomerase II, demonstrating
active, energy-dissipating and nonequilibrium nature of
the coherent chromatin flows [7–9].

From the active matter prospective, hydrodynamics of
systems with activity was the subject of many studies,
as reviewed in [10]. Depending on the role of solvent
and the symmetry of the order parameter [11, 12],
active hydrodynamics exhibit phenomena ranging from
coherent instabilities [13, 14], to nematic or polar order
[15, 16], to treadmilling [17, 18]. In many works, e.g., on
active nematics the idea is that nematic order is formed
as in the usual passive system, due to interactions
between, say, elongated molecules, and then activity
drives spectacularly interesting dynamics (see [19]).

In the context of chromatin, molecular motors driving
active dynamics, such as RNA polymerases, do not
appear to be close enough to form a long-range order
due to direct contact with each other [20]. At the
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same time, hydrodynamic treatment of chromatin finds
that coherent chromatin dynamics can be sustained
only in the presence of the ordered orientations of
force dipoles [8]. In alternative hydrodynamics-free
approaches, computationally reproducing coherent
chromatin motions required the use of artificial long-
range interactions [21–23]. An important hint came
from hydrodynamic simulations work, where large-scale
coherent chromatin dynamics as well as strong nematic
order of chromatin fiber was observed, without inserting
any artificial long-range forces [9]. Instead, this model
relies on the non-specific effects of hydrodynamics
to mediate such interactions. In our earlier study,
we identified motors, which exert equal but opposite
forces on the polymer and solvent, as responsible for
the large-scale hydrodynamic flows in the chromatin-
nucleoplasm two-fluid system [24]. Here, we aim to
develop a coarse-grained hydrodynamic model, which
reproduces the development of the coherent chromatin
phase. We hypothesize that there can be an ordering
phase transition when the force of the motors exceeds
a threshold value. We seek to analyze which proper-
ties of the chromatin-nucleoplasm system govern this
phase transition as well as the structure of ordered phase.

The model and equations of motion: linear response -
Following earlier work [8, 24] we describe chromatin using
the two-fluid model originally by Doi and Onuki [25]. The
dynamics of the system in this model is described by the
fields of polymer velocity vp(r, t), polymer volume frac-
tion ϕ(r, t), and the solvent velocity vs(r, t), while the
solvent volume fraction is 1 − ϕ(r, t) because of overall
incompressibility. To describe the onset of spontaneous
symmetry breaking and formation of polar ordered do-
mains, we start with the assumption of linear and local
rheological response of the polymer. This implies that
the velocities are small, as are the deviations from the av-
erage density, ϕ(r, t) = ϕ0+δϕ(r, t). This implies further
that polymer osmotic pressure is Π ≃ Kδϕ(r, t), with os-
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motic modulus K, while the force resulting from polymer
viscous stress is ηp ⋆∇2vp(r, t), where polymer viscosity
may have some time memory kernel and ⋆ means convo-
lution (see below about neglect of extensional viscosity
and terms ∼ ∇(∇ · vp)). In this approximation, equa-
tions of motion of the model are conveniently written
in the Fourier-transformed frequency domain (with sign
convention ∂/∂t → −iω) as follows:

ζ(vp
ω − vs

ω) = ηpω∇2vp
ω −K∇δϕω − ϕ0∇Pω + Fp

ω (1a)

ζ(vs
ω − vp

ω) = ηs∇2vs
ω − (1− ϕ0)∇Pω + Fs

ω (1b)

iωδϕω = ϕ0∇ · vp
ω = −(1− ϕ0)∇ · vs

ω (1c)

The first two equations represent force balance conditions
for polymer and solvent respectively, while the last two
are continuity conditions for these two components. Here
ζ is the friction coefficient of polymer against solvent, per
unit volume, ηs is the viscosity of the solvent, Pω is the
hydrostatic pressure.

The heart of the problem is the understanding of ac-
tive force densities Fp and Fs generated by active motors.
Typical size of every motor, which we denote a, is on the
order of or smaller than the mesh size λ. As explained
above, we focus on motors exerting equal and opposite
forces on polymer and on solvent, which to the first ap-
proximation, means Fp = −Fs = fρm(r, t), where ρ is
the number density of motors, while m(r, t) = ⟨n̂⟩ is the
average orientation. With f > 0, this describes exten-
sile force dipoles, contractile ones correspond to f < 0.
Remaining within linear response, we assume |m| small
and neglect the change of motor density associated with
changing polymer density δϕ. Note that every motor has,
generally, some finite processivity, stemming from its on-
and off-rates; density ρ includes only those motors that
are simultaneously working. The geometry of the source
is illustrated in Fig. 1A.

Since the body of the force-exerting motor is tethered
to the polymer at one end and experiences friction from
the solvent, there must be a torque acting on the motor
and proportional to the relative velocity vp − vs = w,
leading to the following dynamics of the m field (see Ap-
pendix, Section A for detailed derivation):

−iωmω =
2

3a
wω − 2

T

γ
mω , (2)

where γ is the rotational drag coefficient for the motor.
Apart from nonlinearities (considered below), we ne-

glect in Eq. (2) coupling of motor orientation to poly-
mer concentration gradient (because motor size is smaller
than or comparable to polymer mesh); don’t consider
renormalization of active force due to the flow itself (be-
cause f is large enough); ignore the possibility of the
induced nematicity of the polymer and corresponding ac-
tive stress. Our theory is in some ways similar to that
of Adar and Joanny [16], as they also examine coupling
between flow and polarization in a two fluid model, but
they focus on the regime of strong polarization which can
only rotate in response to the flow, while we concentrate
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FIG. 1. Sketch of our model and the two types of solutions.
A: Example of a region of disordered polymer and attached
force dipoles, with a zoomed-in section where the parameters
describing the microscopic features of the motors are shown.
B: Sketch of the transverse solution in a spherical domain,
showing the polar alignment of the sources and the sustained
solvent flow being pumped in the opposite direction of their
orientation. C: Sketch of the longitudinal, oscillatory solu-
tion to the equations of motion. Dashed arrows show the
relaxational (osmotic) flow of polymer in the absence of ac-
tive forces, which seeks to even out density fluctuations. Solid
arrows show the active polymer flow induced by the sources.
Time goes from the upper panel to the lower one, with time
per frame given in Eq. (9).

on the chromatin-relevant opposite regime of weak po-
larization which only arises due to the flow.
Along with Eq. (2), it is convenient to recast the equa-

tions of motion (1) in terms of the above defined relative
velocity wω = vp

ω − vs
ω and viscosity-weighted average

velocity uω = (ηpωv
p
ω + ηsvs

ω)/ (η
p
ω + ηs) (see Appendix,

Section C). Doing so, one can easily see that relative
velocity w is driven by m, i.e., mathematically by force
monopoles rather than dipoles. A similar mathematical
structure appeared in the work [26], albeit in an entirely
different physics context. This explains why hydrody-
namic interactions are so important in our active sys-
tem, despite the fact that in passive polymers they are
screened at the distances not far exceeding the mesh size
[27]. Another remarkable feature of the full set of equa-
tions is that they allow for simultaneous Helmholtz de-
composition of the three vector fields m, u, and w to the
uncoupled divergence-free (transverse, ⊥) and curl-free
(longitudinal, ∥) modes.
Threshold of instability, divergence free (transverse)

modes - Transverse modes do not involve density change,
δϕ = 0, and, accordingly, no pressure gradient, ∇P = 0.
This leaves us with just two equations which are easily
combined into one (see Appendix, Section C):

−iωτ
(
1− λ2∇2)wω⊥ = 2

(
fργ

3aζT
− 1 + λ2∇2

)
wω⊥ , (3)

where we introduced short hand notations

τ =
γ

T
, and λ2 =

ηpωη
s/ζ

ηpω + ηs
≃ ηs

ζ
, (4)

and in the last transformation we took into account the
fact that ηpω ≫ ηs, by several orders of magnitude, over
the entire frequency range of interest [28–36]. Clearly, τ
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is the characteristic time of passive re-orientation by a
single motor, while λ is the length scale of the mesh size.
In an infinite domain, the modes are just plane waves,

∇2 → −q2, and we see that modes become unstable when
fργ
3aζT > 1 + λ2q2. The fact that the length scale 1/q of

the unstable modes diverges as we approach from above
the critical force level at which fργ

3aζT − 1 = 0 is reminis-

cent of a second-order phase transition, similar to that in
a magnet, with w⊥ playing the role of (self-consistent)
magnetic field and m⊥ the local averaged spin. The crit-
ical parameter ϵ = fργ

3aζT − 1 describes a competition be-

tween the velocity produced by the cooperatively acting
motors fρ

ζ , and the characteristic velocity needed to align

a motor, aT/γ = a/τ .
If the system is confined in a finite domain of size R,

then modes have a more elaborate structure and discrete
spectrum. Although the stability analysis for this case
may require a separate study [37], the qualitative esti-
mate of the amount of force needed to generate insta-
bility can be obtained by just setting q ∼ 1/R (see Fig.
2):

fρ >
3aζT

γ
+

aηsT

γR2
. (5)

The meaning of this condition becomes transparent if we
imagine an arrangement of motors in a typical transverse
mode in a round domain (depicted in Fig. 1B). These
motors acting together have to be strong enough to over-
come the friction of the solvent pumped through the net-
work (the first term) and additional friction against the
boundary (the second term).

Threshold of instability, curl free (longitudinal) modes
- The longitudinal waves involve density fluctuations,
which is why their description is more complicated. Nev-
ertheless, even in this case, the problem is reduced to a
single equation for the field w∥ (see Appendix, Section C
for derivation):[

1− λ2
s∇2

]
τ2∂2

tw∥ − 4λ2
d∇2w∥+

+ 2

[
1−

(
λ2
s + λ2

d

)
∇2 − fργ

3aζT

]
τ∂tw∥ = 0 ,

(6)

where in addition to (4) we introduced two new length
scales, their complete expressions are cumbersome (see
Appendix, Eq. C7), but in simplified form (due to ηpω ≫
ηs) they are as follows:

λ2
s ≃ ηp (1− ϕ0)

2

ζ
and λ2

d ≃ Kϕ0 (1− ϕ0)
2
γ

2ζT
. (7)

In equation (6), we returned to time domain (−iω →
∂t), making the oscillator structure of the equation more
transparent. This is possible only as long as polymer
viscosity, ηpω, is only smoothly dependent on frequency.

As in the transverse case before, in an infinite domain
the modes are just plane waves, ∇2 → −q2, and Eq. (6)
becomes that of a damped harmonic oscillator. Remark-
ably, active driving force comes only in the friction term.

In particular, sufficiently strong and numerous motors
can lead to the flipped sign of friction, making the oscil-
lator unstable. As before, structure of modes for a finite
size domain of size R requires special analysis [37], but
qualitatively we can estimate the instability threshold by
just replacing q → 1/R (see Fig. 2):

fρ >
3aζT

γ
+

(1− ϕ0)
2a

R2

[
3Tηp

γ
+

3

2
Kϕ0

]
. (8)

Similar to the formula (5) for the transverse case, Eq.
(8) means that motors have to be strong enough to over-
come friction, which this time involves moving and de-
forming polymers, thus dependent on ηpω and K, respec-
tively. This implies that a larger force is needed to gener-
ate longitudinal modes compared to the transverse ones
(and the extensional viscosity of the polymer can further
increase this threshold).
When force is exactly equal to the threshold value for

some q, this mode exhibits a sustained oscillation with
frequency such that (ωτ)

2
= 2λ2

dq
2/
(
1 + λ2

sq
2
)
. In par-

ticular, the small q modes (qλs ≪ 1) are just propagat-
ing waves with ω ∝ q and with velocity ∼ λd/τ ∼ K/ζ.
Numerically generated movies illustrating possible wave
packet dynamics can be found in Appendix, Section D.
This can be rationalized in an interesting way. Let us

define rate τ−1
q ∼ (K/ζ)q2; given that K/ζ has dimen-

sionality of a diffusion coefficient, τq is the characteristic
relaxation time of a density wave of length 1/q by cooper-
ative diffusion, driven by polymer elasticity (K) against
friction (ζ). In terms of τq, we can write mode q fre-
quency as the geometric mean of two rates:

ω ∼ (ττq)
−1/2

, with τ−1
q ∼ (K/ζ)q2 . (9)

The mathematical structure of frequency as the geomet-
ric mean of two rates is analogous to that which arises in
the Lotka-Volterra equations [38, 39], which is the geo-
metric mean of the growth rate of the prey and the death
rate of the predator. This structure reflects the physical
nature of the oscillator: by the time some dense region
of size 1/q relaxes, it will have generated a velocity field
which locally aligns the field m∥. This field has a persis-
tence time τ , and pumps the polymer in the same direc-
tion in which it was relaxing. This causes a new dense
region to develop, until the dipoles lose their alignment
in turn after a time τ , and the polymer relaxation begins
yet again at a rate 1/τq in the opposite direction. This
is illustrated in Fig. 1C.

If the force is slightly above or slightly below the
threshold (8), then oscillator is either slowly decaying
(below) or slowly increase swinging (above), with char-
acteristic time that diverges at the threshold, again remi-
niscent of a standard critical slowing down in phase tran-
sitions.

Beyond linear response - Once driving force exceeds
the threshold value, unstable modes exponentially ex-
plode, grow out of the linear response range, and then
non-linearity comes to rescue and eventually arrests the
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growth. There are many non-linear effects possible, in-
cluding non-linear osmotic and/or rheological behavior,
advection of motors, but we will focus on the most basic
and omnipresent one, namely, the fact that orientational
order of motors is limited such that |m| ≤ 1: the maxi-
mum motors can do together is to align completely.

Complete description of orientation dynamics in an ori-
enting field is rather cumbersome (see Appendix, Section
A). We will restrict ourselves with the simplest esti-
mate, assuming that polarization vector m beyond linear
regime (2) evolves according to

τ∂tm = 2 (meq (w)−m) ,

with meq (w) ≃ w
τ

3a

(
1− (wτ/a)

2

15

)
.

(10)

Here meq (w) is the equilibrium value that would be
achieved in a constant flow w; similar to classical ori-
entation of dipoles, meq(w) = coth (wγ/aT ) − aT/γw,
and we use the first non-linear term of expansion. Eq.
(10) is not exact, but captures main qualitative features.

Once the dynamics is nonlinear, separation of longitu-
dinal and transverse modes is not possible. Nevertheless,
neglecting frequency dependence of ηp (and, therefore,
λs), we can reduce equations of motion to a single equa-
tion (see Appendix, Section C):

τ2∂2
t

[
1− λ2

s∇∇ ·+λ2∇×∇×
]
w − 4

[
λ2
d∇∇·

]
w

+ 2τ∂t
[
1−

(
λ2
s + λ2

d

)
∇∇ ·+λ2∇×∇×−

− fργ

3aζT

(
1− τ2

15a2
w2

)]
w = 0 .

(11)
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FIG. 2. Phase diagram of the instabilities and the regions of
parameter space where they develop, as a function of the ac-
tive force density and the size of the container. In the left
(blue) region of the diagram, the forcing is insufficient to
drive instabilities and the system remains disordered. The
middle (red) region is where the forces are sufficient to drive
transverse flows but not strong enough to cause polymer den-
sity fluctuations. Finally, the bottom-right (purple) region of
parameter space is where both longitudinal oscillations and
transverse flows are possible. The lines separating the regions
correspond to the conditions (5,8) respectively.

Equation (11) is instructive. First of all, if we drop the
nonlinear term, then it is reduced to either Eq. (3) or
Eq. (6) if the field w is divergence-free or curl-free, re-
spectively [40]. Of course, full non-linear equation is dif-
ficult to analyze. Nevertheless, Eq. (11) is still similar to
that for an oscillator (specifically, van der Pol oscillator
[41, 42]), with both active forces and non-linear satu-
ration contributing to the friction term (with first time
derivative); All types of second spatial derivatives, aris-
ing from viscous stresses, are controlled by the domain
size and estimated as 1/R2, although the detailed shape
of the vector field w is sensitive to the domain shape and
boundary conditions. For an estimate, we just say that
modes start to grow when force makes friction term in Eq.
(11) negative and then |w| grows until friction term be-
comes positive again. If the force threshold for instability
is f∗ (determined, e.g., by Eq. (8)), then the steady ve-
locity amplitude scales as w2 ∼

(
15a2/τ2

)
(f − f∗) /f∗,

and corresponding density variations amplitude is δϕ2 ∼(
15a2ζ/Kτ

)
(f − f∗) /f∗. Corresponding numerical so-

lutions are shown in Appendix, Section D.
Discussion - Our model predicts three phases for chro-

matin dynamics: disordered, and two types of polar order
- transverse flows and oscillatory regime. These are con-
trolled by the active force density fρ and the domain size
R (Fig. 2).
Our results are consistent with extensive simulations

reported in [9], showing that extensile motors (f > 0),
if present in sufficient density fρ, produce polar ordered
state and coherent motion. An additional feature of the
computational model [9] is that they observe nematic or-
dering of polymer itself; we speculate that nematicity of
the polymer may be a consequence of the polar order of
motors, because the motors in the simulations were tied
to local direction of the polymer.
Speaking about chromatin in vivo, we consider RNA

polymerase II as a likely motor driving chromatin dy-
namics, as it binds to chromatin and pushes RNA into
the solvent [1], although many other nuclear enzymes can
also mechanically couple chromatin fiber to the nucleo-
plasm, e.g., loop extruding condensin [43]. For these mo-
tors, density ρ ≳ 102 µm−3 [44], force f ∼ 25 pN [45],
size a ∼ 20 nm [46]. At full cooperation, when perfectly
aligned, these motors can drive solvent past chromatin
at a very large speed wmax ∼ fρ/ζ ∼ 107 nm/s; here, we
used ζ = ηs/λ2, assuming nucleoplasm viscosity similar
to that of water, ηs ∼ 10−3 Pa · s [34, 35], and taking
chromatin mesh size λ ∼ 50 nm (30− 100 nm reported in
experiments [47, 48]). Of course, polymer moves with a
smaller speed, reduced by a factor of ratio of viscosities,
vp ∼ (ηs/ηp)w.
Unfortunately, the ratio of viscosities is difficult to

measure directly. Using experimentally measured val-
ues of ηp and ηs [28–36], we estimate the ratio to be in
the range 10−2 to 10−6. The latter figure would be in
agreement with experimentally measured polymer speed
in slow coherent motion about 10 nm/s [7]. If the actual
ratio of viscosities is not quite that small, then we will
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have to conclude that chromatin in vivo operates close to
criticality, where our model predicts reduction of velocity

by a factor
(
fρ/ (fρ)

∗ − 1
)1/2

.
To estimate actual closeness to criticality in the case

of transverse flows, it is convenient to rewrite the criti-
cal conditions Eq. (5) in terms of the above mentioned
maximal speed at full cooperation: fρ/ζ > (fρ)

∗
/ζ =

(3a/τ)
[
1 + λ2/R2

]
. Here λ/R is completely negligible

for realistic nucleus size of about R ∼ 10µm [1, 3],
while passive reorientation time of a motor we calculate
as τ ≳ 10−6 s (see Appendix, Section E). The actual
value of τ could be significantly higher, since we under-
estimated the dissipative coupling between motor and
polymer. Current estimate yields 3a/τ ≲ 107 nm/s, sim-
ilar to wmax above. This suggests that transverse flows
could indeed be responsible for the coherent chromatin
flows in live cells.

In the oscillatory regime, required critical force density
is larger, fρ/ζ > (fρ)

∗
/ζ = (3a/τ)

[
1 + (ηp/ηs)λ2/R2

]
,

see Eq. (8). Given the uncertainties in the estimates of τ
and, most importantly, ratio of viscosities, it is difficult
at the present time to make definitive statements about
feasibility of this regime for in vivo chromatin. A sim-
ilar uncertainty exists about our predictions of running
waves speed and oscillations period (Eq. 9), which is
poorly constrained, but seems significantly shorter than
measured lifetime of coherent chromatin flows in cells of
∼ 5−10 s [7]. Importantly, a set of parameters consistent
with current knowledge can be chosen that yields phys-
iologically relevant results, yet such a choice cannot be
presently motivated.

Overall, our model might be consistent with current
measurements, although the significant approximations
in our theory and uncertainties in parameters call for fu-
ture efforts towards more detailed modeling. This will
require consideration of the boundary conditions [37], in-
cluding solvent permeation through the nuclear envelope
[49], coupling of chromatin to lamin [50–52] and to nu-
clear envelope fluctuations [53]. Another promising direc-
tion is to account for a nonuniform distribution of active
motors in the nucleus and along the chromatin fiber, such
as active motors preferentially residing in transcription-
ally active euchromatin [21, 52, 54]. But already now our
theory makes predictions that beg for experimental tests,
in particular for solvent motions, which unlike chromatin
motions have not been measured before.
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Appendices

A. Single motor dynamics

Since the body of the force-exerting motor is tethered
to the polymer at one end and experiences friction from
the solvent, there must be a torque acting on the mo-
tor and proportional to the relative speed of polymer
past solvent, vp − vs = w. This leads to the following
Langevin equation describing the stochastic dynamics of
the motor orientation vector n̂:

∂tn̂ = (I − n̂n̂) ·

[
w

a
+

√
2T

γ
ξξξ

]
⟨ξi(t)ξj(t′)⟩ = δijδ(t− t′) .

(A1)

We assume here that the dipoles experience rotational
friction with coefficient γ. We also assume the presence of
Gaussian white noise that obeys fluctuation-dissipation
theorem and thus has variance 2γT , with T tempera-
ture (although we do not a priori exclude the possibility
that T may be some sort of an effective temperature).
I − n̂n̂ (with I the identity matrix) projects the expres-
sion in square brackets onto the plane perpendicular to
n̂ and thus ensures that the dynamics does not change
the length and only rotates the n̂ vector. It is worth
noting that equation (A1) is identical to the equation of
motion for Langevin dipoles in an external electric field
at finite temperature, where in our case w plays the role
of orienting field [55].
Equation (A1) is an embodiment of our minimal model

of force dipole dynamics. It certainly neglects a number
of potentially relevant factors, two of which we mention.
First, we do not take into account any direct interac-
tion between motors (e.g., excluded volume), assuming
they are sufficiently far apart. Second, we assume that
motor is attached to a polymer by a swivel and thus turn-
ing the motor does not cause polymer to bend; in other
words, motor direction n̂ is assumed independent of the
local direction of the polymer backbone (note that the
computational model in the work [9] makes essentially
the opposite assumption that these two vectors are the
same).
To describe the onset of polar order, we consider the

dynamics of the coarse-grained orientation field m(r, t).
We define the coarse-graining to take place inside a ball
B centered at r, such that this ball is large enough to con-
tain many dipoles, while still being smaller than the rele-
vant dynamic length scales over which gradients develop

in the system. Within this ball, we define m(r) =
∑

n̂i∑
i ,

the average orientation. Thus, m is a vector with length
0 ≤ |m| ≤ 1.
Then, to derive the equation of motion for m, we con-

sider the distribution of directions of motors in B. We
can assume that the external field w is constant in this
region, and we orient our coordinate system such that it
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points in the ẑ direction. Then, the external field leads
to an effective potential which in spherical coordinates
is proportional to cos(θ). The resulting Fokker-Planck
equation for the distribution of orientation angles is

∂tp(n̂) = −1

a
∇ · (∇ (w · n̂) p) + T

γ
∇2p (A2)

1. Linear response

Linear dynamics of m corresponds to the situation where
the distribution p(n̂) deviates weakly from isotropic,

which is equivalent to assuming |w|γ
aT ≪ 1. The equation

of motion for m can be found by multiplying equation
(A2) by n̂ and integrating over the unit sphere:

∂tm = −2
T

γ
m− 1

a

∫
∇ · (∇ (w · n̂) p) n̂dΩ . (A3)

Here, we used ∇2n̂ = −2n̂ to simplify the Laplacian
term. The integral on the right-hand side can be per-
formed by parts in spherical coordinates, and then using
⟨P2⟩ = 1

2

∫ π

0
P (3 cos(θ)2 − 1)dΩ we get

∂tm = −2
T

γ
m+

2w

3
(1− ⟨P2⟩) (A4)

In the linear response regime, the distribution in the sec-
ond term should be assumed to be isotropic, leading to
⟨P2⟩ = 0 and we get

∂tm = −2
T

γ
m+

2w

3a
(A5)

which is equation (2) used in the main text.

2. Beyond linear response

Going beyond the linear response regime, we still as-
sume the distribution to be axially symmetric about w.
In this approximation, the Fokker-Planck equation (A2)
can be evaluated more exactly by considering the time-
dependence of each Legendre mode ml = ⟨Pl(cos(θ))⟩,
where cos θ = ŵ · n̂. To do this, we multiply equation
(A2) by Pl and integrate over the unit sphere. Because
of axial symmetry, only the ẑ component is relevant:

τ∂tml = −l(l + 1)ml −
|w|τ
a

∫
∇ · (∇ (cos(θ)) p)PldΩ ,

(A6)
where we have inserted the definition τ = γ/T . The
integral on the right-hand side can be evaluated by inte-
gration by parts, which leads to the following sequence
of differential equations for ml:

τ

l(l + 1)
∂tml = −ml +

|w|τ/a
2l + 1

(ml−1 −ml+1) (A7)

This should be complemented with the initial condition
that m0 = 1, ensuring that this can be solved sequen-
tially. Note that the equation for m1 involves m2, a fact
which is negligible in the linear response treatment, but
important beyond linear response.
In equilibrium, the time derivatives are all 0, and the

resulting recurrence relation for the equilibrium meq
l can

be identified as the Bessel recurrence relation. Requiring
regularity at w = 0, one can obtain the following result:

meq
l =

√
πα

2

Il+1/2(α)

sinhα
, (A8)

where α = |w|τ/a, and Iν is the modified Bessel func-
tion of the first kind. In particular, if l = 1, we obtain
the well-known result meq

1 = cothα − 1/α = L(α), also
known as the Langevin function.
The dynamical behavior of this system can be investi-

gated perturbatively in the small parameter α. Indeed,
the leading behavior for the moment ml is proportional
to αl. Therefore, we may consider the leading dynamical
behavior by truncating the sequence after l = 2:

τ∂tm1 = −2m1 +
2

3
α(1−m2)

τ∂tm2 = −6m2 +
6

5
αm1 .

(A9)

These can be combined into one equation for m = m1ẑ:

3

2
τ2∂2

tm− 12τ∂tm−
(
18 +

6

5
α2

)
m = −6αẑ (A10)

This is the equation for an overdamped harmonic oscil-
lator, around the equilibrium value meq = α

3+α2/5 ẑ ≃(
α
3 − α3

45

)
ẑ. The oscillator is overdamped for any α < 5,

and since we are in the regime α ≪ 1 we can safely ne-
glect inertia.
In the main text, we simplify this overdamped equation

of motion by writing it as

τ∂tm = 2 (meq(w)−m) , (A11)

where meq = wτ
3a

(
1− (wτ/a)2

15

)

B. Derivation of equations of motion in terms of u
and w

In the main text, we define the velocity fields w =
vp − vs and uω = (ηpωv

p
ω + ηsvs

ω)/ (η
p
ω + ηs). Here we

show how to transform the two-fluid equations of motion
into these new variables. We begin with the force-balance
equations

ζ(vp
ω − vs

ω) = ηpω∇2vp
ω −K∇δϕω − ϕ0∇Pω + Fp

ω

(B1a)

ζ(vs
ω − vp

ω) = ηs∇2vs
ω − (1− ϕ0)∇Pω + Fs

ω . (B1b)
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To get the force-balance equation for w, we divide equa-
tion (B1a) by ηp and equation (B1b) by ηs before taking
their difference. This gives us

ζ

(
1

ηpω
+

1

ηs

)
wω = ∇2wω +

(
1

ηpω
+

1

ηs

)
fρmω

+

(
1− ϕ0

ηs
− ϕ0

ηpω

)
∇Pω − K

ηpω
∇δϕω .

(B2)

The equation for u is obtained by simply taking the sum
of equations (B1a) and (B1b), and using the fact that in
our model Fp + Fs = 0:

(ηpω + ηs)∇2uω = K∇δϕω +∇Pω . (B3)

Next we turn our attention to the equation of continuity

iωδϕω = ϕ0∇ · vp
ω = −(1− ϕ0)∇ · vs

ω . (B4)

In the above, we solve for ∇ · vs, ∇ · vp and insert
them into the definitions ∇ · w = ∇ · vp − ∇ · vs, and
∇ · u = (ηp∇ · vp + ηs∇ · vs) /(ηp + ηs). This yields the
continuity equation in terms of the two new fields

∇ ·wω = iωδϕω

(
1

ϕ0
+

1

1− ϕ0

)
, (B5a)

(ηpω + ηs)∇ · uω = iωδϕω

(
ηpω
ϕ0

− ηs

1− ϕ0

)
. (B5b)

We now have the full set of equations of motion, in terms
of the new velocity fields u,w.

C. Full derivation of equation (6, main text) for
longitudinal case, as well as more general

equation (11, main text)

In the main text, we used equations (3,6, main text)
for the transverse and longitudinal flows in the linear
regime. Later in the paper, when we turned our attention
to non-linear dynamics, we used equation (11, main text).
Here we will derive a more general result from which
both of the linear-response equations of motion, as well
as the nonlinear equation of motion may be derived as a
particular case, after inserting the appropriate dynamics
for m:

−iωτ
(
1 + λ2∇×∇×−λ2

s∇∇·
)
wω

− 2λ2
d∇∇ ·wω = −iω

fρτ

ζ
mω .

(C1)

This is the linear response relation describing the re-
sponse of w to the forcing m.
We begin the derivation of formula (C1) with the force-

balance equation of motion derived above(
ζ

(
1

ηpω
+

1

ηs

)
−∇2

)
wω =

(
1

ηp
+

1

ηs

)
fρmω

−
(
ϕ0

ηpω
− 1− ϕ0

ηs

)
∇Pω − K

ηpω
∇δϕω .

(C2)

We then eliminate the pressure gradient ∇Pω by solv-
ing for it in equation (B3). Notice that the divergence-
free part of u does not couple to any other fields, so we
can safely assume ∇× u = 0. Then, using the identity

∇2v = ∇ (∇ · v)−∇× (∇× v) , (C3)

which is valid for any vector field v, we can write∇2uω =
∇ (∇ · uω). Thus we obtain

∇Pω = −K∇δϕω + (ηpω + ηs)∇2uω

=

(
−K + iω

(
ηpω
ϕ0

− ηs

1− ϕ0

))
∇δϕω

(C4)

where we used the continuity equation (B5b). The equa-
tions can be closed by relating δϕ back to w using equa-

tion (B5a). We have ∇δϕω = ϕ0(1−ϕ0)
iω ∇ (∇ ·wω), thus

leading to the full equation of motion

− iω

(
ζ − ηpηs

ηp + ηs
∇2

)
wω = −iωfρmω

+Kϕ0(1− ϕ0)
2∇ (∇ ·wω)

− iω
((1− ϕ0)η

p − ϕ0η
s)

2

ηs + ηp
∇ (∇ ·wω) .

(C5)

We can collect terms and rewrite the equation as follows

−iωτ
(
1− λ2∇2 − (λ2

s − λ2)∇∇·
)
wω =

2λ2
d∇∇ ·wω − iω

fρτ

ζ
mω ,

(C6)

where we have defined the length scales

λ2 =
ηpωη

s/ζ

ηpω + ηs
≃ ηs

ζ
,

λ2
s =

ηpωη
s + (ηpω(1− ϕ0)− ηsϕ0)

2

ζ(ηpω + ηs)
≃

≃ ηpω (1− ϕ0)
2

ζ
,

and

λ2
d =

Kϕ0 (1− ϕ0)
2
γ

2ζT
.

(C7)

Using the identity (C3), equation (C6) can be finally
transformed into the desired equation (C1). It is the
general equation of motion for the velocity field w, ag-
nostic to the specific dynamics that m obeys. It is valid
for both longitudinal and transverse modes, as well as
any combination of them.

1. Derivation of the linearized equation of motion

As we mentioned, equation (C1) represents the linear
response of w given some source m. It can be formally
solved for the Green’s function of the velocity field for a
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given orientation field. The physical description of the
system is complete once we introduce the feedback of w
on m, which is done through the linear equation (A5), as
long as we are in the linear response regime. Altogether,
this gives a closed linear equation of motion for w:

(iωτ)
2
(1 + λ2∇×∇×−λ2

s∇∇·)wω

− 2 (iωτ)

(
1− fργ

3aζT
+ λ2∇×∇×−(λ2

s + λ2
d)∇∇·

)
wω

− 4λ2
d∇∇ ·wω = 0 .

(C8)

The beauty of this equation is that it automatically
produces equations (3, main text) and (6, main text).
For the transverse case, when we take w = w⊥, since
∇ · w⊥ = 0, ∇ × ∇ × w⊥ = −∇2w⊥, this produces
(3, main text). Conversely, when we take the longitu-
dinal component w = w∥, then ∇∇ · w∥ = ∇2w∥, and
∇×w∥ = 0, and we get (6, main text).

It is worth noting that this structure, of one equation
describing response and the other feedback, each with
their own timescale, is strongly reminiscent of the struc-
ture of the Lotka-Volterra equations for predator-prey
dynamics. As we have noted in the main text, the reso-
nant timescale of the oscillator we obtain for the longi-
tudinal modes is the geometric mean of the two underly-
ing relaxation times, just as in the Lotka-Volterra model
[38, 39].

Instead of excludingm and writing the equation of mo-
tion for w (C8), we can equally well exclude w and write
the equation of motion form. This happens to have iden-
tically the same form as equation (C8). Mathematically,
this is due to the fact that the differential operators that
relate m and w commute with one another.

We can also derive a closed equation of motion for
δϕ. Again, we begin with the linear response relation
for δϕ given m, which may be derived by taking the
divergence of equation (C11) and using the continuity
equation (B5a)(

1− λ2
s∇2

)
τ∂tδϕ =2λ2

d∇2δϕ

+
fρτϕ0(1− ϕ0)

ζ
∇ ·m .

(C9)

Within linear response, taking the feedback equation in
linear form (A5), this produces

(1− λ2
s∇2)τ2∂2

t δϕ− 4λ2
d∇2δϕ

+ 2

(
1− fρτ

3aζ
− (λ2

s + λ2
d)∇2

)
τ∂tδϕ = 0 .

(C10)

As before, at any wave vector q, this is an oscillator equa-
tion with friction term affected by the force. Analysis of
this equation, therefore, leads to the same conclusions as
before.

2. Nonlinear regime

Beyond linear response when nonlinearities are at play,
we cannot resort to Fourier modes, so we must work with
a version of equation (C1) in the time domain(

1 + λ2∇×∇×−λ2
s∇∇·

)
τ∂tw =2λ2

d∇∇ ·w

+
fρτ

ζ
∂tm .

(C11)

We formally write the solution of the nonlinear equation
for m as

m = (2 + τ∂t)
−1

2meq(w) , (C12)

plug this solution into equation (C11), and then use the
fact that the operator (2 + τ∂t) commutes with both spa-
tial and time derivatives in equation (C11). As a result,
we arrive at

τ2∂2
t

[
1− λ2

s∇∇ ·+λ2∇×∇×
]
w − 4

[
λ2
d∇∇·

]
w

+ 2τ∂t
[
1−

(
λ2
s + λ2

d

)
∇∇ ·+λ2∇×∇×−

− fργ

3aζT

(
1− τ2

15a2
w2

)]
w = 0 ,

(C13)

which is equation (11) in the main text.

3. List of possible nonlinearities

In our analysis of the nonlinear regime above, we inves-
tigated the effects of the saturation of the orientation field
m, which cannot take values |m| > 1. We deem this to be
an important nonlinearity to consider, as otherwise the
system quickly diverges into states which violate the very
definition of m as an average of unit vectors, rendering
the model inconsistent. In addition however, there are
a number of deviations from the linear response regime
which could be taken into account, but which we choose
to neglect for simplicity. These include:

• The advection of force dipoles by the surrounding
fluid flow, which would result in a term propor-
tional to vp · ∇m added to Equation (A11).

• The nonlinear osmotic pressure Π due to large vari-
ations in concentration, proportional to δϕ2 and
higher powers.

• Nonlinear rheology (dependence of stress tensor σp

on velocities), such as shear-thinning or thickening
effects, as well as non-local rheological response (so-
called q−dependent rheology [56]).

• Nematic contribution to the stress tensor, propor-
tional to ww.

• Active nematic contribution to the stress tensor,
proportional to fww.
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• Dependence of activity on density, as has been ob-
served in the case of bacterial swarms for example.
This would have a generic nonlinear effect on the
microscopic forcing of the dipoles f(δϕ).

• Extra osmotic pressure due to activity, be it due
to resulting ATP concentration gradients or other
chemical fuels and waste resulting from activity.

We choose to neglect these so that our model may be
tractable analytically, however they may be included in
future numerical studies of this model.

4. Stability and conservation of mass

Although by construction our equations describe only
the redistribution of chromatin driven by motors, and do
not involve either change in the amount of material or
spontaneous motion of chromatin, it is technically use-
ful and important to see how these properties are imple-
mented in the final equations of motion, like Eq. (C13).
Furthermore, it will be useful for us to ensure that our
numerical scheme detailed in Section D indeed satisfies
these constraints.

Consider, for instance, the linear response equation
for δϕ (C9). If there is no drive, i.e. m = 0, but δϕ
happens to be nonzero at t = 0, then (C9) guarantees
that δϕ will decay stably to 0. This follows from the
fact that the Laplacian operator has negative eigenval-
ues. For instance, in an infinite domain where we can
write ∇2 → −q2, we would have

δϕq(t) = δϕq(0) exp

(
− 2λ2

dq
2

1 + λ2
sq

2
t

)
. (C14)

Consider now the more interesting case where there is
a drive, m ̸= 0. Suppose first that the domain is very
large but m is only located in some part of this domain,
while far away both m and δϕ are 0. Then, integrating
equation (C9) over the whole volume gives

∂t

∫
δϕdV = 0 , (C15)

which means the total amount of polymer material is
conserved, as expected.

In the case of a finite domain Ω where activity may
happen close to the boundary, we still expect a boundary
condition w = 0, m = 0 at the boundary (or, if there is
hydrodynamic slip on the boundary, then only the normal
components are 0, which does not affect our conclusions).
Then, integrating equation (C9) over Ω, we are left with

τ∂t

∫
Ω

δϕdV =

∮
∂Ω

(
λ2
d + λ2

sτ∂t
)
∇δϕ · dS

=
ϕ0(1− ϕ0)

2τ

ζ

∮
∂Ω

(K∇δϕ− ηp∇∇ · vp) · dS ,

(C16)

where we have used divergence theorem on the right-hand
side integral, followed by using the continuity equation
(B5a). The term on the right-hand side must therefore
be 0 to guarantee the conservation of δϕ. This is seen by
remembering the force-balance condition for the polymer
at the boundary: since vp = m = 0 at the boundary, the
only forces are due to viscosity and osmotic pressure,
which must exactly cancel out. Thus, the integrand in
the right-hand-side of (C16) is exactly 0 everywhere at
the boundary.
Finally, the numerical scheme we show in Section D

has no boundaries and assumes a periodic domain, so it
will automatically conserve

∫
δϕdV .

D. Numerical Solutions

To investigate the solutions to the nonlinear equation
of motion (C13), we wrote a simple numerical scheme to
solve the system in one dimension. We write the equa-
tions using a non-dimensional version of the velocity field
w̃(x, t) = τ

3aw(x, t). We use the two equations (A11) and
(C11) instead of combining them, which allows us to nu-
merically integrate only first-order differential equations
in time. In one-dimensional form, these equations read

(1− λ2
s∂

2
x)∂tw̃ = 2λ2

d∂
2
xw̃ + (ϵ+ 1)∂tm

∂tm = −2m+ 2w̃

(
1− β

3

5
w̃2

)
.

(D1)

Here, β is a parameter which we set to 0 or 1 depend-
ing on whether we want to consider nonlinear effects.
We have also set the characteristic time τ = 1. We
solve these equations using an explicit forward time-
stepping scheme, and treat the spatial derivatives with
Fast Fourier Transform by assuming the domain is peri-
odic. It is worth noting that since these two equations
are equivalent to one second-order differential equation
in time for w̃, we must specify two initial conditions. Ei-
ther we set w̃(x, t = 0),m(x, t = 0), or one of these must
be specified along with its time derivative. For all of the
solutions below, we set the screening length to be much
smaller than the domain size, λs/L = 10−4, since we are
interested in the large-scale near-critical dynamics of this
system.

1. Linear dynamics

First we set β = 0 and investigate the linear dynamics.
As expected, when ϵ > 0 the solutions diverge in time,
but keeping this parameter close to 0 (we chose ϵ = 0.02),
we observe interesting transient dynamics. We initialize
w̃(x, t = 0) = 0, and set m(x, t = 0) to be a localized
perturbation in the form of the derivative of a Gaussian
with width 0.2, while the size of the whole domain is
L = 10. This initial condition does not select a direction
of propagation, which is why we observe it splitting into
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FIG. 3. Initial condition for m, w̃ used in Supplemental Movie
2, which leads to a conserved wave-packet moving to the left
at constant speed.

two wave packets which move away from each other at a
constant speed. In the main text, we identified this speed
as being set by the combination λd/τ . This is shown in
Supplemental Movie 1.

We also initialized the dynamics with an initial con-
dition which does set the direction of propagation, by
initializing w̃ and m as shown in Fig. 3. When the sys-
tem is thus initialized, the packet moves to the left at
a constant speed and its shape is conserved. We first
considered these dynamics for small ϵ which leads to in-
stabilities developing very slowly. Thus, this wavepacket
keeps its shape for the duration of the numerical integra-
tion. This is shown in Supplemental Movie 2.

2. Nonlinear dynamics

After turning on the nonlinearity, we increased the crit-
ical parameter to ϵ = 0.2 so the system quickly reaches
the nonlinear regime. We initialize the fields with w̃ = 0,
and m(x, t = 0) also corresponding to the derivative of a
Gaussian with width 0.2. After some complex develop-
ments, the system settles into a steady evolution where
a near-square wave propagates at constant speed, which
we checked to be close to 2λd/τ , shown in Fig. 5. A
movie showing the development of such nonlinear waves
is shown in Supplemental Movie 3. The amplitude of the
waves scales as

√
ϵ, as shown in Fig. 4, where we scanned

multiple values of ϵ and measured the amplitude of the
resulting steady waves. When ϵ gets large, the amplitude
slightly deviates from the simple power-law behavior, and

instead follows w̃ =
√

5ϵ
3(1+ϵ) . The latter relation can be

found by solving for a constant steady-state in the equa-
tions (D1). In Supplemental Movie 3, these predicted
amplitudes are shown as black dashed lines. We also nu-
merically verified that the wave speed in these nonlinear

10 2 10 1

100

Am
pl

itu
de

w /3a = 5 /3(1 + )
w 1/2

Numerical results

FIG. 4. Scaling of the wave amplitude with the critical pa-
rameter ϵ, as determined by numerical integration of equa-
tions (D1). For small values of ϵ, the scaling of the amplitude

follows the expected ϵ1/2. At larger values there is a devia-
tion. This can be explained by solving for the steady-state of
the equations of motion, which give an expected amplitude of√

5ϵ/3(1 + ϵ).
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FIG. 5. Scaling of pulse velocity with the osmotic lengthscale
λd, as measured from numerical integration of (D1). From our
equations of motion we expected the velocity to scale linearly
with λd, and indeed here the line v = 2λd goes through the
data, confirming our expectations.

waves scales linearly with λd. Over a range of values for
this parameter, we tracked the maximum of a traveling
pulse and recorded its velocity. These velocities grow
linearly with λd as expected, shown in Fig. 5.

E. Estimates

In the main text, we make the claim that molecular
motors are too far from one another to form long-range
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order due to their direct contacts. There are approx-
imately 105 RNA polymerase II molecules in a HeLa
cell [44], whose nucleus is approximately 10µm in di-
ameter, leading to a density around 102 molecules/µm3,
which corresponds to the average distance of the order
of ∼ 200 nm. In other words, if we take the size of
RNA polymerase to be on the order of 10 nm in each
dimension [3], then we obtain a small volume fraction
ϕRNAPII ∼ 10−4. This sparseness is also seen, despite
some local functional clustering, in superresolution mi-
croscopy experiments [20].

We had previously estimated [24] the relevant length
scales, and we will repeat these estimates here so that
this paper may be self-contained. We expect the mesh
size, λ, to range from around 30 nm to 100 nm [47, 48].
In contrast, the ratio of viscosities ηp/ηs is harder to es-
timate. Bare nucleoplasm has been measured to have
a viscosity on the same order as that of water [34, 35],
ηs ∼ 10−3 Pa · s , whereas a wide range of chromatin vis-
cosities has been measured, ηp ≈ 0.6−3000Pa · s [28–36],
reflecting in part the complicated nature of this quantity.

Thus, experimental ranges for ηp/ηs lie between 102 and
106. The screening length scale relevant in this paper is
λs = ηp/ζ = λ

√
ηp/ηs. At the upper limit of the esti-

mates, this length scale becomes much larger than the
size of the nucleus, making it irrelevant for our system
of interest. The lower limit is ≈ 300 nm, which is more
consistent with the length scales relevant in the context
of chromatin.
To estimate the length scale λd, we assume K ≃ T

λ3

[56], and γ ≃ Cηsa3, where the constant C is an un-
known parameter, resulting from the fact that it is un-
clear whether the motors experiencing the rotational fric-
tion γ are able to ”feel” the polymer viscosity or whether
they are small enough that the only relevant viscous dis-
sipation is that of the solvent. As their size is about 20
nm, comparable to the mesh size [46], the constant C can
be assumed to be C ≪ ηp/ηs ∼ (102 − 106). From these

assumptions, we obtain λd ∼
√

a3

λ

√
C ≪ λs, resulting

in roughly 10 − 20 nm. Finally, we estimate the dipole
relaxation time τ ≃ Cηsa3/T ∼ C10−6 s, and so the ex-
pected speed for traveling polymer waves is on the order
of λd/τ ∼ 107 nm/s.
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