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Semi-Lagrangian (SL) schemes are known as a major numerical tool for solving transport 
equations with many advantages and have been widely deployed in the fields of 
computational fluid dynamics, plasma physics modeling, numerical weather prediction, 
among others. In this work, we develop a novel machine learning-assisted approach to 
accelerate the conventional SL finite volume (FV) schemes. The proposed scheme avoids 
the expensive tracking of upstream cells but attempts to learn the SL discretization from 
the data by incorporating specific inductive biases in the neural network, significantly 
simplifying the algorithm implementation and leading to improved efficiency. In addition, 
the method delivers sharp shock transitions and a level of accuracy that would typically 
require a much finer grid with traditional transport solvers. Numerical tests demonstrate 
the effectiveness and efficiency of the proposed method.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Transport phenomena are ubiquitous in nature and are characterized by a type of partial differential equations (PDEs), 
namely transport equations. Efficiently simulating transport equations represents a great challenge mainly due to the poten-
tial presence of multiple spatiotemporal scales and discontinuities in the solution structure. The last several decades have 
witnessed tremendous developments of numerical methods for transport equations, yielding numerous successful applica-
tions in both science and engineering. Among them, the semi-Lagrangian (SL) transport schemes attract lots of attention 
[11], and have become a major tool in simulating transport equations arising from numerical weather prediction [48,51]
and plasma simulations [7,50]. Such an approach updates the mesh-based solution of a transport equation by tracing the 
characteristics, offering several computational benefits including high order accuracy and unconditional stability. Addition-
ally, by incorporating an advanced discretization technique such as the weighted essentially non-oscillatory (WENO) method 
[21] or the discontinuous Galerkin method [9] into the SL framework, the resulting methods, see e.g., [41,42,49,43], attain 
outstanding performance for transport simulations. On the other hand, despite the effectiveness of the SL methodology, the 
direct numerical simulations may require an exceedingly large amount of computational resources when full resolution of 
fine-scale structures is of interest. Another difficulty associated with the SL approach is that tracking the characteristics ac-
curately, including tracing and approximating upstream cells, is not only expensive in computational cost but also demands 
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complex algorithm implementation, especially in high dimensions. For instance, the SL method proposed in [25] implements 
a rather sophisticated search algorithm.

With the rapid advancements in computing power and machine learning (ML) software over the past few decades, in-
tegrating ML techniques in simulating PDEs has become a thriving area of research. One notable example is the physics 
informed neural networks (PINNs) [46,45], where the solution to the underlying PDE is parameterized with a neural net-
work (NN) and trained using a physics informed loss function. The partial derivatives of the approximate solution are 
obtained via automatic differentiation [2]. As an effective alternative to the traditional numerical algorithms, PINNs have 
been widely deployed to solve complex problems in various fields [20,55,36,37,44,35,38]. A comprehensive review of the 
literature on PINNs was provided in [12]. We also mention one popular research direction of leveraging NNs to improve 
overall performance for the traditional numerical methods, and related works include the troubled-cell indicator in [47], 
weights estimation to enhance WENO scheme in [54], shock detection for WENO schemes in [52], and the total variation 
bounded constant estimation for limiters in [56].

Another group of NN-based methods for simulating PDEs is the so-called neural operator approach. Two widely recog-
nized works are the DeepONet [33] which consists of two sub-networks and learns the nonlinear operators for identifying 
differential equations, and the Fourier neural operator (FNO) [30] which is designed based on parameterization of the in-
tegral kernel in the Fourier space and most closely resembles the reduced basis method. A performance comparison of 
these two methods was documented in [34]. Other works in this approach include but not limited to [22,31,3,53]. For time-
dependent PDEs, the cell-averaged neural network (CANN) was developed in [40,5], which explores the approximation of 
the cell average difference of the solution between two consecutive time steps. Another different approach known as autore-
gressive methods was developed in [1,15,19,4], where the PDEs are simulated iteratively, resembling conventional numerical 
methods with time marching. Specifically, an autoregressive method predicts the solution at the next time step with a NN 
based on the current state, and this approach is closely related to flow map learning methods; see, e.g., [6,8,16,17].

In this paper, we consider the conservative SL finite volume (FV) formulation proposed in [25], and propose a novel 
ML-based approach to enhance the performance and accelerate the computation. The proposed methodology belongs to the 
category of autoregressive methods and is motivated by the recent ML-based discretization for PDEs [1,57,23]. In contrast 
to the neural operator methods, the methods proposed in [1,57,23] are designed under the classical finite difference or 
FV framework, while a key component is replaced by an ML technique for improved performance. In particular, instead of 
polynomials, such an approach employs NNs to learn an optimal discretization for approximating derivatives. Additionally, 
the architecture of such ML-based methods can benefit from Tensor Processing Units to accelerate computation [23], hence 
substantially reducing the computational cost.

Instead of the Eulerian method-of-line framework employed in [1,57,23], our method is built in the SL setting, and the 
discretization is learned using a convolutional NN (CNN) architecture [26,28] and incorporating specific inductive biases. In 
particular, we explicitly include a key quantity called the normalized shifts as part of the input in the NN, observing that 
such quantities contribute to computing the traditional SL FV discretization but in a rather complex manner, see Section 2
below. With high-resolution high-fidelity data, the proposed method can effectively learn and predict the SL discretization. 
Hence, by replacing the most expensive and complex component of the SL formulation with an ML-based approach, the 
proposed method avoids the explicit implementation in tracing upstream cells as in [25], achieving enhanced efficiency. In 
addition, as with the ML-based method using CNNs [57], the learned SL discretization with a coarse grid can accurately 
capture fine-scale features of the solution which often demands much higher grid resolution for a traditional discretization, 
leading to significant computational savings. We further propose to add a constraint layer to the NN to enforce exact mass 
conservation, which is a highly desired property for transport simulations and plays a vital role in long term accuracy and 
stability. The ML model can further enjoy improved generalization by incorporating such an additional level of inductive 
bias.

It follows from the dependence of the proposed methodology on the CNNs that the discretizations are restricted to a 
Cartesian grid. Different from the traditional SL formulations, the proposed ML-based method in this paper employs a set 
of fixed stencils for the SL reconstruction, which incurs the time step restriction due to the Courant-Friedrichs-Lewy (CFL) 
condition for numerical stability. However, it is observed in the numerical experiments in Section 3 that the CFL number 
can be set as large as 1.8 if a fixed stencil consisting of five cells is employed, which is often adequate and efficient for many 
applications. It is worth mentioning that, although the traditional SL approach is unconditionally stable in theory, choosing 
an exceedingly large CFL increases the complexity of the search algorithm for tracing and approximating upstream cells, 
especially in high dimensions, and also hinders parallel efficiency [25,18].

The rest of the paper is organized as follows. In Section 2, we first review the conventional SL FV scheme for one-
dimensional (1D) and two-dimensional (2D) transport equations, and provide a sufficient condition for mass conservation. 
Then we introduce the proposed conservative ML-based SL FV method based on a CNN architecture. In Section 3, numer-
ical results are presented to demonstrate the performance of the proposed method. The conclusion and future works are 
discussed in Section 4.
2



Y. Chen, W. Guo and X. Zhong Journal of Computational Physics 490 (2023) 112329
tm

tm+1

xi− 1
2

xi+ 1
2

x̃i− 1
2

x̃i+ 1
2
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Fig. 2.1. Schematic illustration of the 1D SL FV scheme.

2. Algorithm

2.1. Semi-Lagrangian finite volume scheme

In this section, we review the classical SL FV scheme with remapping for linear transport equations; see e.g., [25,13]. We 
start with the following 1D equation in the conservative form

ut + (a(x, t)u)x = 0, x ∈ �, (2.1)

where a(x, t) is the velocity function. For simplicity, consider a uniform partition of the domain � with N cells, i.e., 
� = ⋃N

i=1 Ii , where Ii = [xi− 1
2
, xi+ 1

2
]. Denote the mesh size as h = |Ii |. The numerical solution {Um

i }Ni=1 approximates the 
cell averages at the time step tm . The SL FV method updates the cell averages to next time step tm+1 by tracking the 
characteristics governed by the ordinary differential equation

dx(t)

dt
= a(x(t), t). (2.2)

The upstream cell Ĩ i = [x̃i− 1
2
, ̃xi+ 1

2
] of Ii = [xi− 1

2
, xi+ 1

2
] is defined by evolving (2.2) with final values x(tm+1) = xi± 1

2
backward 

to tm , as shown in Fig. 2.1.
Then the exact solution u(x, t) satisfiesˆ

Ii

u(x, tm+1)dx =
ˆ

Ĩ i

u(x, tm)dx, i = 1, . . . ,N, (2.3)

based on which we can formulate the SL FV method with remapping as follows. In each cell I j , we reconstruct a polynomial 
φ j(x) of degree K using the K +1 cell averages from its neighboring cells in the spirit of the standard FV methodology, aim-
ing for (K + 1)-th order accuracy. Then, the right hand side of (2.3) can be approximated by integrating the reconstructed 
polynomials in Ĩ i . Meanwhile, it is noted that reconstructed polynomials are defined piece-wisely and hence are discontin-
uous across the cell interfaces. In addition, Ĩ i will not coincide with a background Eulerian cell in general. Therefore, the 
integrals must be computed in a subcell-by-subcell fashion. In particular, we denote by Ĩ i,( j) as the intersection of Ĩ i and 
the background Eulerian cell I j . The collection of indices of the Eulerian cells which have non-empty intersection with the 
upstream cell Ĩ i is defined as

Li = { j : Ĩ i ∩ I j �= ∅}.
We write φ j(x) = ∑K

k=0 c
(k)
j v(k)

j (x), where v(k)
j (x) are the local polynomial basis in the cell I j . At the discrete level, (2.3)

becomes

Um+1
i |Ii | =

∑
j∈Li

K∑
k=0

c(k)
j

ˆ

Ĩ i,( j)

v(k)
j (x)dx

.=
∑
j∈Li

K∑
k=0

c(k)
j ω

(k)
i, j , (2.4)

yielding the SL FV scheme of order K + 1. A key observation of the SL FV scheme is that {Um+1
i } are fully determined by 

cell averages at previous time step {Um
i } together with the normalized shifts

ξi− 1
2

:=
x̃i− 1

2
− xi− 1

2

h
, i = 1, . . . ,N,

which encode the geometry information of the upstream cells. In particular, the coefficients {ω(k)
i, j } in (2.4) can be expressed 

using {ξi− 1
2
}. More details can be found in [42]. Therefore, the SL FV scheme (2.4) can be rewritten into the following 

formulation
3
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Um+1
i =

∑
�∈Sm

i

dmi,�U
m
� , (2.5)

where Sm
i denotes the stencil employed to update Um+1

i , and {dmi,�} are the associated coefficients. It is worth mentioning 
that {dmi,�} may depend on the numerical solution if a nonlinear reconstruction is used.

It can be shown that the SL FV scheme (2.4) conserves mass at the discrete level, i.e.,∑
i

Um+1
i =

∑
i

Um
i . (2.6)

For an FV method in the form of (2.5), the condition for mass conservation is discussed in the following theorem.

Theorem 2.1. An FV method in the form of (2.5) is mass conservative, i.e., satisfying (2.6), when∑
i∈Em

�

dmi,� = 1, ∀l, (2.7)

where Em
� = {i : � ∈ Sm

i } is the index set for a collection of cells {Ii} for which Um
� contributes to the update of {Um+1

i }, i.e., the region 
of influence of Um

� .
If the FV method is linear, i.e., the coefficients dmi,� are independent of the numerical solution {Um

i }, then (2.7) is also a necessary 
condition of mass conservation.

Proof. Summing (2.5) over i gives∑
i

Um+1
i =

∑
i

∑
�∈Sm

i

dmi,�U
m
�

=
∑

�

⎛
⎝∑

i∈Em
�

dmi,�

⎞
⎠Um

� .

Then, if (2.7) holds, then 
∑

i U
m+1
i = ∑

� U
m
� . Hence the scheme is conservative.

Further, if the scheme is linear and conservative, then

∑
�

⎛
⎝∑

i∈Em
�

dmi,�

⎞
⎠Um

� =
∑

�

Um
�

holds for arbitrary {Um
� }. By letting Um

� = 1 and Um
j = 0 for j �= �, we have (2.7). �

Hence, (2.7) provides a feasible way to enforce mass conservation for any FV schemes expressed in the form of (2.5).
The FV SL scheme with remapping can be extended to the 2D linear transport equation with variable coefficients

ut + ∇ · (v(x, y, t)u) = 0, (x, y) ∈ �, (2.8)

where v denotes the velocity field v(x, y, t) = (a(x, y, t), b(x, y, t)). The associated characteristic system writes{
dx(t)
dt = a(x(t), y(t), t),

dy(t)
dt = b(x(t), y(t), t).

(2.9)

Assume the domain � is partitioned uniformly with a collection of rectangular cells, i.e., � = ⋃
i, j I i j , where Ii j =

[xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
]. Denote by hx = xi+ 1

2
− xi− 1

2
and by hy = y j+ 1

2
− y j− 1

2
the mesh sizes in x and y directions, 

respectively. Similar to the 1D case, by solving (2.9) backward in time from tm+1 to tm , we obtain the upstream cell Ĩ i j of 
cell Ii j , as shown in Fig. 2.2. Denote the upstream point of each grid point (xi− 1

2
, y j− 1

2
) as (x̃i− 1

2 , j− 1
2
, ỹi− 1

2 , j− 1
2
). Then define

ξi− 1
2 , j− 1

2
=

x̃i− 1
2 , j− 1

2
− xi− 1

2

hx
, ηi− 1

2 , j− 1
2

=
ỹi− 1

2 , j− 1
2

− y j− 1
2

hy

as the normalized shifts of grid point (x 1 , y 1 ) in the x and y directions, respectively.
i− 2 j− 2
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Ii j

Ĩ i j

Fig. 2.2. Schematic illustration of the 2D SL FV scheme.

The 2D SL FV scheme is then formulated with the following identity
¨

Ii j

u(x, y, tm+1)dxdy =
¨

Ĩ i j

u(x, y, tm)dxdy. (2.10)

Denote by Um
ij the cell average of the numerical solution in the cell Ii j at time step t = tm . Similar to the 1D case, to update 

the numerical solution, a polynomial is reconstructed over each cell using cell averages, and the integral on the right-hand 
side of (2.10) is computed in the subcell-by-subcell fashion. The scheme can be written as

Um+1
i j =

∑
�∈Sm

ij

dmij,�U
m
� , (2.11)

where Sm
ij denotes the stencil employed to update Um+1

i j . Again, the coefficients {dmij,�} are determined by the solution 
averages {Um

ij } together with normalized shifts {ξm
i− 1

2 , j− 1
2
}, {ηm

i− 1
2 , j− 1

2
}. In addition, as with the 1D case, it can be shown 

that the scheme (2.11) is mass conservative if∑
(i, j)∈Em

�

dmij,� = 1, ∀l, (2.12)

where Em
� = {(i, j) : � ∈ Sm

ij }.

Remark 2.1. The SL FV methods are high order accurate in space but exact in time if the upstream cells are traced exactly. 
Further, the schemes are free of the CFL time step restriction for stability as the reconstructions are local.

Remark 2.2. The most computationally intensive part of the SL FV methods introduced above lies in tracking the geometry 
information of the upstream cells, including organizing the overlap regimes and integrating the local polynomial basis in 
a subregime-by-subregime manner. Such a search algorithm becomes highly challenging and expensive in high dimensions 
when the upstream cells may deform into irregular shapes as shown in Fig. 2.2. In next section, we propose an ML-assisted 
SL FV method to avoid such expensive tracing of upstream cells.

2.2. Data-driven conservative SL FV scheme

In this section, we introduce a novel data-driven SL FV scheme with enhanced accuracy and efficiency. This is motivated 
by a class of successful ML-based approaches for optimal discretizations for PDEs [1,57,23]. The main idea of such methods 
is that the solution manifold of a PDE often exhibits low dimensional structures, such as the recurrent patterns and co-
herent structures. Given high resolution training data, the ML-based discretization can effectively parameterize the solution 
manifold with coarse grids and attain a level of accuracy which often requires an order-of-magnitude finer grid for a tradi-
tional method using polynomial-based approximations. Hence, the methods can potentially capture the dynamics of interest 
even with an under-resolved grid. Furthermore, under the standard method-of-line framework, it is natural for the methods 
to satisfy inherent physical constraints such as conservation of mass, momentum and energy of the underlying physical 
system, as opposed to the purely data driven approach, and such an inductive bias aids in reliability and generalization 
of the ML-based model. The proposed data-driven SL FV scheme aims to take advantage of the methodology of ML-based 
discretization [1,57] and the SL FV formulation reviewed in the previous section for efficient transport simulations with the 
mass conservation.
5
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Fig. 2.3. Illustration of the proposed ML-based SL FV method.

2.2.1. Data generation
The training data is generated as in [1,57]. In particular, for each problem, we first sample a set of initial conditions from 

a given distribution. Then, staring from each sampled initial condition, we employ an accurate and reliable finite volume 
method such as an SL WEMO method or an Eulerian WENO method to generate a trajectory of solutions with a high-
resolution mesh. It is critical to make sure that the solution structures of interest are resolved with sufficient resolution. 
Then the data are obtained by coarsening these solution trajectories to a mesh with an order-of-magnitude lower resolution. 
Noteworthy, we do not necessarily require an SL FV method to generate the data. Hence, if an Eulerian WENO method is 
utilized, then the expensive upstream cell tracking is completely avoided in both data generation and training phases.

2.2.2. 1D case
We first consider the training process for the 1D case and then briefly discussed the generalization to the 2D case. 

Without abuse of notations, we denote by Um , ξm , and dm the collection of {Um
i }, {ξm

i− 1
2
}, and {dmi,�}, respectively. The 

proposed ML-based SL FV method is schematically illustrated in Fig. 2.3.
The main idea is that, instead of employing formulation (2.4), we propose to work with (2.5) in which the coefficients 

are inferred by a trained feed-forward NN. Motivated by the observation that dm is determined by Um and ξm for the 
traditional SL FV scheme, we propose to design

dm = fW (Um, ξm), (2.13)

where the NN fW takes Um and ξm as two-channel input and is constructed as a stack of convolutional layers with trainable 
parameters W and nonlinear activation functions, such as ReLU. The employed CNN can effectively capture hierarchical 
features of the solution [27,26], which are highly desired for transport modeling. A constraint layer is further built to the 
NN for exact mass conservation, which is known as a critical requirement for transport simulations and is closely related 
to the long term accuracy and stability. The proposed method attempts to replace the most expensive component of the 
traditional SL methods with a data-driven approach, with the goal of significantly simplifying the algorithm implementation 
and improving efficiency while simultaneously maintaining the mass conservation.

Once dm is obtained, the solution Um+1 is updated with (2.5). However, unlike the standard SL formulation, we employ 
a set of fixed centered stencils Sm

i = {i − s, i − s + 1, . . . , i + s − 1, i + s} consisting of 2s + 1 cells. Not only will this 
greatly simplify the algorithm development but also make it convenient to satisfy the mass conservation constraint. In fact, 
it follows from Theorem 2.1 that the mass is conserved as long as 

∑i+s
j=i−s d

m
j,i = 1, since Um

i contributes to computing 
{Um+1

i−s , Um+1
i−s+1, . . . , U

m+1
i+s } as shown in Fig. 2.4. Therefore, we can simply add a constraint layer to fW in (2.13) to enforce 

mass conservation for the proposed ML model. It is worth mentioning that it is nontrivial to enforce mass conservation 
with a non-fixed stencil under the employed CNN framework. Fig. 2.4 presents an illustration when s = 2 and Sm

i consists 
of 5 cells. The NN fW predicts the coefficients {dmi,�, � = i − 2, . . . , i + 2}, and Um+1

i is given by Um+1
i = ∑i+2

�=i−2 d
m
i,�U

m
� . In 

this case, dm , Um , and ξm are 2D tensors of dimensions N×5, N×1, and N×1, respectively.
It is worth emphasizing that using fixed stencils will destroy the desired unconditional stability of the SL method. In 

[24], an ML-based SL approach was developed in the context of the level-set method. Such a method is designed based 
on correcting the local error incurred by the standard SL method using a NN and resembles a localized version of the 
error-correcting method using ML [39], and hence the CFL time step restriction can be avoided.

Note that for the generation of the training data, we do not need to collect the corresponding weights dm but only the 
coarsened solution trajectories Um . On the other hand, the proposed end-to-end ML-based solver can effectively learn the 
optimal SL FV discretization, i.e., dm . It is numerically observed in Section 3 that the proposed ML-based SL FV method 
outperforms immensely the WENO method [21] for a collection of benchmark tests.
6
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Fig. 2.4. Schematic illustration of the FV SL scheme with fixed 5-cell stencil {Ii−2, Ii−1, Ii , Ii+1, Ii+2}. Um+1
i directly depends on {Um

i−2, Um
i−1, Um

i , Um
i+1, Um

i+2}
and Um

i contributes to computing {Um+1
i−2 , Um+1

i−1 , Um+1
i , Um+1

i+1 , Um+1
i+2 }.

2.2.3. 2D case
The proposed algorithm can be generalized to the 2D case with a few simple modifications. We propose the following 

NN

dm = fW (Um, ξm,ηm), (2.14)

where the tensors Um, ξm, ηm are defined by collecting {Um
ij }, {ξm

i− 1
2 , j− 1

2
}, {ηm

i− 1
2 , j− 1

2
}, respectively. fW takes a 3-channel 

input and outputs the coefficient tensor dm which is used to update the solution. The NN fW is constructed by staking a 
sequence of 2D convolutional layers together with a constraint layer to enforce the condition (2.12) for exact mass conserva-
tion. Note that similar to the 1D case, we employ a set of squared fixed stencils, each of which consists of (2s +1) × (2s +1)
cells. In particular, if a fixed 5×5-cell stencil and a grid of N × N cells are used, dm, Um, ξm , and ηm are tensors of dimen-
sions N × N × 5 × 5, N × N × 1, N × N × 1, and N × N × 1, respectively. Again, due to the use of fixed stencils, the SL 
formulation is constrained by the CFL condition.

2.2.4. Discussion
We end this section with some comments on the proposed method in the following:

• The weights 
{
dmi,�

}
may depend on the solution values and the shifts in the distant cells as opposed to a local method 

such as [24], since the employed NN incorporates multiple convolutional layers. Therefore, the weights may be different 
at different spatial locations, even if the corresponding {Um

i } and {ξm
i−1/2} are the same locally.

• The solver is trained with a fixed mesh resolution and has limitations for the mesh refinement of the standard finite 
volume methods. However, thanks to the underlying CNN architecture, it is able to be generalized to larger computa-
tional domains by keeping the same mesh size.

• Compared with the ML-assisted Eulerian transport method in [57], the proposed SL FV method has the advantage of 
avoiding the use of any explicit time integrators. As a result, only a single evaluation of the neural network fW is 
required per time evolution.

• The incorporation of characteristic information allows for a higher CFL of up to 2 while maintaining numerical stability 
with the use of fixed 5-cell stencils.

• The proposed method exhibits translation equivariance due to the inherent property of the underlying CNN [27,26]. 
This means that if the input, including the solution and the shift, is translated and then passed through the model, 
then the result is identical to passing the original input through the model and subsequently translating the output. 
As transport equations possess such translation symmetry, translation equivariance of the method can lead to improved 
data efficiency and generalization capabilities. It is possible to utilize group equivariant CNN [10] to exploit other types 
of symmetries including rotation and reflection present in the solution structures.

3. Numerical results

In this section, we carry out a series of numerical experiments to demonstrate the performance of our data-driven SL FV 
scheme for a collection of 1D and 2D transport equations. Noteworthy, the performance of the proposed scheme depends 
on the choice of hyperparameters of the CNN structure, and numerical results with default settings are presented in this 
section for simplicity. For both 1D and 2D problems, we employ 6 convolutional layers with 32 filters per layer, utilizing 
a kernel size of 3 or 5 and 3 × 3 or 5 × 5 for 1D and 2D cases, respectively, similar to [57]. A constraint layer is added 
to ensure mass conservation. The activation function used is ReLU. Following [32], Adam optimization algorithm is applied 
to train the network. We employ the Eulerian fifth-order FV WENO (WENO5) method [21], combined with the third order 
strong-stability-preserving Runge-Kutta (SSPRK3) time integrator [14] over fine-resolution grids to produce ground-truth 
reference solution trajectories, and the training data is generated by coarsening the reference solutions by a certain factor. 
For all the test examples, we mainly report the results by the proposed ML-based SL FV method and the WENO5 method 
7



with the same mesh resolution, together with the reference solutions for comparison. It is worth emphasizing that we can 
use any accurate and reliable transport methods (e.g. WENO5 + SSPRK3) to generate training data. In all the plots reported 
below, “Neural net” denotes the proposed method and “WENO5” denotes the WENO5 method combined with SSPRK3.

3.1. One-dimensional transport equations

In this subsection, we present numerical results for simulating 1D transport equations.

Example 3.1. In this example we consider the following advection equation with a constant coefficient

ut + ux = 0, x ∈ [0,1], (3.1)

and periodic conditions are imposed.

The training data is generated by coarsening 30 high-resolution solution trajectories over a 256-cell grid by a factor of 
8. The initial condition for each trajectory is a square wave with height randomly sampled from [0.1, 1] and width from 
[0.2, 0.4]. In addition, each coarsened trajectory contains 256 sequential time steps, and the CFL number is within the range 
of [0.3, 1.8]. The centered 5-cell stencils are employed to update the solution. For testing, initial conditions are square 
functions randomly selected from the same width and height range. For comparison, the reference solution is produced 
using WENO5 on a high-resolution 256-cell grid and then down-sampled to a coarse grid of 32 cells, the procedure of 
which is the same as generating the training data.

Fig. 3.1 plots three test samples during forward integration at several instances of time with CFL = 0.6. It is observed 
that the WENO5 method exhibits significant smearing near discontinuities, which deteriorates over time as a result of 
the accumulation of numerical diffusion. In contrast, the proposed ML-based solver has much improved shock resolution 
compared to WENO5 with the same mesh resolution: the numerical results are free of spurious oscillation and having very 
sharp shock transition. Notably, after long time simulations of 2560 time steps, which is 10 times of time steps for training, 
the results by the proposed method still stay very close to the reference solution, while a large amount of accumulated 
numerical diffusion of WENO5 dramatically smears the discontinuities.

Fig. 3.2 plots the time histories of the mean square errors which are averaged over all test samples. Compared with 
WENO5, the proposed ML-based method achieves a factor of approximately 8.6 less error in magnitude as shown in 
Fig. 3.2(a). Moreover, it is observed that the error by WENO5 increases over time, while the error by our method stays 
the same in magnitude with slight fluctuation. We further investigate the performance of the proposed method with dif-
ferent CFL numbers, i.e., different time step sizes, and report the result in Fig. 3.2(b). We observe that the errors by our 
method with different CFLs are almost of the same magnitude over time. Fig. 3.3 presents the time evolution of deviation 
in total mass for three test solution trajectories generated by our method. Evidently, the total mass is conserved up to the 
machine precision as expected.

Although our solver is trained with a data set where each trajectory contains a single square wave, it is observed that the 
model can be generalized to simulate the advection equation (3.1) with an initial condition consisting of two square waves, 
as shown in Fig. 3.4. Again, our solver demonstrates superior performance over WENO5. It is worth mentioning that the 
traditional reduced order models employing a direct parameterization of the underlying solution manifold are not capable 
of such generalization.

Note that the model trained on the data set of square waves is limited in its ability to be generalized to other initial 
value types. For instance, when the trained solver is directly applied to Gaussian initial conditions, it is observed that the 
numerical solutions are gradually transformed from Gaussian waves into square shapes, as shown in Fig. 3.5 (a). To improve 
the performance, we further include Gaussian shapes in the training data, enabling the model to accurately simulate both 
square and Gaussian waves, as shown in Fig. 3.5 (b). Hence, the proposed ML-based SL solver can effectively simulate 
problems with local solution structures that are similar to those observed during its training phase. For optimal accuracy 
and stability, the testing distribution should resemble the training distribution.

Last, we remark that the CFL number cannot be chosen above 2, otherwise the loss would not decrease during training. 
Such an observation is partly attributed to the fact that the region of dependence for updating one cell average is not 
completely contained within the 5-cell stencil if the CFL number is greater than 2.

Example 3.2. In this example, we consider the advection equation (3.1) with a more complicated solution profile consisting 
of triangle and square waves.

Similar to the previous example, we generate 30 high-resolution solution trajectories, each consisting of one triangle 
and one square waves with heights randomly sampled from [0.2, 0.8] and widths from [0.2, 0.3] over the 256-cell grid. By 
reducing the resolution from 256 to 32 (by a factor of 8), we obtain our training data. For this example, we set the stencil 
size to be 3, and the maximum CFL number allowed for training is reduced to 0.975 based on our numerical experiments. 
Each solution trajectory in the training data set contains 256 time steps with the CFL number ranging in [0.3,0.975]. The 
test data is randomly sampled from the same ranges of width and height. To evaluate the performance of the proposed 
Y. Chen, W. Guo and X. Zhong Journal of Computational Physics 490 (2023) 112329
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Fig. 3.1. Three test samples for square waves in Example 3.1. CFL=0.6 for both our method and WENO5.

Fig. 3.2. Time histories of the errors in Example 3.1. (a): Errors by the proposed method compared with WENO5 averaged over all test samples. (b): Errors 
by the proposed method with different CFLs.

Fig. 3.3. Time histories of the deviation of total mass for three test samples in Example 3.1. CFL=0.6.
9



Y. Chen, W. Guo and X. Zhong Journal of Computational Physics 490 (2023) 112329
Fig. 3.4. Numerical solutions for Example 3.1 with an initial condition of two square waves. The proposed ML model is trained with a data set for which 
each trajectory only contains a single square wave. CFL=0.6.

Fig. 3.5. Neural network prediction on Gaussian initial conditions. (a): The training data only include square waves. (b): The training data include both 
Gaussian and square shapes.

method, we calculate the ground-truth reference solution using WENO5 on a high-resolution grid with 256 cells and then 
reduce the resolution by a factor of 8 to a coarse grid of 32 cells.

In Fig. 3.6, we plot three test samples at several instances of time during forward integration with CFL = 0.6. The proposed 
ML-based solver generates numerical results with significantly higher resolution of non-smooth structures compared with 
WENO5. We then present the time histories of the mean square error in Fig. 3.7 (a), averaged over all test examples. Our 
ML-based solver achieves a reduction of error magnitude by a factor of approximately 7.8 compared with the traditional 
10
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Fig. 3.6. Numerical solutions of three test samples for advection of triangle and square waves in Example 3.2. CFL=0.6.

Fig. 3.7. Time histories of the errors in Example 3.2. (a): Errors by the proposed method compared with WENO5 averaged over all test samples. (b): Errors 
by the proposed method with different CFLs.

WENO5 solver. Additionally, the error of our solver grows at a much slower rate with time compared with WENO5. To 
further validate our solver, we consider three CFL numbers for testing, and present the time histories of errors in Fig. 3.7(b). 
It is observed that employing a larger CFL results in a smaller error and slower growth in time. Similar to the previous 
example, our method is mass conservative up to machine precision as demonstrated in Fig. 3.8.

Example 3.3. We simulate the following 1D advection equation with a variable coefficient

ut + (u sin(x+ t))x = 0, x ∈ [0,2π ], (3.2)

and periodic conditions are imposed.

We generate 90 solution trajectories, and each initial condition is a square function with heights randomly sampled from 
[0.1, 1] and widths from [2.5, 3.5] over the high-resolution grid of 256 cells. By reducing the grid resolution with a factor 
of 8, we obtain the training data over a 32-cell grid. In addition, each trajectory in the training data contains 30 sequential 
time steps, with the CFL number ranging in [0.3, 1.2]. In addition, the center of each square function is randomly sampled 
from the whole domain [0, 2π ]. We set the stencil size to be 5. Again, the reference solution is generated by WENO5 over 
the 256-cell grid and down-sampled to the coarse grid of 32 cells. Note that the solution structure is more complicated 
than previous examples.

We first plot three test samples at several instances of time during forward integration with CFL=0.5 in Fig. 3.9. It can be 
observed that our solver can accurately resolve the solution structures with sharp shock transition and outperforms WENO5.
11
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Fig. 3.8. Time evolution of the deviation of the total mass for three test samples in Example 3.2.

Fig. 3.9. Numerical solutions of three test samples for the transport equation with a variable coefficient in Example 3.3. CFL=0.5.

Fig. 3.10(a) shows the time histories of the mean square errors, averaged over all test examples. The proposed method 
achieves the reduction of the error by a factor of 3.7 in comparison with the WENO5 method. We further report the 
time histories of errors for the method with three different CFL numbers in Fig. 3.10(b), and it is observed the errors are 
comparable. As demonstrated in Fig. 3.11, the proposed method can conserve the total mass up to machine precision.

3.2. Two-dimensional transport equations

In this subsection, we present the numerical results for simulating several 2D benchmark advection problems.

Example 3.4. We solve the following constant-coefficient 2D transport equation

ut + ux + uy = 0, (x, y) ∈ [−1,1]2,
with periodic boundary conditions.

The training data is generated by coarsening 30 high-resolution solution trajectories over a 256 ×256-cell grid by a factor 
of 8 in each dimension, and each trajectory is initialized as a square wave with height randomly sampled from [0.5, 1] and 
width from [0.3, 0.5]. One trajectory contains 256 sequential time steps, and the CFL number is chosen within the range of 
[0.3, 1.8]. We set the stencil size to be 5 × 5. For testing, the initial conditions are sampled from the same range of width 
and height. The reference solution is generated by WENO5 with the mesh of 256 × 256 cells and down sampled to the 
original coarse grid.
12
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Fig. 3.10. Time histories of the errors for the transport equation with a variable coefficient in Example 3.3. (a): Errors by the proposed method compared 
with WENO5 averaged over all test samples. (b): Errors by the proposed method with different CFLs.

Fig. 3.11. Time histories of the deviation of the total mass of three test samples for the transport equation with a variable coefficient in Example 3.3.

Fig. 3.12 shows 1D cuts of solutions at y = 0.5 for three test examples at several instances of time during the forward 
integration with CFL=0.6. It is observed that the proposed method significantly outperforms WENO5 in resolving shocks 
sharply without introducing spurious oscillations. Furthermore, even after conducting simulations over a long period of 
2560 time steps, the proposed method still produces highly accurate results. For a more effective comparison, we also 
provide the 2D plots of the solutions at time step 256 in Fig. 3.13. It can be seen that the solution produced by WENO5 
exhibits noticeable smeared shocks, whereas the solution by the proposed method exhibits much sharper shock resolution.

Example 3.5. In this example, we simulate the 2D deformational flow proposed in [29], governed by the following 2D 
transport equation

ut + (a(x, y, t)u)x + (b(x, y, t)u)y = 0, (x, y) ∈ [0,1]2, (3.3)

with the velocity field is a periodic swirling flow

a(x, y, t) = sin2(πx) sin(2π y) cos(πt/T ),

b(x, y, t) = − sin2(π y) sin(2πx) cos(πt/T ).
(3.4)

It is a widely recognized benchmark example for transport solvers. The solution profile is deformed over time. At t = 1
2 T

the direction of this flow reverses, while the solution returns to the initial state at t = T , completing a full cycle of the 
evolution.

We set the period T = 2 and the initial condition to be a cosine bell centered at [cx, cy]:

u(x, y) = 1

2
[1 + cos(πr)]

r(x, y) = min

[
1,6

√
(x − cx)2 + (y − cy)2

]
.

(3.5)
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Fig. 3.12. 1D cuts at y = 0.5 of three test samples for 2D transport equation with constant coefficients in Example 3.4. CFL=0.6.

Fig. 3.13. One test samples for the 2D transport equation with constant coefficients in Example 3.4. 2D plots of the solutions at time step 256. CFL=0.6.

We initialize 30 trajectories with cx and cy randomly sampled from [0.25, 0.75] using a high-resolution mesh of 256 ×
256 cells, which are coarsened by a factor of 8 in each dimension as the training data. Each solution trajectory in the 
training data contains a sequence of time steps from t = 0 to t = T , with the CFL number ranging in [0.3,1.8]. We set 
the stencil size to be 5 × 5. During testing, the initial conditions are sampled from the same distribution as the training 
data.

In Fig. 3.14, we show the contour plots of the numerical solutions computed by the proposed method and WENO5 along 
with the reference solution for one test sample. The CFL number is taken as 1.8. Note that the solution is significantly 
distorted at t = T /2 and returns to its initial state at t = T . It is observed that our method produces a result that is in good 
agreement with the reference solution. However, the solution obtained using WENO5 noticeably deviates from the reference 
solution due to a large amount of numerical diffusion.

Furthermore, the model which was trained using data from solution trajectories featuring a single bell can generalize to 
simulate problems with an initial condition containing two bells, as shown in Fig. 3.15. The observation is similar to the 
single bell case. Last, we compare the errors of the numerical solutions by our method and by WENO5 at t = T in Table 1. 
It is observed that the error of the ML-based SL FV method over the mesh of 32 × 32 cells is much smaller that of WENO5 
with the same mesh size and is comparable with that of WENO5 over the finer mesh of 128 × 128 cells, demonstrating the 
efficiency of the proposed method.
Y. Chen, W. Guo and X. Zhong Journal of Computational Physics 490 (2023) 112329
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Fig. 3.14. Contour plots of the numerical solutions of the 2D deformational flow at t = 0, 1, 2 in Example 3.5 for one test sample. The solution profiles are 
significantly distorted at t = 1, and then the flow reverses. At t = 2 the solutions return to the initial states. CFL=1.8.

Fig. 3.15. Contour plots of the numerical solutions of the 2D deformational flow at t = 0, 1, 2 in Example 3.5 with two cosine bells. The proposed ML model 
is trained with a data set for which each trajectory only contains a single cosine bell. CFL=1.8.
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Table 1
Accuracy comparison for the ML-based SL FV method and WENO5 of three test samples for the 2D deforma-
tional flow in Example 3.5.

Samples \ Method WENO5 (128 × 128) WENO5 (32 × 32) ML-based SL FV method

Sample = 0 9.269E-06 1.173E-03 1.955E-05
Sample = 1 1.069E-05 1.982E-03 9.753E-06
Sample = 2 9.302E-06 1.623E-03 1.107E-05

4. Conclusion

In this paper, we proposed a machine-learning-assisted semi-Lagrangian (SL) finite volume (FV) scheme for efficient 
simulations of transport equations. Our method leverages a convolutional neural network to optimize SL discretization using 
high-resolution data, eliminating the need for costly upstream cell tracking. With a fixed 5-cell stencil, the CFL number 
can reach as large as 1.8. The inclusion of a constraint layer in the network ensures total mass conservation to machine 
precision. Numerical experiments show superior performance compared with the WENO methods. Future work includes 
extending the method to nonlinear transport equations such as the Vlasov system and investigating the use of graph neural 
networks for accommodating unstructured meshes, adaptivity, complex geometries, among many others.
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