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Abstract

We solve a hydrodynamic model of active chromatin dynamics, within a confined
geometry simulating the cell nucleus. Using both analytical and numerical meth-
ods, we describe the behavior of the chromatin polymer driven by the activity of
motors having polar symmetry, both in the linear response regime as well as in
the long-term, fully nonlinear regime of the flows. The introduction of a boundary
induces a particular geometry in the flows of chromatin, which we describe using
vector spherical harmonics, a tool which greatly simplifies both our analytical
and numerical approaches. We find that the long-term behavior of this model in
confinement is dominated by steady, transverse flows of chromatin which circu-
late around the spherical domain. These circulating flows are found to be robust
to perturbations, and their characteristic size is set by the size of the domain.
This gives us further insight into active chromatin dynamics in the cell nucleus,
and provides a foundation for development of further, more complex models of
active chromatin dynamics.

1 Introduction

The cell nucleus houses the genome, containing genetic information needed for the
cell’s life [1]. This information is encoded into a long DNA molecule, which in cells
forms a complex with histone proteins, the chromatin fiber [2]. The cell nucleus encom-
passes chromatin as well as a variety of molecules such as proteins and RNA [1, 3], and
is maintained out-of-equilibrium by a large number of active processes e.g. transcrip-
tion, replication, chromatin remodeling and DNA repair [4, 5]. Active processes affect
both the dynamics [6-8] and organization of the genome [9-11]. Examples include



changes in: chromatin mobility with transcription [12, 13], local chromatin packing
and dynamics upon DNA damage [14-16], occasional directed motion of chromosomal
loci [17-19], or the active extrusion of chromatin loops by cohesin [20, 21]. In partic-
ular, active processes were shown to lead to the formation of micron-scale chromatin
domains, within which chromatin moves coherently [22].

The first theoretical model developed to explore the origins of the chromatin coher-
ent motions was based on two-fluid hydrodynamics [23], it was followed by explicit
hydrodynamic computational models [24, 25]. These papers led to the important
insight that local active forces mediated through long-range hydrodynamic interactions
can lead to large-scale motions of chromatin. Separately, several computational mod-
els were developed that reproduce the coherent motions in a more phenomenological
way, without explicitly considering hydrodynamic interactions [26-28]. These works
are also closely related to the large group of studies examining several other aspects of
chromatin structure and dynamics, such as phase separation [29], subdiffusive scaling
of labeled loci displacements [17, 18, 30-32] along with fast directed motion [19, 33],
(micro)rheological properties [34-39], HiC-revealed folding features and patterns [40—
44], coupling to lamin [30, 45-49], as well as the effects of DNA damage [16, 50, 51].
One of central thrusts in these efforts is the intent to unify all the seemingly unrelated
(or even seemingly incompatible) observed features based on a reasonable (active)
polymer model [32, 50, 52-62]. Here, as well as in our previous papers [63, 64], we
continue the line of the works [23-25], focus solely on the question of coherent domain
dynamics, and want to elucidate the role of nucleoplasm hydrodynamics.

An analytical description of chromatin hydrodynamics was developed in the works
[23, 63, 64] based on the two-fluid model [65] and the ideas of statistical physics of
active systems [66—-69]. The most significant flows were obtained under the assumption
that active motors driving are such that each of them exerts one force on the polymer
and equal but opposite force on the solvent. Indeed typical active motors operating on
the genome can be viewed as such, for instance, RNA polymerase II which is a common
active enzyme in the nucleus [70]. Therefore, in both our previous work [64] as well as in
the present paper, we consider our theory in the most general phenomenological form,
not specifying the nature of motors beyond the fact that they have a polar symmetry.
It is because of polar symmetry that they act on the relative velocity of the solvent
past polymer like force monopoles and not dipoles, thus generating very significant
flows. If the number and activity of motors exceeds a critical threshold, we found
that they spontaneously form an ordered polar phase which actively pumps chromatin
and solvent through one another. We successfully described this spontaneous ordering
through a polar order parameter, and identified the value of this critical threshold as
a function of model parameters along with the critical exponents near the transition
[64].

These results, however, were found with the assumption of an infinite boundless
medium. While this made the analysis more straightforward, a more accurate descrip-
tion of the situation experienced by the chromatin polymer would account for the
finite size of the cell nucleus. In this work, we will study the dynamics of our model in
a confined spherical geometry, near its critical point. We show that the critical value



of force and density of motors is shifted by an amount dependent on model parame-
ters and system size. Furthermore, we find that the length scale of the modes excited
near the transition point is set by the confinement size, consistently with expectations
from the equilibrium theory of second-order phase transitions.

2 The model, confining geometry, and equations of
motion

Our goal in the present work is to analyze previously derived equations of hydrody-
namic motion of chromatin [64], both linearized and nonlinear, when confined in a
spherical domain. To make this work self-contained, and to set up the notations, we
start by re-stating the primary equations of motion of this model.

2.1 Equations of motion

We consider two mutually permeating fluids: a polymer and a solvent. Their velocities
are denoted by the fields vP, v® respectively, although in our calculations we will
use the following two linear combinations of the velocity fields: w = vP — v® u =
(nPvP + n®v®)/(nP + n®). The two fluids, flowing past another, experience a friction
per unit volume (. The volume fraction of the polymer is ¢(r), and the two-fluid
combination is assumed to be incompressible, so the volume fraction of solvent is
1 — ¢(r). Both fluids are assumed to experience viscous dissipation upon shear, with
respective viscosities nP, 7°. The viscosity of the chromatin polymer is known to have
a frequency dependence [39], but here we will assume that it is simply Newtonian. The
polymer experiences an osmotic pressure II(¢), which is only a function of ¢ as it is
assumed to equilibrate quickly and locally. We consider a regime where the polymer
density deviates weakly from its mean value ¢, allowing us to linearize the equations
of motion around that point: ¢ = ¢g + d¢. As a result the osmotic pressure can be
written as II = Il + K¢, where K is the osmotic modulus of the polymer. This gives
us the following equations for the fluids
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where FP| F* are the forces densities generated by the motors, and P is the hydrostatic
pressure induced by total incompressibility.



As stated in the introduction, we assume that every active motor exerts a force
on the polymer and equal and opposite force on the solvent. In the coarse-grained
description, assuming there are some p active motors per unit volume, we can write

FP(r) = =F*(r) = pfm(r) , (2)

where f is the force produced by a single motor, while m(r) is the average vector of
orientation of motors located around point r. According to equations (1a) and (1c),
field w is driven by force monopole density fpm, while field u in this approximation
is not driven at all.

Vector field m(r) plays an important role in our theory, and it is worth several
comments. First, the very possibility to define vector m is because motors we consider
have polar symmetry, they have two different sides, one attached to the polymer and
another exposed to the solvent. Second, vector m, as the average of the unit orientation
vectors of individual motors, has magnitude that is always smaller than unity: jm| < 1.
Third, this vector naturally serves as an order parameter of polarization ordering phase
transition predicted and described by our theory.

2.2 Linear Dynamics

Given the polar symmetry of motors, each of them is subject to a torque whenever
there is a flow of the solvent relative to the polymer, i.e., when w # 0. If drive is weak
(because motors are either weak or not numerous enough), then this torque is also
weak and the distribution of motor orientations is nearly isotropic. In this case, the
dynamics of average orientation is described by

2
TOm = —2m + S—ZW ) (3)

where we have introduced the reorientation time of the dipoles 7 = ~/T. v is the
rotational friction coefficient of the motor, T is the ambient (potentially effective)
temperature, and a is the size of the motors, assumed to be comparable to (or smaller

than) the mesh size of the polymer. We can now combine equations (3) and (1) into
one equation for w and m.

(1+ MV x V x =A2VV) 10w
Mat (4)

m, ,

—2)\2VV - w, =

where we have defined three length scales:

2T >\2N77p(1—¢0)2 and A22K¢0(1—¢0)27.

()

¢ ¢ ’ 2

The first of these, A, is naturally identified as the mesh size of the polymer. Second,
significantly larger length scale is A, the screening length of hydrodynamic interactions



in the two-fluid system. Finally, the third length scale, A4, characterizes the interplay
of the two fluid system with motors, namely, it is the typical distance of cooperative
diffusion by the polymer during motor reorientation time 7; of course, this motion can
be thought of as driven by osmotic elasticity of the polymer (described by K) and
opposed by friction (described by (). Since we are treating chromatin in a continuum
approximation, the model we are working with is only relevant on length scales larger
than the mesh size .

Since all of the equations of motion in this regime are linear, we can simultaneously
decompose the fields u, w, m into their divergence-free (transverse, 1) and curl-
free (longitudinal, ||) components. Separating these into their respective equations of
motion, we obtain

(1-XVHw, = %ml (6a)
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Our previous study allowed us to identify the value of the force f above which an
ordered phase for m spontaneously develops. In an infinite domain, this occurs at
f = 3al/pr, where the velocity generated by the force dipoles fp/¢ equals the velocity
needed to orient them a/7. This allows us to identify the critical parameter
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When e > 0, the zero modes of the velocity and orientation fields become unstable.
This all changes, however, with the addition of boundaries, which set a maximal
length scale for any dynamics for the two fluids. Our goal in this paper is to refine the
conclusions of our previous work in the finite domain context.

2.3 Nonlinear Dynamics

Once an instability develops, the polar order parameter grows in magnitude exponen-
tially. Eventually, nonlinear effects inevitably kick in. In particular, they guarantee
that |m| < 1. The precise evolution of m in the nonlinear regime is complex, as it cou-
ples to all the other moments of the distribution of motor orientations. However, in
our previous work [64] we derived an approximate equation of motion for m including
only a second-order nonlinearity in w:

rOm = 2(meq(w) — m)
ma =3 (1330 §

This is just one of a long list of possible nonlinearities that may be considered. We
choose to consider it above all others as it naturally controls the amplitude of the



unstable modes, and without the addition of any further nonlinearities leads to stable
long-term dynamics for this system. While m obeys equation (8), the velocity field w
still follows equation (4). This system cannot be solved analytically in general, so we
will turn to a numerical method in the following section.

2.4 Boundary Conditions

Even though the nucleus usually looks like an ellipsoid, we reduce the complexity of
the problem by modeling it as a sphere of radius R.

We assume no-slip boundary conditions for both velocity fields vP, v®. In the case
of the polymer, this is justified by the tethering of chromatin to the boudary by LINC
complexes [71], while no-slip boundary conditions for the solvent are standard for

viscous fluids [72]

P s -
Vtangential r=R vtangential}T:R =0. (9)

Turning now to normal components of velocity, we assume that no permeation of the
boundary is possible by either polymer or solvent. We make this assumption despite
the fact that the nuclear membrane is porous and lets some small molecules through
[1]. We do so not only for simplicity, but also because over the seconds-timescale that
we are interested in the volume of the nucleus is conserved [73], thus the net flux
of material through it is small. Finally, we treat the nuclear boundary as rigid and
ignore its fluctuations, which are another source of potentially interesting effects [73].
All these simplifications result in the following boundary condition:

[6v” + (1 = &)V ]sormal Ir=k = 0 . (10)

The meaning of this condition is simple: although neither component can go through
the membrane, any one component, either polymer or solvent, can be approaching the
membrane with some non-zero velocity provided that the other component at the same
time departs from the wall, such that the exchange between them does not change
volume.

3 Results

The spatial behavior of the linearized model (6a,6b) is entirely contained in Laplacian
operators. We will use the vector eigenfunction spectrum of the Laplacian to construct
exact solutions for this model in the linear response regime. Given the restriction of
the solutions to a closed bounded domain, the spectrum is discrete.

Once we turn to the nonlinear regime, it becomes impossible to solve the equations
of motion exactly using these basis functions. However, we have constructed a numer-
ical method for the full nonlinear model which exploits the basis we develop for the
linearized version. This makes three-dimensional solutions of the full nonlinear PDE
possible with minimal computational complexity.

3.1 Linearized model: an analytical solution

We begin by finding solutions in the linear response regime, where the distribution of
motor orientations deviates weakly from uniform. This allows us to expand the flow
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Fig. 1 First excited longitudinal and transverse modes, shown along a vertical slice of the spherical
domain. Since the vector dependence of these first modes is simple, we choose to plot only one
component of the resulting vector fields, since the other components are simply 0. In the case of the
first longitudinal mode the flow is spherically symmetric, while the first transverse mode is axially
symmetric about the z axis.

fields in a basis which simplifies the equation of motion. If we consider curl-free (wy)
and divergence-free (w ) components of the velocity separately, then the dynamics of
these modes separate and simplify, as shown in equations (6).

The natural choice of basis functions to solve this system of equations needs to have
two properties: they need to be eigenfunctions of the Laplace operator in spherical
coordinates, to simplify the spatial dependence of the equations of motion, and they
must be vectors to preserve the symmetry of the velocity fields. Such functions are
already known, and are referred to as vector spherical harmonics (VSH) [74]. They
are constructed based on the well-known scalar spherical harmonics Y;,, (6, ¢). There
are several, closely related, possible definitions for VSH. We will use the following in
this paper:

Ylm = }/lmf'a
U, =1rVYin, (11)
&, =rx VY, .

From these, we construct curl-free and divergence-free components of w. First, notice
that for any scalar function f(r), we have V - (f®,,,) = 0. Then recall that for a
vector-valued function to be curl-free, it suffices that it be the gradient of a scalar. At
every radial shell r, we expand the scalar function f(r) in spherical harmonics, with



coefficients f,,,(r). This gives us
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Therefore, we will solve equations (6) using the following expansions:
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To identify what spatial dependence ay,, bi,, must have, we search for eigenfunctions
of the Laplacian which meet our boundary conditions. Here it is important to notice
that by construction, the longitudinal velocity field w|| automatically obeys condition
(10) due to the continuity of d¢. Therefore, we only need to impose (9) in the case of
the longitudinal flows. As a result, we are searching for ay,, (7, t), by (7, t) which satisfy

alm|7‘:R = blmlr:R =0
v2 (almélm) = *kzalmélm ) (14)
V2 (b1 Yim) = —k2bim Yim

for some real number k2. One such set of functions are spherical Bessel functions j; (),
which have the property V2 (j;(kr)Yim) = —k251(k7)Yl,, in spherical coordinates. We
choose k such that the modes meet the boundary conditions at r = R. This results in
the following expansion

W = Zalmn(t)jl (QZLT) D,

lmn
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where we have defined «y,, to be the nth zero of the lth order spherical Bessel function.
Equipped with the basis (15), it is now straightforward to insert the expansion into
the equations of motion (6), and solve for the time dependence of the coefficients
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The time dependent dynamics of these coefficients and the corresponding modes (15)
is very similar to what we have found previously for an unbounded domain, except of
course the instability thresholds are significantly affected due the effect of boundaries.
In the case of the transverse modes, the solutions of equation (16a) are simple exponen-
tials in time, with the sign of the coefficient on the right-hand-side of equation (16a)
determining stability. While at small € the mode is stable, as soon as € > )\204l2n/R2 the
mode becomes unstable. As expected, the finite-size effect is captured by the unitless
ratio A/R. If the domain is a lot larger than the mesh size, which corresponds to the
thickness of the boundary layer needed to meet the no-slip condition, then the dynam-
ics are similar to that of an infinite domain. However, if the domain is small, additional
forcing is needed to excite these modes, since the viscous drag at the boundary will
significantly dampen their motion.

The time-dependence of the longitudinal modes, as in the infinite domain case
(see [64]), is that of a harmonic oscillator. The term in equation (16b) which controls
stability is the friction term, and it flips sign when ¢ is sufficiently large resulting in
an apparent negative friction coefficient. As a result, the amplitude of the oscillations
grow exponentially in time. The necessary forcing to drive this instability is far larger
than the transverse case. Indeed, the critical value of € in this case is (A2 4+ \2)a?, /R,
and recall that As > A. Each of those terms represents a source of dissipation which
must be overcome. A reflects the energy dissipation due to friction between polymer
and solvent in these longitudinal modes. This term is larger than in the case of the
transverse modes (in that case it was proportional to A), because the transverse veloc-
ity of polymer is far smaller than that of solvent due to force balance and the fact
that n® > n®. In the case of longitudinal flows however, the polymer can compress
and move faster, leading to increased friction. Finally, A4 reflects the dissipation due
to density change of the polymer.

It is worth considering what the first excited modes are in this geometry. The
lowest-€ (easiest to excite) transverse mode is proportional to ®19 = sin(@)é. In this
state, the chromatin is swirling around the Z axis, with highest speed around the
equator and decaying to 0 at the poles. In contrast, the first longitudinal mode to be
excited is proportional to Yog = ﬁf‘. This describes a radially-symmetric ”breathing”
motion of the chromatin, moving in and out of the center of the nucleus in an oscillatory
manner. We show a slice of these first excited modes in Figure 1.

In summary, restoring physical parameters, the condition for the active force
density is
S 3acT n ansTa?,

Ip 5 VR

(17)
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Fig. 2 Transverse flows are stable in the nonlinear regime. A: Amplitude of the coefficients for the
lowest transverse and longitudinal modes (a10 and bp1 respectively), as a function of time when
initialized in a pure state with a10(0) = 0.1. Nonlinearities mix multiple transverse modes together,
but no longitudinal modes are excited. B: Amplitude of the same modes as in A, but with the initial
conditions set to random numbers of magnitude 10~8, with a19(0) = 0.1. The transverse steady-state
is robust to this small perturbation.

for the transverse modes (the lowest allowable mode in this case is | = 1, since ®gg =
0). In the above, we have a1 ~ 4.5. For the longitudinal modes, the condition is

fp> 3T (1= do)far’ {3T77p J } , (18)
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where we have inserted the value of ag; = m. These are the same expressions that we
previously guessed [64], except the factors of afn were absent. We find that the addition
of boundaries induces necessary gradients in the velocity field which the sources of
activity must compete against. Furthermore, the necessary excess force is far larger if
the motors are to compress and pump the polymer in a finite domain. Consistently
with our previous results, these effects become less significant the larger the domain
size is compared to the length scales A, As, Ag.

3.2 Nonlinear regime

Now that we have identified the linear stability of this system with e slightly above
the critical point, we must consider the long-time behavior once the instabilities have
grown and saturated the order parameter field m. The nonlinear dynamics of this sys-
tem, described by equations (4,8), have to be investigated using a numerical method.
We developed such a method, which we describe in detail in the Appendix, section
B. To integrate the equations of motion, we convert the fields from a spatial rep-
resentation to the basis (15) at each time-step, then evolve the coefficients, before
transforming back to spatial representation to evaluate the nonlinear time evolution
for m shown above. We measured all length scales relative to the confinement scale
R and chose the numerical values A\y/R = 10~%, A;/R = 1072, and A\/R = 10~3. This
choice is consistent with our estimates that A; > A\ and also with numerical values
of average mesh size in chromatin A &~ 70nm and R ~ 10 um. We set ¢ = 0.3, above
both thresholds of instability (17,18).
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Fig. 3 Longitudinal flows are unstable to perturbations in the nonlinear regime. A: Amplitude of the
coefficients for the lowest transverse and longitudinal modes (a10 and bg1 respectively), as a function
of time when initialized in a pure state with b19(0) = 0.1. Nonlinearities mix longitudinal modes
together, but the system remains free of transverse modes. B: Amplitude of the same modes as in
A, but with the initial conditions set to random numbers of magnitude 10~8, with b19(0) = 0.1. In
this case, the transverse flows grow over time and eventually dominate the evolution of the system,
suppressing all oscillations. C: Same parameters as in B, but evolved over even longer timescales, to
verify that the system does indeed reach a steady-state eventually. Since they are chosen at random,
the initial conditions for runs B and C are different.

The first question we set to explore is whether the modes identified in the lin-
ear response regime become stable once the nonlinearity becomes significant. We
first test the transverse modes, by starting the system in a pure state w(t = 0) =
woj1(ragr/R)®1g, with wg = 0.1 and allowing it to evolve for 100 time-steps of step
size At = 0.5. Eventually the dynamics settle into a steady-state consisting of a super-
position of transverse states, but no significant longitudinal excitations are observed,
as shown in Figure 2A. This result is robust to small perturbations, which we test by
initializing all other modes with uniformly distributed random values ranging between
+1078, as shown in Figure 2B.

We then perform the same analysis but with the longitudinal modes. We initialize
the system in a pure state w(t = 0) = woV (jo(raop1/R)Yoo) with wg = 0.1. To better
resolve the oscillatory dynamics in this case we lower the time step to At = 0.257,
and we evolve for 200 steps. The oscillations initially grow in magnitude until they
settle at a maximum, at which point their amplitude remains steady for all times
we integrated, as shown in Figure 3A. However, when we initialize the configuration
with uniform random numbers ranging between +10~% for all other modes, after a
certain number of cycles the longitudinal oscillator gets taken over by the transverse
steady-state modes, as shown in Figure 3B. To see where the evolution stabilizes we
keep the system going for 2000 time steps, and find that while the root-mean-squared
magnitude of transverse modes reaches something close to a steady-state, individual
modes such as the first coefficient ajo(t) still evolve over those timescales, shown in
Figure 3B. To verify that they eventually do reach a steady-state, we increase the time
step to At = 0.57 and evolve for 10 steps, finding that the modes do eventually fully
settle, albeit in a different steady-state each time due to the random initial conditions.
One example evolution is shown in Figure 3C. We test this stability further by allowing
the longitudinal oscillations to fully develop before introducing transverse flows. We
initialize the system in a pure longitudinal state as before, and allow it to evolve for
150 time steps with step size At = 0.257, which is equivalent to about three full
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Fig. 4 Longitudinal oscillations are stable to late perturbations. The system is prepared in the
same manner as before, in a pure longitudinal state, but at a prescribed time the transverse mode
a1p is arbitrarily increased in magnitude to introduce a kick to the system. For a short period the
lowest longitudinal mode amplitude (orange) is affected, but it quickly settles back into its previous
oscillatory behavior.

cycles of the oscillator. Then, we introduce a transverse kick by setting the amplitude
of the lowest transverse mode to a large value, a;yp = 3. This briefly perturbs the
oscillations as can be seen in the amplitude of by; right afterwards in Figure 4, but
the system quickly settles back into its previously established resonance. Evidently,
once the longitudinal oscillatory flows have settled in place, they are more robust to
perturbations.

4 Discussion & Conclusions

In this paper we have analyzed solutions of the active two-fluid equations of motion
we derive in [64], but in a confined domain. As this model is intended to describe the
active dynamics of the chromatin polymer and its solvent nucleoplasm, the addition
of the confinement allows us to study the effect of the nuclear boundary on these
dynamics. Specifically, we are interested in the kinds of active flows which may take
place in such a restricted environment, and the ways in which the hierarchies of length
scales (mesh size, screening length, osmotic relaxation given a characteristic time) may
affect the stability of the dynamics. In our previous work [64], we performed estimates
of the relevant length, time, and velocity scales using experimental values and found
the theory to be consistent with experiments.

As estimated in that work, we find that the confinement length scale R leads
to factors of 1/R? everywhere where the Laplace operator is present, resulting in
confinement-dependent instability thresholds for both longitudinal and transverse
modes. In the limit R — oo, we recover the unbounded results derived in [64]. Fur-
thermore, we find that the confinement size determines the size of the eigenmodes
which get excited, which will be an interesting result to compare to experimental data
on active chromatin flows. We go beyond linear stability analysis by numerically inte-
grating the equations of motion in a full three-dimensional domain. We find that the
decomposition into transverse and longitudinal modes, which we performed for the
sake of linear stability analysis, remains relevant in the nonlinear case. In particular we
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find that if initialized in a pure transverse or longitudinal state, the system will remain
in that class of states (although the nonlinearity will mix transverse modes among
one another and equivalently for longitudinal modes). Transverse modes are found to
be stable under small perturbations, while longitudinal modes are stable under some
but not others. It will be interesting, in a later study, to analyze in detail the basins
of attraction and regimes of stability for all of these types of flows in the nonlinear
regime. In sum, we find that the minimal active two-fluid model we have developed,
exhibits rich and nontrivial behavior.

One aspect of our results has to do with finding the basis of modes that describe
in our theory the possible motions of chromatin. Given sufficiently detailed measure-
ments, one can try to analyze observed velocity fields in terms of these modes. This
is potentially an interesting possibility, although real modes might be more complex
than predicted in our “spherical nucleus” model, due to complex shape and present
nucleoli and other nuclear structures.

Another interesting question to ask is whether coherent hydrodynamic motions are
somehow useful for the cell, or they are just a product of active nuclear processes. At
present, we don’t have clear answer to this, and can only speculate that since these
motions do exist, the cell may employ them as, e.g., a mechanism to speed up the
transport of some molecules (e.g., mRNA), replacing passive diffusion.

It is worth asking whether the choice of no-slip boundary conditions is too restric-
tive to be an accurate description of the physics of chromatin in the nucleus. After
all, the nuclear envelope has a complex nature and is itself actively fluctuating [73],
which will significantly affect the possible motions of the fluids within. Furthermore,
in this model we are not allowing any change in the total nuclear volume, or perme-
ation of solvent through the boundary, both of which occur in real biological systems.
These, and many other improvements on the model, could be added in a systematic
way to this hydrodynamic description of chromatin dynamics, hopefully increasing our
understanding of the complex physics of the genome.
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Appendix A Completeness of solenoidal solutions

In the main text, we simply stated that the solenoidal solutions, that is those solutions
with V - w = 0, are spanned by the expansion

Wy = Z AlmnJi (%g) Dy, (A1)

Imn

However, we did not show that there is no combination coming from the basis functions
Wi, Yim. Here we will demonstrate that this is in fact the case.
Consider one term in the expansion w, = E"(r) Yy, + E?(r)®,,,. The divergence
of this field is
o2 l(l+1
V-w, = <3rE7 +Z2E H)Ef)) Yim
T

r

(A2)
=0.

Since the basis functions must be eigenfunctions of the spherical Laplacian and meet
the no-slip boundary condition at r = R, we must have

B = Cji (T5) (A3)

for some constant C. Enforcing the divergence-free condition, we solve for E?:

E'=C (2:11'1 (agr) - O%jlﬂ (?)) (A4)

which cannot be made to meet the boundary condition at » = R. Thus we have
shown that the expansion (A1) spans possible divergence-free functions that meet our
boundary conditions and are eigenfunctions of the spherical Laplace operator.

Appendix B Numerical methods

We wrote a numerical scheme in python which successfully integrates the equations
of motion

(1= AVV - +X°V x Vx) 70w — 2AJVV - w
_Ir
¢

TOmM = 2(m.y(W) — m)
wWT 3 /WT\?2
mEq_?)(l(l_E)(?,(]J))

Given the initial fields w and m at time ¢ = 0, we first compute their decompo-
sition into normal modes, i.e., eigenfunctions (15). This process is outlined in further

TO;m
(B5)
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detail below. These modes are uncoupled in the equation of motion (4) for w, and
so we can evolve the normal modes for w one time-step directly using equations
(16a,16b), discretized using an Adams-Bashforth two-step scheme. The resulting
difference equations for a,m, bpim are shown below.

However, at each time-step, the field m must also be updated, following equation
(8). To do this, the normal modes are reassembled into the full spatial dependence of
m, w, and equation (8) is evolved directly. Then the procedure above is repeated.

Throughout this scheme, we used the scipy.special package for the definition of
the spherical Bessel functions, but the vector spherical harmonics were implemented
through the freely available package shtns, detailed in the work [75].

B.1 Time evolution

The time evolution was implemented using an Adams-Bashforth two-step scheme for
the source terms, combined with a mixed Crank-Nicolson scheme in the case of the
equation for by, to ensure stability (for the details on the definitions of these schemes,
see [76]):

e+1 3 1 _
afl—;_’il - Ati)Q ( (plnlm)t -3 (plnlm)t 1>

L (A=) \2 2
B 3 t 1 t—1
bl — A S
nlm 1+ AtA;, \2 (pl\nlm) 9 (p\lnlm) (B6)
1 — AtA, pi-1
1 +AtAln nlm
(Aaaun/R)? e+1

In In

1+ (Asaum/R)* 1+ (Asam/R)*’

where we have defined the field p = 0;m as shorthand.

B.2 Mode decomposition

The remaining task is the conversion from spatial to spherical harmonic representa-
tions, and vice versa. The angular dependence of the decomposition is taken care of
by the routines within the shtns package, however we had to implement our own
decomposition of the radial part into Bessel functions.

We will illustrate this whole process with a simple example. Consider a vector field
f(r), which we seek to decompose into the spherical harmonic and Bessel function
basis, giving coefficients f1 nim, fnim- We perform this decomposition in two steps.
First, we loop over radial slices {r;}, and for each of these values we call shtns to
decompose the vector field into spherical components

£(ri,0,6) = > Qun(ri) Yim(0,¢)

Im
4 S (1) 1 (6, ) (B7)
+ T’lm(ri)q)lm(ri> 3
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which gives us a discrete radial representation of the functions Qum (), Sim (1), Tim (7).
We can directly read off that Tj,, (1) = Y., finimJi(unr/R). However, the definition
of the longitudinal modes is more ambiguous. This is resolved by considering the
gradient of a generic scalar field p(r) in terms of VSH:

Y (n()¥i) = 2 g (Y (B3)

Therefore, for a given spherical harmonic mode we must have

T‘S’lm / le d’l" = Z anlmjl Oéln’f'/R> (B9>

nlm

For the mode where [ = 0, m = 0, we decompose Qoo to obtain the coefficients of the
derivative of jo(rag,/R), since ¥og = 0. Otherwise we decompose the function Sy, (r)
to get coefficients of j;(ra;,), as this is computationally simpler. Both in the case of
longitudinal and transverse flows, the task is always reduced to the decomposition of
a function defined over the interval [0, 1] into spherical Bessel functions

‘T) = Zflnjl (maln)a >0

(B10)
Z fonJl (nz) Z nw fonj1(nmx) .

where we have suppressed the index m as it does not affect this part of the calculation,
and inserted the known roots ag, = nm. To find the components f;,, we exploit the
following orthogonality relation

1
/ Ji(waun)ji(zoum )z de =
0

: } B11
6nm % Jl l(aln)jl+l(aln)7 [>0. ( )
2 (nm)2> I=0
Multiplying equations B10 by z? and integrating, we obtain
fol 2251 (vayy) fi(z)dz
fln =-2 B ( ) B ( ) 5 0
J1—1\Un ) J1+1 O (B12)

1
Jon = _27”7/ 532j1(n77$)f0($)d1' .
0

These integrals are then implemented in our code. To perform the integrals over the
discrete set of radii {r;}, we used Simpson’s rule as implemented in scipy.integrate.

The inverse operation, going from coefficients to the full spatial dependence, is far
simpler: for each [, we sum over Bessel functions multiplied by their coefficients fi,.
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This gives us the radial dependence of the coefficients Qi (1), Sim (1), Tim (7). We then
use the shtns package to convert those back to spatial representations, radial shell by
radial shell.
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