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One of the biggest trends in ecology over the past decade has been the creation
of standardized databases. Recently, this has included live data, formal linkages
between disparate databases, and automated analytics, a synergy that we rec-
ognize as the Internet of Animals (IoA). Early I0A systems relate animal locations
to remote-sensing data to predict species distributions and detect disease out-
breaks, and use live data to inform management of endangered species. How-
ever, meeting the future potential of the IoA concept will require solving
challenges of taxonomy, data security, and data sharing. By linking data sets, in-
tegrating live data, and automating workflows, the IoA has the potential to enable
discoveries and predictions relevant to human societies and the conservation of
animals.

Emergence of an Internet of Animals

Our use of the internet to link data sets and process new information in real time has revolution-
ized the way humans navigate, do business, and find love. The internet has evolved from a simple
network of linked computers to a complex web of data that encompasses all aspects of informa-
tion. Key innovations in this evolution include a web of linked and machine-readable data sets,
constant growth in the flow of new information through live data streams (see Glossary), and
the development of Artificial Intelligence (Al) to make sense of it all [1]. Most of the internet is
built to serve humans, but there is a growing portion of cyberspace focused on the natural
world that describes aspects of animal species, populations, and societies that we think also
has the potential to make ecological predictions useful for humans and conservation. For exam-
ple, BirdCast now produces daily bird migration forecasts by combining multiple live and legacy
data sets into one automated, Al-driven analysis [2].

There have always been data about animals on the internet, but the past few years have seen four
major innovations. First, the amount of data is growing exponentially, as more aspects of ecology
transition into Big Data fields [3]. Second, we see a growing variety and velocity of live data
streams about animals [4,5]. Third, there are now some formal linkages between these data
sets (e.g., [2,6]), although we suggest there is potential for much more. Finally, researchers are
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applying Al tools for both data collection and automated analysis [7].

Here, we recognize the synergy of these advances by developing the concept of the loA and
hope that this will encourage its growth. This term was originally coined to describe live animal-
tracking data systems [8], but here we expand its scope to include all types of animal data, link-
ages between these databases, and automated analyses. We focus this discussion on animals,
currently especially vertebrates, and not life in general, because they provide the most
well-developed examples. Furthermore, linking data sets requires standards and, when describ-
ing aspects of life on Earth, this starts with a standardized taxonomy. While still in flux, only the
taxonomy of vertebrates is relatively complete and stable [9]. Here, we first describe the main
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components of the [0A, then present examples of systems that already exist, and finally highlight
ideas of what could be possible in the future.

Components of the IoA

Big Data

The amount and diversity of animal data available on the internet is immense and growing rapidly
(Figure 1; Table S1 in the supplemental information online). These databases are the core of the
|0A because they describe animal life on the planet from several different perspectives. We first
highlight the key types of data available within the lIoA.

The databases that describe taxonomy are probably the most important to the loA. Each major
taxonomic group of vertebrates (birds, mammals, reptiles and amphibians, and fish; Table S1
in the supplemental information online) has a taxonomic authority. These names are the stan-
dards by which data are linked across the loA.

The next set of oA databases describes the most important attributes of an animal: genetics,
evolutionary history, phenotypes, and conservation status. Repositories for genetic information,
such as GenBank or the Earth BioGenome Project, archive genotype data from decades of
research. Similarly, phylogeny databases, such as PhylomeDB or the Tree of Life, are becoming
increasingly complete. Databases of animal phenotypes (i.e., traits) are proliferating as
researchers mine decades of published and unpublished research to systematically describe
species in standard ways, such as by body size, reproductive characteristics, and diet [10]. For
domestic animals, there are also growing databases of animal health records [11]. Finally, the
IUCN Red List provides a rigorous conservation assessment of all vertebrate species, categoriz-
ing them into one of eight threat levels [12].
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Figure 1. Major components of the Internet of Animals (IoA) that are now online. Hexagons show the 50 largest and
most important components of the 10A (see Table S1 in the supplemental information online for details), with shape size
showing the relative size of each data set. Much of the spatial data (green shading) is centralized in the Global Biodiversity
Information Facility (GBIF). Genetic data are available and relevant for many species and individual animals, if linked
properly. Remote-sensing data describe the world animals move through and can be linked by time and location.
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Glossary

Application Programming Interface
(API): mechanisms that allow two
software components to automatically
communicate with each other using a
set of definitions and protocols. In the
|0A, these are used to link separate
databases and stream in live data.
Edge computing: a distributed
computing paradigm that brings
computation to the ‘edge’ of a network
by processing and analyzing data in
real-time on the same device that
collects the data, rather than sending all
data to a centralized location for
processing. Examples from the [0A
include data processing on-board
tracking collars, camera traps, and
acoustic recorders.

Internet of Animals (loA): systems for
studying wild or domestic animals with a
combination of live data from sensors or
citizen scientists, linkages between
multiple different kinds of databases,
and automated analyses.

Internet of Things (loT): a network of
physical objects or ‘things’ embedded
with sensors, software, and wireless
connectivity that enables them to collect
and exchange data over the internet.
The sensors used to monitor animals
can be considered loT technology.

Live data: information that is updating
in real-time, as opposed to static or
historical data, providing a real-time view
of what is happening in the environment.
Live data streams in the |0A typically
come from distributed sensors with
limited power supplies, and so are often
not in fact constantly changing, but
update hourly or daily.

Species occurrences: records
documenting a particular species in a
given geographic location at a specific
time. In the oA, these include
observations by citizens, animal tracking
locations, or vouchered records that
include verifiable evidence, such as a
museum specimen, photograph, or a
sound recording.
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Another growing set of data records is the ecological interactions between species (e.g., Global
Biotic Interactions), especially related to disease. There are wildlife disease-monitoring programs
at the country and global level (e.g., USGS National Wildlife Health Center or World Animal Health
Information System), although the accuracy of reporting and accessibility of the data are some-
times called into question [13]. Additional programs monitor disease or antibiotic resistance in
livestock (e.g., Swine Health Information Center or National Antimicrobial Resistance Monitoring
System) and pets (Companion Animal Veterinary Surveillance Network). Linking these to other
aspects of the oA will enable a One Health approach to people, animals, and their shared
environment (e.g., One Digital Health [14]).

Some of the largest animal databases are dedicated to describing the spatial distribution of ani-
mals (i.e., species occurrences). Spatial databases of animal records come from a variety of
sources, with many collected and redistributed through the Global Biodiversity Information Facil-
ity (GBIF). The longest running data series come from museum collections, in which the spatial
location represents the location a specimen was collected, including records from Darwin, Wal-
lace, and Linnaeus. These collections link to preserved physical specimens, which are increas-
ingly made digitally accessible as photographs, 3D scans, or as fully measured skeletons'. A
promising novel development is that the fastest growing databases are collections of citizen sci-
ence-based observations with no associated specimen collected, especially for birds. For exam-
ple, eBird registered 179 million observations in 2021 (1.3 billion in total; Table S1 in the
supplemental information online). While most of these records are not independently verifiable
(because they have no accompanying media), iNaturalist has 16 million vertebrate records ac-
companied by a photograph that can be used as a voucher to verify species ID. Sensor-based
spatial records are also growing rapidly. Tracking tags can collect millions of locations per individ-
ual animal, providing rich data on space use and interactions [5,15]. Movebank, the largest repos-
itory for tracking data, has over 5 billion location records [16], and other tracking repositories
[17,18] hold many millions of records for both terrestrial and marine species. Camera traps are
another sensor type that is rapidly growing, with over 14 million records on the Wildlife Insights
platform [19]. Monitoring data from acoustic sensors are also accumulating rapidly, but are not
yet readily available online due to large file sizes.

Finally, remote-sensing products describe the world that animals are moving through, including
weather, vegetation type, and land use. The diversity and density of these data are staggering,
with more platforms providing more types of information, at finer spatial and temporal resolution,
every year [20]. For example, LIDAR from the GEDI mission now describes vegetation structure at
a global scale [21], while weather reanalysis models predict the weather every hour, anywhere on
the planet [22]. These spatially and temporally explicit environmental data can be linked to animals
based on their location and timestamp, and services, such as Google Earth Engine and
Env-DATA, provide streamlined access to these data sets [23,24].

Live data networks

The largest components of the I0A are growing rapidly due to live data streams (Figure 2). These
data come from citizen scientists using their phones and specialized sensors that transmit data
remotely. However, the quality control needed to make citizen science data ‘research grade’
can take longer, or never be completed, depending on the taxon [25,26]. Similarly, many dis-
ease-reporting networks have standard forms for professionals to upload new information daily
[27]. However, the largest live data streams come from automated sensors.

Wireless data transmission (Box 1) is most common in animal-tracking research, where it is often
the only way to retrieve data on animals that could move to the other side of the world in a few
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Figure 2. Technologies of the Internet of Animals (IoA) and how they fit together. Live data (A) are generated through
networked Internet of Things (loT) sensors on animals or embedded in the environment and by reports from citizen scientists.
These records are added to growing databases, which are linked through Application Programming Interfaces (APIs) using
well-defined vocabularies for metadata and taxonomy. Spatiotemporal links to remote-sensing data can quantify the
environment through which an animal is moving and be combined with automated analytics to provide users real-time insight
and discoveries. Existing wireless networks (B) represent a trade-off between the geographic scale of their coverage and the
size (primarily due to battery power required) of their transmitters, which limit the species that can be tracked with them (see
also Box 1 in the main text). Remote-sensing data (C) available to intersect with animal data reflect a trade-off between the
spatial and temporal resolution of their products (data and references in Table S2 in the supplemental information online).

Box 1. Wireless networks for ecology

The wireless networks available for live data transmission are diverse and represent a trade-off between bandwidth, cost, and
spatial scale (see Figure 2B in the main text). There is also a fundamental distinction between connectivity through water and
through air, with the water—air boundary providing a significant physical challenge [73]. On land, high wave frequencies are
possible, starting with the 150 MHz of VHF radio telemetry and advancing to 400 MHz ARGOS and ICARUS [74];
900 MHz UHF and loT; 1600 MHz Iridium satellites; 700, 800, or 1900 MHz cell phones; and 2.4 GHz WIFI [75]. These higher
frequencies are more attenuated by vegetation or weather, but allow for faster data transmission. Transmission through the
water is more difficutt, requiring lower frequencies, usually below 100 dMHz [76]. Early animal tracking data were transmitted
through continuous VHF transmitters [77] and later via the ARGOS satellite network [78]. Zoologists have now tapped into the
growing global wireless phone network, which has become the mainstay of modern tracking tags, which transmit megabytes
of data through global mobile phone connections [79], although they are more power-hungry and expensive.

More recently, scientists have used Internet of Things (loT) networks as a live data solution since they require lower power
compared with phone networks, are less expensive, and can cover large areas, although with lower bandwidth. This loT net-
work infrastructure is still being established, and many protected areas have taken the initiative to establish their own systems
to enable larger-scale tracking of wildlife [e.g., solar-powered, <20 g ear tags in black rhinoceros (Diceros bicornis) transmit
their data up to 186 km in Kruger National Park, South Africa [75]]. There are also now space-based loT networks
(e.g., random access very low power WANs; RA-vVLPWAN [74]), which are global in reach but are limited in providing real-time
data transmission by small constellation size. We expect that terrestrial and space loT communication schemes will be
merged, such that on-animal tags will choose which communication mode serves best at a given time and place.
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weeks [28]. The actual frequency of ‘live’ data can vary. Real-time, high-resolution, continuous
data streams are uncommon in ecology because they are expensive and cannot easily be battery
powered, limiting how the sensors are deployed. Their applications have thus far been limited to
security applications [29] or using weather radar to detect flying animals [2]. More typically, data
are transmitted every few hours or days to save battery power or to synchronize with the orbit
schedules of satellites used to send the information. When it comes to data resolution and la-
tency, ecologists often have to find a balance between what is technically possible and what is
needed to address the research problem. Now that analyses are being automated as part of
the loA, we expect to see more creative uses of real-time evaluation and science for conservation
and discovery.

Al as the lubricant in the Big Data machinery

As the components of the loA grow, Al and automated analytics are increasingly needed to re-
place traditional manual processing, both for data input and analysis. Computer vision ap-
proaches are now available for classifying animal pictures taken by citizen scientists or camera
traps [7] but are thus far only accurate enough to aid, not replace, human image processing
[19]. There are several exciting approaches to mine additional animal information from images
or video, including individual identification [30], distance from the camera [31], posture and
head direction [32], and behaviors associated with sick animals [33]. Automated identification
of animal sounds has been challenging [34], but has recently seen great improvement, with ap-
proaches classifying sonographic images rather than statistical descriptions of the sounds [35].

Al methods have long been used to analyze animal data [36,37], but the recent innovations of
edge computing and automated analyses make it a critical technology for the future of the
loA. Efficient algorithms that can run on ‘the edge’ can improve response time and save band-
width. For example, GPS tracking tags can adjust their fix rate based on accelerometer data to
capture higher resolution data when the animal is moving and save battery when the animal is
resting [38]. Similarly, large sensor data (e.g., video or accelerometer data) can be processed
at the edge and have the results (e.g., species detected) transmitted on low bandwidth wireless
networks [39].

Linking it together: current IoA systems

The potential of the IoA comes not only from having large databases fed by live data, but also in
linking these databases together and providing new insight through analytics. Application
Programming Interfaces (APIs) have made these types of linkage possible (Figure 2), forming
the actual linkages between databases [40]. Finally, some analysis is needed to pull insight from
this data mixture, ideally in an automated workflow.

Ecology and conservation applications

There are various example I0A systems that automatically pull and analyze data from multiple
sources to provide timely results and predictions about the natural world (Figure 3). The best ex-
amples of the potential of the loA come from two systems designed to protect migrating animals.
First is the BirdCast project, which creates forecasts of nocturnal bird migration updated every 6
h, combining new and historic radar and weather data, analyzed with machine learning tools [2].
These forecasts are of interest not only to aviation officials guiding aircraft, but also to bird
watchers, and are even being used to inform cities of the most important nights to turn off building
lights. Collisions with lit-up windows kill ~1 billion birds per year, especially during migration [41].
These forecasts are now being used by cities to create regulations that turn off building lights dur-
ing the most sensitive periods [42]. Second is the Whale Safe project, which produces near real-
time predictions of whale locations along the California coast as advice for when ships should
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Figure 3. Near horizon and futuristic Internet of Animal (IoA) systems. (A) Real-time conservation: real-time data and
predictions of animal movement can avert conservation problems by identifying when certain areas need to be closed for
recreation, wind turbines should be shut down, or cities should turn off their lights to reduce bird collisions with buildings.
In the future, this concept could include changes in activity of animals to alert authorities to the presence of poachers in an
area. (B) Distributed sensors: in addition to the camera traps and microphones being used by scientists, l0A could include
data from doorbell cameras, security cameras, and smart cars, using edge computing to share the information, but not
the actual videos. In the future, LIDAR and cameras on cars could count insects and provide long-term, broad-scale
monitoring that is impossible now. (C) Animals as sensors: weather sensors on animals can record environmental
conditions high up in the atmosphere, under sea, or under the forest canopy to improve weather forecasts and
environmental monitoring. In the future, the activity of animals themselves could warn of natural disasters. (D) Coordinated
disease monitoring: a combination of vet check-ups, artificial inteligence (Al) cameras, and ear-tag monitors can tell when
animals in big agricultural settings or protected areas are sick. In the future, these farm systems could be combined and
integrated with the same information from wild animals, humans, and remote sensing.

reduce their speed to avoid colliding with whales. The system combines three near real-time data
streams (acoustic monitoring from buoys [43], trained observers including tourism operators, and
habitat preference maps) into a whale presence rating, shares them with the public and industry,
and intersects them with maps of shipping activity to determine which vessels abide by National
Oceanic and Atmospheric Administration (NOAA) (still voluntary) speed recommendations. Both
of these projects show the potential for linking legacy and live data streams into real-time fore-
casts to reduce the impact of human infrastructure on migrating animals.

Several other existing examples of oA systems combine spatial biodiversity with remote-sensing
data in an automated way, often including live data. For example, animal trackers can use the
Movebank MoveApps platform to automatically combine weather and habitat data with real-
time analyses of animal movement [44]. Other applications automate the analysis of biodiversity
data and serve up large collections of derived products, such as maps of predicted seasonal
abundance (eBird [45]), habitat projections (Map of Life [46]), and animal migration corridors
(Migratory Connectivity of the Oceans [47]).

These types of spatial product have long been useful for conservation managers looking to prioritize
new areas for conservation, prepare for climate change, or mitigate existing conflict, and these IoA
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systems have produced better measures, for more species, and made them more easily accessi-
ble. More recently, the live data dimension of I0A systems has also opened a new dimension of
quick-response conservation implemented through software such as Earth Ranger or SMART con-
servation tools [48]. Rangers use live tracking data to closely monitor threatened species. Changes
in the movement of the observed individuals or groups might indicate that an animal, even a
nontagged individual within a group, has been snared, allowing conservation managers to rush to
the scene to free the animal. This type of work can also benefit from crowdsourcing. Citizen scien-
tists working in collaboration with professional animal trackers have quickly discovered migrating
storks stuck in human infrastructure in time to rescue them [16]. Vice versa, individual ‘problem’ an-
imals that come into conflict with human communities can be tracked with geo-fenced tags that
create alerts if animals come near crops [e.g., Asian elephants (Elaphus maximus) in India [49]] or
livestock [e.g., African lions (Panthera leo) in Namibia [50]].

Agricultural applications

The agriculture industry has developed several I0A applications to enable precision livestock
farming to increase efficiency and improve the health of animals [51]. GPS-tracking ear tags
can monitor the location of livestock in remote areas [52] and these data have been useful for res-
cuing individuals that are in danger. Other ear tags fitted with accelerometers made by Sense Hub
can detect when an animal is sick and alert the manager to enable early detection of illness. Em-
bedded sensors can also use real-time Al analysis to detect sick animals quickly, for example
using video of chicken flocks to detect disabled animals or audio feeds of swine to detect coughs
of sick individuals [53,54]. While many companies are using Big Data to manage their animals,
linkages between these data sets are rare, in part because of the proprietary nature of the busi-
ness, but also because many farmers prioritize privacy over data sharing [51].

What it could be: envisioning the next generation of loA

The I0A is already partially in existence, but we think that the expansion of linked data, live data,
and Al will lead to rapid growth of these systems. Here, we focus on some of the advancements
that are on the horizon as logical next steps. We then end with two more speculative sections de-
scribing how we might monitor wildlife with consumer electronics and how growing our network
of monitoring could tap into animal senses to provide a new type of environmental sensing.

Ecological forecasting

Ecologists have long admired meteorological forecasts, and strive to replicate that success for
predicting animal populations, distributions, disease emergence, and responses to climate change
[65]. The meteorologist’s toolkit includes the same components as the IoA we describe here (live
data, linked data, and automated analyses), and these are now being connected for ecological fore-
casting [56]. We see prediction as the ultimate proving ground for the utility of the I0A.

Data integration will be a key component of ecological forecasting, but remains a major challenge
in ecology. For example, there is an active research area working to integrate the diverse types of
occurrence record that can reflect aspects of the spatial distribution and abundance of a species,
including museum specimens, citizen science observations, camera traps, acoustic monitoring,
hunter harvest records, and animal tracking [57]. However, understanding the drivers of past
population change, and predicting their future, requires an even more diverse set of environmen-
tal and demographic information to be combined into more sophisticated models (e.g., integrated
population models [58]).

Finally, we also see arole for the loA to provide unique data from the perspective of the animal that
can improve weather predictions. Sensors on animals can record local conditions as the animals
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move through their environment, which can be useful inputs for environmental models. For exam-
ple, birds soar through spaces to which meteorologists regularly send weather balloons [59],
while seals dive daily to parts of the oceans rarely sampled by oceanographers [60]. Harnessing
the natural movement of these species to monitor remote parts of our planet could provide useful
information to meteorologists.

Disease

We expect the next generation of disease analytics (e.g., CDC Center for Forecasting and Outbreak
Analytics) to establish more linkages between human and animal data sets. Animal distribution,
abundance, movement, and interactions are key factors in disease ecology and emergence [61]
and are now richly described in components of the I0A. Live tracking data from animals can also
be used to map the spread of disease in real time, detecting sick animals through changes in
body temperature, movement pattern, or changes in their social networks, or rapidly detecting
the death of an animal so that it’s corpse can be collected and tested for disease [62]. Finally,
new information on virus discovery in wildlife can be linked to existing genetic and evolutionary infor-
mation to quickly build knowledge graphs to identify reservoir hosts of novel zoonoses [63].

Pets and agriculture

We see potential for oA advances to not only improve the lives of domestic animals, but also re-
duce their impact on natural systems, especially related to the improvement of tracking tags.
Movements of an outdoor pet cat (Felis catus) could be intersected with information about
where they crossed roads or were likely to intersect with predators, such as coyotes (Canis
latrans), to quantify potential risks to the cat. Furthermore, smart collars with edge computing
could monitor the behavior of cats in real time to detect when they are hunting, and then sound
an alarm, such as a bird chip note, to alert potential prey. A similar approach could help map live-
stock movement relative to risk of predation from large carnivores. Even more, sensors that de-
tect a change in the behavior of prey upon recognizing a predator [64] could trigger a noise
(e.g., gunshot or human voices) to deter the predation event. Imagine a system where a smart
tag recognizes a potential conflict (a pet cat kiling a bird or a wild carnivore killing livestock) and
triggers an action to prevent the problem.

Monitoring nature with consumer electronics

Commercial products, from doorbell cameras to smart cars, are now collecting sensor data about
the environment at a scale that could not have been imagined a few years ago. We see great po-
tential for linking animal data from those sensors into the oA framework so that they can be used
for science, conservation, and societal applications. Edge computing is the key innovation to
make this possible: if Al on the sensor itself can accurately classify the animal being detected,
then no original video or other sensor data needs to be shared. This ameliorates privacy concems
and reduces bandwidth and data storage requirements. Scientists do not want a flood of backyard
security camera images, but knowing when a deer, coyote, or bear was detected could be useful
for monitoring animal populations, and even alerting neighborhoods to the potential risk of a danger-
ous animal in the general area. Imagine if even a fraction of the 85 million personal security cameras
in use in the USA in 2021 were to voluntarily sign up to share data with an IoA-based animal mon-
itoring program; the data would vastly outpace anything collected by scientists [65,66].

Modern smart cars provide a mobile sensor platform constantly scanning the roadsides. Register-
ing the location of animals along the roadside could not only provide standardized animal censuses
useful for conservation and wildlife management, but could also alert nearby vehicles to the risk of
animal collisions [67]. Furthermore, many modern cars are also fitted with LIDAR and radar systems
capable of detecting not only large wildlife but also bats, birds, and insects. A few stationary
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systems such as this have recently been proven as a promising standard method for monitoring in-
sect populations [68]. Imagine a global network of millions of cars driving billions of km of roads
around the world while counting insects as part of a standardized protocol linked into the I0A.

Tapping into animal knowledge

Animals know a lot about the planet that we do not. We think that the oA can help us translate their
knowledge into terms we can understand. New research suggests that the ‘sixth sense’ of animals
is in fact an emergent property of many interacting intelligent sensors (i.e., animals [69]). Animals are
in constant contact with other animals of their own and different species, creating an incredibly in-
telligent, biological sensing network. The sensors and edge computing of the I0A can help us tap
into this network to learmn not only what the world is like now, but also what the animals are forecast-
ing for the future. For example, climate forecasts might be improved by including information about
the nesting behavior of seabirds across the Indo-Pacific because long-lived seabirds are tuned in to
predict future food supply and breeding conditions. If seabirds breed when environmental condi-
tions deteriorate, chicks die. Thus, natural selection on forecasting in seabirds is probably very
strong [70]. Similarly, the food brought back by seabirds to their growing chicks in Baja California
can be used to predict and manage the harvest by human fishing industry 6 months later [71].

The mysterious sixth sense of animals is most famously invoked to explain their ability to predict
natural disasters. The erratic and unpredictable nature of these disasters makes this difficult to
study, but experimental evidence is accumulating to suggest that the collective sensing and be-
havior of animals can help detect these events hours before they happen [72]. Imagine a network
of sensors monitoring animal behavior to alert local communities of potential pending earth-
quakes, tsunamis, or volcanic eruptions.

Concluding remarks

As all information moves online, we see the potential for an I0A that links data across domains,
streams live data from around the world, and analyzes these in real time to provide insight into
the most important problems of our time: animal responses to climate change, the preservation
and restoration of biodiversity and ecosystem functions, the preservation of sustainable harvests,
the monitoring of disease dynamics in a One-Health alliance between animals and humans, and
the forecast of natural disasters. While biodiversity data are accumulating faster than ever, there
are still challenges before the full potential of an loA is realized (see Outstanding questions). All
countries, cultures, and socioeconomic communities share space with animals, domestic and
wild. The more we can learn about the perspectives of animals on the planet, the more we can
benefit from them and create solutions for sustainable coexistence on Earth.
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Outstanding questions

How can we ensure that legacy
biodiversity records are digitized?
Most museum collections are not
digitized, and many others are only
digitized at a superficial level.

How can we extract information from
not only past publications, but also
the social media networks in a way
that renders it semantically described
and linked to the rest of the I0A?

How can we make data accessible
while still protecting species at risk for
poaching? We need to not only guard
some data, but also develop ways to
anonymize and aggregate information
to share beneficial products without
disclosing sensitive details.

How can we give credit to those who
collect and share ecological data?
The accumulation of Big Data from
disparate  sources creates a
disconnect from the original data
collectors. Some large analyses could
combine data collected by many
thousands of researchers, making it
difficult to recognize each contribution.

How can we link information about
animals across databases when
taxonomy is always changing?
Species names are the fundamental
metadata standard needed to link
information across the I0A and the
inevitable lumping and splitting will
create errors if not accounted for.

Are there benefits to linking genetic
data to the morphological, ecological,
and behavioral data in the loA? DNA
sequences all come from known spe-
cies, and can often be linked to partic-
ular  museum specimens, but
secondary use of these linkages is
rare.

How can we fund the animal
databases and the cyberinfrastructure
needed to link and analyze them?
Government funding is needed in the
short term, but we also see potential
IoA predictions to inspire start-up
companies creating products useful
to human societies or conservation.
However, this will also require agree-
ments about how such data and prod-
ucts can be used and commercialized.
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